GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / media / usb / gspca / ov534.c
1 /*
2  * ov534-ov7xxx gspca driver
3  *
4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7  *
8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11  *
12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14  *                  added by Max Thrun <bear24rw@gmail.com>
15  * PS3 Eye camera - FPS range extended by Joseph Howse
16  *                  <josephhowse@nummist.com> http://nummist.com
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #define MODULE_NAME "ov534"
36
37 #include "gspca.h"
38
39 #include <linux/fixp-arith.h>
40 #include <media/v4l2-ctrls.h>
41
42 #define OV534_REG_ADDRESS       0xf1    /* sensor address */
43 #define OV534_REG_SUBADDR       0xf2
44 #define OV534_REG_WRITE         0xf3
45 #define OV534_REG_READ          0xf4
46 #define OV534_REG_OPERATION     0xf5
47 #define OV534_REG_STATUS        0xf6
48
49 #define OV534_OP_WRITE_3        0x37
50 #define OV534_OP_WRITE_2        0x33
51 #define OV534_OP_READ_2         0xf9
52
53 #define CTRL_TIMEOUT 500
54 #define DEFAULT_FRAME_RATE 30
55
56 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
57 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
58 MODULE_LICENSE("GPL");
59
60 /* specific webcam descriptor */
61 struct sd {
62         struct gspca_dev gspca_dev;     /* !! must be the first item */
63
64         struct v4l2_ctrl_handler ctrl_handler;
65         struct v4l2_ctrl *hue;
66         struct v4l2_ctrl *saturation;
67         struct v4l2_ctrl *brightness;
68         struct v4l2_ctrl *contrast;
69         struct { /* gain control cluster */
70                 struct v4l2_ctrl *autogain;
71                 struct v4l2_ctrl *gain;
72         };
73         struct v4l2_ctrl *autowhitebalance;
74         struct { /* exposure control cluster */
75                 struct v4l2_ctrl *autoexposure;
76                 struct v4l2_ctrl *exposure;
77         };
78         struct v4l2_ctrl *sharpness;
79         struct v4l2_ctrl *hflip;
80         struct v4l2_ctrl *vflip;
81         struct v4l2_ctrl *plfreq;
82
83         __u32 last_pts;
84         u16 last_fid;
85         u8 frame_rate;
86
87         u8 sensor;
88 };
89 enum sensors {
90         SENSOR_OV767x,
91         SENSOR_OV772x,
92         NSENSORS
93 };
94
95 static int sd_start(struct gspca_dev *gspca_dev);
96 static void sd_stopN(struct gspca_dev *gspca_dev);
97
98
99 static const struct v4l2_pix_format ov772x_mode[] = {
100         {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
101          .bytesperline = 320 * 2,
102          .sizeimage = 320 * 240 * 2,
103          .colorspace = V4L2_COLORSPACE_SRGB,
104          .priv = 1},
105         {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
106          .bytesperline = 640 * 2,
107          .sizeimage = 640 * 480 * 2,
108          .colorspace = V4L2_COLORSPACE_SRGB,
109          .priv = 0},
110 };
111 static const struct v4l2_pix_format ov767x_mode[] = {
112         {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113                 .bytesperline = 320,
114                 .sizeimage = 320 * 240 * 3 / 8 + 590,
115                 .colorspace = V4L2_COLORSPACE_JPEG},
116         {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
117                 .bytesperline = 640,
118                 .sizeimage = 640 * 480 * 3 / 8 + 590,
119                 .colorspace = V4L2_COLORSPACE_JPEG},
120 };
121
122 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
123 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
124
125 static const struct framerates ov772x_framerates[] = {
126         { /* 320x240 */
127                 .rates = qvga_rates,
128                 .nrates = ARRAY_SIZE(qvga_rates),
129         },
130         { /* 640x480 */
131                 .rates = vga_rates,
132                 .nrates = ARRAY_SIZE(vga_rates),
133         },
134 };
135
136 struct reg_array {
137         const u8 (*val)[2];
138         int len;
139 };
140
141 static const u8 bridge_init_767x[][2] = {
142 /* comments from the ms-win file apollo7670.set */
143 /* str1 */
144         {0xf1, 0x42},
145         {0x88, 0xf8},
146         {0x89, 0xff},
147         {0x76, 0x03},
148         {0x92, 0x03},
149         {0x95, 0x10},
150         {0xe2, 0x00},
151         {0xe7, 0x3e},
152         {0x8d, 0x1c},
153         {0x8e, 0x00},
154         {0x8f, 0x00},
155         {0x1f, 0x00},
156         {0xc3, 0xf9},
157         {0x89, 0xff},
158         {0x88, 0xf8},
159         {0x76, 0x03},
160         {0x92, 0x01},
161         {0x93, 0x18},
162         {0x1c, 0x00},
163         {0x1d, 0x48},
164         {0x1d, 0x00},
165         {0x1d, 0xff},
166         {0x1d, 0x02},
167         {0x1d, 0x58},
168         {0x1d, 0x00},
169         {0x1c, 0x0a},
170         {0x1d, 0x0a},
171         {0x1d, 0x0e},
172         {0xc0, 0x50},   /* HSize 640 */
173         {0xc1, 0x3c},   /* VSize 480 */
174         {0x34, 0x05},   /* enable Audio Suspend mode */
175         {0xc2, 0x0c},   /* Input YUV */
176         {0xc3, 0xf9},   /* enable PRE */
177         {0x34, 0x05},   /* enable Audio Suspend mode */
178         {0xe7, 0x2e},   /* this solves failure of "SuspendResumeTest" */
179         {0x31, 0xf9},   /* enable 1.8V Suspend */
180         {0x35, 0x02},   /* turn on JPEG */
181         {0xd9, 0x10},
182         {0x25, 0x42},   /* GPIO[8]:Input */
183         {0x94, 0x11},   /* If the default setting is loaded when
184                          * system boots up, this flag is closed here */
185 };
186 static const u8 sensor_init_767x[][2] = {
187         {0x12, 0x80},
188         {0x11, 0x03},
189         {0x3a, 0x04},
190         {0x12, 0x00},
191         {0x17, 0x13},
192         {0x18, 0x01},
193         {0x32, 0xb6},
194         {0x19, 0x02},
195         {0x1a, 0x7a},
196         {0x03, 0x0a},
197         {0x0c, 0x00},
198         {0x3e, 0x00},
199         {0x70, 0x3a},
200         {0x71, 0x35},
201         {0x72, 0x11},
202         {0x73, 0xf0},
203         {0xa2, 0x02},
204         {0x7a, 0x2a},   /* set Gamma=1.6 below */
205         {0x7b, 0x12},
206         {0x7c, 0x1d},
207         {0x7d, 0x2d},
208         {0x7e, 0x45},
209         {0x7f, 0x50},
210         {0x80, 0x59},
211         {0x81, 0x62},
212         {0x82, 0x6b},
213         {0x83, 0x73},
214         {0x84, 0x7b},
