GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134         struct mutex __mutex;   /* Protects the queue. */
135         struct mutex *mutex;    /* Shared by producer and consumer queues. */
136         size_t num_pages;       /* Number of pages incl. header. */
137         bool host;              /* Host or guest? */
138         union {
139                 struct {
140                         dma_addr_t *pas;
141                         void **vas;
142                 } g;            /* Used by the guest. */
143                 struct {
144                         struct page **page;
145                         struct page **header_page;
146                 } h;            /* Used by the host. */
147         } u;
148 };
149
150 /*
151  * This structure is opaque to the clients.
152  */
153 struct vmci_qp {
154         struct vmci_handle handle;
155         struct vmci_queue *produce_q;
156         struct vmci_queue *consume_q;
157         u64 produce_q_size;
158         u64 consume_q_size;
159         u32 peer;
160         u32 flags;
161         u32 priv_flags;
162         bool guest_endpoint;
163         unsigned int blocked;
164         unsigned int generation;
165         wait_queue_head_t event;
166 };
167
168 enum qp_broker_state {
169         VMCIQPB_NEW,
170         VMCIQPB_CREATED_NO_MEM,
171         VMCIQPB_CREATED_MEM,
172         VMCIQPB_ATTACHED_NO_MEM,
173         VMCIQPB_ATTACHED_MEM,
174         VMCIQPB_SHUTDOWN_NO_MEM,
175         VMCIQPB_SHUTDOWN_MEM,
176         VMCIQPB_GONE
177 };
178
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
181                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
182
183 /*
184  * In the queue pair broker, we always use the guest point of view for
185  * the produce and consume queue values and references, e.g., the
186  * produce queue size stored is the guests produce queue size. The
187  * host endpoint will need to swap these around. The only exception is
188  * the local queue pairs on the host, in which case the host endpoint
189  * that creates the queue pair will have the right orientation, and
190  * the attaching host endpoint will need to swap.
191  */
192 struct qp_entry {
193         struct list_head list_item;
194         struct vmci_handle handle;
195         u32 peer;
196         u32 flags;
197         u64 produce_size;
198         u64 consume_size;
199         u32 ref_count;
200 };
201
202 struct qp_broker_entry {
203         struct vmci_resource resource;
204         struct qp_entry qp;
205         u32 create_id;
206         u32 attach_id;
207         enum qp_broker_state state;
208         bool require_trusted_attach;
209         bool created_by_trusted;
210         bool vmci_page_files;   /* Created by VMX using VMCI page files */
211         struct vmci_queue *produce_q;
212         struct vmci_queue *consume_q;
213         struct vmci_queue_header saved_produce_q;
214         struct vmci_queue_header saved_consume_q;
215         vmci_event_release_cb wakeup_cb;
216         void *client_data;
217         void *local_mem;        /* Kernel memory for local queue pair */
218 };
219
220 struct qp_guest_endpoint {
221         struct vmci_resource resource;
222         struct qp_entry qp;
223         u64 num_ppns;
224         void *produce_q;
225         void *consume_q;
226         struct ppn_set ppn_set;
227 };
228
229 struct qp_list {
230         struct list_head head;
231         struct mutex mutex;     /* Protect queue list. */
232 };
233
234 static struct qp_list qp_broker_list = {
235         .head = LIST_HEAD_INIT(qp_broker_list.head),
236         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
237 };
238
239 static struct qp_list qp_guest_endpoints = {
240         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
242 };
243
244 #define INVALID_VMCI_GUEST_MEM_ID  0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
248
249
250 /*
251  * Frees kernel VA space for a given queue and its queue header, and
252  * frees physical data pages.
253  */
254 static void qp_free_queue(void *q, u64 size)
255 {
256         struct vmci_queue *queue = q;
257
258         if (queue) {
259                 u64 i;
260
261                 /* Given size does not include header, so add in a page here. */
262                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264                                           queue->kernel_if->u.g.vas[i],
265                                           queue->kernel_if->u.g.pas[i]);
266                 }
267
268                 vfree(queue);
269         }
270 }
271
272 /*
273  * Allocates kernel queue pages of specified size with IOMMU mappings,
274  * plus space for the queue structure/kernel interface and the queue
275  * header.
