GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / media / platform / vsp1 / vsp1_video.c
1 /*
2  * vsp1_video.c  --  R-Car VSP1 Video Node
3  *
4  * Copyright (C) 2013-2015 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/v4l2-mediabus.h>
19 #include <linux/videodev2.h>
20 #include <linux/wait.h>
21
22 #include <media/media-entity.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-fh.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/v4l2-subdev.h>
27 #include <media/videobuf2-v4l2.h>
28 #include <media/videobuf2-dma-contig.h>
29
30 #include "vsp1.h"
31 #include "vsp1_bru.h"
32 #include "vsp1_dl.h"
33 #include "vsp1_entity.h"
34 #include "vsp1_pipe.h"
35 #include "vsp1_rwpf.h"
36 #include "vsp1_uds.h"
37 #include "vsp1_video.h"
38
39 #define VSP1_VIDEO_DEF_FORMAT           V4L2_PIX_FMT_YUYV
40 #define VSP1_VIDEO_DEF_WIDTH            1024
41 #define VSP1_VIDEO_DEF_HEIGHT           768
42
43 #define VSP1_VIDEO_MIN_WIDTH            2U
44 #define VSP1_VIDEO_MAX_WIDTH            8190U
45 #define VSP1_VIDEO_MIN_HEIGHT           2U
46 #define VSP1_VIDEO_MAX_HEIGHT           8190U
47
48 /* -----------------------------------------------------------------------------
49  * Helper functions
50  */
51
52 static struct v4l2_subdev *
53 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
54 {
55         struct media_pad *remote;
56
57         remote = media_entity_remote_pad(local);
58         if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
59                 return NULL;
60
61         if (pad)
62                 *pad = remote->index;
63
64         return media_entity_to_v4l2_subdev(remote->entity);
65 }
66
67 static int vsp1_video_verify_format(struct vsp1_video *video)
68 {
69         struct v4l2_subdev_format fmt;
70         struct v4l2_subdev *subdev;
71         int ret;
72
73         subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
74         if (subdev == NULL)
75                 return -EINVAL;
76
77         fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
78         ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
79         if (ret < 0)
80                 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
81
82         if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
83             video->rwpf->format.height != fmt.format.height ||
84             video->rwpf->format.width != fmt.format.width)
85                 return -EINVAL;
86
87         return 0;
88 }
89
90 static int __vsp1_video_try_format(struct vsp1_video *video,
91                                    struct v4l2_pix_format_mplane *pix,
92                                    const struct vsp1_format_info **fmtinfo)
93 {
94         static const u32 xrgb_formats[][2] = {
95                 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
96                 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
97                 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
98                 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
99         };
100
101         const struct vsp1_format_info *info;
102         unsigned int width = pix->width;
103         unsigned int height = pix->height;
104         unsigned int i;
105
106         /* Backward compatibility: replace deprecated RGB formats by their XRGB
107          * equivalent. This selects the format older userspace applications want
108          * while still exposing the new format.
109          */
110         for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
111                 if (xrgb_formats[i][0] == pix->pixelformat) {
112                         pix->pixelformat = xrgb_formats[i][1];
113                         break;
114                 }
115         }
116
117         /* Retrieve format information and select the default format if the
118          * requested format isn't supported.
119          */
120         info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
121         if (info == NULL)
122                 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
123
124         pix->pixelformat = info->fourcc;
125         pix->colorspace = V4L2_COLORSPACE_SRGB;
126         pix->field = V4L2_FIELD_NONE;
127         memset(pix->reserved, 0, sizeof(pix->reserved));
128
129         /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
130         width = round_down(width, info->hsub);
131         height = round_down(height, info->vsub);
132
133         /* Clamp the width and height. */
134         pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
135         pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
136                             VSP1_VIDEO_MAX_HEIGHT);
137
138         /* Compute and clamp the stride and image size. While not documented in
139          * the datasheet, strides not aligned to a multiple of 128 bytes result
140          * in image corruption.
