GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25         V4L2_DV_BT_CEA_640X480P59_94,
26         V4L2_DV_BT_CEA_720X480I59_94,
27         V4L2_DV_BT_CEA_720X480P59_94,
28         V4L2_DV_BT_CEA_720X576I50,
29         V4L2_DV_BT_CEA_720X576P50,
30         V4L2_DV_BT_CEA_1280X720P24,
31         V4L2_DV_BT_CEA_1280X720P25,
32         V4L2_DV_BT_CEA_1280X720P30,
33         V4L2_DV_BT_CEA_1280X720P50,
34         V4L2_DV_BT_CEA_1280X720P60,
35         V4L2_DV_BT_CEA_1920X1080P24,
36         V4L2_DV_BT_CEA_1920X1080P25,
37         V4L2_DV_BT_CEA_1920X1080P30,
38         V4L2_DV_BT_CEA_1920X1080I50,
39         V4L2_DV_BT_CEA_1920X1080P50,
40         V4L2_DV_BT_CEA_1920X1080I60,
41         V4L2_DV_BT_CEA_1920X1080P60,
42         V4L2_DV_BT_DMT_640X350P85,
43         V4L2_DV_BT_DMT_640X400P85,
44         V4L2_DV_BT_DMT_720X400P85,
45         V4L2_DV_BT_DMT_640X480P72,
46         V4L2_DV_BT_DMT_640X480P75,
47         V4L2_DV_BT_DMT_640X480P85,
48         V4L2_DV_BT_DMT_800X600P56,
49         V4L2_DV_BT_DMT_800X600P60,
50         V4L2_DV_BT_DMT_800X600P72,
51         V4L2_DV_BT_DMT_800X600P75,
52         V4L2_DV_BT_DMT_800X600P85,
53         V4L2_DV_BT_DMT_800X600P120_RB,
54         V4L2_DV_BT_DMT_848X480P60,
55         V4L2_DV_BT_DMT_1024X768I43,
56         V4L2_DV_BT_DMT_1024X768P60,
57         V4L2_DV_BT_DMT_1024X768P70,
58         V4L2_DV_BT_DMT_1024X768P75,
59         V4L2_DV_BT_DMT_1024X768P85,
60         V4L2_DV_BT_DMT_1024X768P120_RB,
61         V4L2_DV_BT_DMT_1152X864P75,
62         V4L2_DV_BT_DMT_1280X768P60_RB,
63         V4L2_DV_BT_DMT_1280X768P60,
64         V4L2_DV_BT_DMT_1280X768P75,
65         V4L2_DV_BT_DMT_1280X768P85,
66         V4L2_DV_BT_DMT_1280X768P120_RB,
67         V4L2_DV_BT_DMT_1280X800P60_RB,
68         V4L2_DV_BT_DMT_1280X800P60,
69         V4L2_DV_BT_DMT_1280X800P75,
70         V4L2_DV_BT_DMT_1280X800P85,
71         V4L2_DV_BT_DMT_1280X800P120_RB,
72         V4L2_DV_BT_DMT_1280X960P60,
73         V4L2_DV_BT_DMT_1280X960P85,
74         V4L2_DV_BT_DMT_1280X960P120_RB,
75         V4L2_DV_BT_DMT_1280X1024P60,
76         V4L2_DV_BT_DMT_1280X1024P75,
77         V4L2_DV_BT_DMT_1280X1024P85,
78         V4L2_DV_BT_DMT_1280X1024P120_RB,
79         V4L2_DV_BT_DMT_1360X768P60,
80         V4L2_DV_BT_DMT_1360X768P120_RB,
81         V4L2_DV_BT_DMT_1366X768P60,
82         V4L2_DV_BT_DMT_1366X768P60_RB,
83         V4L2_DV_BT_DMT_1400X1050P60_RB,
84         V4L2_DV_BT_DMT_1400X1050P60,
85         V4L2_DV_BT_DMT_1400X1050P75,
86         V4L2_DV_BT_DMT_1400X1050P85,
87         V4L2_DV_BT_DMT_1400X1050P120_RB,
88         V4L2_DV_BT_DMT_1440X900P60_RB,
89         V4L2_DV_BT_DMT_1440X900P60,
90         V4L2_DV_BT_DMT_1440X900P75,
91         V4L2_DV_BT_DMT_1440X900P85,
92         V4L2_DV_BT_DMT_1440X900P120_RB,
93         V4L2_DV_BT_DMT_1600X900P60_RB,
94         V4L2_DV_BT_DMT_1600X1200P60,
95         V4L2_DV_BT_DMT_1600X1200P65,
96         V4L2_DV_BT_DMT_1600X1200P70,
97         V4L2_DV_BT_DMT_1600X1200P75,
98         V4L2_DV_BT_DMT_1600X1200P85,
99         V4L2_DV_BT_DMT_1600X1200P120_RB,
100         V4L2_DV_BT_DMT_1680X1050P60_RB,
101         V4L2_DV_BT_DMT_1680X1050P60,
102         V4L2_DV_BT_DMT_1680X1050P75,