276  */
277 static void *qp_alloc_queue(u64 size, u32 flags)
278 {
279         u64 i;
280         struct vmci_queue *queue;
281         size_t pas_size;
282         size_t vas_size;
283         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284         u64 num_pages;
285
286         if (size > SIZE_MAX - PAGE_SIZE)
287                 return NULL;
288         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289         if (num_pages >
290                  (SIZE_MAX - queue_size) /
291                  (sizeof(*queue->kernel_if->u.g.pas) +
292                   sizeof(*queue->kernel_if->u.g.vas)))
293                 return NULL;
294
295         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297         queue_size += pas_size + vas_size;
298
299         queue = vmalloc(queue_size);
300         if (!queue)
301                 return NULL;
302
303         queue->q_header = NULL;
304         queue->saved_header = NULL;
305         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306         queue->kernel_if->mutex = NULL;
307         queue->kernel_if->num_pages = num_pages;
308         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309         queue->kernel_if->u.g.vas =
310                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311         queue->kernel_if->host = false;
312
313         for (i = 0; i < num_pages; i++) {
314                 queue->kernel_if->u.g.vas[i] =
315                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316                                            &queue->kernel_if->u.g.pas[i],
317                                            GFP_KERNEL);
318                 if (!queue->kernel_if->u.g.vas[i]) {
319                         /* Size excl. the header. */
320                         qp_free_queue(queue, i * PAGE_SIZE);
321                         return NULL;
322                 }
323         }
324
325         /* Queue header is the first page. */
326         queue->q_header = queue->kernel_if->u.g.vas[0];
327
328         return queue;
329 }
330
331 /*
332  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
333  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334  * by traversing the offset -> page translation structure for the queue.
335  * Assumes that offset + size does not wrap around in the queue.
336  */
337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338                                   u64 queue_offset,
339                                   struct iov_iter *from,
340                                   size_t size)
341 {
342         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343         size_t bytes_copied = 0;
344
345         while (bytes_copied < size) {
346                 const u64 page_index =
347                         (queue_offset + bytes_copied) / PAGE_SIZE;
348                 const size_t page_offset =
349                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350                 void *va;
351                 size_t to_copy;
352
353                 if (kernel_if->host)
354                         va = kmap(kernel_if->u.h.page[page_index]);
355                 else
356                         va = kernel_if->u.g.vas[page_index + 1];
357                         /* Skip header. */
358
359                 if (size - bytes_copied > PAGE_SIZE - page_offset)
360                         /* Enough payload to fill up from this page. */
361                         to_copy = PAGE_SIZE - page_offset;
362                 else
363                         to_copy = size - bytes_copied;
364
365                 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366                                          from)) {
367                         if (kernel_if->host)
368                                 kunmap(kernel_if->u.h.page[page_index]);
369                         return VMCI_ERROR_INVALID_ARGS;
370                 }
371                 bytes_copied += to_copy;
372                 if (kernel_if->host)
373                         kunmap(kernel_if->u.h.page[page_index]);
374         }
375
376         return VMCI_SUCCESS;
377 }
378
379 /*
380  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
381  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382  * by traversing the offset -> page translation structure for the queue.
383  * Assumes that offset + size does not wrap around in the queue.
384  */
385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386                                     const struct vmci_queue *queue,
387                                     u64 queue_offset, size_t size)
388 {
389         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390         size_t bytes_copied = 0;
391
392         while (bytes_copied < size) {
393                 const u64 page_index =
394                         (queue_offset + bytes_copied) / PAGE_SIZE;
395                 const size_t page_offset =
396                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397                 void *va;
398                 size_t to_copy;
399                 int err;
400
401                 if (kernel_if->host)
402                         va = kmap(kernel_if->u.h.page[page_index]);
403                 else
404                         va = kernel_if->u.g.vas[page_index + 1];
405                         /* Skip header. */
406
407                 if (size - bytes_copied > PAGE_SIZE - page_offset)
408                         /* Enough payload to fill up this page. */
409                         to_copy = PAGE_SIZE - page_offset;
410                 else
411                         to_copy = size - bytes_copied;
412
413                 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414                 if (err != to_copy) {
415                         if (kernel_if->host)
416                                 kunmap(kernel_if->u.h.page[page_index]);
417                         return VMCI_ERROR_INVALID_ARGS;
418                 }
419                 bytes_copied += to_copy;
420                 if (kernel_if->host)
421                         kunmap(kernel_if->u.h.page[page_index]);
422         }
423
424         return VMCI_SUCCESS;
425 }
426
427 /*
428  * Allocates two list of PPNs --- one for the pages in the produce queue,
429  * and the other for the pages in the consume queue. Intializes the list
430  * of PPNs with the page frame numbers of the KVA for the two queues (and
431  * the queue headers).