141          */
142         for (i = 0; i < min(info->planes, 2U); ++i) {
143                 unsigned int hsub = i > 0 ? info->hsub : 1;
144                 unsigned int vsub = i > 0 ? info->vsub : 1;
145                 unsigned int align = 128;
146                 unsigned int bpl;
147
148                 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
149                               pix->width / hsub * info->bpp[i] / 8,
150                               round_down(65535U, align));
151
152                 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
153                 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
154                                             * pix->height / vsub;
155         }
156
157         if (info->planes == 3) {
158                 /* The second and third planes must have the same stride. */
159                 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
160                 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
161         }
162
163         pix->num_planes = info->planes;
164
165         if (fmtinfo)
166                 *fmtinfo = info;
167
168         return 0;
169 }
170
171 /* -----------------------------------------------------------------------------
172  * VSP1 Partition Algorithm support
173  */
174
175 static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
176 {
177         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
178         const struct v4l2_mbus_framefmt *format;
179         struct vsp1_entity *entity;
180         unsigned int div_size;
181
182         format = vsp1_entity_get_pad_format(&pipe->output->entity,
183                                             pipe->output->entity.config,
184                                             RWPF_PAD_SOURCE);
185         div_size = format->width;
186
187         /* Gen2 hardware doesn't require image partitioning. */
188         if (vsp1->info->gen == 2) {
189                 pipe->div_size = div_size;
190                 pipe->partitions = 1;
191                 return;
192         }
193
194         list_for_each_entry(entity, &pipe->entities, list_pipe) {
195                 unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH;
196
197                 if (entity->ops->max_width) {
198                         entity_max = entity->ops->max_width(entity, pipe);
199                         if (entity_max)
200                                 div_size = min(div_size, entity_max);
201                 }
202         }
203
204         pipe->div_size = div_size;
205         pipe->partitions = DIV_ROUND_UP(format->width, div_size);
206 }
207
208 /**
209  * vsp1_video_partition - Calculate the active partition output window
210  *
211  * @div_size: pre-determined maximum partition division size
212  * @index: partition index
213  *
214  * Returns a v4l2_rect describing the partition window.
215  */
216 static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
217                                              unsigned int div_size,
218                                              unsigned int index)
219 {
220         const struct v4l2_mbus_framefmt *format;
221         struct v4l2_rect partition;
222         unsigned int modulus;
223
224         format = vsp1_entity_get_pad_format(&pipe->output->entity,
225                                             pipe->output->entity.config,
226                                             RWPF_PAD_SOURCE);
227
228         /* A single partition simply processes the output size in full. */
229         if (pipe->partitions <= 1) {
230                 partition.left = 0;
231                 partition.top = 0;
232                 partition.width = format->width;
233                 partition.height = format->height;
234                 return partition;
235         }
236
237         /* Initialise the partition with sane starting conditions. */
238         partition.left = index * div_size;
239         partition.top = 0;
240         partition.width = div_size;
241         partition.height = format->height;
242
243         modulus = format->width % div_size;
244
245         /*
246          * We need to prevent the last partition from being smaller than the
247          * *minimum* width of the hardware capabilities.
248          *
249          * If the modulus is less than half of the partition size,
250          * the penultimate partition is reduced to half, which is added
251          * to the final partition: |1234|1234|1234|12|341|
252          * to prevents this:       |1234|1234|1234|1234|1|.
253          */
254         if (modulus) {
255                 /*
256                  * pipe->partitions is 1 based, whilst index is a 0 based index.
257                  * Normalise this locally.
258                  */
259                 unsigned int partitions = pipe->partitions - 1;
260
261                 if (modulus < div_size / 2) {
262                         if (index == partitions - 1) {
263                                 /* Halve the penultimate partition. */
264                                 partition.width = div_size / 2;
265                         } else if (index == partitions) {
266                                 /* Increase the final partition. */
267                                 partition.width = (div_size / 2) + modulus;
268                                 partition.left -= div_size / 2;
269                         }
270                 } else if (index == partitions) {
271                         partition.width = modulus;
272                 }
273         }
274
275         return partition;
276 }
277
278 /* -----------------------------------------------------------------------------
279  * Pipeline Management
280  */
281
282 /*
283  * vsp1_video_complete_buffer - Complete the current buffer
284  * @video: the video node
285  *
286  * This function completes the current buffer by filling its sequence number,
287  * time stamp and payload size, and hands it back to the videobuf core.
288  *
289  * When operating in DU output mode (deep pipeline to the DU through the LIF),
290  * the VSP1 needs to constantly supply frames to the display. In that case, if
291  * no other buffer is queued, reuse the one that has just been processed instead
292  * of handing it back to the videobuf core.
293  *
294  * Return the next queued buffer or NULL if the queue is empty.
