GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / memory / emif.c
1 /*
2  * EMIF driver
3  *
4  * Copyright (C) 2012 Texas Instruments, Inc.
5  *
6  * Aneesh V <aneesh@ti.com>
7  * Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/err.h>
14 #include <linux/kernel.h>
15 #include <linux/reboot.h>
16 #include <linux/platform_data/emif_plat.h>
17 #include <linux/io.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <linux/pm.h>
29 #include <memory/jedec_ddr.h>
30 #include "emif.h"
31 #include "of_memory.h"
32
33 /**
34  * struct emif_data - Per device static data for driver's use
35  * @duplicate:                  Whether the DDR devices attached to this EMIF
36  *                              instance are exactly same as that on EMIF1. In
37  *                              this case we can save some memory and processing
38  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
39  *                              to this EMIF - read from MR4 register. If there
40  *                              are two devices attached to this EMIF, this
41  *                              value is the maximum of the two temperature
42  *                              levels.
43  * @node:                       node in the device list
44  * @base:                       base address of memory-mapped IO registers.
45  * @dev:                        device pointer.
46  * @addressing                  table with addressing information from the spec
47  * @regs_cache:                 An array of 'struct emif_regs' that stores
48  *                              calculated register values for different
49  *                              frequencies, to avoid re-calculating them on
50  *                              each DVFS transition.
51  * @curr_regs:                  The set of register values used in the last
52  *                              frequency change (i.e. corresponding to the
53  *                              frequency in effect at the moment)
54  * @plat_data:                  Pointer to saved platform data.
55  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
56  * @np_ddr:                     Pointer to ddr device tree node
57  */
58 struct emif_data {
59         u8                              duplicate;
60         u8                              temperature_level;
61         u8                              lpmode;
62         struct list_head                node;
63         unsigned long                   irq_state;
64         void __iomem                    *base;
65         struct device                   *dev;
66         const struct lpddr2_addressing  *addressing;
67         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
68         struct emif_regs                *curr_regs;
69         struct emif_platform_data       *plat_data;
70         struct dentry                   *debugfs_root;
71         struct device_node              *np_ddr;
72 };
73
74 static struct emif_data *emif1;
75 static spinlock_t       emif_lock;
76 static unsigned long    irq_state;
77 static u32              t_ck; /* DDR clock period in ps */
78 static LIST_HEAD(device_list);
79
80 #ifdef CONFIG_DEBUG_FS
81 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
82         struct emif_regs *regs)
83 {
84         u32 type = emif->plat_data->device_info->type;
85         u32 ip_rev = emif->plat_data->ip_rev;
86
87         seq_printf(s, "EMIF register cache dump for %dMHz\n",
88                 regs->freq/1000000);
89
90         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
91         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
92         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
93         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
94
95         if (ip_rev == EMIF_4D) {
96                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
97                         regs->read_idle_ctrl_shdw_normal);
98                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
99                         regs->read_idle_ctrl_shdw_volt_ramp);
100         } else if (ip_rev == EMIF_4D5) {
101                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
102                         regs->dll_calib_ctrl_shdw_normal);
103                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
104                         regs->dll_calib_ctrl_shdw_volt_ramp);
105         }
106
107         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
108                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
109                         regs->ref_ctrl_shdw_derated);
110                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
111                         regs->sdram_tim1_shdw_derated);
112                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
113                         regs->sdram_tim3_shdw_derated);
114         }
115 }
116
117 static int emif_regdump_show(struct seq_file *s, void *unused)
118 {
119         struct emif_data        *emif   = s->private;
120         struct emif_regs        **regs_cache;
121         int                     i;
122
123         if (emif->duplicate)
124                 regs_cache = emif1->regs_cache;
125         else
126                 regs_cache = emif->regs_cache;
127
128         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
129                 do_emif_regdump_show(s, emif, regs_cache[i]);
130                 seq_putc(s, '\n');
131         }
132
133         return 0;
134 }
135
136 static int emif_regdump_open(struct inode *inode, struct file *file)
137 {
138         return single_open(file, emif_regdump_show, inode->i_private);
139 }
140
141 static const struct file_operations emif_regdump_fops = {
142         .open                   = emif_regdump_open,
143         .read                   = seq_read,
144         .release                = single_release,
145 };
146
147 static int emif_mr4_show(struct seq_file *s, void *unused)
148 {
149         struct emif_data *emif = s->private;
150
151         seq_printf(s, "MR4=%d\n", emif->temperature_level);
152         return 0;
153 }
154
155 static int emif_mr4_open(struct inode *inode, struct file *file)
156 {
157         return single_open(file, emif_mr4_show, inode->i_private);
158 }
159
160 static const struct file_operations emif_mr4_fops = {
161         .open                   = emif_mr4_open,
162         .read                   = seq_read,
163         .release                = single_release,
164 };
165
166 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
167 {
168         emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
169         debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
170                             &emif_regdump_fops);
171         debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
172                             &emif_mr4_fops);
173         return 0;
174 }
175
176 static void __exit emif_debugfs_exit(struct emif_data *emif)
177 {
178         debugfs_remove_recursive(emif->debugfs_root);
179         emif->debugfs_root = NULL;
180 }
181 #else
182 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
183 {
184         return 0;
185 }
186
187 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
188 {
189 }
190 #endif
191
192 /*
193  * Calculate the period of DDR clock from frequency value
194  */
195 static void set_ddr_clk_period(u32 freq)
196 {
197         /* Divide 10^12 by frequency to get period in ps */
198         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
199 }
200
201 /*
202  * Get bus width used by EMIF. Note that this may be different from the
203  * bus width of the DDR devices used. For instance two 16-bit DDR devices
204  * may be connected to a given CS of EMIF. In this case bus width as far
205  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
206  */
207 static u32 get_emif_bus_width(struct emif_data *emif)
208 {
209         u32             width;
210         void __iomem    *base = emif->base;
211
212         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
213                         >> NARROW_MODE_SHIFT;
214         width = width == 0 ? 32 : 16;
215
216         return width;
217 }
218
219 /*
220  * Get the CL from SDRAM_CONFIG register
221  */
222 static u32 get_cl(struct emif_data *emif)
223 {
224         u32             cl;
225         void __iomem    *base = emif->base;
226
227         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
228
229         return cl;
230 }
231
232 static void set_lpmode(struct emif_data *emif, u8 lpmode)
233 {
234         u32 temp;
235         void __iomem *base = emif->base;
236
237         /*
238          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
239          * Efficient
240          *
241          * i743 DESCRIPTION:
242          * The EMIF supports power-down state for low power. The EMIF
243          * automatically puts the SDRAM into power-down after the memory is
244          * not accessed for a defined number of cycles and the
245          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
246          * As the EMIF supports automatic output impedance calibration, a ZQ
247          * calibration long command is issued every time it exits active
248          * power-down and precharge power-down modes. The EMIF waits and
249          * blocks any other command during this calibration.
