GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / media / platform / vsp1 / vsp1_wpf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_wpf.c  --  R-Car VSP1 Write Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define WPF_GEN2_MAX_WIDTH                      2048U
21 #define WPF_GEN2_MAX_HEIGHT                     2048U
22 #define WPF_GEN3_MAX_WIDTH                      8190U
23 #define WPF_GEN3_MAX_HEIGHT                     8190U
24
25 /* -----------------------------------------------------------------------------
26  * Device Access
27  */
28
29 static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
30                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
31 {
32         vsp1_dl_body_write(dlb, reg + wpf->entity.index * VI6_WPF_OFFSET, data);
33 }
34
35 /* -----------------------------------------------------------------------------
36  * Controls
37  */
38
39 enum wpf_flip_ctrl {
40         WPF_CTRL_VFLIP = 0,
41         WPF_CTRL_HFLIP = 1,
42 };
43
44 static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation)
45 {
46         struct vsp1_video *video = wpf->video;
47         struct v4l2_mbus_framefmt *sink_format;
48         struct v4l2_mbus_framefmt *source_format;
49         bool rotate;
50         int ret = 0;
51
52         /*
53          * Only consider the 0°/180° from/to 90°/270° modifications, the rest
54          * is taken care of by the flipping configuration.
55          */
56         rotate = rotation == 90 || rotation == 270;
57         if (rotate == wpf->flip.rotate)
58                 return 0;
59
60         /* Changing rotation isn't allowed when buffers are allocated. */
61         mutex_lock(&video->lock);
62
63         if (vb2_is_busy(&video->queue)) {
64                 ret = -EBUSY;
65                 goto done;
66         }
67
68         sink_format = vsp1_entity_get_pad_format(&wpf->entity,
69                                                  wpf->entity.config,
70                                                  RWPF_PAD_SINK);
71         source_format = vsp1_entity_get_pad_format(&wpf->entity,
72                                                    wpf->entity.config,
73                                                    RWPF_PAD_SOURCE);
74
75         mutex_lock(&wpf->entity.lock);
76
77         if (rotate) {
78                 source_format->width = sink_format->height;
79                 source_format->height = sink_format->width;
80         } else {
81                 source_format->width = sink_format->width;
82                 source_format->height = sink_format->height;
83         }
84
85         wpf->flip.rotate = rotate;
86
87         mutex_unlock(&wpf->entity.lock);
88
89 done:
90         mutex_unlock(&video->lock);
91         return ret;
92 }
93
94 static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl)
95 {
96         struct vsp1_rwpf *wpf =
97                 container_of(ctrl->handler, struct vsp1_rwpf, ctrls);
98         unsigned int rotation;
99         u32 flip = 0;
100         int ret;
101
102         /* Update the rotation. */
103         rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0;
104         ret = vsp1_wpf_set_rotation(wpf, rotation);
105         if (ret < 0)
106                 return ret;
107
108         /*
109          * Compute the flip value resulting from all three controls, with
110          * rotation by 180° flipping the image in both directions. Store the
111          * result in the pending flip field for the next frame that will be
112          * processed.
113          */
114         if (wpf->flip.ctrls.vflip->val)
115                 flip |= BIT(WPF_CTRL_VFLIP);
116
117         if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val)
118                 flip |= BIT(WPF_CTRL_HFLIP);
119
120         if (rotation == 180 || rotation == 270)
121                 flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP);
122
123         spin_lock_irq(&wpf->flip.lock);
124         wpf->flip.pending = flip;
125         spin_unlock_irq(&wpf->flip.lock);
126
127         return 0;
128 }
129
130 static const struct v4l2_ctrl_ops vsp1_wpf_ctrl_ops = {
131         .s_ctrl = vsp1_wpf_s_ctrl,
132 };
133
134 static int wpf_init_controls(struct vsp1_rwpf *wpf)
135 {
136         struct vsp1_device *vsp1 = wpf->entity.vsp1;
137         unsigned int num_flip_ctrls;
138
139         spin_lock_init(&wpf->flip.lock);
140
141         if (wpf->entity.index != 0) {
142                 /* Only WPF0 supports flipping. */
143                 num_flip_ctrls = 0;
144         } else if (vsp1_feature(vsp1, VSP1_HAS_WPF_HFLIP)) {
145                 /*
146                  * When horizontal flip is supported the WPF implements three
147                  * controls (horizontal flip, vertical flip and rotation).