432  */
433 static int qp_alloc_ppn_set(void *prod_q,
434                             u64 num_produce_pages,
435                             void *cons_q,
436                             u64 num_consume_pages, struct ppn_set *ppn_set)
437 {
438         u32 *produce_ppns;
439         u32 *consume_ppns;
440         struct vmci_queue *produce_q = prod_q;
441         struct vmci_queue *consume_q = cons_q;
442         u64 i;
443
444         if (!produce_q || !num_produce_pages || !consume_q ||
445             !num_consume_pages || !ppn_set)
446                 return VMCI_ERROR_INVALID_ARGS;
447
448         if (ppn_set->initialized)
449                 return VMCI_ERROR_ALREADY_EXISTS;
450
451         produce_ppns =
452             kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
453                           GFP_KERNEL);
454         if (!produce_ppns)
455                 return VMCI_ERROR_NO_MEM;
456
457         consume_ppns =
458             kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
459                           GFP_KERNEL);
460         if (!consume_ppns) {
461                 kfree(produce_ppns);
462                 return VMCI_ERROR_NO_MEM;
463         }
464
465         for (i = 0; i < num_produce_pages; i++) {
466                 unsigned long pfn;
467
468                 produce_ppns[i] =
469                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
470                 pfn = produce_ppns[i];
471
472                 /* Fail allocation if PFN isn't supported by hypervisor. */
473                 if (sizeof(pfn) > sizeof(*produce_ppns)
474                     && pfn != produce_ppns[i])
475                         goto ppn_error;
476         }
477
478         for (i = 0; i < num_consume_pages; i++) {
479                 unsigned long pfn;
480
481                 consume_ppns[i] =
482                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
483                 pfn = consume_ppns[i];
484
485                 /* Fail allocation if PFN isn't supported by hypervisor. */
486                 if (sizeof(pfn) > sizeof(*consume_ppns)
487                     && pfn != consume_ppns[i])
488                         goto ppn_error;
489         }
490
491         ppn_set->num_produce_pages = num_produce_pages;
492         ppn_set->num_consume_pages = num_consume_pages;
493         ppn_set->produce_ppns = produce_ppns;
494         ppn_set->consume_ppns = consume_ppns;
495         ppn_set->initialized = true;
496         return VMCI_SUCCESS;
497
498  ppn_error:
499         kfree(produce_ppns);
500         kfree(consume_ppns);
501         return VMCI_ERROR_INVALID_ARGS;
502 }
503
504 /*
505  * Frees the two list of PPNs for a queue pair.
506  */
507 static void qp_free_ppn_set(struct ppn_set *ppn_set)
508 {
509         if (ppn_set->initialized) {
510                 /* Do not call these functions on NULL inputs. */
511                 kfree(ppn_set->produce_ppns);
512                 kfree(ppn_set->consume_ppns);
513         }
514         memset(ppn_set, 0, sizeof(*ppn_set));
515 }
516
517 /*
518  * Populates the list of PPNs in the hypercall structure with the PPNS
519  * of the produce queue and the consume queue.
520  */
521 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
522 {
523         memcpy(call_buf, ppn_set->produce_ppns,
524                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
525         memcpy(call_buf +
526                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
527                ppn_set->consume_ppns,
528                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
529
530         return VMCI_SUCCESS;
531 }
532
533 /*
534  * Allocates kernel VA space of specified size plus space for the queue
535  * and kernel interface.  This is different from the guest queue allocator,
536  * because we do not allocate our own queue header/data pages here but
537  * share those of the guest.
538  */
539 static struct vmci_queue *qp_host_alloc_queue(u64 size)
540 {
541         struct vmci_queue *queue;
542         size_t queue_page_size;
543         u64 num_pages;
544         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
545
546         if (size > SIZE_MAX - PAGE_SIZE)
547                 return NULL;
548         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
549         if (num_pages > (SIZE_MAX - queue_size) /
550                  sizeof(*queue->kernel_if->u.h.page))
551                 return NULL;
552
553         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
554
555         if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
556                 return NULL;
557
558         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
559         if (queue) {
560                 queue->q_header = NULL;
561                 queue->saved_header = NULL;
562                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
563                 queue->kernel_if->host = true;
564                 queue->kernel_if->mutex = NULL;
565                 queue->kernel_if->num_pages = num_pages;
566                 queue->kernel_if->u.h.header_page =
567                     (struct page **)((u8 *)queue + queue_size);
568                 queue->kernel_if->u.h.page =
569                         &queue->kernel_if->u.h.header_page[1];
570         }
571
572         return queue;
573 }
574
575 /*
576  * Frees kernel memory for a given queue (header plus translation
577  * structure).