103         V4L2_DV_BT_DMT_1680X1050P85,
104         V4L2_DV_BT_DMT_1680X1050P120_RB,
105         V4L2_DV_BT_DMT_1792X1344P60,
106         V4L2_DV_BT_DMT_1792X1344P75,
107         V4L2_DV_BT_DMT_1792X1344P120_RB,
108         V4L2_DV_BT_DMT_1856X1392P60,
109         V4L2_DV_BT_DMT_1856X1392P75,
110         V4L2_DV_BT_DMT_1856X1392P120_RB,
111         V4L2_DV_BT_DMT_1920X1200P60_RB,
112         V4L2_DV_BT_DMT_1920X1200P60,
113         V4L2_DV_BT_DMT_1920X1200P75,
114         V4L2_DV_BT_DMT_1920X1200P85,
115         V4L2_DV_BT_DMT_1920X1200P120_RB,
116         V4L2_DV_BT_DMT_1920X1440P60,
117         V4L2_DV_BT_DMT_1920X1440P75,
118         V4L2_DV_BT_DMT_1920X1440P120_RB,
119         V4L2_DV_BT_DMT_2048X1152P60_RB,
120         V4L2_DV_BT_DMT_2560X1600P60_RB,
121         V4L2_DV_BT_DMT_2560X1600P60,
122         V4L2_DV_BT_DMT_2560X1600P75,
123         V4L2_DV_BT_DMT_2560X1600P85,
124         V4L2_DV_BT_DMT_2560X1600P120_RB,
125         V4L2_DV_BT_CEA_3840X2160P24,
126         V4L2_DV_BT_CEA_3840X2160P25,
127         V4L2_DV_BT_CEA_3840X2160P30,
128         V4L2_DV_BT_CEA_3840X2160P50,
129         V4L2_DV_BT_CEA_3840X2160P60,
130         V4L2_DV_BT_CEA_4096X2160P24,
131         V4L2_DV_BT_CEA_4096X2160P25,
132         V4L2_DV_BT_CEA_4096X2160P30,
133         V4L2_DV_BT_CEA_4096X2160P50,
134         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135         V4L2_DV_BT_CEA_4096X2160P60,
136         { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141                            const struct v4l2_dv_timings_cap *dvcap,
142                            v4l2_check_dv_timings_fnc fnc,
143                            void *fnc_handle)
144 {
145         const struct v4l2_bt_timings *bt = &t->bt;
146         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147         u32 caps = cap->capabilities;
148         const u32 max_vert = 10240;
149         u32 max_hor = 3 * bt->width;
150
151         if (t->type != V4L2_DV_BT_656_1120)
152                 return false;
153         if (t->type != dvcap->type ||
154             bt->height < cap->min_height ||
155             bt->height > cap->max_height ||
156             bt->width < cap->min_width ||
157             bt->width > cap->max_width ||
158             bt->pixelclock < cap->min_pixelclock ||
159             bt->pixelclock > cap->max_pixelclock ||
160             (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
161              cap->standards && bt->standards &&
162              !(bt->standards & cap->standards)) ||
163             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
164             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
165                 return false;
166
167         /* sanity checks for the blanking timings */
168         if (!bt->interlaced &&
169             (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
170                 return false;
171         /*
172          * Some video receivers cannot properly separate the frontporch,
173          * backporch and sync values, and instead they only have the total
174          * blanking. That can be assigned to any of these three fields.
175          * So just check that none of these are way out of range.