295  */
296 static struct vsp1_vb2_buffer *
297 vsp1_video_complete_buffer(struct vsp1_video *video)
298 {
299         struct vsp1_pipeline *pipe = video->rwpf->pipe;
300         struct vsp1_vb2_buffer *next = NULL;
301         struct vsp1_vb2_buffer *done;
302         unsigned long flags;
303         unsigned int i;
304
305         spin_lock_irqsave(&video->irqlock, flags);
306
307         if (list_empty(&video->irqqueue)) {
308                 spin_unlock_irqrestore(&video->irqlock, flags);
309                 return NULL;
310         }
311
312         done = list_first_entry(&video->irqqueue,
313                                 struct vsp1_vb2_buffer, queue);
314
315         /* In DU output mode reuse the buffer if the list is singular. */
316         if (pipe->lif && list_is_singular(&video->irqqueue)) {
317                 spin_unlock_irqrestore(&video->irqlock, flags);
318                 return done;
319         }
320
321         list_del(&done->queue);
322
323         if (!list_empty(&video->irqqueue))
324                 next = list_first_entry(&video->irqqueue,
325                                         struct vsp1_vb2_buffer, queue);
326
327         spin_unlock_irqrestore(&video->irqlock, flags);
328
329         done->buf.sequence = pipe->sequence;
330         done->buf.vb2_buf.timestamp = ktime_get_ns();
331         for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
332                 vb2_set_plane_payload(&done->buf.vb2_buf, i,
333                                       vb2_plane_size(&done->buf.vb2_buf, i));
334         vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
335
336         return next;
337 }
338
339 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
340                                  struct vsp1_rwpf *rwpf)
341 {
342         struct vsp1_video *video = rwpf->video;
343         struct vsp1_vb2_buffer *buf;
344
345         buf = vsp1_video_complete_buffer(video);
346         if (buf == NULL)
347                 return;
348
349         video->rwpf->mem = buf->mem;
350         pipe->buffers_ready |= 1 << video->pipe_index;
351 }
352
353 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
354                                               struct vsp1_dl_list *dl)
355 {
356         struct vsp1_entity *entity;
357
358         pipe->partition = vsp1_video_partition(pipe, pipe->div_size,
359                                                pipe->current_partition);
360
361         list_for_each_entry(entity, &pipe->entities, list_pipe) {
362                 if (entity->ops->configure)
363                         entity->ops->configure(entity, pipe, dl,
364                                                VSP1_ENTITY_PARAMS_PARTITION);
365         }
366 }
367
368 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
369 {
370         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
371         struct vsp1_entity *entity;
372
373         if (!pipe->dl)
374                 pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
375
376         /*
377          * Start with the runtime parameters as the configure operation can
378          * compute/cache information needed when configuring partitions. This
379          * is the case with flipping in the WPF.
380          */
381         list_for_each_entry(entity, &pipe->entities, list_pipe) {
382                 if (entity->ops->configure)
383                         entity->ops->configure(entity, pipe, pipe->dl,
384                                                VSP1_ENTITY_PARAMS_RUNTIME);
385         }
386
387         /* Run the first partition */
388         pipe->current_partition = 0;
389         vsp1_video_pipeline_run_partition(pipe, pipe->dl);
390
391         /* Process consecutive partitions as necessary */
392         for (pipe->current_partition = 1;
393              pipe->current_partition < pipe->partitions;
394              pipe->current_partition++) {
395                 struct vsp1_dl_list *dl;
396
397                 /*
398                  * Partition configuration operations will utilise
399                  * the pipe->current_partition variable to determine
400                  * the work they should complete.
401                  */
402                 dl = vsp1_dl_list_get(pipe->output->dlm);
403
404                 /*
405                  * An incomplete chain will still function, but output only
406                  * the partitions that had a dl available. The frame end
407                  * interrupt will be marked on the last dl in the chain.
408                  */
409                 if (!dl) {
410                         dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
411                         break;
412                 }
413
414                 vsp1_video_pipeline_run_partition(pipe, dl);
415                 vsp1_dl_list_add_chain(pipe->dl, dl);
416         }
417
418         /* Complete, and commit the head display list. */
419         vsp1_dl_list_commit(pipe->dl);
420         pipe->dl = NULL;
421
422         vsp1_pipeline_run(pipe);
423 }
424
425 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
426 {
427         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
428         enum vsp1_pipeline_state state;
429         unsigned long flags;
430         unsigned int i;
431
432         spin_lock_irqsave(&pipe->irqlock, flags);
433
434         /* Complete buffers on all video nodes. */
435         for (i = 0; i < vsp1->info->rpf_count; ++i) {
436                 if (!pipe->inputs[i])
437                         continue;
438
439                 vsp1_video_frame_end(pipe, pipe->inputs[i]);
440         }
441
442         vsp1_video_frame_end(pipe, pipe->output);
443
444         state = pipe->state;
445         pipe->state = VSP1_PIPELINE_STOPPED;
446
447         /* If a stop has been requested, mark the pipeline as stopped and
448          * return. Otherwise restart the pipeline if ready.