148                  */
149                 num_flip_ctrls = 3;
150         } else if (vsp1_feature(vsp1, VSP1_HAS_WPF_VFLIP)) {
151                 /*
152                  * When only vertical flip is supported the WPF implements a
153                  * single control (vertical flip).
154                  */
155                 num_flip_ctrls = 1;
156         } else {
157                 /* Otherwise flipping is not supported. */
158                 num_flip_ctrls = 0;
159         }
160
161         vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls);
162
163         if (num_flip_ctrls >= 1) {
164                 wpf->flip.ctrls.vflip =
165                         v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
166                                           V4L2_CID_VFLIP, 0, 1, 1, 0);
167         }
168
169         if (num_flip_ctrls == 3) {
170                 wpf->flip.ctrls.hflip =
171                         v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
172                                           V4L2_CID_HFLIP, 0, 1, 1, 0);
173                 wpf->flip.ctrls.rotate =
174                         v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
175                                           V4L2_CID_ROTATE, 0, 270, 90, 0);
176                 v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip);
177         }
178
179         if (wpf->ctrls.error) {
180                 dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
181                         wpf->entity.index);
182                 return wpf->ctrls.error;
183         }
184
185         return 0;
186 }
187
188 /* -----------------------------------------------------------------------------
189  * V4L2 Subdevice Core Operations
190  */
191
192 static int wpf_s_stream(struct v4l2_subdev *subdev, int enable)
193 {
194         struct vsp1_rwpf *wpf = to_rwpf(subdev);
195         struct vsp1_device *vsp1 = wpf->entity.vsp1;
196
197         if (enable)
198                 return 0;
199
200         /*
201          * Write to registers directly when stopping the stream as there will be
202          * no pipeline run to apply the display list.
203          */
204         vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0);
205         vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET +
206                    VI6_WPF_SRCRPF, 0);
207
208         return 0;
209 }
210
211 /* -----------------------------------------------------------------------------
212  * V4L2 Subdevice Operations
213  */
214
215 static const struct v4l2_subdev_video_ops wpf_video_ops = {
216         .s_stream = wpf_s_stream,
217 };
218
219 static const struct v4l2_subdev_ops wpf_ops = {
220         .video  = &wpf_video_ops,
221         .pad    = &vsp1_rwpf_pad_ops,
222 };
223
224 /* -----------------------------------------------------------------------------
225  * VSP1 Entity Operations
226  */
227
228 static void vsp1_wpf_destroy(struct vsp1_entity *entity)
229 {
230         struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
231
232         vsp1_dlm_destroy(wpf->dlm);
233 }
234
235 static void wpf_configure_stream(struct vsp1_entity *entity,
236                                  struct vsp1_pipeline *pipe,
237                                  struct vsp1_dl_body *dlb)
238 {
239         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
240         struct vsp1_device *vsp1 = wpf->entity.vsp1;
241         const struct v4l2_mbus_framefmt *source_format;
242         const struct v4l2_mbus_framefmt *sink_format;
243         unsigned int i;
244         u32 outfmt = 0;
245         u32 srcrpf = 0;
246
247         sink_format = vsp1_entity_get_pad_format(&wpf->entity,
248                                                  wpf->entity.config,
249                                                  RWPF_PAD_SINK);
250         source_format = vsp1_entity_get_pad_format(&wpf->entity,
251                                                    wpf->entity.config,
252                                                    RWPF_PAD_SOURCE);
253         /* Format */
254         if (!pipe->lif) {
255                 const struct v4l2_pix_format_mplane *format = &wpf->format;