176          */
177         if (bt->hfrontporch > max_hor ||
178             bt->hsync > max_hor || bt->hbackporch > max_hor)
179                 return false;
180         if (bt->vfrontporch > max_vert ||
181             bt->vsync > max_vert || bt->vbackporch > max_vert)
182                 return false;
183         if (bt->interlaced && (bt->il_vfrontporch > max_vert ||
184             bt->il_vsync > max_vert || bt->il_vbackporch > max_vert))
185                 return false;
186         return fnc == NULL || fnc(t, fnc_handle);
187 }
188 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
189
190 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
191                              const struct v4l2_dv_timings_cap *cap,
192                              v4l2_check_dv_timings_fnc fnc,
193                              void *fnc_handle)
194 {
195         u32 i, idx;
196
197         memset(t->reserved, 0, sizeof(t->reserved));
198         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
199                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
200                                           fnc, fnc_handle) &&
201                     idx++ == t->index) {
202                         t->timings = v4l2_dv_timings_presets[i];
203                         return 0;
204                 }
205         }
206         return -EINVAL;
207 }
208 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
209
210 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
211                               const struct v4l2_dv_timings_cap *cap,
212                               unsigned pclock_delta,
213                               v4l2_check_dv_timings_fnc fnc,
214                               void *fnc_handle)
215 {
216         int i;
217
218         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
219                 return false;
220
221         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
222                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
223                                           fnc, fnc_handle) &&
224                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
225                                           pclock_delta, false)) {
226                         u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
227
228                         *t = v4l2_dv_timings_presets[i];
229                         if (can_reduce_fps(&t->bt))
230                                 t->bt.flags |= flags;
231
232                         return true;
233                 }
234         }
235         return false;
236 }
237 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
238
239 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
240 {
241         unsigned int i;
242
243         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
244                 const struct v4l2_bt_timings *bt =
245                         &v4l2_dv_timings_presets[i].bt;
246
247                 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
248                     bt->cea861_vic == vic) {
249                         *t = v4l2_dv_timings_presets[i];
250                         return true;
251                 }
252         }
253         return false;
254 }
255 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
256
257 /**
258  * v4l2_match_dv_timings - check if two timings match
259  * @t1: compare this v4l2_dv_timings struct...
260  * @t2: with this struct.
261  * @pclock_delta: the allowed pixelclock deviation.
262  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
263  *      match.
264  *
265  * Compare t1 with t2 with a given margin of error for the pixelclock.
266  */
267 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
268                            const struct v4l2_dv_timings *t2,
269                            unsigned pclock_delta, bool match_reduced_fps)
270 {
271         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
272                 return false;
273         if (t1->bt.width == t2->bt.width &&
274             t1->bt.height == t2->bt.height &&
275             t1->bt.interlaced == t2->bt.interlaced &&
276             t1->bt.polarities == t2->bt.polarities &&
277             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
278             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
279             t1->bt.hfrontporch == t2->bt.hfrontporch &&
280             t1->bt.hsync == t2->bt.hsync &&
281             t1->bt.hbackporch == t2->bt.hbackporch &&
282             t1->bt.vfrontporch == t2->bt.vfrontporch &&
283             t1->bt.vsync == t2->bt.vsync &&
284             t1->bt.vbackporch == t2->bt.vbackporch &&
285             (!match_reduced_fps ||
286              (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
287                 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
288             (!t1->bt.interlaced ||
289                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
290                  t1->bt.il_vsync == t2->bt.il_vsync &&
291                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
292                 return true;
293         return false;
294 }
295 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
296
297 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
298                            const struct v4l2_dv_timings *t, bool detailed)
299 {
300         const struct v4l2_bt_timings *bt = &t->bt;
301         u32 htot, vtot;
302         u32 fps;
303
304         if (t->type != V4L2_DV_BT_656_1120)
305                 return;
306
307         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
308         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
309         if (bt->interlaced)
310                 vtot /= 2;
311
312         fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
313                                   (htot * vtot)) : 0;
314
315         if (prefix == NULL)
316                 prefix = "";
317
318         pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix,
319                 bt->width, bt->height, bt->interlaced ? "i" : "p",
320                 fps / 100, fps % 100, htot, vtot);
321
322         if (!detailed)
323                 return;
324
325         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
326                         dev_prefix, bt->hfrontporch,
327                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
328                         bt->hsync, bt->hbackporch);
329         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
330                         dev_prefix, bt->vfrontporch,
331                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
332                         bt->vsync, bt->vbackporch);
333         if (bt->interlaced)
334                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
335                         dev_prefix, bt->il_vfrontporch,
336                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
337                         bt->il_vsync, bt->il_vbackporch);
338         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
339         pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
340                         dev_prefix, bt->flags,
341                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
342                         " REDUCED_BLANKING" : "",