449          */
450         if (state == VSP1_PIPELINE_STOPPING)
451                 wake_up(&pipe->wq);
452         else if (vsp1_pipeline_ready(pipe))
453                 vsp1_video_pipeline_run(pipe);
454
455         spin_unlock_irqrestore(&pipe->irqlock, flags);
456 }
457
458 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
459                                             struct vsp1_rwpf *input,
460                                             struct vsp1_rwpf *output)
461 {
462         struct media_entity_enum ent_enum;
463         struct vsp1_entity *entity;
464         struct media_pad *pad;
465         bool bru_found = false;
466         int ret;
467
468         ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
469         if (ret < 0)
470                 return ret;
471
472         pad = media_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
473
474         while (1) {
475                 if (pad == NULL) {
476                         ret = -EPIPE;
477                         goto out;
478                 }
479
480                 /* We've reached a video node, that shouldn't have happened. */
481                 if (!is_media_entity_v4l2_subdev(pad->entity)) {
482                         ret = -EPIPE;
483                         goto out;
484                 }
485
486                 entity = to_vsp1_entity(
487                         media_entity_to_v4l2_subdev(pad->entity));
488
489                 /* A BRU is present in the pipeline, store the BRU input pad
490                  * number in the input RPF for use when configuring the RPF.
491                  */
492                 if (entity->type == VSP1_ENTITY_BRU) {
493                         struct vsp1_bru *bru = to_bru(&entity->subdev);
494
495                         bru->inputs[pad->index].rpf = input;
496                         input->bru_input = pad->index;
497
498                         bru_found = true;
499                 }
500
501                 /* We've reached the WPF, we're done. */
502                 if (entity->type == VSP1_ENTITY_WPF)
503                         break;
504
505                 /* Ensure the branch has no loop. */
506                 if (media_entity_enum_test_and_set(&ent_enum,
507                                                    &entity->subdev.entity)) {
508                         ret = -EPIPE;
509                         goto out;
510                 }
511
512                 /* UDS can't be chained. */
513                 if (entity->type == VSP1_ENTITY_UDS) {
514                         if (pipe->uds) {
515                                 ret = -EPIPE;
516                                 goto out;
517                         }
518
519                         pipe->uds = entity;
520                         pipe->uds_input = bru_found ? pipe->bru
521                                         : &input->entity;
522                 }
523
524                 /* Follow the source link. The link setup operations ensure
525                  * that the output fan-out can't be more than one, there is thus
526                  * no need to verify here that only a single source link is
527                  * activated.
528                  */
529                 pad = &entity->pads[entity->source_pad];
530                 pad = media_entity_remote_pad(pad);
531         }
532
533         /* The last entity must be the output WPF. */
534         if (entity != &output->entity)
535                 ret = -EPIPE;
536
537 out:
538         media_entity_enum_cleanup(&ent_enum);
539
540         return ret;
541 }
542
543 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
544                                      struct vsp1_video *video)
545 {
546         struct media_entity_graph graph;
547         struct media_entity *entity = &video->video.entity;
548         struct media_device *mdev = entity->graph_obj.mdev;
549         unsigned int i;
550         int ret;
551
552         /* Walk the graph to locate the entities and video nodes. */
553         ret = media_entity_graph_walk_init(&graph, mdev);
554         if (ret)
555                 return ret;
556
557         media_entity_graph_walk_start(&graph, entity);
558
559         while ((entity = media_entity_graph_walk_next(&graph))) {
560                 struct v4l2_subdev *subdev;
561                 struct vsp1_rwpf *rwpf;
562                 struct vsp1_entity *e;
563
564                 if (!is_media_entity_v4l2_subdev(entity))
565                         continue;
566
567                 subdev = media_entity_to_v4l2_subdev(entity);
568                 e = to_vsp1_entity(subdev);
569                 list_add_tail(&e->list_pipe, &pipe->entities);
570
571                 if (e->type == VSP1_ENTITY_RPF) {
572                         rwpf = to_rwpf(subdev);
573                         pipe->inputs[rwpf->entity.index] = rwpf;
574                         rwpf->video->pipe_index = ++pipe->num_inputs;
575                         rwpf->pipe = pipe;
576                 } else if (e->type == VSP1_ENTITY_WPF) {
577                         rwpf = to_rwpf(subdev);
578                         pipe->output = rwpf;
579                         rwpf->video->pipe_index = 0;
580                         rwpf->pipe = pipe;
581                 } else if (e->type == VSP1_ENTITY_LIF) {
582                         pipe->lif = e;
583                 } else if (e->type == VSP1_ENTITY_BRU) {
584                         pipe->bru = e;
585                 }
586         }
587
588         media_entity_graph_walk_cleanup(&graph);
589
590         /* We need one output and at least one input. */
591         if (pipe->num_inputs == 0 || !pipe->output)
592                 return -EPIPE;
593
594         /* Follow links downstream for each input and make sure the graph
595          * contains no loop and that all branches end at the output WPF.