256                 const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
257
258                 outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
259
260                 if (wpf->flip.rotate)
261                         outfmt |= VI6_WPF_OUTFMT_ROT;
262
263                 if (fmtinfo->alpha)
264                         outfmt |= VI6_WPF_OUTFMT_PXA;
265                 if (fmtinfo->swap_yc)
266                         outfmt |= VI6_WPF_OUTFMT_SPYCS;
267                 if (fmtinfo->swap_uv)
268                         outfmt |= VI6_WPF_OUTFMT_SPUVS;
269
270                 /* Destination stride and byte swapping. */
271                 vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_STRIDE_Y,
272                                format->plane_fmt[0].bytesperline);
273                 if (format->num_planes > 1)
274                         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_STRIDE_C,
275                                        format->plane_fmt[1].bytesperline);
276
277                 vsp1_wpf_write(wpf, dlb, VI6_WPF_DSWAP, fmtinfo->swap);
278
279                 if (vsp1_feature(vsp1, VSP1_HAS_WPF_HFLIP) &&
280                     wpf->entity.index == 0)
281                         vsp1_wpf_write(wpf, dlb, VI6_WPF_ROT_CTRL,
282                                        VI6_WPF_ROT_CTRL_LN16 |
283                                        (256 << VI6_WPF_ROT_CTRL_LMEM_WD_SHIFT));
284         }
285
286         if (sink_format->code != source_format->code)
287                 outfmt |= VI6_WPF_OUTFMT_CSC;
288
289         wpf->outfmt = outfmt;
290
291         vsp1_dl_body_write(dlb, VI6_DPR_WPF_FPORCH(wpf->entity.index),
292                            VI6_DPR_WPF_FPORCH_FP_WPFN);
293
294         vsp1_dl_body_write(dlb, VI6_WPF_WRBCK_CTRL, 0);
295
296         /*
297          * Sources. If the pipeline has a single input and BRx is not used,
298          * configure it as the master layer. Otherwise configure all
299          * inputs as sub-layers and select the virtual RPF as the master
300          * layer.
301          */
302         for (i = 0; i < vsp1->info->rpf_count; ++i) {
303                 struct vsp1_rwpf *input = pipe->inputs[i];
304
305                 if (!input)
306                         continue;
307
308                 srcrpf |= (!pipe->brx && pipe->num_inputs == 1)
309                         ? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index)
310                         : VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index);
311         }
312
313         if (pipe->brx)
314                 srcrpf |= pipe->brx->type == VSP1_ENTITY_BRU
315                         ? VI6_WPF_SRCRPF_VIRACT_MST
316                         : VI6_WPF_SRCRPF_VIRACT2_MST;
317
318         vsp1_wpf_write(wpf, dlb, VI6_WPF_SRCRPF, srcrpf);
319
320         /* Enable interrupts */
321         vsp1_dl_body_write(dlb, VI6_WPF_IRQ_STA(wpf->entity.index), 0);
322         vsp1_dl_body_write(dlb, VI6_WPF_IRQ_ENB(wpf->entity.index),
323                            VI6_WFP_IRQ_ENB_DFEE);
324 }
325
326 static void wpf_configure_frame(struct vsp1_entity *entity,
327                                 struct vsp1_pipeline *pipe,
328                                 struct vsp1_dl_list *dl,
329                                 struct vsp1_dl_body *dlb)
330 {
331         const unsigned int mask = BIT(WPF_CTRL_VFLIP)
332                                 | BIT(WPF_CTRL_HFLIP);
333         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
334         unsigned long flags;
335         u32 outfmt;
336
337         spin_lock_irqsave(&wpf->flip.lock, flags);
338         wpf->flip.active = (wpf->flip.active & ~mask)
339                          | (wpf->flip.pending & mask);
340         spin_unlock_irqrestore(&wpf->flip.lock, flags);
341
342         outfmt = (wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT) | wpf->outfmt;
343
344         if (wpf->flip.active & BIT(WPF_CTRL_VFLIP))
345                 outfmt |= VI6_WPF_OUTFMT_FLP;
346         if (wpf->flip.active & BIT(WPF_CTRL_HFLIP))
347                 outfmt |= VI6_WPF_OUTFMT_HFLP;
348
349         vsp1_wpf_write(wpf, dlb, VI6_WPF_OUTFMT, outfmt);