343                         ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
344                          bt->vsync == 8) ? " (V2)" : "",
345                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
346                         " CAN_REDUCE_FPS" : "",
347                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
348                         " REDUCED_FPS" : "",
349                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
350                         " HALF_LINE" : "",
351                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
352                         " CE_VIDEO" : "",
353                         (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
354                         " FIRST_FIELD_EXTRA_LINE" : "",
355                         (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
356                         " HAS_PICTURE_ASPECT" : "",
357                         (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
358                         " HAS_CEA861_VIC" : "",
359                         (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
360                         " HAS_HDMI_VIC" : "");
361         pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
362                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
363                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
364                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
365                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
366                         (bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
367         if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
368                 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
369                         bt->picture_aspect.numerator,
370                         bt->picture_aspect.denominator);
371         if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
372                 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
373         if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
374                 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
375 }
376 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
377
378 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
379 {
380         struct v4l2_fract ratio = { 1, 1 };
381         unsigned long n, d;
382
383         if (t->type != V4L2_DV_BT_656_1120)
384                 return ratio;
385         if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
386                 return ratio;
387
388         ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
389         ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
390
391         rational_best_approximation(ratio.numerator, ratio.denominator,
392                                     ratio.numerator, ratio.denominator, &n, &d);
393         ratio.numerator = n;
394         ratio.denominator = d;
395         return ratio;
396 }
397 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
398
399 /*
400  * CVT defines
401  * Based on Coordinated Video Timings Standard
402  * version 1.1 September 10, 2003
403  */
404
405 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
406 #define CVT_PXL_CLK_GRAN_RB_V2 1000     /* granularity for reduced blanking v2*/
407
408 /* Normal blanking */
409 #define CVT_MIN_V_BPORCH        7       /* lines */
410 #define CVT_MIN_V_PORCH_RND     3       /* lines */
411 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
412 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
413
414 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
415 #define CVT_CELL_GRAN           8       /* character cell granularity */
416 #define CVT_M                   600     /* blanking formula gradient */
417 #define CVT_C                   40      /* blanking formula offset */
418 #define CVT_K                   128     /* blanking formula scaling factor */
419 #define CVT_J                   20      /* blanking formula scaling factor */
420 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
421 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
422
423 /* Reduced Blanking */
424 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
425 #define CVT_RB_V_FPORCH        3       /* lines  */
426 #define CVT_RB_MIN_V_BLANK   460       /* us     */
427 #define CVT_RB_H_SYNC         32       /* pixels */
428 #define CVT_RB_H_BLANK       160       /* pixels */
429 /* Reduce blanking Version 2 */
430 #define CVT_RB_V2_H_BLANK     80       /* pixels */
431 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
432 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
433 #define CVT_RB_V_BPORCH        6       /* lines  */
434
435 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
436  * @frame_height - the total height of the frame (including blanking) in lines.
437  * @hfreq - the horizontal frequency in Hz.
438  * @vsync - the height of the vertical sync in lines.
439  * @active_width - active width of image (does not include blanking). This
440  * information is needed only in case of version 2 of reduced blanking.
441  * In other cases, this parameter does not have any effect on timings.
442  * @polarities - the horizontal and vertical polarities (same as struct
443  *              v4l2_bt_timings polarities).
444  * @interlaced - if this flag is true, it indicates interlaced format
445  * @fmt - the resulting timings.
446  *
447  * This function will attempt to detect if the given values correspond to a
448  * valid CVT format. If so, then it will return true, and fmt will be filled
449  * in with the found CVT timings.
450  */
451 bool v4l2_detect_cvt(unsigned frame_height,
452                      unsigned hfreq,
453                      unsigned vsync,
454                      unsigned active_width,
455                      u32 polarities,
456                      bool interlaced,
457                      struct v4l2_dv_timings *fmt)
458 {
459         int  v_fp, v_bp, h_fp, h_bp, hsync;
460         int  frame_width, image_height, image_width;
461         bool reduced_blanking;
462         bool rb_v2 = false;
463         unsigned pix_clk;
464
465         if (vsync < 4 || vsync > 8)
466                 return false;
467
468         if (polarities == V4L2_DV_VSYNC_POS_POL)
469                 reduced_blanking = false;
470         else if (polarities == V4L2_DV_HSYNC_POS_POL)
471                 reduced_blanking = true;
472         else
473                 return false;
474
475         if (reduced_blanking && vsync == 8)
476                 rb_v2 = true;
477
478         if (rb_v2 && active_width == 0)
479                 return false;
480
481         if (!rb_v2 && vsync > 7)
482                 return false;
483
484         if (hfreq == 0)
485                 return false;
486
487         /* Vertical */
488         if (reduced_blanking) {
489                 if (rb_v2) {
490                         v_bp = CVT_RB_V_BPORCH;
491                         v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
492                         v_fp -= vsync + v_bp;
493
494                         if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
495                                 v_fp = CVT_RB_V2_MIN_V_FPORCH;
496                 } else {
497                         v_fp = CVT_RB_V_FPORCH;