596          */
597         for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
598                 if (!pipe->inputs[i])
599                         continue;
600
601                 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
602                                                        pipe->output);
603                 if (ret < 0)
604                         return ret;
605         }
606
607         return 0;
608 }
609
610 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
611                                     struct vsp1_video *video)
612 {
613         vsp1_pipeline_init(pipe);
614
615         pipe->frame_end = vsp1_video_pipeline_frame_end;
616
617         return vsp1_video_pipeline_build(pipe, video);
618 }
619
620 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
621 {
622         struct vsp1_pipeline *pipe;
623         int ret;
624
625         /* Get a pipeline object for the video node. If a pipeline has already
626          * been allocated just increment its reference count and return it.
627          * Otherwise allocate a new pipeline and initialize it, it will be freed
628          * when the last reference is released.
629          */
630         if (!video->rwpf->pipe) {
631                 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
632                 if (!pipe)
633                         return ERR_PTR(-ENOMEM);
634
635                 ret = vsp1_video_pipeline_init(pipe, video);
636                 if (ret < 0) {
637                         vsp1_pipeline_reset(pipe);
638                         kfree(pipe);
639                         return ERR_PTR(ret);
640                 }
641         } else {
642                 pipe = video->rwpf->pipe;
643                 kref_get(&pipe->kref);
644         }
645
646         return pipe;
647 }
648
649 static void vsp1_video_pipeline_release(struct kref *kref)
650 {
651         struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
652
653         vsp1_pipeline_reset(pipe);
654         kfree(pipe);
655 }
656
657 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
658 {
659         struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
660
661         mutex_lock(&mdev->graph_mutex);
662         kref_put(&pipe->kref, vsp1_video_pipeline_release);
663         mutex_unlock(&mdev->graph_mutex);
664 }
665
666 /* -----------------------------------------------------------------------------
667  * videobuf2 Queue Operations
668  */
669
670 static int
671 vsp1_video_queue_setup(struct vb2_queue *vq,
672                        unsigned int *nbuffers, unsigned int *nplanes,
673                        unsigned int sizes[], struct device *alloc_devs[])
674 {
675         struct vsp1_video *video = vb2_get_drv_priv(vq);
676         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
677         unsigned int i;
678
679         if (*nplanes) {
680                 if (*nplanes != format->num_planes)
681                         return -EINVAL;
682
683                 for (i = 0; i < *nplanes; i++)
684                         if (sizes[i] < format->plane_fmt[i].sizeimage)
685                                 return -EINVAL;
686                 return 0;
687         }
688
689         *nplanes = format->num_planes;
690
691         for (i = 0; i < format->num_planes; ++i)
692                 sizes[i] = format->plane_fmt[i].sizeimage;
693
694         return 0;
695 }
696
697 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
698 {
699         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
700         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
701         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
702         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
703         unsigned int i;
704
705         if (vb->num_planes < format->num_planes)
706                 return -EINVAL;
707
708         for (i = 0; i < vb->num_planes; ++i) {
709                 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
710
711                 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
712                         return -EINVAL;
713         }
714
715         for ( ; i < 3; ++i)
716                 buf->mem.addr[i] = 0;
717
718         return 0;
719 }
720
721 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
722 {
723         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
724         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
725         struct vsp1_pipeline *pipe = video->rwpf->pipe;
726         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
727         unsigned long flags;
728         bool empty;
729
730         spin_lock_irqsave(&video->irqlock, flags);
731         empty = list_empty(&video->irqqueue);
732         list_add_tail(&buf->queue, &video->irqqueue);
733         spin_unlock_irqrestore(&video->irqlock, flags);
734
735         if (!empty)
736                 return;
737
738         spin_lock_irqsave(&pipe->irqlock, flags);
739
740         video->rwpf->mem = buf->mem;
741         pipe->buffers_ready |= 1 << video->pipe_index;
742
743         if (vb2_is_streaming(&video->queue) &&
744             vsp1_pipeline_ready(pipe))
745                 vsp1_video_pipeline_run(pipe);
746
747         spin_unlock_irqrestore(&pipe->irqlock, flags);
748 }
749
750 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
751 {
752         struct vsp1_entity *entity;
753
754         /* Determine this pipelines sizes for image partitioning support. */
755         vsp1_video_pipeline_setup_partitions(pipe);
756
757         /* Prepare the display list. */
758         pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
759         if (!pipe->dl)
760                 return -ENOMEM;
761
762         if (pipe->uds) {
763                 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
764
765                 /* If a BRU is present in the pipeline before the UDS, the alpha
766                  * component doesn't need to be scaled as the BRU output alpha
767                  * value is fixed to 255. Otherwise we need to scale the alpha
768                  * component only when available at the input RPF.