250          * The EMIF does not allow selective disabling of ZQ calibration upon
251          * exit of power-down mode. Due to very short periods of power-down
252          * cycles, ZQ calibration overhead creates bandwidth issues and
253          * increases overall system power consumption. On the other hand,
254          * issuing ZQ calibration long commands when exiting self-refresh is
255          * still required.
256          *
257          * WORKAROUND
258          * Because there is no power consumption benefit of the power-down due
259          * to the calibration and there is a performance risk, the guideline
260          * is to not allow power-down state and, therefore, to not have set
261          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
262          */
263         if ((emif->plat_data->ip_rev == EMIF_4D) &&
264             (EMIF_LP_MODE_PWR_DN == lpmode)) {
265                 WARN_ONCE(1,
266                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
267                           "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
268                 /* rollback LP_MODE to Self-refresh mode */
269                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
270         }
271
272         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
273         temp &= ~LP_MODE_MASK;
274         temp |= (lpmode << LP_MODE_SHIFT);
275         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
276 }
277
278 static void do_freq_update(void)
279 {
280         struct emif_data *emif;
281
282         /*
283          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
284          *
285          * i728 DESCRIPTION:
286          * The EMIF automatically puts the SDRAM into self-refresh mode
287          * after the EMIF has not performed accesses during
288          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
289          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
290          * to 0x2. If during a small window the following three events
291          * occur:
292          * - The SR_TIMING counter expires
293          * - And frequency change is requested
294          * - And OCP access is requested
295          * Then it causes instable clock on the DDR interface.
296          *
297          * WORKAROUND
298          * To avoid the occurrence of the three events, the workaround
299          * is to disable the self-refresh when requesting a frequency
300          * change. Before requesting a frequency change the software must
301          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
302          * frequency change has been done, the software can reprogram
303          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
304          */
305         list_for_each_entry(emif, &device_list, node) {
306                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
307                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
308         }
309
310         /*
311          * TODO: Do FREQ_UPDATE here when an API
312          * is available for this as part of the new
313          * clock framework
314          */
315
316         list_for_each_entry(emif, &device_list, node) {
317                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
318                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
319         }
320 }
321
322 /* Find addressing table entry based on the device's type and density */
323 static const struct lpddr2_addressing *get_addressing_table(
324         const struct ddr_device_info *device_info)
325 {
326         u32             index, type, density;
327
328         type = device_info->type;
329         density = device_info->density;
330
331         switch (type) {
332         case DDR_TYPE_LPDDR2_S4:
333                 index = density - 1;
334                 break;
335         case DDR_TYPE_LPDDR2_S2:
336                 switch (density) {
337                 case DDR_DENSITY_1Gb:
338                 case DDR_DENSITY_2Gb:
339                         index = density + 3;
340                         break;
341                 default:
342                         index = density - 1;
343                 }
344                 break;
345         default:
346                 return NULL;
347         }
348
349         return &lpddr2_jedec_addressing_table[index];
350 }
351
352 /*
353  * Find the the right timing table from the array of timing
354  * tables of the device using DDR clock frequency
355  */
356 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
357                 u32 freq)
358 {
359         u32                             i, min, max, freq_nearest;
360         const struct lpddr2_timings     *timings = NULL;
361         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
362         struct                          device *dev = emif->dev;
363
364         /* Start with a very high frequency - 1GHz */
365         freq_nearest = 1000000000;
366
367         /*
368          * Find the timings table such that:
369          *  1. the frequency range covers the required frequency(safe) AND
370          *  2. the max_freq is closest to the required frequency(optimal)
371          */
372         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
373                 max = timings_arr[i].max_freq;
374                 min = timings_arr[i].min_freq;
375                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
376                         freq_nearest = max;
377                         timings = &timings_arr[i];
378                 }
379         }
380
381         if (!timings)
382                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
383                         __func__, freq);
384
385         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
386                 __func__, freq, freq_nearest);
387
388         return timings;
389 }
390
391 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
392                 const struct lpddr2_addressing *addressing)
393 {
394         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
395
396         /* Scale down frequency and t_refi to avoid overflow */
397         freq_khz = freq / 1000;
398         t_refi = addressing->tREFI_ns / 100;
399
400         /*
401          * refresh rate to be set is 'tREFI(in us) * freq in MHz
402          * division by 10000 to account for change in units
403          */
404         val = t_refi * freq_khz / 10000;
405         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
406
407         return ref_ctrl_shdw;
408 }
409
410 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
411                 const struct lpddr2_min_tck *min_tck,
412                 const struct lpddr2_addressing *addressing)
413 {
414         u32 tim1 = 0, val = 0;
415
416         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
417         tim1 |= val << T_WTR_SHIFT;
418
419         if (addressing->num_banks == B8)
420                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
421         else
422                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
423         tim1 |= (val - 1) << T_RRD_SHIFT;
424
425         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
426         tim1 |= val << T_RC_SHIFT;
427
428         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
429         tim1 |= (val - 1) << T_RAS_SHIFT;
430
431         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
432         tim1 |= val << T_WR_SHIFT;
433
434         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
435         tim1 |= val << T_RCD_SHIFT;
436
437         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
438         tim1 |= val << T_RP_SHIFT;
439
440         return tim1;
441 }
442
443 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
444                 const struct lpddr2_min_tck *min_tck,
445                 const struct lpddr2_addressing *addressing)
446 {
447         u32 tim1 = 0, val = 0;
448
449         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
450         tim1 = val << T_WTR_SHIFT;
451
452         /*
453          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
454          * to tFAW for de-rating
455          */
456         if (addressing->num_banks == B8) {
457                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
458         } else {
459                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
460                 val = max(min_tck->tRRD, val) - 1;
461         }
462         tim1 |= val << T_RRD_SHIFT;
463
464         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
465         tim1 |= (val - 1) << T_RC_SHIFT;
466
467         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
468         val = max(min_tck->tRASmin, val) - 1;
469         tim1 |= val << T_RAS_SHIFT;
470
471         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
472         tim1 |= val << T_WR_SHIFT;
473
474         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
475         tim1 |= (val - 1) << T_RCD_SHIFT;
476
477         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
478         tim1 |= (val - 1) << T_RP_SHIFT;
479
480         return tim1;
481 }
482
483 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
484                 const struct lpddr2_min_tck *min_tck,
485                 const struct lpddr2_addressing *addressing,
486                 u32 type)
487 {
488         u32 tim2 = 0, val = 0;
489
490         val = min_tck->tCKE - 1;
491         tim2 |= val << T_CKE_SHIFT;
492
493         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
494         tim2 |= val << T_RTP_SHIFT;
495
496         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
497         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
498         tim2 |= val << T_XSNR_SHIFT;
499
500         /* XSRD same as XSNR for LPDDR2 */
501         tim2 |= val << T_XSRD_SHIFT;
502
503         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
504         tim2 |= val << T_XP_SHIFT;
505
506         return tim2;
507 }
508
509 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
510                 const struct lpddr2_min_tck *min_tck,
511                 const struct lpddr2_addressing *addressing,
512                 u32 type, u32 ip_rev, u32 derated)
513 {
514         u32 tim3 = 0, val = 0, t_dqsck;
515
516         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
517         val = val > 0xF ? 0xF : val;
518         tim3 |= val << T_RAS_MAX_SHIFT;
519
520         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
521         tim3 |= val << T_RFC_SHIFT;
522
523         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