498                         v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
499                         v_bp -= vsync + v_fp;
500
501                         if (v_bp < CVT_RB_MIN_V_BPORCH)
502                                 v_bp = CVT_RB_MIN_V_BPORCH;
503                 }
504         } else {
505                 v_fp = CVT_MIN_V_PORCH_RND;
506                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
507
508                 if (v_bp < CVT_MIN_V_BPORCH)
509                         v_bp = CVT_MIN_V_BPORCH;
510         }
511
512         if (interlaced)
513                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
514         else
515                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
516
517         if (image_height < 0)
518                 return false;
519
520         /* Aspect ratio based on vsync */
521         switch (vsync) {
522         case 4:
523                 image_width = (image_height * 4) / 3;
524                 break;
525         case 5:
526                 image_width = (image_height * 16) / 9;
527                 break;
528         case 6:
529                 image_width = (image_height * 16) / 10;
530                 break;
531         case 7:
532                 /* special case */
533                 if (image_height == 1024)
534                         image_width = (image_height * 5) / 4;
535                 else if (image_height == 768)
536                         image_width = (image_height * 15) / 9;
537                 else
538                         return false;
539                 break;
540         case 8:
541                 image_width = active_width;
542                 break;
543         default:
544                 return false;
545         }
546
547         if (!rb_v2)
548                 image_width = image_width & ~7;
549
550         /* Horizontal */
551         if (reduced_blanking) {
552                 int h_blank;
553                 int clk_gran;
554
555                 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
556                 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
557
558                 pix_clk = (image_width + h_blank) * hfreq;
559                 pix_clk = (pix_clk / clk_gran) * clk_gran;
560
561                 h_bp  = h_blank / 2;
562                 hsync = CVT_RB_H_SYNC;
563                 h_fp  = h_blank - h_bp - hsync;
564
565                 frame_width = image_width + h_blank;
566         } else {
567                 unsigned ideal_duty_cycle_per_myriad =
568                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
569                 int h_blank;
570
571                 if (ideal_duty_cycle_per_myriad < 2000)
572                         ideal_duty_cycle_per_myriad = 2000;
573
574                 h_blank = image_width * ideal_duty_cycle_per_myriad /
575                                         (10000 - ideal_duty_cycle_per_myriad);
576                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
577
578                 pix_clk = (image_width + h_blank) * hfreq;
579                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
580
581                 h_bp = h_blank / 2;
582                 frame_width = image_width + h_blank;
583
584                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
585                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
586                 h_fp = h_blank - hsync - h_bp;
587         }
588
589         fmt->type = V4L2_DV_BT_656_1120;
590         fmt->bt.polarities = polarities;
591         fmt->bt.width = image_width;
592         fmt->bt.height = image_height;
593         fmt->bt.hfrontporch = h_fp;
594         fmt->bt.vfrontporch = v_fp;
595         fmt->bt.hsync = hsync;
596         fmt->bt.vsync = vsync;
597         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
598
599         if (!interlaced) {
600                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
601                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
602         } else {
603                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
604                                       2 * vsync) / 2;
605                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
606                                         2 * vsync - fmt->bt.vbackporch;
607                 fmt->bt.il_vfrontporch = v_fp;
608                 fmt->bt.il_vsync = vsync;
609                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
610                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
611         }
612
613         fmt->bt.pixelclock = pix_clk;
614         fmt->bt.standards = V4L2_DV_BT_STD_CVT;
615
616         if (reduced_blanking)
617                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
618
619         return true;
620 }
621 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
622
623 /*
624  * GTF defines
625  * Based on Generalized Timing Formula Standard
626  * Version 1.1 September 2, 1999
627  */
628
629 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
630
631 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
632 #define GTF_V_FP                1       /* vertical front porch (lines) */
633 #define GTF_CELL_GRAN           8       /* character cell granularity */
634
635 /* Default */
636 #define GTF_D_M                 600     /* blanking formula gradient */
637 #define GTF_D_C                 40      /* blanking formula offset */
638 #define GTF_D_K                 128     /* blanking formula scaling factor */
639 #define GTF_D_J                 20      /* blanking formula scaling factor */
640 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
641 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
642
643 /* Secondary */
644 #define GTF_S_M                 3600    /* blanking formula gradient */
645 #define GTF_S_C                 40      /* blanking formula offset */
646 #define GTF_S_K                 128     /* blanking formula scaling factor */
647 #define GTF_S_J                 35      /* blanking formula scaling factor */
648 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
649 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
650
651 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
652  * @frame_height - the total height of the frame (including blanking) in lines.
653  * @hfreq - the horizontal frequency in Hz.
654  * @vsync - the height of the vertical sync in lines.
655  * @polarities - the horizontal and vertical polarities (same as struct
656  *              v4l2_bt_timings polarities).
657  * @interlaced - if this flag is true, it indicates interlaced format
658  * @aspect - preferred aspect ratio. GTF has no method of determining the
659  *              aspect ratio in order to derive the image width from the
660  *              image height, so it has to be passed explicitly. Usually
661  *              the native screen aspect ratio is used for this. If it
662  *              is not filled in correctly, then 16:9 will be assumed.
663  * @fmt - the resulting timings.
664  *
665  * This function will attempt to detect if the given values correspond to a
666  * valid GTF format. If so, then it will return true, and fmt will be filled
667  * in with the found GTF timings.