350 }
351
352 static void wpf_configure_partition(struct vsp1_entity *entity,
353                                     struct vsp1_pipeline *pipe,
354                                     struct vsp1_dl_list *dl,
355                                     struct vsp1_dl_body *dlb)
356 {
357         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
358         struct vsp1_device *vsp1 = wpf->entity.vsp1;
359         struct vsp1_rwpf_memory mem = wpf->mem;
360         const struct v4l2_mbus_framefmt *sink_format;
361         const struct v4l2_pix_format_mplane *format = &wpf->format;
362         const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
363         unsigned int width;
364         unsigned int height;
365         unsigned int offset;
366         unsigned int flip;
367         unsigned int i;
368
369         sink_format = vsp1_entity_get_pad_format(&wpf->entity,
370                                                  wpf->entity.config,
371                                                  RWPF_PAD_SINK);
372         width = sink_format->width;
373         height = sink_format->height;
374
375         /*
376          * Cropping. The partition algorithm can split the image into
377          * multiple slices.
378          */
379         if (pipe->partitions > 1)
380                 width = pipe->partition->wpf.width;
381
382         vsp1_wpf_write(wpf, dlb, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN |
383                        (0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
384                        (width << VI6_WPF_SZCLIP_SIZE_SHIFT));
385         vsp1_wpf_write(wpf, dlb, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN |
386                        (0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
387                        (height << VI6_WPF_SZCLIP_SIZE_SHIFT));
388
389         if (pipe->lif)
390                 return;
391
392         /*
393          * Update the memory offsets based on flipping configuration.
394          * The destination addresses point to the locations where the
395          * VSP starts writing to memory, which can be any corner of the
396          * image depending on the combination of flipping and rotation.
397          */
398
399         /*
400          * First take the partition left coordinate into account.
401          * Compute the offset to order the partitions correctly on the
402          * output based on whether flipping is enabled. Consider
403          * horizontal flipping when rotation is disabled but vertical
404          * flipping when rotation is enabled, as rotating the image
405          * switches the horizontal and vertical directions. The offset
406          * is applied horizontally or vertically accordingly.
407          */
408         flip = wpf->flip.active;
409
410         if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate)
411                 offset = format->width - pipe->partition->wpf.left
412                         - pipe->partition->wpf.width;
413         else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate)
414                 offset = format->height - pipe->partition->wpf.left
415                         - pipe->partition->wpf.width;
416         else
417                 offset = pipe->partition->wpf.left;
418
419         for (i = 0; i < format->num_planes; ++i) {
420                 unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
421                 unsigned int vsub = i > 0 ? fmtinfo->vsub : 1;
422
423                 if (wpf->flip.rotate)
424                         mem.addr[i] += offset / vsub
425                                      * format->plane_fmt[i].bytesperline;
426                 else
427                         mem.addr[i] += offset / hsub
428                                      * fmtinfo->bpp[i] / 8;
429         }
430
431         if (flip & BIT(WPF_CTRL_VFLIP)) {
432                 /*
433                  * When rotating the output (after rotation) image
434                  * height is equal to the partition width (before
435                  * rotation). Otherwise it is equal to the output
436                  * image height.