524                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
525         if (ip_rev == EMIF_4D5)
526                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
527         else
528                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
529
530         tim3 |= val << T_TDQSCKMAX_SHIFT;
531
532         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
533         tim3 |= val << ZQ_ZQCS_SHIFT;
534
535         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
536         val = max(min_tck->tCKESR, val) - 1;
537         tim3 |= val << T_CKESR_SHIFT;
538
539         if (ip_rev == EMIF_4D5) {
540                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
541
542                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
543                 tim3 |= val << T_PDLL_UL_SHIFT;
544         }
545
546         return tim3;
547 }
548
549 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
550                 bool cs1_used, bool cal_resistors_per_cs)
551 {
552         u32 zq = 0, val = 0;
553
554         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
555         zq |= val << ZQ_REFINTERVAL_SHIFT;
556
557         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
558         zq |= val << ZQ_ZQCL_MULT_SHIFT;
559
560         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
561         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
562
563         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
564
565         if (cal_resistors_per_cs)
566                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
567         else
568                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
569
570         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
571
572         val = cs1_used ? 1 : 0;
573         zq |= val << ZQ_CS1EN_SHIFT;
574
575         return zq;
576 }
577
578 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
579                 const struct emif_custom_configs *custom_configs, bool cs1_used,
580                 u32 sdram_io_width, u32 emif_bus_width)
581 {
582         u32 alert = 0, interval, devcnt;
583
584         if (custom_configs && (custom_configs->mask &
585                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
586                 interval = custom_configs->temp_alert_poll_interval_ms;
587         else
588                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
589
590         interval *= 1000000;                    /* Convert to ns */
591         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
592         alert |= (interval << TA_REFINTERVAL_SHIFT);
593
594         /*
595          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
596          * also to this form and subtract to get TA_DEVCNT, which is
597          * in log2(x) form.
598          */
599         emif_bus_width = __fls(emif_bus_width) - 1;
600         devcnt = emif_bus_width - sdram_io_width;
601         alert |= devcnt << TA_DEVCNT_SHIFT;
602
603         /* DEVWDT is in 'log2(x) - 3' form */
604         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
605
606         alert |= 1 << TA_SFEXITEN_SHIFT;
607         alert |= 1 << TA_CS0EN_SHIFT;
608         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
609
610         return alert;
611 }
612
613 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
614 {
615         u32 idle = 0, val = 0;
616
617         /*
618          * Maximum value in normal conditions and increased frequency
619          * when voltage is ramping
620          */
621         if (volt_ramp)
622                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
623         else
624                 val = 0x1FF;
625
626         /*
627          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
628          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
629          */
630         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
631         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
632
633         return idle;
634 }
635
636 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
637 {
638         u32 calib = 0, val = 0;
639
640         if (volt_ramp == DDR_VOLTAGE_RAMPING)
641                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
642         else
643                 val = 0; /* Disabled when voltage is stable */
644
645         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
646         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
647
648         return calib;
649 }
650
651 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
652         u32 freq, u8 RL)
653 {
654         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
655
656         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
657         phy |= val << READ_LATENCY_SHIFT_4D;
658
659         if (freq <= 100000000)
660                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
661         else if (freq <= 200000000)
662                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
663         else
664                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
665
666         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
667
668         return phy;
669 }
670
671 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
672 {
673         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
674
675         /*
676          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
677          * half-delay is not needed else set half-delay
678          */
679         if (freq >= 265000000 && freq < 267000000)
680                 half_delay = 0;
681         else
682                 half_delay = 1;
683
684         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
685         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
686                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
687
688         return phy;
689 }
690
691 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
692 {
693         u32 fifo_we_slave_ratio;
694
695         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
696                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
697
698         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
699                 fifo_we_slave_ratio << 22;
700 }
701
702 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
703 {
704         u32 fifo_we_slave_ratio;
705
706         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
707                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
708
709         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
710                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
711 }
712
713 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
714 {
715         u32 fifo_we_slave_ratio;
716
717         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
718                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
719
720         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
721                 fifo_we_slave_ratio << 13;
722 }
723
724 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
725 {
726         u32 pwr_mgmt_ctrl       = 0, timeout;
727         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
728         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
729         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
730         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
731         u32 mask;
732         u8 shift;
733
734         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
735
736         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
737                 lpmode          = cust_cfgs->lpmode;
738                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
739                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
740                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
741         }
742
743         /* Timeout based on DDR frequency */
744         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
745
746         /*
747          * The value to be set in register is "log2(timeout) - 3"
748          * if timeout < 16 load 0 in register
749          * if timeout is not a power of 2, round to next highest power of 2
750          */
751         if (timeout < 16) {
752                 timeout = 0;
753         } else {
754                 if (timeout & (timeout - 1))
755                         timeout <<= 1;
756                 timeout = __fls(timeout) - 3;
757         }
758
759         switch (lpmode) {
760         case EMIF_LP_MODE_CLOCK_STOP:
761                 shift = CS_TIM_SHIFT;
762                 mask = CS_TIM_MASK;
763                 break;
764         case EMIF_LP_MODE_SELF_REFRESH:
765                 /* Workaround for errata i735 */
766                 if (timeout < 6)
767                         timeout = 6;
768
769                 shift = SR_TIM_SHIFT;
770                 mask = SR_TIM_MASK;
771                 break;
772         case EMIF_LP_MODE_PWR_DN:
773                 shift = PD_TIM_SHIFT;
774                 mask = PD_TIM_MASK;
775                 break;
776         case EMIF_LP_MODE_DISABLE:
777         default:
778                 mask = 0;
779                 shift = 0;
780                 break;
781         }
782         /* Round to maximum in case of overflow, BUT warn! */
783         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
784                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
785                        lpmode,
786                        timeout_perf,
787                        timeout_pwr,
788                        freq_threshold);
789                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
790                      timeout, mask >> shift);
791                 timeout = mask >> shift;
792         }
793
794         /* Setup required timing */
795         pwr_mgmt_ctrl = (timeout << shift) & mask;
796         /* setup a default mask for rest of the modes */
797         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
798                           ~mask;
799
800         /* No CS_TIM in EMIF_4D5 */
801         if (ip_rev == EMIF_4D5)
802                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
803
804         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
805
806         return pwr_mgmt_ctrl;
807 }
808
809 /*
810  * Get the temperature level of the EMIF instance:
811  * Reads the MR4 register of attached SDRAM parts to find out the temperature
812  * level. If there are two parts attached(one on each CS), then the temperature
813  * level for the EMIF instance is the higher of the two temperatures.