668  */
669 bool v4l2_detect_gtf(unsigned frame_height,
670                 unsigned hfreq,
671                 unsigned vsync,
672                 u32 polarities,
673                 bool interlaced,
674                 struct v4l2_fract aspect,
675                 struct v4l2_dv_timings *fmt)
676 {
677         int pix_clk;
678         int  v_fp, v_bp, h_fp, hsync;
679         int frame_width, image_height, image_width;
680         bool default_gtf;
681         int h_blank;
682
683         if (vsync != 3)
684                 return false;
685
686         if (polarities == V4L2_DV_VSYNC_POS_POL)
687                 default_gtf = true;
688         else if (polarities == V4L2_DV_HSYNC_POS_POL)
689                 default_gtf = false;
690         else
691                 return false;
692
693         if (hfreq == 0)
694                 return false;
695
696         /* Vertical */
697         v_fp = GTF_V_FP;
698         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
699         if (interlaced)
700                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
701         else
702                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
703
704         if (image_height < 0)
705                 return false;
706
707         if (aspect.numerator == 0 || aspect.denominator == 0) {
708                 aspect.numerator = 16;
709                 aspect.denominator = 9;
710         }
711         image_width = ((image_height * aspect.numerator) / aspect.denominator);
712         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
713
714         /* Horizontal */
715         if (default_gtf) {
716                 u64 num;
717                 u32 den;
718
719                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
720                       ((u64)image_width * GTF_D_M_PRIME * 1000));
721                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
722                       (2 * GTF_CELL_GRAN);
723                 h_blank = div_u64((num + (den >> 1)), den);
724                 h_blank *= (2 * GTF_CELL_GRAN);
725         } else {
726                 u64 num;
727                 u32 den;
728
729                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
730                       ((u64)image_width * GTF_S_M_PRIME * 1000));
731                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
732                       (2 * GTF_CELL_GRAN);
733                 h_blank = div_u64((num + (den >> 1)), den);
734                 h_blank *= (2 * GTF_CELL_GRAN);
735         }
736
737         frame_width = image_width + h_blank;
738
739         pix_clk = (image_width + h_blank) * hfreq;
740         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
741
742         hsync = (frame_width * 8 + 50) / 100;
743         hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
744
745         h_fp = h_blank / 2 - hsync;
746
747         fmt->type = V4L2_DV_BT_656_1120;
748         fmt->bt.polarities = polarities;
749         fmt->bt.width = image_width;
750         fmt->bt.height = image_height;
751         fmt->bt.hfrontporch = h_fp;
752         fmt->bt.vfrontporch = v_fp;
753         fmt->bt.hsync = hsync;
754         fmt->bt.vsync = vsync;
755         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
756
757         if (!interlaced) {
758                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
759                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
760         } else {
761                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
762                                       2 * vsync) / 2;
763                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
764                                         2 * vsync - fmt->bt.vbackporch;
765                 fmt->bt.il_vfrontporch = v_fp;
766                 fmt->bt.il_vsync = vsync;
767                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
768                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
769         }
770
771         fmt->bt.pixelclock = pix_clk;
772         fmt->bt.standards = V4L2_DV_BT_STD_GTF;
773
774         if (!default_gtf)
775                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
776
777         return true;
778 }
779 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
780
781 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
782  *      0x15 and 0x16 from the EDID.
783  * @hor_landscape - byte 0x15 from the EDID.
784  * @vert_portrait - byte 0x16 from the EDID.
785  *
786  * Determines the aspect ratio from the EDID.
787  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
788  * "Horizontal and Vertical Screen Size or Aspect Ratio"
789  */
790 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
791 {
792         struct v4l2_fract aspect = { 16, 9 };
793         u8 ratio;
794
795         /* Nothing filled in, fallback to 16:9 */
796         if (!hor_landscape && !vert_portrait)
797                 return aspect;
798         /* Both filled in, so they are interpreted as the screen size in cm */
799         if (hor_landscape && vert_portrait) {
800                 aspect.numerator = hor_landscape;
801                 aspect.denominator = vert_portrait;
802                 return aspect;
803         }
804         /* Only one is filled in, so interpret them as a ratio:
805            (val + 99) / 100 */
806         ratio = hor_landscape | vert_portrait;
807         /* Change some rounded values into the exact aspect ratio */
808         if (ratio == 79) {
809                 aspect.numerator = 16;
810                 aspect.denominator = 9;
811         } else if (ratio == 34) {
812                 aspect.numerator = 4;
813                 aspect.denominator = 3;
814         } else if (ratio == 68) {
815                 aspect.numerator = 15;
816                 aspect.denominator = 9;
817         } else {
818                 aspect.numerator = hor_landscape + 99;
819                 aspect.denominator = 100;
820         }
821         if (hor_landscape)
822                 return aspect;
823         /* The aspect ratio is for portrait, so swap numerator and denominator */
824         swap(aspect.denominator, aspect.numerator);
825         return aspect;
826 }
827 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
828
829 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
830  *      based on various InfoFrames.