215         {0x85, 0x8a},
216         {0x86, 0x98},
217         {0x87, 0xb2},
218         {0x88, 0xca},
219         {0x89, 0xe0},
220         {0x13, 0xe0},
221         {0x00, 0x00},
222         {0x10, 0x00},
223         {0x0d, 0x40},
224         {0x14, 0x38},   /* gain max 16x */
225         {0xa5, 0x05},
226         {0xab, 0x07},
227         {0x24, 0x95},
228         {0x25, 0x33},
229         {0x26, 0xe3},
230         {0x9f, 0x78},
231         {0xa0, 0x68},
232         {0xa1, 0x03},
233         {0xa6, 0xd8},
234         {0xa7, 0xd8},
235         {0xa8, 0xf0},
236         {0xa9, 0x90},
237         {0xaa, 0x94},
238         {0x13, 0xe5},
239         {0x0e, 0x61},
240         {0x0f, 0x4b},
241         {0x16, 0x02},
242         {0x21, 0x02},
243         {0x22, 0x91},
244         {0x29, 0x07},
245         {0x33, 0x0b},
246         {0x35, 0x0b},
247         {0x37, 0x1d},
248         {0x38, 0x71},
249         {0x39, 0x2a},
250         {0x3c, 0x78},
251         {0x4d, 0x40},
252         {0x4e, 0x20},
253         {0x69, 0x00},
254         {0x6b, 0x4a},
255         {0x74, 0x10},
256         {0x8d, 0x4f},
257         {0x8e, 0x00},
258         {0x8f, 0x00},
259         {0x90, 0x00},
260         {0x91, 0x00},
261         {0x96, 0x00},
262         {0x9a, 0x80},
263         {0xb0, 0x84},
264         {0xb1, 0x0c},
265         {0xb2, 0x0e},
266         {0xb3, 0x82},
267         {0xb8, 0x0a},
268         {0x43, 0x0a},
269         {0x44, 0xf0},
270         {0x45, 0x34},
271         {0x46, 0x58},
272         {0x47, 0x28},
273         {0x48, 0x3a},
274         {0x59, 0x88},
275         {0x5a, 0x88},
276         {0x5b, 0x44},
277         {0x5c, 0x67},
278         {0x5d, 0x49},
279         {0x5e, 0x0e},
280         {0x6c, 0x0a},
281         {0x6d, 0x55},
282         {0x6e, 0x11},
283         {0x6f, 0x9f},
284         {0x6a, 0x40},
285         {0x01, 0x40},
286         {0x02, 0x40},
287         {0x13, 0xe7},
288         {0x4f, 0x80},
289         {0x50, 0x80},
290         {0x51, 0x00},
291         {0x52, 0x22},
292         {0x53, 0x5e},
293         {0x54, 0x80},
294         {0x58, 0x9e},
295         {0x41, 0x08},
296         {0x3f, 0x00},
297         {0x75, 0x04},
298         {0x76, 0xe1},
299         {0x4c, 0x00},
300         {0x77, 0x01},
301         {0x3d, 0xc2},
302         {0x4b, 0x09},
303         {0xc9, 0x60},
304         {0x41, 0x38},   /* jfm: auto sharpness + auto de-noise  */
305         {0x56, 0x40},
306         {0x34, 0x11},
307         {0x3b, 0xc2},
308         {0xa4, 0x8a},   /* Night mode trigger point */
309         {0x96, 0x00},
310         {0x97, 0x30},
311         {0x98, 0x20},
312         {0x99, 0x20},
313         {0x9a, 0x84},
314         {0x9b, 0x29},
315         {0x9c, 0x03},
316         {0x9d, 0x4c},
317         {0x9e, 0x3f},
318         {0x78, 0x04},
319         {0x79, 0x01},
320         {0xc8, 0xf0},
321         {0x79, 0x0f},
322         {0xc8, 0x00},
323         {0x79, 0x10},
324         {0xc8, 0x7e},
325         {0x79, 0x0a},
326         {0xc8, 0x80},
327         {0x79, 0x0b},
328         {0xc8, 0x01},
329         {0x79, 0x0c},
330         {0xc8, 0x0f},
331         {0x79, 0x0d},
332         {0xc8, 0x20},
333         {0x79, 0x09},
334         {0xc8, 0x80},
335         {0x79, 0x02},
336         {0xc8, 0xc0},
337         {0x79, 0x03},
338         {0xc8, 0x20},
339         {0x79, 0x26},
340 };
341 static const u8 bridge_start_vga_767x[][2] = {
342 /* str59 JPG */
343         {0x94, 0xaa},
344         {0xf1, 0x42},
345         {0xe5, 0x04},
346         {0xc0, 0x50},
347         {0xc1, 0x3c},
348         {0xc2, 0x0c},
349         {0x35, 0x02},   /* turn on JPEG */
350         {0xd9, 0x10},
351         {0xda, 0x00},   /* for higher clock rate(30fps) */
352         {0x34, 0x05},   /* enable Audio Suspend mode */
353         {0xc3, 0xf9},   /* enable PRE */
354         {0x8c, 0x00},   /* CIF VSize LSB[2:0] */
355         {0x8d, 0x1c},   /* output YUV */
356 /*      {0x34, 0x05},    * enable Audio Suspend mode (?) */
357         {0x50, 0x00},   /* H/V divider=0 */
358         {0x51, 0xa0},   /* input H=640/4 */
359         {0x52, 0x3c},   /* input V=480/4 */
360         {0x53, 0x00},   /* offset X=0 */
361         {0x54, 0x00},   /* offset Y=0 */
362         {0x55, 0x00},   /* H/V size[8]=0 */
363         {0x57, 0x00},   /* H-size[9]=0 */
364         {0x5c, 0x00},   /* output size[9:8]=0 */
365         {0x5a, 0xa0},   /* output H=640/4 */
366         {0x5b, 0x78},   /* output V=480/4 */
367         {0x1c, 0x0a},
368         {0x1d, 0x0a},
369         {0x94, 0x11},
370 };
371 static const u8 sensor_start_vga_767x[][2] = {
372         {0x11, 0x01},
373         {0x1e, 0x04},
374         {0x19, 0x02},
375         {0x1a, 0x7a},
376 };
377 static const u8 bridge_start_qvga_767x[][2] = {
378 /* str86 JPG */
379         {0x94, 0xaa},
380         {0xf1, 0x42},
381         {0xe5, 0x04},
382         {0xc0, 0x80},
383         {0xc1, 0x60},
384         {0xc2, 0x0c},
385         {0x35, 0x02},   /* turn on JPEG */
386         {0xd9, 0x10},
387         {0xc0, 0x50},   /* CIF HSize 640 */
388         {0xc1, 0x3c},   /* CIF VSize 480 */
389         {0x8c, 0x00},   /* CIF VSize LSB[2:0] */
390         {0x8d, 0x1c},   /* output YUV */
391         {0x34, 0x05},   /* enable Audio Suspend mode */
392         {0xc2, 0x4c},   /* output YUV and Enable DCW */
393         {0xc3, 0xf9},   /* enable PRE */
394         {0x1c, 0x00},   /* indirect addressing */
395         {0x1d, 0x48},   /* output YUV422 */
396         {0x50, 0x89},   /* H/V divider=/2; plus DCW AVG */
397         {0x51, 0xa0},   /* DCW input H=640/4 */
398         {0x52, 0x78},   /* DCW input V=480/4 */
399         {0x53, 0x00},   /* offset X=0 */
400         {0x54, 0x00},   /* offset Y=0 */
401         {0x55, 0x00},   /* H/V size[8]=0 */
402         {0x57, 0x00},   /* H-size[9]=0 */
403         {0x5c, 0x00},   /* DCW output size[9:8]=0 */
404         {0x5a, 0x50},   /* DCW output H=320/4 */
405         {0x5b, 0x3c},   /* DCW output V=240/4 */
406         {0x1c, 0x0a},
407         {0x1d, 0x0a},
408         {0x94, 0x11},
409 };
410 static const u8 sensor_start_qvga_767x[][2] = {
411         {0x11, 0x01},
412         {0x1e, 0x04},
413         {0x19, 0x02},
414         {0x1a, 0x7a},
415 };
416
417 static const u8 bridge_init_772x[][2] = {
418         { 0xc2, 0x0c },
419         { 0x88, 0xf8 },
420         { 0xc3, 0x69 },