578  */
579 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
580 {
581         kfree(queue);
582 }
583
584 /*
585  * Initialize the mutex for the pair of queues.  This mutex is used to
586  * protect the q_header and the buffer from changing out from under any
587  * users of either queue.  Of course, it's only any good if the mutexes
588  * are actually acquired.  Queue structure must lie on non-paged memory
589  * or we cannot guarantee access to the mutex.
590  */
591 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
592                                 struct vmci_queue *consume_q)
593 {
594         /*
595          * Only the host queue has shared state - the guest queues do not
596          * need to synchronize access using a queue mutex.
597          */
598
599         if (produce_q->kernel_if->host) {
600                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
601                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
602                 mutex_init(produce_q->kernel_if->mutex);
603         }
604 }
605
606 /*
607  * Cleans up the mutex for the pair of queues.
608  */
609 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
610                                    struct vmci_queue *consume_q)
611 {
612         if (produce_q->kernel_if->host) {
613                 produce_q->kernel_if->mutex = NULL;
614                 consume_q->kernel_if->mutex = NULL;
615         }
616 }
617
618 /*
619  * Acquire the mutex for the queue.  Note that the produce_q and
620  * the consume_q share a mutex.  So, only one of the two need to
621  * be passed in to this routine.  Either will work just fine.
622  */
623 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
624 {
625         if (queue->kernel_if->host)
626                 mutex_lock(queue->kernel_if->mutex);
627 }
628
629 /*
630  * Release the mutex for the queue.  Note that the produce_q and
631  * the consume_q share a mutex.  So, only one of the two need to
632  * be passed in to this routine.  Either will work just fine.
633  */
634 static void qp_release_queue_mutex(struct vmci_queue *queue)
635 {
636         if (queue->kernel_if->host)
637                 mutex_unlock(queue->kernel_if->mutex);
638 }
639
640 /*
641  * Helper function to release pages in the PageStoreAttachInfo
642  * previously obtained using get_user_pages.
643  */
644 static void qp_release_pages(struct page **pages,
645                              u64 num_pages, bool dirty)
646 {
647         int i;
648
649         for (i = 0; i < num_pages; i++) {
650                 if (dirty)
651                         set_page_dirty_lock(pages[i]);
652
653                 put_page(pages[i]);
654                 pages[i] = NULL;
655         }
656 }
657
658 /*
659  * Lock the user pages referenced by the {produce,consume}Buffer
660  * struct into memory and populate the {produce,consume}Pages
661  * arrays in the attach structure with them.
662  */
663 static int qp_host_get_user_memory(u64 produce_uva,
664                                    u64 consume_uva,
665                                    struct vmci_queue *produce_q,
666                                    struct vmci_queue *consume_q)
667 {
668         int retval;
669         int err = VMCI_SUCCESS;
670
671         retval = get_user_pages_fast((uintptr_t) produce_uva,
672                                      produce_q->kernel_if->num_pages, 1,
673                                      produce_q->kernel_if->u.h.header_page);
674         if (retval < (int)produce_q->kernel_if->num_pages) {
675                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
676                         retval);
677                 if (retval > 0)
678                         qp_release_pages(produce_q->kernel_if->u.h.header_page,
679                                         retval, false);
680                 err = VMCI_ERROR_NO_MEM;
681                 goto out;
682         }
683
684         retval = get_user_pages_fast((uintptr_t) consume_uva,
685                                      consume_q->kernel_if->num_pages, 1,
686                                      consume_q->kernel_if->u.h.header_page);
687         if (retval < (int)consume_q->kernel_if->num_pages) {
688                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
689                         retval);
690                 if (retval > 0)
691                         qp_release_pages(consume_q->kernel_if->u.h.header_page,
692                                         retval, false);
693                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
694                                  produce_q->kernel_if->num_pages, false);
695                 err = VMCI_ERROR_NO_MEM;
696         }
697
698  out:
699         return err;
700 }
701
702 /*
703  * Registers the specification of the user pages used for backing a queue
704  * pair. Enough information to map in pages is stored in the OS specific
705  * part of the struct vmci_queue structure.