814  */
815 static void get_temperature_level(struct emif_data *emif)
816 {
817         u32             temp, temperature_level;
818         void __iomem    *base;
819
820         base = emif->base;
821
822         /* Read mode register 4 */
823         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
824         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
825         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
826                                 MR4_SDRAM_REF_RATE_SHIFT;
827
828         if (emif->plat_data->device_info->cs1_used) {
829                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
830                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
831                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
832                                 >> MR4_SDRAM_REF_RATE_SHIFT;
833                 temperature_level = max(temp, temperature_level);
834         }
835
836         /* treat everything less than nominal(3) in MR4 as nominal */
837         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
838                 temperature_level = SDRAM_TEMP_NOMINAL;
839
840         /* if we get reserved value in MR4 persist with the existing value */
841         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
842                 emif->temperature_level = temperature_level;
843 }
844
845 /*
846  * Program EMIF shadow registers that are not dependent on temperature
847  * or voltage
848  */
849 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
850 {
851         void __iomem    *base = emif->base;
852
853         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
854         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
855         writel(regs->pwr_mgmt_ctrl_shdw,
856                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
857
858         /* Settings specific for EMIF4D5 */
859         if (emif->plat_data->ip_rev != EMIF_4D5)
860                 return;
861         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
862         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
863         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
864 }
865
866 /*
867  * When voltage ramps dll calibration and forced read idle should
868  * happen more often
869  */
870 static void setup_volt_sensitive_regs(struct emif_data *emif,
871                 struct emif_regs *regs, u32 volt_state)
872 {
873         u32             calib_ctrl;
874         void __iomem    *base = emif->base;
875
876         /*
877          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
878          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
879          * is an alias of the respective read_idle_ctrl_shdw_* (members of
880          * a union). So, the below code takes care of both cases
881          */
882         if (volt_state == DDR_VOLTAGE_RAMPING)
883                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
884         else
885                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
886
887         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
888 }
889
890 /*
891  * setup_temperature_sensitive_regs() - set the timings for temperature
892  * sensitive registers. This happens once at initialisation time based
893  * on the temperature at boot time and subsequently based on the temperature
894  * alert interrupt. Temperature alert can happen when the temperature
895  * increases or drops. So this function can have the effect of either
896  * derating the timings or going back to nominal values.
897  */
898 static void setup_temperature_sensitive_regs(struct emif_data *emif,
899                 struct emif_regs *regs)
900 {
901         u32             tim1, tim3, ref_ctrl, type;
902         void __iomem    *base = emif->base;
903         u32             temperature;
904
905         type = emif->plat_data->device_info->type;
906
907         tim1 = regs->sdram_tim1_shdw;
908         tim3 = regs->sdram_tim3_shdw;
909         ref_ctrl = regs->ref_ctrl_shdw;
910
911         /* No de-rating for non-lpddr2 devices */
912         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
913                 goto out;
914
915         temperature = emif->temperature_level;
916         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
917                 ref_ctrl = regs->ref_ctrl_shdw_derated;
918         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
919                 tim1 = regs->sdram_tim1_shdw_derated;
920                 tim3 = regs->sdram_tim3_shdw_derated;
921                 ref_ctrl = regs->ref_ctrl_shdw_derated;
922         }
923
924 out:
925         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
926         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
927         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
928 }
929
930 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
931 {
932         u32             old_temp_level;
933         irqreturn_t     ret = IRQ_HANDLED;
934         struct emif_custom_configs *custom_configs;
935
936         spin_lock_irqsave(&emif_lock, irq_state);
937         old_temp_level = emif->temperature_level;
938         get_temperature_level(emif);
939
940         if (unlikely(emif->temperature_level == old_temp_level)) {
941                 goto out;
942         } else if (!emif->curr_regs) {
943                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
944                 goto out;
945         }
946
947         custom_configs = emif->plat_data->custom_configs;
948
949         /*
950          * IF we detect higher than "nominal rating" from DDR sensor
951          * on an unsupported DDR part, shutdown system
952          */
953         if (custom_configs && !(custom_configs->mask &
954                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
955                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
956                         dev_err(emif->dev,
957                                 "%s:NOT Extended temperature capable memory."