421         { 0x89, 0xff },
422         { 0x76, 0x03 },
423         { 0x92, 0x01 },
424         { 0x93, 0x18 },
425         { 0x94, 0x10 },
426         { 0x95, 0x10 },
427         { 0xe2, 0x00 },
428         { 0xe7, 0x3e },
429
430         { 0x96, 0x00 },
431
432         { 0x97, 0x20 },
433         { 0x97, 0x20 },
434         { 0x97, 0x20 },
435         { 0x97, 0x0a },
436         { 0x97, 0x3f },
437         { 0x97, 0x4a },
438         { 0x97, 0x20 },
439         { 0x97, 0x15 },
440         { 0x97, 0x0b },
441
442         { 0x8e, 0x40 },
443         { 0x1f, 0x81 },
444         { 0x34, 0x05 },
445         { 0xe3, 0x04 },
446         { 0x88, 0x00 },
447         { 0x89, 0x00 },
448         { 0x76, 0x00 },
449         { 0xe7, 0x2e },
450         { 0x31, 0xf9 },
451         { 0x25, 0x42 },
452         { 0x21, 0xf0 },
453
454         { 0x1c, 0x00 },
455         { 0x1d, 0x40 },
456         { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
457         { 0x1d, 0x00 }, /* payload size */
458
459         { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
460         { 0x1d, 0x58 }, /* frame size */
461         { 0x1d, 0x00 }, /* frame size */
462
463         { 0x1c, 0x0a },
464         { 0x1d, 0x08 }, /* turn on UVC header */
465         { 0x1d, 0x0e }, /* .. */
466
467         { 0x8d, 0x1c },
468         { 0x8e, 0x80 },
469         { 0xe5, 0x04 },
470
471         { 0xc0, 0x50 },
472         { 0xc1, 0x3c },
473         { 0xc2, 0x0c },
474 };
475 static const u8 sensor_init_772x[][2] = {
476         { 0x12, 0x80 },
477         { 0x11, 0x01 },
478 /*fixme: better have a delay?*/
479         { 0x11, 0x01 },
480         { 0x11, 0x01 },
481         { 0x11, 0x01 },
482         { 0x11, 0x01 },
483         { 0x11, 0x01 },
484         { 0x11, 0x01 },
485         { 0x11, 0x01 },
486         { 0x11, 0x01 },
487         { 0x11, 0x01 },
488         { 0x11, 0x01 },
489
490         { 0x3d, 0x03 },
491         { 0x17, 0x26 },
492         { 0x18, 0xa0 },
493         { 0x19, 0x07 },
494         { 0x1a, 0xf0 },
495         { 0x32, 0x00 },
496         { 0x29, 0xa0 },
497         { 0x2c, 0xf0 },
498         { 0x65, 0x20 },
499         { 0x11, 0x01 },
500         { 0x42, 0x7f },
501         { 0x63, 0xaa },         /* AWB - was e0 */
502         { 0x64, 0xff },
503         { 0x66, 0x00 },
504         { 0x13, 0xf0 },         /* com8 */
505         { 0x0d, 0x41 },
506         { 0x0f, 0xc5 },
507         { 0x14, 0x11 },
508
509         { 0x22, 0x7f },
510         { 0x23, 0x03 },
511         { 0x24, 0x40 },
512         { 0x25, 0x30 },
513         { 0x26, 0xa1 },
514         { 0x2a, 0x00 },
515         { 0x2b, 0x00 },
516         { 0x6b, 0xaa },
517         { 0x13, 0xff },         /* AWB */
518
519         { 0x90, 0x05 },
520         { 0x91, 0x01 },
521         { 0x92, 0x03 },
522         { 0x93, 0x00 },
523         { 0x94, 0x60 },
524         { 0x95, 0x3c },
525         { 0x96, 0x24 },
526         { 0x97, 0x1e },
527         { 0x98, 0x62 },
528         { 0x99, 0x80 },
529         { 0x9a, 0x1e },
530         { 0x9b, 0x08 },
531         { 0x9c, 0x20 },
532         { 0x9e, 0x81 },
533
534         { 0xa6, 0x07 },
535         { 0x7e, 0x0c },
536         { 0x7f, 0x16 },
537         { 0x80, 0x2a },
538         { 0x81, 0x4e },
539         { 0x82, 0x61 },
540         { 0x83, 0x6f },
541         { 0x84, 0x7b },
542         { 0x85, 0x86 },
543         { 0x86, 0x8e },
544         { 0x87, 0x97 },
545         { 0x88, 0xa4 },
546         { 0x89, 0xaf },
547         { 0x8a, 0xc5 },
548         { 0x8b, 0xd7 },
549         { 0x8c, 0xe8 },
550         { 0x8d, 0x20 },
551
552         { 0x0c, 0x90 },
553
554         { 0x2b, 0x00 },
555         { 0x22, 0x7f },
556         { 0x23, 0x03 },
557         { 0x11, 0x01 },
558         { 0x0c, 0xd0 },
559         { 0x64, 0xff },
560         { 0x0d, 0x41 },
561
562         { 0x14, 0x41 },
563         { 0x0e, 0xcd },
564         { 0xac, 0xbf },
565         { 0x8e, 0x00 },         /* De-noise threshold */
566         { 0x0c, 0xd0 }
567 };
568 static const u8 bridge_start_vga_772x[][2] = {
569         {0x1c, 0x00},
570         {0x1d, 0x40},
571         {0x1d, 0x02},
572         {0x1d, 0x00},
573         {0x1d, 0x02},
574         {0x1d, 0x58},
575         {0x1d, 0x00},
576         {0xc0, 0x50},
577         {0xc1, 0x3c},
578 };
579 static const u8 sensor_start_vga_772x[][2] = {
580         {0x12, 0x00},
581         {0x17, 0x26},
582         {0x18, 0xa0},
583         {0x19, 0x07},
584         {0x1a, 0xf0},
585         {0x29, 0xa0},
586         {0x2c, 0xf0},
587         {0x65, 0x20},
588 };
589 static const u8 bridge_start_qvga_772x[][2] = {
590         {0x1c, 0x00},
591         {0x1d, 0x40},
592         {0x1d, 0x02},
593         {0x1d, 0x00},
594         {0x1d, 0x01},
595         {0x1d, 0x4b},
596         {0x1d, 0x00},
597         {0xc0, 0x28},
598         {0xc1, 0x1e},
599 };
600 static const u8 sensor_start_qvga_772x[][2] = {
601         {0x12, 0x40},
602         {0x17, 0x3f},
603         {0x18, 0x50},
604         {0x19, 0x03},
605         {0x1a, 0x78},
606         {0x29, 0x50},
607         {0x2c, 0x78},
608         {0x65, 0x2f},
609 };
610
611 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
612 {
613         struct usb_device *udev = gspca_dev->dev;
614         int ret;
615
616         if (gspca_dev->usb_err < 0)
617                 return;
618
619         PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
620         gspca_dev->usb_buf[0] = val;
621         ret = usb_control_msg(udev,
622                               usb_sndctrlpipe(udev, 0),
623                               0x01,
624                               USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
625                               0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
626         if (ret < 0) {
627                 pr_err("write failed %d\n", ret);
628                 gspca_dev->usb_err = ret;
629         }
630 }
631
632 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
633 {
634         struct usb_device *udev = gspca_dev->dev;
635         int ret;
636
637         if (gspca_dev->usb_err < 0)
638                 return 0;
639         ret = usb_control_msg(udev,
640                               usb_rcvctrlpipe(udev, 0),
641                               0x01,
642                               USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