769                  */
770                 if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
771                         uds->scale_alpha = false;
772                 } else {
773                         struct vsp1_rwpf *rpf =
774                                 to_rwpf(&pipe->uds_input->subdev);
775
776                         uds->scale_alpha = rpf->fmtinfo->alpha;
777                 }
778         }
779
780         list_for_each_entry(entity, &pipe->entities, list_pipe) {
781                 vsp1_entity_route_setup(entity, pipe->dl);
782
783                 if (entity->ops->configure)
784                         entity->ops->configure(entity, pipe, pipe->dl,
785                                                VSP1_ENTITY_PARAMS_INIT);
786         }
787
788         return 0;
789 }
790
791 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
792 {
793         struct vsp1_video *video = vb2_get_drv_priv(vq);
794         struct vsp1_pipeline *pipe = video->rwpf->pipe;
795         unsigned long flags;
796         int ret;
797
798         mutex_lock(&pipe->lock);
799         if (pipe->stream_count == pipe->num_inputs) {
800                 ret = vsp1_video_setup_pipeline(pipe);
801                 if (ret < 0) {
802                         mutex_unlock(&pipe->lock);
803                         return ret;
804                 }
805         }
806
807         pipe->stream_count++;
808         mutex_unlock(&pipe->lock);
809
810         spin_lock_irqsave(&pipe->irqlock, flags);
811         if (vsp1_pipeline_ready(pipe))
812                 vsp1_video_pipeline_run(pipe);
813         spin_unlock_irqrestore(&pipe->irqlock, flags);
814
815         return 0;
816 }
817
818 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
819 {
820         struct vsp1_video *video = vb2_get_drv_priv(vq);
821         struct vsp1_pipeline *pipe = video->rwpf->pipe;
822         struct vsp1_vb2_buffer *buffer;
823         unsigned long flags;
824         int ret;
825
826         /*
827          * Clear the buffers ready flag to make sure the device won't be started
828          * by a QBUF on the video node on the other side of the pipeline.
829          */
830         spin_lock_irqsave(&video->irqlock, flags);
831         pipe->buffers_ready &= ~(1 << video->pipe_index);
832         spin_unlock_irqrestore(&video->irqlock, flags);
833
834         mutex_lock(&pipe->lock);
835         if (--pipe->stream_count == pipe->num_inputs) {
836                 /* Stop the pipeline. */
837                 ret = vsp1_pipeline_stop(pipe);
838                 if (ret == -ETIMEDOUT)
839                         dev_err(video->vsp1->dev, "pipeline stop timeout\n");
840
841                 vsp1_dl_list_put(pipe->dl);
842                 pipe->dl = NULL;
843         }
844         mutex_unlock(&pipe->lock);
845
846         media_entity_pipeline_stop(&video->video.entity);
847         vsp1_video_pipeline_put(pipe);
848
849         /* Remove all buffers from the IRQ queue. */
850         spin_lock_irqsave(&video->irqlock, flags);
851         list_for_each_entry(buffer, &video->irqqueue, queue)
852                 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
853         INIT_LIST_HEAD(&video->irqqueue);
854         spin_unlock_irqrestore(&video->irqlock, flags);
855 }
856
857 static const struct vb2_ops vsp1_video_queue_qops = {
858         .queue_setup = vsp1_video_queue_setup,
859         .buf_prepare = vsp1_video_buffer_prepare,
860         .buf_queue = vsp1_video_buffer_queue,
861         .wait_prepare = vb2_ops_wait_prepare,
862         .wait_finish = vb2_ops_wait_finish,
863         .start_streaming = vsp1_video_start_streaming,
864         .stop_streaming = vsp1_video_stop_streaming,
865 };
866
867 /* -----------------------------------------------------------------------------
868  * V4L2 ioctls
869  */
870
871 static int
872 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
873 {
874         struct v4l2_fh *vfh = file->private_data;
875         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
876
877         cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
878                           | V4L2_CAP_VIDEO_CAPTURE_MPLANE
879                           | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
880
881         if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
882                 cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
883                                  | V4L2_CAP_STREAMING;
884         else
885                 cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
886                                  | V4L2_CAP_STREAMING;
887
888         strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
889         strlcpy(cap->card, video->video.name, sizeof(cap->card));
890         snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
891                  dev_name(video->vsp1->dev));
892
893         return 0;
894 }
895
896 static int
897 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
898 {