958                                 "Converting MR4=0x%02x as shutdown event\n",
959                                 __func__, emif->temperature_level);
960                         /*
961                          * Temperature far too high - do kernel_power_off()
962                          * from thread context
963                          */
964                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
965                         ret = IRQ_WAKE_THREAD;
966                         goto out;
967                 }
968         }
969
970         if (emif->temperature_level < old_temp_level ||
971                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
972                 /*
973                  * Temperature coming down - defer handling to thread OR
974                  * Temperature far too high - do kernel_power_off() from
975                  * thread context
976                  */
977                 ret = IRQ_WAKE_THREAD;
978         } else {
979                 /* Temperature is going up - handle immediately */
980                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
981                 do_freq_update();
982         }
983
984 out:
985         spin_unlock_irqrestore(&emif_lock, irq_state);
986         return ret;
987 }
988
989 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
990 {
991         u32                     interrupts;
992         struct emif_data        *emif = dev_id;
993         void __iomem            *base = emif->base;
994         struct device           *dev = emif->dev;
995         irqreturn_t             ret = IRQ_HANDLED;
996
997         /* Save the status and clear it */
998         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
999         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1000
1001         /*
1002          * Handle temperature alert
1003          * Temperature alert should be same for all ports
1004          * So, it's enough to process it only for one of the ports
1005          */
1006         if (interrupts & TA_SYS_MASK)
1007                 ret = handle_temp_alert(base, emif);
1008
1009         if (interrupts & ERR_SYS_MASK)
1010                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1011
1012         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1013                 /* Save the status and clear it */
1014                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1015                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1016
1017                 if (interrupts & ERR_LL_MASK)
1018                         dev_err(dev, "Access error from LL port - %x\n",
1019                                 interrupts);
1020         }
1021
1022         return ret;
1023 }
1024
1025 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1026 {
1027         struct emif_data        *emif = dev_id;
1028
1029         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1030                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1031
1032                 /* If we have Power OFF ability, use it, else try restarting */
1033                 if (pm_power_off) {
1034                         kernel_power_off();
1035                 } else {
1036                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1037                         kernel_restart("SDRAM Over-temp Emergency restart");
1038                 }
1039                 return IRQ_HANDLED;
1040         }
1041
1042         spin_lock_irqsave(&emif_lock, irq_state);
1043
1044         if (emif->curr_regs) {
1045                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1046                 do_freq_update();
1047         } else {
1048                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1049         }
1050
1051         spin_unlock_irqrestore(&emif_lock, irq_state);
1052
1053         return IRQ_HANDLED;
1054 }
1055
1056 static void clear_all_interrupts(struct emif_data *emif)
1057 {
1058         void __iomem    *base = emif->base;
1059
1060         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1061                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1062         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1063                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1064                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1065 }
1066
1067 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1068 {
1069         void __iomem            *base = emif->base;
1070
1071         /* Disable all interrupts */
1072         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1073                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1074         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1075                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1076                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1077
1078         /* Clear all interrupts */
1079         clear_all_interrupts(emif);
1080 }
1081
1082 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1083 {
1084         u32             interrupts, type;
1085         void __iomem    *base = emif->base;
1086
1087         type = emif->plat_data->device_info->type;
1088
1089         clear_all_interrupts(emif);
1090
1091         /* Enable interrupts for SYS interface */
1092         interrupts = EN_ERR_SYS_MASK;
1093         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1094                 interrupts |= EN_TA_SYS_MASK;
1095         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1096
1097         /* Enable interrupts for LL interface */
1098         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1099                 /* TA need not be enabled for LL */
1100                 interrupts = EN_ERR_LL_MASK;
1101                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1102         }
1103
1104         /* setup IRQ handlers */
1105         return devm_request_threaded_irq(emif->dev, irq,
1106                                     emif_interrupt_handler,
1107                                     emif_threaded_isr,
1108                                     0, dev_name(emif->dev),
1109                                     emif);
1110
1111 }
1112
1113 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1114 {
1115         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1116         void __iomem                    *base = emif->base;
1117         const struct lpddr2_addressing  *addressing;
1118         const struct ddr_device_info    *device_info;
1119
1120         device_info = emif->plat_data->device_info;
1121         addressing = get_addressing_table(device_info);
1122
1123         /*
1124          * Init power management settings
1125          * We don't know the frequency yet. Use a high frequency
1126          * value for a conservative timeout setting
1127          */
1128         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1129                         emif->plat_data->ip_rev);
1130         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1131         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1132
1133         /* Init ZQ calibration settings */
1134         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1135                 device_info->cal_resistors_per_cs);
1136         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1137
1138         /* Check temperature level temperature level*/
1139         get_temperature_level(emif);
1140         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1141                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1142
1143         /* Init temperature polling */
1144         temp_alert_cfg = get_temp_alert_config(addressing,
1145                 emif->plat_data->custom_configs, device_info->cs1_used,
1146                 device_info->io_width, get_emif_bus_width(emif));
1147         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1148
1149         /*
1150          * Program external PHY control registers that are not frequency
1151          * dependent
1152          */
1153         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1154                 return;
1155         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1156         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1157         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1158         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1159         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1160         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1161         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1162         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1163         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1164         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1165         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1166         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1167         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1168         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1169         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1170         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1171         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1172         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1173         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1174         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1175         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1176 }
1177
1178 static void get_default_timings(struct emif_data *emif)
1179 {
1180         struct emif_platform_data *pd = emif->plat_data;
1181
1182         pd->timings             = lpddr2_jedec_timings;
1183         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1184
1185         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1186 }
1187
1188 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1189                 u32 ip_rev, struct device *dev)
1190 {
1191         int valid;
1192
1193         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1194                         type == DDR_TYPE_LPDDR2_S2)
1195                 && (density >= DDR_DENSITY_64Mb
1196                         && density <= DDR_DENSITY_8Gb)