643                               0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
644         PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
645         if (ret < 0) {
646                 pr_err("read failed %d\n", ret);
647                 gspca_dev->usb_err = ret;
648         }
649         return gspca_dev->usb_buf[0];
650 }
651
652 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
653  * (direction and output)? */
654 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
655 {
656         u8 data;
657
658         PDEBUG(D_CONF, "led status: %d", status);
659
660         data = ov534_reg_read(gspca_dev, 0x21);
661         data |= 0x80;
662         ov534_reg_write(gspca_dev, 0x21, data);
663
664         data = ov534_reg_read(gspca_dev, 0x23);
665         if (status)
666                 data |= 0x80;
667         else
668                 data &= ~0x80;
669
670         ov534_reg_write(gspca_dev, 0x23, data);
671
672         if (!status) {
673                 data = ov534_reg_read(gspca_dev, 0x21);
674                 data &= ~0x80;
675                 ov534_reg_write(gspca_dev, 0x21, data);
676         }
677 }
678
679 static int sccb_check_status(struct gspca_dev *gspca_dev)
680 {
681         u8 data;
682         int i;
683
684         for (i = 0; i < 5; i++) {
685                 msleep(10);
686                 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
687
688                 switch (data) {
689                 case 0x00:
690                         return 1;
691                 case 0x04:
692                         return 0;
693                 case 0x03:
694                         break;
695                 default:
696                         PERR("sccb status 0x%02x, attempt %d/5",
697                                data, i + 1);
698                 }
699         }
700         return 0;
701 }
702
703 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
704 {
705         PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
706         ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
707         ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
708         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
709
710         if (!sccb_check_status(gspca_dev)) {
711                 pr_err("sccb_reg_write failed\n");
712                 gspca_dev->usb_err = -EIO;
713         }
714 }
715
716 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
717 {
718         ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
719         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
720         if (!sccb_check_status(gspca_dev))
721                 pr_err("sccb_reg_read failed 1\n");
722
723         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
724         if (!sccb_check_status(gspca_dev))
725                 pr_err("sccb_reg_read failed 2\n");
726
727         return ov534_reg_read(gspca_dev, OV534_REG_READ);
728 }
729
730 /* output a bridge sequence (reg - val) */
731 static void reg_w_array(struct gspca_dev *gspca_dev,
732                         const u8 (*data)[2], int len)
733 {
734         while (--len >= 0) {
735                 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
736                 data++;
737         }
738 }
739
740 /* output a sensor sequence (reg - val) */
741 static void sccb_w_array(struct gspca_dev *gspca_dev,
742                         const u8 (*data)[2], int len)
743 {
744         while (--len >= 0) {
745                 if ((*data)[0] != 0xff) {
746                         sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
747                 } else {
748                         sccb_reg_read(gspca_dev, (*data)[1]);
749                         sccb_reg_write(gspca_dev, 0xff, 0x00);
750                 }
751                 data++;
752         }
753 }
754
755 /* ov772x specific controls */
756 static void set_frame_rate(struct gspca_dev *gspca_dev)
757 {
758         struct sd *sd = (struct sd *) gspca_dev;
759         int i;
760         struct rate_s {
761                 u8 fps;
762                 u8 r11;
763                 u8 r0d;
764                 u8 re5;
765         };
766         const struct rate_s *r;
767         static const struct rate_s rate_0[] = { /* 640x480 */
768                 {60, 0x01, 0xc1, 0x04},
769                 {50, 0x01, 0x41, 0x02},
770                 {40, 0x02, 0xc1, 0x04},
771                 {30, 0x04, 0x81, 0x02},
772                 {15, 0x03, 0x41, 0x04},
773         };
774         static const struct rate_s rate_1[] = { /* 320x240 */
775 /*              {205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
776                 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
777                 {150, 0x01, 0xc1, 0x04},
778                 {137, 0x02, 0xc1, 0x02},
779                 {125, 0x02, 0x81, 0x02},
780                 {100, 0x02, 0xc1, 0x04},
781                 {75, 0x03, 0xc1, 0x04},
782                 {60, 0x04, 0xc1, 0x04},
783                 {50, 0x02, 0x41, 0x04},
784                 {37, 0x03, 0x41, 0x04},
785                 {30, 0x04, 0x41, 0x04},
786         };
787
788         if (sd->sensor != SENSOR_OV772x)
789                 return;
790         if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
791                 r = rate_0;
792                 i = ARRAY_SIZE(rate_0);
793         } else {
794                 r = rate_1;
795                 i = ARRAY_SIZE(rate_1);
796         }
797         while (--i > 0) {
798                 if (sd->frame_rate >= r->fps)
799                         break;
800                 r++;
801         }
802
803         sccb_reg_write(gspca_dev, 0x11, r->r11);
804         sccb_reg_write(gspca_dev, 0x0d, r->r0d);
805         ov534_reg_write(gspca_dev, 0xe5, r->re5);
806
807         PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
808 }
809
810 static void sethue(struct gspca_dev *gspca_dev, s32 val)
811 {
812         struct sd *sd = (struct sd *) gspca_dev;
813
814         if (sd->sensor == SENSOR_OV767x) {
815                 /* TBD */
816         } else {
817                 s16 huesin;
818                 s16 huecos;
819
820                 /* According to the datasheet the registers expect HUESIN and
821                  * HUECOS to be the result of the trigonometric functions,
822                  * scaled by 0x80.