437                  */
438                 if (wpf->flip.rotate)
439                         height = pipe->partition->wpf.width;
440                 else
441                         height = format->height;
442
443                 mem.addr[0] += (height - 1)
444                              * format->plane_fmt[0].bytesperline;
445
446                 if (format->num_planes > 1) {
447                         offset = (height / fmtinfo->vsub - 1)
448                                * format->plane_fmt[1].bytesperline;
449                         mem.addr[1] += offset;
450                         mem.addr[2] += offset;
451                 }
452         }
453
454         if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) {
455                 unsigned int hoffset = max(0, (int)format->width - 16);
456
457                 /*
458                  * Compute the output coordinate. The partition
459                  * horizontal (left) offset becomes a vertical offset.
460                  */
461                 for (i = 0; i < format->num_planes; ++i) {
462                         unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
463
464                         mem.addr[i] += hoffset / hsub
465                                      * fmtinfo->bpp[i] / 8;
466                 }
467         }
468
469         /*
470          * On Gen3 hardware the SPUVS bit has no effect on 3-planar
471          * formats. Swap the U and V planes manually in that case.
472          */
473         if (vsp1->info->gen == 3 && format->num_planes == 3 &&
474             fmtinfo->swap_uv)
475                 swap(mem.addr[1], mem.addr[2]);
476
477         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_Y, mem.addr[0]);
478         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_C0, mem.addr[1]);
479         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_C1, mem.addr[2]);
480 }
481
482 static unsigned int wpf_max_width(struct vsp1_entity *entity,
483                                   struct vsp1_pipeline *pipe)
484 {
485         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
486
487         return wpf->flip.rotate ? 256 : wpf->max_width;
488 }
489
490 static void wpf_partition(struct vsp1_entity *entity,
491                           struct vsp1_pipeline *pipe,
492                           struct vsp1_partition *partition,
493                           unsigned int partition_idx,
494                           struct vsp1_partition_window *window)
495 {
496         partition->wpf = *window;
497 }
498
499 static const struct vsp1_entity_operations wpf_entity_ops = {
500         .destroy = vsp1_wpf_destroy,
501         .configure_stream = wpf_configure_stream,
502         .configure_frame = wpf_configure_frame,
503         .configure_partition = wpf_configure_partition,
504         .max_width = wpf_max_width,
505         .partition = wpf_partition,
506 };
507
508 /* -----------------------------------------------------------------------------
509  * Initialization and Cleanup
510  */
511
512 struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index)
513 {
514         struct vsp1_rwpf *wpf;
515         char name[6];
516         int ret;
517
518         wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL);
519         if (wpf == NULL)
520                 return ERR_PTR(-ENOMEM);
521
522         if (vsp1->info->gen == 2) {
523                 wpf->max_width = WPF_GEN2_MAX_WIDTH;
524                 wpf->max_height = WPF_GEN2_MAX_HEIGHT;
525         } else {
526                 wpf->max_width = WPF_GEN3_MAX_WIDTH;
527                 wpf->max_height = WPF_GEN3_MAX_HEIGHT;
528         }
529
530         wpf->entity.ops = &wpf_entity_ops;
531         wpf->entity.type = VSP1_ENTITY_WPF;
532         wpf->entity.index = index;
533
534         sprintf(name, "wpf.%u", index);
535         ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops,
536                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
537         if (ret < 0)
538                 return ERR_PTR(ret);
539
540         /* Initialize the display list manager. */
541         wpf->dlm = vsp1_dlm_create(vsp1, index, 64);
542         if (!wpf->dlm) {
543                 ret = -ENOMEM;
544                 goto error;
545         }
546
547         /* Initialize the control handler. */
548         ret = wpf_init_controls(wpf);
549         if (ret < 0) {
550                 dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
551                         index);
552                 goto error;
553         }
554
555         v4l2_ctrl_handler_setup(&wpf->ctrls);
556
557         return wpf;
558
559 error:
560         vsp1_entity_destroy(&wpf->entity);
561         return ERR_PTR(ret);
562 }