706  */
707 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
708                                         struct vmci_queue *produce_q,
709                                         struct vmci_queue *consume_q)
710 {
711         u64 produce_uva;
712         u64 consume_uva;
713
714         /*
715          * The new style and the old style mapping only differs in
716          * that we either get a single or two UVAs, so we split the
717          * single UVA range at the appropriate spot.
718          */
719         produce_uva = page_store->pages;
720         consume_uva = page_store->pages +
721             produce_q->kernel_if->num_pages * PAGE_SIZE;
722         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
723                                        consume_q);
724 }
725
726 /*
727  * Releases and removes the references to user pages stored in the attach
728  * struct.  Pages are released from the page cache and may become
729  * swappable again.
730  */
731 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
732                                            struct vmci_queue *consume_q)
733 {
734         qp_release_pages(produce_q->kernel_if->u.h.header_page,
735                          produce_q->kernel_if->num_pages, true);
736         memset(produce_q->kernel_if->u.h.header_page, 0,
737                sizeof(*produce_q->kernel_if->u.h.header_page) *
738                produce_q->kernel_if->num_pages);
739         qp_release_pages(consume_q->kernel_if->u.h.header_page,
740                          consume_q->kernel_if->num_pages, true);
741         memset(consume_q->kernel_if->u.h.header_page, 0,
742                sizeof(*consume_q->kernel_if->u.h.header_page) *
743                consume_q->kernel_if->num_pages);
744 }
745
746 /*
747  * Once qp_host_register_user_memory has been performed on a
748  * queue, the queue pair headers can be mapped into the
749  * kernel. Once mapped, they must be unmapped with
750  * qp_host_unmap_queues prior to calling
751  * qp_host_unregister_user_memory.
752  * Pages are pinned.
753  */
754 static int qp_host_map_queues(struct vmci_queue *produce_q,
755                               struct vmci_queue *consume_q)
756 {
757         int result;
758
759         if (!produce_q->q_header || !consume_q->q_header) {
760                 struct page *headers[2];
761
762                 if (produce_q->q_header != consume_q->q_header)
763                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
764
765                 if (produce_q->kernel_if->u.h.header_page == NULL ||
766                     *produce_q->kernel_if->u.h.header_page == NULL)
767                         return VMCI_ERROR_UNAVAILABLE;
768
769                 headers[0] = *produce_q->kernel_if->u.h.header_page;
770                 headers[1] = *consume_q->kernel_if->u.h.header_page;
771
772                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
773                 if (produce_q->q_header != NULL) {
774                         consume_q->q_header =
775                             (struct vmci_queue_header *)((u8 *)
776                                                          produce_q->q_header +
777                                                          PAGE_SIZE);
778                         result = VMCI_SUCCESS;
779                 } else {
780                         pr_warn("vmap failed\n");
781                         result = VMCI_ERROR_NO_MEM;
782                 }
783         } else {
784                 result = VMCI_SUCCESS;
785         }
786
787         return result;
788 }
789
790 /*
791  * Unmaps previously mapped queue pair headers from the kernel.
792  * Pages are unpinned.
793  */
794 static int qp_host_unmap_queues(u32 gid,
795                                 struct vmci_queue *produce_q,
796                                 struct vmci_queue *consume_q)
797 {
798         if (produce_q->q_header) {
799                 if (produce_q->q_header < consume_q->q_header)
800                         vunmap(produce_q->q_header);
801                 else
802                         vunmap(consume_q->q_header);
803
804                 produce_q->q_header = NULL;
805                 consume_q->q_header = NULL;
806         }
807
808         return VMCI_SUCCESS;
809 }
810
811 /*
812  * Finds the entry in the list corresponding to a given handle. Assumes
813  * that the list is locked.
814  */
815 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
816                                      struct vmci_handle handle)
817 {
818         struct qp_entry *entry;
819
820         if (vmci_handle_is_invalid(handle))
821                 return NULL;
822
823         list_for_each_entry(entry, &qp_list->head, list_item) {
824                 if (vmci_handle_is_equal(entry->handle, handle))
825                         return entry;
826         }
827
828         return NULL;
829 }
830
831 /*
832  * Finds the entry in the list corresponding to a given handle.