823                  *
824                  * The 0x7fff here represents the maximum absolute value
825                  * returned byt fixp_sin and fixp_cos, so the scaling will
826                  * consider the result like in the interval [-1.0, 1.0].
827                  */
828                 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
829                 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
830
831                 if (huesin < 0) {
832                         sccb_reg_write(gspca_dev, 0xab,
833                                 sccb_reg_read(gspca_dev, 0xab) | 0x2);
834                         huesin = -huesin;
835                 } else {
836                         sccb_reg_write(gspca_dev, 0xab,
837                                 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
838
839                 }
840                 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
841                 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
842         }
843 }
844
845 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
846 {
847         struct sd *sd = (struct sd *) gspca_dev;
848
849         if (sd->sensor == SENSOR_OV767x) {
850                 int i;
851                 static u8 color_tb[][6] = {
852                         {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
853                         {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
854                         {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
855                         {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
856                         {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
857                         {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
858                         {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
859                 };
860
861                 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
862                         sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
863         } else {
864                 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
865                 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
866         }
867 }
868
869 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
870 {
871         struct sd *sd = (struct sd *) gspca_dev;
872
873         if (sd->sensor == SENSOR_OV767x) {
874                 if (val < 0)
875                         val = 0x80 - val;
876                 sccb_reg_write(gspca_dev, 0x55, val);   /* bright */
877         } else {
878                 sccb_reg_write(gspca_dev, 0x9b, val);
879         }
880 }
881
882 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
883 {
884         struct sd *sd = (struct sd *) gspca_dev;
885
886         if (sd->sensor == SENSOR_OV767x)
887                 sccb_reg_write(gspca_dev, 0x56, val);   /* contras */
888         else
889                 sccb_reg_write(gspca_dev, 0x9c, val);
890 }
891
892 static void setgain(struct gspca_dev *gspca_dev, s32 val)
893 {
894         switch (val & 0x30) {
895         case 0x00:
896                 val &= 0x0f;
897                 break;
898         case 0x10:
899                 val &= 0x0f;
900                 val |= 0x30;
901                 break;
902         case 0x20:
903                 val &= 0x0f;
904                 val |= 0x70;
905                 break;
906         default:
907 /*      case 0x30: */
908                 val &= 0x0f;
909                 val |= 0xf0;
910                 break;
911         }
912         sccb_reg_write(gspca_dev, 0x00, val);
913 }
914
915 static s32 getgain(struct gspca_dev *gspca_dev)
916 {
917         return sccb_reg_read(gspca_dev, 0x00);
918 }
919
920 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
921 {
922         struct sd *sd = (struct sd *) gspca_dev;
923
924         if (sd->sensor == SENSOR_OV767x) {
925
926                 /* set only aec[9:2] */
927                 sccb_reg_write(gspca_dev, 0x10, val);   /* aech */
928         } else {
929
930                 /* 'val' is one byte and represents half of the exposure value
931                  * we are going to set into registers, a two bytes value:
932                  *
933                  *    MSB: ((u16) val << 1) >> 8   == val >> 7
934                  *    LSB: ((u16) val << 1) & 0xff == val << 1
935                  */
936                 sccb_reg_write(gspca_dev, 0x08, val >> 7);
937                 sccb_reg_write(gspca_dev, 0x10, val << 1);
938         }
939 }
940
941 static s32 getexposure(struct gspca_dev *gspca_dev)
942 {
943         struct sd *sd = (struct sd *) gspca_dev;
944
945         if (sd->sensor == SENSOR_OV767x) {
946                 /* get only aec[9:2] */
947                 return sccb_reg_read(gspca_dev, 0x10);  /* aech */
948         } else {
949                 u8 hi = sccb_reg_read(gspca_dev, 0x08);
950                 u8 lo = sccb_reg_read(gspca_dev, 0x10);
951                 return (hi << 8 | lo) >> 1;
952         }
953 }
954
955 static void setagc(struct gspca_dev *gspca_dev, s32 val)
956 {
957         if (val) {
958                 sccb_reg_write(gspca_dev, 0x13,
959                                 sccb_reg_read(gspca_dev, 0x13) | 0x04);
960                 sccb_reg_write(gspca_dev, 0x64,
961                                 sccb_reg_read(gspca_dev, 0x64) | 0x03);
962         } else {
963                 sccb_reg_write(gspca_dev, 0x13,
964                                 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
965                 sccb_reg_write(gspca_dev, 0x64,
966                                 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
967         }
968 }
969
970 static void setawb(struct gspca_dev *gspca_dev, s32 val)
971 {
972         struct sd *sd = (struct sd *) gspca_dev;
973
974         if (val) {
975                 sccb_reg_write(gspca_dev, 0x13,
976                                 sccb_reg_read(gspca_dev, 0x13) | 0x02);
977                 if (sd->sensor == SENSOR_OV772x)
978                         sccb_reg_write(gspca_dev, 0x63,
979                                 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
980         } else {
981                 sccb_reg_write(gspca_dev, 0x13,
982                                 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
983                 if (sd->sensor == SENSOR_OV772x)
984                         sccb_reg_write(gspca_dev, 0x63,
985                                 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
986         }
987 }
988
989 static void setaec(struct gspca_dev *gspca_dev, s32 val)
990 {
991         struct sd *sd = (struct sd *) gspca_dev;
992         u8 data;
993
994         data = sd->sensor == SENSOR_OV767x ?