899         struct v4l2_fh *vfh = file->private_data;
900         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
901
902         if (format->type != video->queue.type)
903                 return -EINVAL;
904
905         mutex_lock(&video->lock);
906         format->fmt.pix_mp = video->rwpf->format;
907         mutex_unlock(&video->lock);
908
909         return 0;
910 }
911
912 static int
913 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
914 {
915         struct v4l2_fh *vfh = file->private_data;
916         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
917
918         if (format->type != video->queue.type)
919                 return -EINVAL;
920
921         return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
922 }
923
924 static int
925 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
926 {
927         struct v4l2_fh *vfh = file->private_data;
928         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
929         const struct vsp1_format_info *info;
930         int ret;
931
932         if (format->type != video->queue.type)
933                 return -EINVAL;
934
935         ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
936         if (ret < 0)
937                 return ret;
938
939         mutex_lock(&video->lock);
940
941         if (vb2_is_busy(&video->queue)) {
942                 ret = -EBUSY;
943                 goto done;
944         }
945
946         video->rwpf->format = format->fmt.pix_mp;
947         video->rwpf->fmtinfo = info;
948
949 done:
950         mutex_unlock(&video->lock);
951         return ret;
952 }
953
954 static int
955 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
956 {
957         struct v4l2_fh *vfh = file->private_data;
958         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
959         struct media_device *mdev = &video->vsp1->media_dev;
960         struct vsp1_pipeline *pipe;
961         int ret;
962
963         if (video->queue.owner && video->queue.owner != file->private_data)
964                 return -EBUSY;
965
966         /* Get a pipeline for the video node and start streaming on it. No link
967          * touching an entity in the pipeline can be activated or deactivated
968          * once streaming is started.
969          */
970         mutex_lock(&mdev->graph_mutex);
971
972         pipe = vsp1_video_pipeline_get(video);
973         if (IS_ERR(pipe)) {
974                 mutex_unlock(&mdev->graph_mutex);
975                 return PTR_ERR(pipe);
976         }
977
978         ret = __media_entity_pipeline_start(&video->video.entity, &pipe->pipe);
979         if (ret < 0) {
980                 mutex_unlock(&mdev->graph_mutex);
981                 goto err_pipe;
982         }
983
984         mutex_unlock(&mdev->graph_mutex);
985
986         /* Verify that the configured format matches the output of the connected
987          * subdev.
988          */
989         ret = vsp1_video_verify_format(video);
990         if (ret < 0)
991                 goto err_stop;
992
993         /* Start the queue. */
994         ret = vb2_streamon(&video->queue, type);
995         if (ret < 0)
996                 goto err_stop;
997
998         return 0;
999
1000 err_stop:
1001         media_entity_pipeline_stop(&video->video.entity);
1002 err_pipe:
1003         vsp1_video_pipeline_put(pipe);
1004         return ret;
1005 }
1006
1007 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1008         .vidioc_querycap                = vsp1_video_querycap,
1009         .vidioc_g_fmt_vid_cap_mplane    = vsp1_video_get_format,
1010         .vidioc_s_fmt_vid_cap_mplane    = vsp1_video_set_format,
1011         .vidioc_try_fmt_vid_cap_mplane  = vsp1_video_try_format,
1012         .vidioc_g_fmt_vid_out_mplane    = vsp1_video_get_format,
1013         .vidioc_s_fmt_vid_out_mplane    = vsp1_video_set_format,
1014         .vidioc_try_fmt_vid_out_mplane  = vsp1_video_try_format,
1015         .vidioc_reqbufs                 = vb2_ioctl_reqbufs,
1016         .vidioc_querybuf                = vb2_ioctl_querybuf,
1017         .vidioc_qbuf                    = vb2_ioctl_qbuf,
1018         .vidioc_dqbuf                   = vb2_ioctl_dqbuf,
1019         .vidioc_create_bufs             = vb2_ioctl_create_bufs,
1020         .vidioc_prepare_buf             = vb2_ioctl_prepare_buf,
1021         .vidioc_streamon                = vsp1_video_streamon,
1022         .vidioc_streamoff               = vb2_ioctl_streamoff,
1023 };
1024
1025 /* -----------------------------------------------------------------------------
1026  * V4L2 File Operations
1027  */
1028
1029 static int vsp1_video_open(struct file *file)
1030 {
1031         struct vsp1_video *video = video_drvdata(file);
1032         struct v4l2_fh *vfh;
1033         int ret = 0;
1034
1035         vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1036         if (vfh == NULL)
1037                 return -ENOMEM;
1038
1039         v4l2_fh_init(vfh, &video->video);
1040         v4l2_fh_add(vfh);