1197                 && (io_width >= DDR_IO_WIDTH_8
1198                         && io_width <= DDR_IO_WIDTH_32);
1199
1200         /* Combinations of EMIF and PHY revisions that we support today */
1201         switch (ip_rev) {
1202         case EMIF_4D:
1203                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1204                 break;
1205         case EMIF_4D5:
1206                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1207                 break;
1208         default:
1209                 valid = 0;
1210         }
1211
1212         if (!valid)
1213                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1214         return valid;
1215 }
1216
1217 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1218                 struct device *dev)
1219 {
1220         int valid = 1;
1221
1222         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1223                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1224                 valid = cust_cfgs->lpmode_freq_threshold &&
1225                         cust_cfgs->lpmode_timeout_performance &&
1226                         cust_cfgs->lpmode_timeout_power;
1227
1228         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1229                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1230
1231         if (!valid)
1232                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1233
1234         return valid;
1235 }
1236
1237 #if defined(CONFIG_OF)
1238 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1239                 struct emif_data *emif)
1240 {
1241         struct emif_custom_configs      *cust_cfgs = NULL;
1242         int                             len;
1243         const __be32                    *lpmode, *poll_intvl;
1244
1245         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1246         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1247
1248         if (lpmode || poll_intvl)
1249                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1250                         GFP_KERNEL);
1251
1252         if (!cust_cfgs)
1253                 return;
1254
1255         if (lpmode) {
1256                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1257                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1258                 of_property_read_u32(np_emif,
1259                                 "low-power-mode-timeout-performance",
1260                                 &cust_cfgs->lpmode_timeout_performance);
1261                 of_property_read_u32(np_emif,
1262                                 "low-power-mode-timeout-power",
1263                                 &cust_cfgs->lpmode_timeout_power);
1264                 of_property_read_u32(np_emif,
1265                                 "low-power-mode-freq-threshold",
1266                                 &cust_cfgs->lpmode_freq_threshold);
1267         }
1268
1269         if (poll_intvl) {
1270                 cust_cfgs->mask |=
1271                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1272                 cust_cfgs->temp_alert_poll_interval_ms =
1273                                                 be32_to_cpup(poll_intvl);
1274         }
1275
1276         if (of_find_property(np_emif, "extended-temp-part", &len))
1277                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1278
1279         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1280                 devm_kfree(emif->dev, cust_cfgs);
1281                 return;
1282         }
1283
1284         emif->plat_data->custom_configs = cust_cfgs;
1285 }
1286
1287 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1288                 struct device_node *np_ddr,
1289                 struct ddr_device_info *dev_info)
1290 {
1291         u32 density = 0, io_width = 0;
1292         int len;
1293
1294         if (of_find_property(np_emif, "cs1-used", &len))
1295                 dev_info->cs1_used = true;
1296
1297         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1298                 dev_info->cal_resistors_per_cs = true;
1299
1300         if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1301                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1302         else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1303                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1304
1305         of_property_read_u32(np_ddr, "density", &density);
1306         of_property_read_u32(np_ddr, "io-width", &io_width);
1307
1308         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1309         if (density & (density - 1))
1310                 dev_info->density = 0;
1311         else
1312                 dev_info->density = __fls(density) - 5;
1313
1314         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1315         if (io_width & (io_width - 1))
1316                 dev_info->io_width = 0;
1317         else
1318                 dev_info->io_width = __fls(io_width) - 1;
1319 }
1320
1321 static struct emif_data * __init_or_module of_get_memory_device_details(
1322                 struct device_node *np_emif, struct device *dev)
1323 {
1324         struct emif_data                *emif = NULL;
1325         struct ddr_device_info          *dev_info = NULL;
1326         struct emif_platform_data       *pd = NULL;
1327         struct device_node              *np_ddr;
1328         int                             len;
1329
1330         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1331         if (!np_ddr)
1332                 goto error;
1333         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1334         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1335         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1336
1337         if (!emif || !pd || !dev_info) {
1338                 dev_err(dev, "%s: Out of memory!!\n",
1339                         __func__);
1340                 goto error;
1341         }
1342
1343         emif->plat_data         = pd;
1344         pd->device_info         = dev_info;
1345         emif->dev               = dev;
1346         emif->np_ddr            = np_ddr;
1347         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1348
1349         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1350                 emif->plat_data->ip_rev = EMIF_4D;
1351         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1352                 emif->plat_data->ip_rev = EMIF_4D5;
1353
1354         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1355
1356         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1357                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1358
1359         of_get_ddr_info(np_emif, np_ddr, dev_info);
1360         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1361                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1362                         emif->dev)) {
1363                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1364                 goto error;
1365         }
1366         /*
1367          * For EMIF instances other than EMIF1 see if the devices connected
1368          * are exactly same as on EMIF1(which is typically the case). If so,
1369          * mark it as a duplicate of EMIF1. This will save some memory and
1370          * computation.
1371          */
1372         if (emif1 && emif1->np_ddr == np_ddr) {
1373                 emif->duplicate = true;
1374                 goto out;
1375         } else if (emif1) {
1376                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1377                         __func__);
1378         }
1379
1380         of_get_custom_configs(np_emif, emif);
1381         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1382                                         emif->plat_data->device_info->type,
1383                                         &emif->plat_data->timings_arr_size);
1384
1385         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1386         goto out;
1387
1388 error:
1389         return NULL;
1390 out:
1391         return emif;
1392 }
1393
1394 #else
1395
1396 static struct emif_data * __init_or_module of_get_memory_device_details(
1397                 struct device_node *np_emif, struct device *dev)
1398 {
1399         return NULL;
1400 }
1401 #endif
1402
1403 static struct emif_data *__init_or_module get_device_details(
1404                 struct platform_device *pdev)
1405 {
1406         u32                             size;
1407         struct emif_data                *emif = NULL;
1408         struct ddr_device_info          *dev_info;
1409         struct emif_custom_configs      *cust_cfgs;
1410         struct emif_platform_data       *pd;
1411         struct device                   *dev;
1412         void                            *temp;
1413
1414         pd = pdev->dev.platform_data;
1415         dev = &pdev->dev;
1416
1417         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1418                         pd->device_info->density, pd->device_info->io_width,
1419                         pd->phy_type, pd->ip_rev, dev))) {
1420                 dev_err(dev, "%s: invalid device data\n", __func__);
1421                 goto error;
1422         }
1423
1424         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1425         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1426         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1427
1428         if (!emif || !temp || !dev_info) {
1429                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1430                 goto error;
1431         }
1432
1433         memcpy(temp, pd, sizeof(*pd));
1434         pd = temp;
1435         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1436
1437         pd->device_info         = dev_info;
1438         emif->plat_data         = pd;
1439         emif->dev               = dev;
1440         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1441
1442         /*
1443          * For EMIF instances other than EMIF1 see if the devices connected
1444          * are exactly same as on EMIF1(which is typically the case). If so,
1445          * mark it as a duplicate of EMIF1 and skip copying timings data.
1446          * This will save some memory and some computation later.