995                         0x05 :          /* agc + aec */
996                         0x01;           /* agc */
997         switch (val) {
998         case V4L2_EXPOSURE_AUTO:
999                 sccb_reg_write(gspca_dev, 0x13,
1000                                 sccb_reg_read(gspca_dev, 0x13) | data);
1001                 break;
1002         case V4L2_EXPOSURE_MANUAL:
1003                 sccb_reg_write(gspca_dev, 0x13,
1004                                 sccb_reg_read(gspca_dev, 0x13) & ~data);
1005                 break;
1006         }
1007 }
1008
1009 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1010 {
1011         sccb_reg_write(gspca_dev, 0x91, val);   /* Auto de-noise threshold */
1012         sccb_reg_write(gspca_dev, 0x8e, val);   /* De-noise threshold */
1013 }
1014
1015 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1016 {
1017         struct sd *sd = (struct sd *) gspca_dev;
1018         u8 val;
1019
1020         if (sd->sensor == SENSOR_OV767x) {
1021                 val = sccb_reg_read(gspca_dev, 0x1e);   /* mvfp */
1022                 val &= ~0x30;
1023                 if (hflip)
1024                         val |= 0x20;
1025                 if (vflip)
1026                         val |= 0x10;
1027                 sccb_reg_write(gspca_dev, 0x1e, val);
1028         } else {
1029                 val = sccb_reg_read(gspca_dev, 0x0c);
1030                 val &= ~0xc0;
1031                 if (hflip == 0)
1032                         val |= 0x40;
1033                 if (vflip == 0)
1034                         val |= 0x80;
1035                 sccb_reg_write(gspca_dev, 0x0c, val);
1036         }
1037 }
1038
1039 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1040 {
1041         struct sd *sd = (struct sd *) gspca_dev;
1042
1043         val = val ? 0x9e : 0x00;
1044         if (sd->sensor == SENSOR_OV767x) {
1045                 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1046                 if (val)
1047                         val = 0x9d;     /* insert dummy to 25fps for 50Hz */
1048         }
1049         sccb_reg_write(gspca_dev, 0x2b, val);
1050 }
1051
1052
1053 /* this function is called at probe time */
1054 static int sd_config(struct gspca_dev *gspca_dev,
1055                      const struct usb_device_id *id)
1056 {
1057         struct sd *sd = (struct sd *) gspca_dev;
1058         struct cam *cam;
1059
1060         cam = &gspca_dev->cam;
1061
1062         cam->cam_mode = ov772x_mode;
1063         cam->nmodes = ARRAY_SIZE(ov772x_mode);
1064
1065         sd->frame_rate = DEFAULT_FRAME_RATE;
1066
1067         return 0;
1068 }
1069
1070 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1071 {
1072         struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1073         struct gspca_dev *gspca_dev = &sd->gspca_dev;
1074
1075         switch (ctrl->id) {
1076         case V4L2_CID_AUTOGAIN:
1077                 gspca_dev->usb_err = 0;
1078                 if (ctrl->val && sd->gain && gspca_dev->streaming)
1079                         sd->gain->val = getgain(gspca_dev);
1080                 return gspca_dev->usb_err;
1081
1082         case V4L2_CID_EXPOSURE_AUTO:
1083                 gspca_dev->usb_err = 0;
1084                 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1085                     gspca_dev->streaming)
1086                         sd->exposure->val = getexposure(gspca_dev);
1087                 return gspca_dev->usb_err;
1088         }
1089         return -EINVAL;
1090 }
1091
1092 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1093 {
1094         struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1095         struct gspca_dev *gspca_dev = &sd->gspca_dev;
1096
1097         gspca_dev->usb_err = 0;
1098         if (!gspca_dev->streaming)
1099                 return 0;
1100
1101         switch (ctrl->id) {
1102         case V4L2_CID_HUE:
1103                 sethue(gspca_dev, ctrl->val);
1104                 break;
1105         case V4L2_CID_SATURATION:
1106                 setsaturation(gspca_dev, ctrl->val);
1107                 break;
1108         case V4L2_CID_BRIGHTNESS:
1109                 setbrightness(gspca_dev, ctrl->val);
1110                 break;
1111         case V4L2_CID_CONTRAST:
1112                 setcontrast(gspca_dev, ctrl->val);
1113                 break;
1114         case V4L2_CID_AUTOGAIN:
1115         /* case V4L2_CID_GAIN: */
1116                 setagc(gspca_dev, ctrl->val);
1117                 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1118                         setgain(gspca_dev, sd->gain->val);
1119                 break;
1120         case V4L2_CID_AUTO_WHITE_BALANCE:
1121                 setawb(gspca_dev, ctrl->val);
1122                 break;
1123         case V4L2_CID_EXPOSURE_AUTO:
1124         /* case V4L2_CID_EXPOSURE: */
1125                 setaec(gspca_dev, ctrl->val);
1126                 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1127                     sd->exposure)
1128                         setexposure(gspca_dev, sd->exposure->val);
1129                 break;
1130         case V4L2_CID_SHARPNESS:
1131                 setsharpness(gspca_dev, ctrl->val);
1132                 break;
1133         case V4L2_CID_HFLIP:
1134                 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1135                 break;
1136         case V4L2_CID_VFLIP:
1137                 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1138                 break;
1139         case V4L2_CID_POWER_LINE_FREQUENCY:
1140                 setlightfreq(gspca_dev, ctrl->val);
1141                 break;
1142         }
1143         return gspca_dev->usb_err;
1144 }
1145
1146 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1147         .g_volatile_ctrl = ov534_g_volatile_ctrl,
1148         .s_ctrl = ov534_s_ctrl,
1149 };
1150
1151 static int sd_init_controls(struct gspca_dev *gspca_dev)
1152 {
1153         struct sd *sd = (struct sd *) gspca_dev;
1154         struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1155         /* parameters with different values between the supported sensors */
1156         int saturation_min;
1157         int saturation_max;
1158         int saturation_def;
1159         int brightness_min;
1160         int brightness_max;
1161         int brightness_def;
1162         int contrast_max;
1163         int contrast_def;
1164         int exposure_min;
1165         int exposure_max;
1166         int exposure_def;
1167         int hflip_def;
1168
1169         if (sd->sensor == SENSOR_OV767x) {
1170                 saturation_min = 0,
1171                 saturation_max = 6,
1172                 saturation_def = 3,
1173                 brightness_min = -127;
1174                 brightness_max = 127;
1175                 brightness_def = 0;
1176                 contrast_max = 0x80;
1177                 contrast_def = 0x40;
1178                 exposure_min = 0x08;
1179                 exposure_max = 0x60;
1180                 exposure_def = 0x13;
1181                 hflip_def = 1;
1182         } else {
1183                 saturation_min = 0,
1184                 saturation_max = 255,
1185                 saturation_def = 64,
1186                 brightness_min = 0;
1187                 brightness_max = 255;
1188                 brightness_def = 0;
1189                 contrast_max = 255;
1190                 contrast_def = 32;
1191                 exposure_min = 0;
1192                 exposure_max = 255;
1193                 exposure_def = 120;
1194                 hflip_def = 0;
1195         }
1196
1197         gspca_dev->vdev.ctrl_handler = hdl;
1198
1199         v4l2_ctrl_handler_init(hdl, 13);
1200
1201         if (sd->sensor == SENSOR_OV772x)