831  * @avi: the AVI InfoFrame
832  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
833  * @height: the frame height
834  *
835  * Determines the HDMI colorimetry information, i.e. how the HDMI
836  * pixel color data should be interpreted.
837  *
838  * Note that some of the newer features (DCI-P3, HDR) are not yet
839  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
840  * and CTA-861-G standards.
841  */
842 struct v4l2_hdmi_colorimetry
843 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
844                          const struct hdmi_vendor_infoframe *hdmi,
845                          unsigned int height)
846 {
847         struct v4l2_hdmi_colorimetry c = {
848                 V4L2_COLORSPACE_SRGB,
849                 V4L2_YCBCR_ENC_DEFAULT,
850                 V4L2_QUANTIZATION_FULL_RANGE,
851                 V4L2_XFER_FUNC_SRGB
852         };
853         bool is_ce = avi->video_code || (hdmi && hdmi->vic);
854         bool is_sdtv = height <= 576;
855         bool default_is_lim_range_rgb = avi->video_code > 1;
856
857         switch (avi->colorspace) {
858         case HDMI_COLORSPACE_RGB:
859                 /* RGB pixel encoding */
860                 switch (avi->colorimetry) {
861                 case HDMI_COLORIMETRY_EXTENDED:
862                         switch (avi->extended_colorimetry) {
863                         case HDMI_EXTENDED_COLORIMETRY_OPRGB:
864                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
865                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
866                                 break;
867                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
868                                 c.colorspace = V4L2_COLORSPACE_BT2020;
869                                 c.xfer_func = V4L2_XFER_FUNC_709;
870                                 break;
871                         default:
872                                 break;
873                         }
874                         break;
875                 default:
876                         break;
877                 }
878                 switch (avi->quantization_range) {
879                 case HDMI_QUANTIZATION_RANGE_LIMITED:
880                         c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
881                         break;
882                 case HDMI_QUANTIZATION_RANGE_FULL:
883                         break;
884                 default:
885                         if (default_is_lim_range_rgb)
886                                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
887                         break;
888                 }
889                 break;
890
891         default:
892                 /* YCbCr pixel encoding */
893                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
894                 switch (avi->colorimetry) {
895                 case HDMI_COLORIMETRY_NONE:
896                         if (!is_ce)
897                                 break;
898                         if (is_sdtv) {
899                                 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
900                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
901                         } else {
902                                 c.colorspace = V4L2_COLORSPACE_REC709;
903                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
904                         }
905                         c.xfer_func = V4L2_XFER_FUNC_709;
906                         break;
907                 case HDMI_COLORIMETRY_ITU_601:
908                         c.colorspace = V4L2_COLORSPACE_SMPTE170M;
909                         c.ycbcr_enc = V4L2_YCBCR_ENC_601;
910                         c.xfer_func = V4L2_XFER_FUNC_709;
911                         break;
912                 case HDMI_COLORIMETRY_ITU_709:
913                         c.colorspace = V4L2_COLORSPACE_REC709;
914                         c.ycbcr_enc = V4L2_YCBCR_ENC_709;
915                         c.xfer_func = V4L2_XFER_FUNC_709;
916                         break;
917                 case HDMI_COLORIMETRY_EXTENDED:
918                         switch (avi->extended_colorimetry) {
919                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
920                                 c.colorspace = V4L2_COLORSPACE_REC709;
921                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
922                                 c.xfer_func = V4L2_XFER_FUNC_709;
923                                 break;
924                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
925                                 c.colorspace = V4L2_COLORSPACE_REC709;
926                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
927                                 c.xfer_func = V4L2_XFER_FUNC_709;
928                                 break;
929                         case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
930                                 c.colorspace = V4L2_COLORSPACE_SRGB;
931                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
932                                 c.xfer_func = V4L2_XFER_FUNC_SRGB;
933                                 break;
934                         case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
935                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
936                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
937                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
938                                 break;
939                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
940                                 c.colorspace = V4L2_COLORSPACE_BT2020;
941                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
942                                 c.xfer_func = V4L2_XFER_FUNC_709;
943                                 break;
944                         case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
945                                 c.colorspace = V4L2_COLORSPACE_BT2020;
946                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
947                                 c.xfer_func = V4L2_XFER_FUNC_709;
948                                 break;
949                         default: /* fall back to ITU_709 */
950                                 c.colorspace = V4L2_COLORSPACE_REC709;
951                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
952                                 c.xfer_func = V4L2_XFER_FUNC_709;
953                                 break;
954                         }
955                         break;
956                 default:
957                         break;
958                 }
959                 /*
960                  * YCC Quantization Range signaling is more-or-less broken,
961                  * let's just ignore this.