1447          */
1448         emif->duplicate = emif1 && (memcmp(dev_info,
1449                 emif1->plat_data->device_info,
1450                 sizeof(struct ddr_device_info)) == 0);
1451
1452         if (emif->duplicate) {
1453                 pd->timings = NULL;
1454                 pd->min_tck = NULL;
1455                 goto out;
1456         } else if (emif1) {
1457                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1458                         __func__);
1459         }
1460
1461         /*
1462          * Copy custom configs - ignore allocation error, if any, as
1463          * custom_configs is not very critical
1464          */
1465         cust_cfgs = pd->custom_configs;
1466         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1467                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1468                 if (temp)
1469                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1470                 else
1471                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1472                                 __LINE__);
1473                 pd->custom_configs = temp;
1474         }
1475
1476         /*
1477          * Copy timings and min-tck values from platform data. If it is not
1478          * available or if memory allocation fails, use JEDEC defaults
1479          */
1480         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1481         if (pd->timings) {
1482                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1483                 if (temp) {
1484                         memcpy(temp, pd->timings, size);
1485                         pd->timings = temp;
1486                 } else {
1487                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1488                                 __LINE__);
1489                         get_default_timings(emif);
1490                 }
1491         } else {
1492                 get_default_timings(emif);
1493         }
1494
1495         if (pd->min_tck) {
1496                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1497                 if (temp) {
1498                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1499                         pd->min_tck = temp;
1500                 } else {
1501                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1502                                 __LINE__);
1503                         pd->min_tck = &lpddr2_jedec_min_tck;
1504                 }
1505         } else {
1506                 pd->min_tck = &lpddr2_jedec_min_tck;
1507         }
1508
1509 out:
1510         return emif;
1511
1512 error:
1513         return NULL;
1514 }
1515
1516 static int __init_or_module emif_probe(struct platform_device *pdev)
1517 {
1518         struct emif_data        *emif;
1519         struct resource         *res;
1520         int                     irq, ret;
1521
1522         if (pdev->dev.of_node)
1523                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1524         else
1525                 emif = get_device_details(pdev);
1526
1527         if (!emif) {
1528                 pr_err("%s: error getting device data\n", __func__);
1529                 goto error;
1530         }
1531
1532         list_add(&emif->node, &device_list);
1533         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1534
1535         /* Save pointers to each other in emif and device structures */
1536         emif->dev = &pdev->dev;
1537         platform_set_drvdata(pdev, emif);
1538
1539         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1540         emif->base = devm_ioremap_resource(emif->dev, res);
1541         if (IS_ERR(emif->base))
1542                 goto error;
1543
1544         irq = platform_get_irq(pdev, 0);
1545         if (irq < 0) {
1546                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1547                         __func__, irq);
1548                 goto error;
1549         }
1550
1551         emif_onetime_settings(emif);
1552         emif_debugfs_init(emif);
1553         disable_and_clear_all_interrupts(emif);
1554         ret = setup_interrupts(emif, irq);
1555         if (ret)
1556                 goto error;
1557
1558         /* One-time actions taken on probing the first device */
1559         if (!emif1) {
1560                 emif1 = emif;
1561                 spin_lock_init(&emif_lock);
1562
1563                 /*
1564                  * TODO: register notifiers for frequency and voltage
1565                  * change here once the respective frameworks are
1566                  * available
1567                  */
1568         }
1569
1570         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1571                 __func__, emif->base, irq);
1572
1573         return 0;
1574 error:
1575         return -ENODEV;
1576 }
1577
1578 static int __exit emif_remove(struct platform_device *pdev)
1579 {
1580         struct emif_data *emif = platform_get_drvdata(pdev);
1581
1582         emif_debugfs_exit(emif);
1583
1584         return 0;
1585 }
1586
1587 static void emif_shutdown(struct platform_device *pdev)
1588 {
1589         struct emif_data        *emif = platform_get_drvdata(pdev);
1590
1591         disable_and_clear_all_interrupts(emif);
1592 }
1593
1594 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1595                 struct emif_regs *regs)
1596 {
1597         u32                             cs1_used, ip_rev, phy_type;
1598         u32                             cl, type;
1599         const struct lpddr2_timings     *timings;
1600         const struct lpddr2_min_tck     *min_tck;
1601         const struct ddr_device_info    *device_info;
1602         const struct lpddr2_addressing  *addressing;
1603         struct emif_data                *emif_for_calc;
1604         struct device                   *dev;
1605         const struct emif_custom_configs *custom_configs;
1606
1607         dev = emif->dev;
1608         /*
1609          * If the devices on this EMIF instance is duplicate of EMIF1,
1610          * use EMIF1 details for the calculation
1611          */
1612         emif_for_calc   = emif->duplicate ? emif1 : emif;
1613         timings         = get_timings_table(emif_for_calc, freq);
1614         addressing      = emif_for_calc->addressing;
1615         if (!timings || !addressing) {
1616                 dev_err(dev, "%s: not enough data available for %dHz",
1617                         __func__, freq);
1618                 return -1;
1619         }
1620
1621         device_info     = emif_for_calc->plat_data->device_info;
1622         type            = device_info->type;
1623         cs1_used        = device_info->cs1_used;
1624         ip_rev          = emif_for_calc->plat_data->ip_rev;
1625         phy_type        = emif_for_calc->plat_data->phy_type;
1626
1627         min_tck         = emif_for_calc->plat_data->min_tck;
1628         custom_configs  = emif_for_calc->plat_data->custom_configs;
1629
1630         set_ddr_clk_period(freq);
1631
1632         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1633         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1634                         addressing);
1635         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1636                         addressing, type);
1637         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1638                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1639
1640         cl = get_cl(emif);
1641
1642         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1643                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1644                         timings, freq, cl);
1645         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1646                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1647                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1648                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1649                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1650         } else {
1651                 return -1;
1652         }
1653
1654         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1655         regs->pwr_mgmt_ctrl_shdw =
1656                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1657                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1658
1659         if (ip_rev & EMIF_4D) {
1660                 regs->read_idle_ctrl_shdw_normal =
1661                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1662
1663                 regs->read_idle_ctrl_shdw_volt_ramp =
1664                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1665         } else if (ip_rev & EMIF_4D5) {
1666                 regs->dll_calib_ctrl_shdw_normal =
1667                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1668
1669                 regs->dll_calib_ctrl_shdw_volt_ramp =
1670                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1671         }
1672
1673         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1674                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1675                         addressing);
1676
1677                 regs->sdram_tim1_shdw_derated =
1678                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1679                                 addressing);
1680
1681                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1682                         min_tck, addressing, type, ip_rev,
1683                         EMIF_DERATED_TIMINGS);
1684         }
1685
1686         regs->freq = freq;
1687
1688         return 0;
1689 }
1690
1691 /*
1692  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1693  * given frequency(freq):
1694  *
1695  * As an optimisation, every EMIF instance other than EMIF1 shares the
1696  * register cache with EMIF1 if the devices connected on this instance
1697  * are same as that on EMIF1(indicated by the duplicate flag)
1698  *
1699  * If we do not have an entry corresponding to the frequency given, we
1700  * allocate a new entry and calculate the values
1701  *
1702  * Upon finding the right reg dump, save it in curr_regs. It can be
1703  * directly used for thermal de-rating and voltage ramping changes.