1202                 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1203                                 V4L2_CID_HUE, -90, 90, 1, 0);
1204
1205         sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1206                         V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1207                         saturation_def);
1208         sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1209                         V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1210                         brightness_def);
1211         sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1212                         V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1213
1214         if (sd->sensor == SENSOR_OV772x) {
1215                 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1216                                 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1217                 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1218                                 V4L2_CID_GAIN, 0, 63, 1, 20);
1219         }
1220
1221         sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1222                         V4L2_CID_EXPOSURE_AUTO,
1223                         V4L2_EXPOSURE_MANUAL, 0,
1224                         V4L2_EXPOSURE_AUTO);
1225         sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1226                         V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1227                         exposure_def);
1228
1229         sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1230                         V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1231
1232         if (sd->sensor == SENSOR_OV772x)
1233                 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1234                                 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1235
1236         sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1237                         V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1238         sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1239                         V4L2_CID_VFLIP, 0, 1, 1, 0);
1240         sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1241                         V4L2_CID_POWER_LINE_FREQUENCY,
1242                         V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1243                         V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1244
1245         if (hdl->error) {
1246                 pr_err("Could not initialize controls\n");
1247                 return hdl->error;
1248         }
1249
1250         if (sd->sensor == SENSOR_OV772x)
1251                 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1252
1253         v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1254                                true);
1255
1256         return 0;
1257 }
1258
1259 /* this function is called at probe and resume time */
1260 static int sd_init(struct gspca_dev *gspca_dev)
1261 {
1262         struct sd *sd = (struct sd *) gspca_dev;
1263         u16 sensor_id;
1264         static const struct reg_array bridge_init[NSENSORS] = {
1265         [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1266         [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1267         };
1268         static const struct reg_array sensor_init[NSENSORS] = {
1269         [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1270         [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1271         };
1272
1273         /* reset bridge */
1274         ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1275         ov534_reg_write(gspca_dev, 0xe0, 0x08);
1276         msleep(100);
1277
1278         /* initialize the sensor address */
1279         ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1280
1281         /* reset sensor */
1282         sccb_reg_write(gspca_dev, 0x12, 0x80);
1283         msleep(10);
1284
1285         /* probe the sensor */
1286         sccb_reg_read(gspca_dev, 0x0a);
1287         sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1288         sccb_reg_read(gspca_dev, 0x0b);
1289         sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1290         PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1291
1292         if ((sensor_id & 0xfff0) == 0x7670) {
1293                 sd->sensor = SENSOR_OV767x;
1294                 gspca_dev->cam.cam_mode = ov767x_mode;
1295                 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1296         } else {
1297                 sd->sensor = SENSOR_OV772x;
1298                 gspca_dev->cam.bulk = 1;
1299                 gspca_dev->cam.bulk_size = 16384;
1300                 gspca_dev->cam.bulk_nurbs = 2;
1301                 gspca_dev->cam.mode_framerates = ov772x_framerates;
1302         }
1303
1304         /* initialize */
1305         reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1306                         bridge_init[sd->sensor].len);
1307         ov534_set_led(gspca_dev, 1);
1308         sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1309                         sensor_init[sd->sensor].len);
1310
1311         sd_stopN(gspca_dev);
1312 /*      set_frame_rate(gspca_dev);      */
1313
1314         return gspca_dev->usb_err;
1315 }
1316
1317 static int sd_start(struct gspca_dev *gspca_dev)
1318 {
1319         struct sd *sd = (struct sd *) gspca_dev;
1320         int mode;
1321         static const struct reg_array bridge_start[NSENSORS][2] = {
1322         [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1323                                         ARRAY_SIZE(bridge_start_qvga_767x)},
1324                         {bridge_start_vga_767x,
1325                                         ARRAY_SIZE(bridge_start_vga_767x)}},
1326         [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1327                                         ARRAY_SIZE(bridge_start_qvga_772x)},
1328                         {bridge_start_vga_772x,
1329                                         ARRAY_SIZE(bridge_start_vga_772x)}},
1330         };
1331         static const struct reg_array sensor_start[NSENSORS][2] = {
1332         [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1333                                         ARRAY_SIZE(sensor_start_qvga_767x)},
1334                         {sensor_start_vga_767x,
1335                                         ARRAY_SIZE(sensor_start_vga_767x)}},
1336         [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1337                                         ARRAY_SIZE(sensor_start_qvga_772x)},
1338                         {sensor_start_vga_772x,
1339                                         ARRAY_SIZE(sensor_start_vga_772x)}},
1340         };
1341
1342         /* (from ms-win trace) */
1343         if (sd->sensor == SENSOR_OV767x)
1344                 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1345                                         /* black sun enable ? */
1346
1347         mode = gspca_dev->curr_mode;    /* 0: 320x240, 1: 640x480 */
1348         reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1349                                 bridge_start[sd->sensor][mode].len);
1350         sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1351                                 sensor_start[sd->sensor][mode].len);
1352
1353         set_frame_rate(gspca_dev);
1354
1355         if (sd->hue)
1356                 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1357         setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1358         if (sd->autogain)
1359                 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1360         setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1361         setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1362         if (sd->gain)