962                  */
963                 break;
964         }
965         return c;
966 }
967 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
968
969 /**
970  * v4l2_get_edid_phys_addr() - find and return the physical address
971  *
972  * @edid:       pointer to the EDID data
973  * @size:       size in bytes of the EDID data
974  * @offset:     If not %NULL then the location of the physical address
975  *              bytes in the EDID will be returned here. This is set to 0
976  *              if there is no physical address found.
977  *
978  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
979  */
980 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
981                             unsigned int *offset)
982 {
983         unsigned int loc = cec_get_edid_spa_location(edid, size);
984
985         if (offset)
986                 *offset = loc;
987         if (loc == 0)
988                 return CEC_PHYS_ADDR_INVALID;
989         return (edid[loc] << 8) | edid[loc + 1];
990 }
991 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
992
993 /**
994  * v4l2_set_edid_phys_addr() - find and set the physical address
995  *
996  * @edid:       pointer to the EDID data
997  * @size:       size in bytes of the EDID data
998  * @phys_addr:  the new physical address
999  *
1000  * This function finds the location of the physical address in the EDID
1001  * and fills in the given physical address and updates the checksum
1002  * at the end of the EDID block. It does nothing if the EDID doesn't
1003  * contain a physical address.
1004  */
1005 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1006 {
1007         unsigned int loc = cec_get_edid_spa_location(edid, size);
1008         u8 sum = 0;
1009         unsigned int i;
1010
1011         if (loc == 0)
1012                 return;
1013         edid[loc] = phys_addr >> 8;
1014         edid[loc + 1] = phys_addr & 0xff;
1015         loc &= ~0x7f;
1016
1017         /* update the checksum */
1018         for (i = loc; i < loc + 127; i++)
1019                 sum += edid[i];
1020         edid[i] = 256 - sum;
1021 }
1022 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1023
1024 /**
1025  * v4l2_phys_addr_for_input() - calculate the PA for an input
1026  *
1027  * @phys_addr:  the physical address of the parent
1028  * @input:      the number of the input port, must be between 1 and 15
1029  *
1030  * This function calculates a new physical address based on the input
1031  * port number. For example:
1032  *
1033  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1034  *
1035  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1036  *
1037  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1038  *
1039  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1040  *
1041  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1042  */
1043 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1044 {
1045         /* Check if input is sane */
1046         if (WARN_ON(input == 0 || input > 0xf))
1047                 return CEC_PHYS_ADDR_INVALID;
1048
1049         if (phys_addr == 0)
1050                 return input << 12;
1051
1052         if ((phys_addr & 0x0fff) == 0)
1053                 return phys_addr | (input << 8);
1054
1055         if ((phys_addr & 0x00ff) == 0)
1056                 return phys_addr | (input << 4);
1057
1058         if ((phys_addr & 0x000f) == 0)
1059                 return phys_addr | input;
1060
1061         /*
1062          * All nibbles are used so no valid physical addresses can be assigned
1063          * to the input.
1064          */
1065         return CEC_PHYS_ADDR_INVALID;
1066 }
1067 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1068
1069 /**
1070  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1071  *
1072  * @phys_addr:  the physical address to validate
1073  * @parent:     if not %NULL, then this is filled with the parents PA.
1074  * @port:       if not %NULL, then this is filled with the input port.
1075  *
1076  * This validates a physical address as read from an EDID. If the
1077  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1078  * then it will return -EINVAL.
1079  *
1080  * The parent PA is passed into %parent and the input port is passed into
1081  * %port. For example:
1082  *
1083  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1084  *
1085  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1086  *
1087  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1088  *
1089  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1090  *
1091  * Return: 0 if the PA is valid, -EINVAL if not.
1092  */
1093 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1094 {
1095         int i;
1096
1097         if (parent)
1098                 *parent = phys_addr;
1099         if (port)
1100                 *port = 0;
1101         if (phys_addr == CEC_PHYS_ADDR_INVALID)
1102                 return 0;
1103         for (i = 0; i < 16; i += 4)
1104                 if (phys_addr & (0xf << i))
1105                         break;
1106         if (i == 16)
1107                 return 0;
1108         if (parent)
1109                 *parent = phys_addr & (0xfff0 << i);
1110         if (port)
1111                 *port = (phys_addr >> i) & 0xf;
1112         for (i += 4; i < 16; i += 4)
1113                 if ((phys_addr & (0xf << i)) == 0)
1114                         return -EINVAL;
1115         return 0;
1116 }
1117 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);