1704  */
1705 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1706 {
1707         int                     i;
1708         struct emif_regs        **regs_cache;
1709         struct emif_regs        *regs = NULL;
1710         struct device           *dev;
1711
1712         dev = emif->dev;
1713         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1714                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1715                 return emif->curr_regs;
1716         }
1717
1718         if (emif->duplicate)
1719                 regs_cache = emif1->regs_cache;
1720         else
1721                 regs_cache = emif->regs_cache;
1722
1723         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1724                 if (regs_cache[i]->freq == freq) {
1725                         regs = regs_cache[i];
1726                         dev_dbg(dev,
1727                                 "%s: reg dump found in reg cache for %u Hz\n",
1728                                 __func__, freq);
1729                         break;
1730                 }
1731         }
1732
1733         /*
1734          * If we don't have an entry for this frequency in the cache create one
1735          * and calculate the values
1736          */
1737         if (!regs) {
1738                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1739                 if (!regs)
1740                         return NULL;
1741
1742                 if (get_emif_reg_values(emif, freq, regs)) {
1743                         devm_kfree(emif->dev, regs);
1744                         return NULL;
1745                 }
1746
1747                 /*
1748                  * Now look for an un-used entry in the cache and save the
1749                  * newly created struct. If there are no free entries
1750                  * over-write the last entry
1751                  */
1752                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1753                         ;
1754
1755                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1756                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1757                                 __func__);
1758                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1759                         devm_kfree(emif->dev, regs_cache[i]);
1760                 }
1761                 regs_cache[i] = regs;
1762         }
1763
1764         return regs;
1765 }
1766
1767 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1768 {
1769         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1770                 volt_state);
1771
1772         if (!emif->curr_regs) {
1773                 dev_err(emif->dev,
1774                         "%s: volt-notify before registers are ready: %d\n",
1775                         __func__, volt_state);
1776                 return;
1777         }
1778
1779         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1780 }
1781
1782 /*
1783  * TODO: voltage notify handling should be hooked up to
1784  * regulator framework as soon as the necessary support
1785  * is available in mainline kernel. This function is un-used
1786  * right now.
1787  */
1788 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1789 {
1790         struct emif_data *emif;
1791
1792         spin_lock_irqsave(&emif_lock, irq_state);
1793
1794         list_for_each_entry(emif, &device_list, node)
1795                 do_volt_notify_handling(emif, volt_state);
1796         do_freq_update();
1797
1798         spin_unlock_irqrestore(&emif_lock, irq_state);
1799 }
1800
1801 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1802 {
1803         struct emif_regs *regs;
1804
1805         regs = get_regs(emif, new_freq);
1806         if (!regs)
1807                 return;
1808
1809         emif->curr_regs = regs;
1810
1811         /*
1812          * Update the shadow registers:
1813          * Temperature and voltage-ramp sensitive settings are also configured
1814          * in terms of DDR cycles. So, we need to update them too when there
1815          * is a freq change
1816          */
1817         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1818                 __func__, new_freq);
1819         setup_registers(emif, regs);
1820         setup_temperature_sensitive_regs(emif, regs);
1821         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1822
1823         /*
1824          * Part of workaround for errata i728. See do_freq_update()
1825          * for more details
1826          */
1827         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1828                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1829 }
1830
1831 /*
1832  * TODO: frequency notify handling should be hooked up to
1833  * clock framework as soon as the necessary support is
1834  * available in mainline kernel. This function is un-used
1835  * right now.
1836  */
1837 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1838 {
1839         struct emif_data *emif;
1840
1841         /*
1842          * NOTE: we are taking the spin-lock here and releases it
1843          * only in post-notifier. This doesn't look good and
1844          * Sparse complains about it, but this seems to be
1845          * un-avoidable. We need to lock a sequence of events
1846          * that is split between EMIF and clock framework.
1847          *
1848          * 1. EMIF driver updates EMIF timings in shadow registers in the
1849          *    frequency pre-notify callback from clock framework
1850          * 2. clock framework sets up the registers for the new frequency
1851          * 3. clock framework initiates a hw-sequence that updates
1852          *    the frequency EMIF timings synchronously.
1853          *
1854          * All these 3 steps should be performed as an atomic operation
1855          * vis-a-vis similar sequence in the EMIF interrupt handler
1856          * for temperature events. Otherwise, there could be race
1857          * conditions that could result in incorrect EMIF timings for
1858          * a given frequency
1859          */
1860         spin_lock_irqsave(&emif_lock, irq_state);
1861
1862         list_for_each_entry(emif, &device_list, node)
1863                 do_freq_pre_notify_handling(emif, new_freq);
1864 }
1865
1866 static void do_freq_post_notify_handling(struct emif_data *emif)
1867 {
1868         /*
1869          * Part of workaround for errata i728. See do_freq_update()
1870          * for more details
1871          */
1872         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1873                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1874 }
1875
1876 /*
1877  * TODO: frequency notify handling should be hooked up to
1878  * clock framework as soon as the necessary support is
1879  * available in mainline kernel. This function is un-used
1880  * right now.
1881  */
1882 static void __attribute__((unused)) freq_post_notify_handling(void)
1883 {
1884         struct emif_data *emif;
1885
1886         list_for_each_entry(emif, &device_list, node)
1887                 do_freq_post_notify_handling(emif);
1888
1889         /*
1890          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1891          * for more details
1892          */
1893         spin_unlock_irqrestore(&emif_lock, irq_state);
1894 }
1895
1896 #if defined(CONFIG_OF)
1897 static const struct of_device_id emif_of_match[] = {
1898                 { .compatible = "ti,emif-4d" },
1899                 { .compatible = "ti,emif-4d5" },
1900                 {},
1901 };
1902 MODULE_DEVICE_TABLE(of, emif_of_match);
1903 #endif
1904
1905 static struct platform_driver emif_driver = {
1906         .remove         = __exit_p(emif_remove),
1907         .shutdown       = emif_shutdown,
1908         .driver = {
1909                 .name = "emif",
1910                 .of_match_table = of_match_ptr(emif_of_match),
1911         },
1912 };
1913
1914 module_platform_driver_probe(emif_driver, emif_probe);
1915
1916 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1917 MODULE_LICENSE("GPL");
1918 MODULE_ALIAS("platform:emif");
1919 MODULE_AUTHOR("Texas Instruments Inc");