1363                 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1364         setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1365         setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1366         setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1367         if (sd->sharpness)
1368                 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1369         sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1370                   v4l2_ctrl_g_ctrl(sd->vflip));
1371         setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1372
1373         ov534_set_led(gspca_dev, 1);
1374         ov534_reg_write(gspca_dev, 0xe0, 0x00);
1375         return gspca_dev->usb_err;
1376 }
1377
1378 static void sd_stopN(struct gspca_dev *gspca_dev)
1379 {
1380         ov534_reg_write(gspca_dev, 0xe0, 0x09);
1381         ov534_set_led(gspca_dev, 0);
1382 }
1383
1384 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1385 #define UVC_STREAM_EOH  (1 << 7)
1386 #define UVC_STREAM_ERR  (1 << 6)
1387 #define UVC_STREAM_STI  (1 << 5)
1388 #define UVC_STREAM_RES  (1 << 4)
1389 #define UVC_STREAM_SCR  (1 << 3)
1390 #define UVC_STREAM_PTS  (1 << 2)
1391 #define UVC_STREAM_EOF  (1 << 1)
1392 #define UVC_STREAM_FID  (1 << 0)
1393
1394 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1395                         u8 *data, int len)
1396 {
1397         struct sd *sd = (struct sd *) gspca_dev;
1398         __u32 this_pts;
1399         u16 this_fid;
1400         int remaining_len = len;
1401         int payload_len;
1402
1403         payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1404         do {
1405                 len = min(remaining_len, payload_len);
1406
1407                 /* Payloads are prefixed with a UVC-style header.  We
1408                    consider a frame to start when the FID toggles, or the PTS
1409                    changes.  A frame ends when EOF is set, and we've received
1410                    the correct number of bytes. */
1411
1412                 /* Verify UVC header.  Header length is always 12 */
1413                 if (data[0] != 12 || len < 12) {
1414                         PDEBUG(D_PACK, "bad header");
1415                         goto discard;
1416                 }
1417
1418                 /* Check errors */
1419                 if (data[1] & UVC_STREAM_ERR) {
1420                         PDEBUG(D_PACK, "payload error");
1421                         goto discard;
1422                 }
1423
1424                 /* Extract PTS and FID */
1425                 if (!(data[1] & UVC_STREAM_PTS)) {
1426                         PDEBUG(D_PACK, "PTS not present");
1427                         goto discard;
1428                 }
1429                 this_pts = (data[5] << 24) | (data[4] << 16)
1430                                                 | (data[3] << 8) | data[2];
1431                 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1432
1433                 /* If PTS or FID has changed, start a new frame. */
1434                 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1435                         if (gspca_dev->last_packet_type == INTER_PACKET)
1436                                 gspca_frame_add(gspca_dev, LAST_PACKET,
1437                                                 NULL, 0);
1438                         sd->last_pts = this_pts;
1439                         sd->last_fid = this_fid;
1440                         gspca_frame_add(gspca_dev, FIRST_PACKET,
1441                                         data + 12, len - 12);
1442                 /* If this packet is marked as EOF, end the frame */
1443                 } else if (data[1] & UVC_STREAM_EOF) {
1444                         sd->last_pts = 0;
1445                         if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1446                          && gspca_dev->image_len + len - 12 !=
1447                                    gspca_dev->pixfmt.width *
1448                                         gspca_dev->pixfmt.height * 2) {
1449                                 PDEBUG(D_PACK, "wrong sized frame");
1450                                 goto discard;
1451                         }
1452                         gspca_frame_add(gspca_dev, LAST_PACKET,
1453                                         data + 12, len - 12);
1454                 } else {
1455
1456                         /* Add the data from this payload */
1457                         gspca_frame_add(gspca_dev, INTER_PACKET,
1458                                         data + 12, len - 12);
1459                 }
1460
1461                 /* Done this payload */
1462                 goto scan_next;
1463
1464 discard:
1465                 /* Discard data until a new frame starts. */
1466                 gspca_dev->last_packet_type = DISCARD_PACKET;
1467
1468 scan_next:
1469                 remaining_len -= len;
1470                 data += len;
1471         } while (remaining_len > 0);
1472 }
1473
1474 /* get stream parameters (framerate) */
1475 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1476                              struct v4l2_streamparm *parm)
1477 {
1478         struct v4l2_captureparm *cp = &parm->parm.capture;
1479         struct v4l2_fract *tpf = &cp->timeperframe;
1480         struct sd *sd = (struct sd *) gspca_dev;
1481
1482         cp->capability |= V4L2_CAP_TIMEPERFRAME;
1483         tpf->numerator = 1;
1484         tpf->denominator = sd->frame_rate;
1485 }
1486
1487 /* set stream parameters (framerate) */
1488 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1489                              struct v4l2_streamparm *parm)
1490 {
1491         struct v4l2_captureparm *cp = &parm->parm.capture;
1492         struct v4l2_fract *tpf = &cp->timeperframe;
1493         struct sd *sd = (struct sd *) gspca_dev;
1494
1495         if (tpf->numerator == 0 || tpf->denominator == 0)
1496                 sd->frame_rate = DEFAULT_FRAME_RATE;
1497         else
1498                 sd->frame_rate = tpf->denominator / tpf->numerator;
1499
1500         if (gspca_dev->streaming)
1501                 set_frame_rate(gspca_dev);
1502
1503         /* Return the actual framerate */
1504         tpf->numerator = 1;
1505         tpf->denominator = sd->frame_rate;
1506 }
1507
1508 /* sub-driver description */
1509 static const struct sd_desc sd_desc = {
1510         .name     = MODULE_NAME,
1511         .config   = sd_config,
1512         .init     = sd_init,
1513         .init_controls = sd_init_controls,
1514         .start    = sd_start,
1515         .stopN    = sd_stopN,
1516         .pkt_scan = sd_pkt_scan,
1517         .get_streamparm = sd_get_streamparm,
1518         .set_streamparm = sd_set_streamparm,
1519 };
1520
1521 /* -- module initialisation -- */
1522 static const struct usb_device_id device_table[] = {
1523         {USB_DEVICE(0x1415, 0x2000)},
1524         {USB_DEVICE(0x06f8, 0x3002)},
1525         {}
1526 };
1527
1528 MODULE_DEVICE_TABLE(usb, device_table);
1529
1530 /* -- device connect -- */
1531 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1532 {
1533         return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1534                                 THIS_MODULE);
1535 }
1536
1537 static struct usb_driver sd_driver = {
1538         .name       = MODULE_NAME,
1539         .id_table   = device_table,
1540         .probe      = sd_probe,
1541         .disconnect = gspca_disconnect,
1542 #ifdef CONFIG_PM
1543         .suspend    = gspca_suspend,
1544         .resume     = gspca_resume,
1545         .reset_resume = gspca_resume,
1546 #endif
1547 };
1548
1549 module_usb_driver(sd_driver);