1041
1042         file->private_data = vfh;
1043
1044         ret = vsp1_device_get(video->vsp1);
1045         if (ret < 0) {
1046                 v4l2_fh_del(vfh);
1047                 kfree(vfh);
1048         }
1049
1050         return ret;
1051 }
1052
1053 static int vsp1_video_release(struct file *file)
1054 {
1055         struct vsp1_video *video = video_drvdata(file);
1056         struct v4l2_fh *vfh = file->private_data;
1057
1058         mutex_lock(&video->lock);
1059         if (video->queue.owner == vfh) {
1060                 vb2_queue_release(&video->queue);
1061                 video->queue.owner = NULL;
1062         }
1063         mutex_unlock(&video->lock);
1064
1065         vsp1_device_put(video->vsp1);
1066
1067         v4l2_fh_release(file);
1068
1069         file->private_data = NULL;
1070
1071         return 0;
1072 }
1073
1074 static const struct v4l2_file_operations vsp1_video_fops = {
1075         .owner = THIS_MODULE,
1076         .unlocked_ioctl = video_ioctl2,
1077         .open = vsp1_video_open,
1078         .release = vsp1_video_release,
1079         .poll = vb2_fop_poll,
1080         .mmap = vb2_fop_mmap,
1081 };
1082
1083 /* -----------------------------------------------------------------------------
1084  * Initialization and Cleanup
1085  */
1086
1087 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1088                                      struct vsp1_rwpf *rwpf)
1089 {
1090         struct vsp1_video *video;
1091         const char *direction;
1092         int ret;
1093
1094         video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1095         if (!video)
1096                 return ERR_PTR(-ENOMEM);
1097
1098         rwpf->video = video;
1099
1100         video->vsp1 = vsp1;
1101         video->rwpf = rwpf;
1102
1103         if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1104                 direction = "input";
1105                 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1106                 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1107                 video->video.vfl_dir = VFL_DIR_TX;
1108         } else {
1109                 direction = "output";
1110                 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1111                 video->pad.flags = MEDIA_PAD_FL_SINK;
1112                 video->video.vfl_dir = VFL_DIR_RX;
1113         }
1114
1115         mutex_init(&video->lock);
1116         spin_lock_init(&video->irqlock);
1117         INIT_LIST_HEAD(&video->irqqueue);
1118
1119         /* Initialize the media entity... */
1120         ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1121         if (ret < 0)
1122                 return ERR_PTR(ret);
1123
1124         /* ... and the format ... */
1125         rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1126         rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1127         rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1128         __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1129
1130         /* ... and the video node... */
1131         video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1132         video->video.fops = &vsp1_video_fops;
1133         snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1134                  rwpf->entity.subdev.name, direction);
1135         video->video.vfl_type = VFL_TYPE_GRABBER;
1136         video->video.release = video_device_release_empty;
1137         video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1138
1139         video_set_drvdata(&video->video, video);
1140
1141         video->queue.type = video->type;
1142         video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1143         video->queue.lock = &video->lock;
1144         video->queue.drv_priv = video;
1145         video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1146         video->queue.ops = &vsp1_video_queue_qops;
1147         video->queue.mem_ops = &vb2_dma_contig_memops;
1148         video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1149         video->queue.dev = video->vsp1->dev;
1150         ret = vb2_queue_init(&video->queue);
1151         if (ret < 0) {
1152                 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1153                 goto error;
1154         }
1155
1156         /* ... and register the video device. */
1157         video->video.queue = &video->queue;
1158         ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
1159         if (ret < 0) {
1160                 dev_err(video->vsp1->dev, "failed to register video device\n");
1161                 goto error;
1162         }
1163
1164         return video;
1165
1166 error:
1167         vsp1_video_cleanup(video);
1168         return ERR_PTR(ret);
1169 }
1170
1171 void vsp1_video_cleanup(struct vsp1_video *video)
1172 {
1173         if (video_is_registered(&video->video))
1174                 video_unregister_device(&video->video);
1175
1176         media_entity_cleanup(&video->video.entity);
1177 }