833  */
834 static struct qp_guest_endpoint *
835 qp_guest_handle_to_entry(struct vmci_handle handle)
836 {
837         struct qp_guest_endpoint *entry;
838         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
839
840         entry = qp ? container_of(
841                 qp, struct qp_guest_endpoint, qp) : NULL;
842         return entry;
843 }
844
845 /*
846  * Finds the entry in the list corresponding to a given handle.
847  */
848 static struct qp_broker_entry *
849 qp_broker_handle_to_entry(struct vmci_handle handle)
850 {
851         struct qp_broker_entry *entry;
852         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
853
854         entry = qp ? container_of(
855                 qp, struct qp_broker_entry, qp) : NULL;
856         return entry;
857 }
858
859 /*
860  * Dispatches a queue pair event message directly into the local event
861  * queue.
862  */
863 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
864 {
865         u32 context_id = vmci_get_context_id();
866         struct vmci_event_qp ev;
867
868         memset(&ev, 0, sizeof(ev));
869         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
870         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
871                                           VMCI_CONTEXT_RESOURCE_ID);
872         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
873         ev.msg.event_data.event =
874             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
875         ev.payload.peer_id = context_id;
876         ev.payload.handle = handle;
877
878         return vmci_event_dispatch(&ev.msg.hdr);
879 }
880
881 /*
882  * Allocates and initializes a qp_guest_endpoint structure.
883  * Allocates a queue_pair rid (and handle) iff the given entry has
884  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
885  * are reserved handles.  Assumes that the QP list mutex is held
886  * by the caller.
887  */
888 static struct qp_guest_endpoint *
889 qp_guest_endpoint_create(struct vmci_handle handle,
890                          u32 peer,
891                          u32 flags,
892                          u64 produce_size,
893                          u64 consume_size,
894                          void *produce_q,
895                          void *consume_q)
896 {
897         int result;
898         struct qp_guest_endpoint *entry;
899         /* One page each for the queue headers. */
900         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
901             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
902
903         if (vmci_handle_is_invalid(handle)) {
904                 u32 context_id = vmci_get_context_id();
905
906                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
907         }
908
909         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
910         if (entry) {
911                 entry->qp.peer = peer;
912                 entry->qp.flags = flags;
913                 entry->qp.produce_size = produce_size;
914                 entry->qp.consume_size = consume_size;
915                 entry->qp.ref_count = 0;
916                 entry->num_ppns = num_ppns;
917                 entry->produce_q = produce_q;
918                 entry->consume_q = consume_q;
919                 INIT_LIST_HEAD(&entry->qp.list_item);
920
921                 /* Add resource obj */
922                 result = vmci_resource_add(&entry->resource,
923                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
924                                            handle);
925                 entry->qp.handle = vmci_resource_handle(&entry->resource);
926                 if ((result != VMCI_SUCCESS) ||
927                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
928                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
929                                 handle.context, handle.resource, result);
930                         kfree(entry);
931                         entry = NULL;
932                 }
933         }
934         return entry;
935 }
936
937 /*
938  * Frees a qp_guest_endpoint structure.
939  */
940 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
941 {
942         qp_free_ppn_set(&entry->ppn_set);
943         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
944         qp_free_queue(entry->produce_q, entry->qp.produce_size);
945         qp_free_queue(entry->consume_q, entry->qp.consume_size);
946         /* Unlink from resource hash table and free callback */
947         vmci_resource_remove(&entry->resource);
948
949         kfree(entry);
950 }
951
952 /*
953  * Helper to make a queue_pairAlloc hypercall when the driver is
954  * supporting a guest device.
955  */
956 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
957 {
958         struct vmci_qp_alloc_msg *alloc_msg;
959         size_t msg_size;
960         int result;
961
962         if (!entry || entry->num_ppns <= 2)
963                 return VMCI_ERROR_INVALID_ARGS;
964
965         msg_size = sizeof(*alloc_msg) +
966             (size_t) entry->num_ppns * sizeof(u32);
967         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
968         if (!alloc_msg)
969                 return VMCI_ERROR_NO_MEM;
970
971         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
972                                               VMCI_QUEUEPAIR_ALLOC);
973         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
974         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
975         alloc_msg->handle = entry->qp.handle;
976         alloc_msg->peer = entry->qp.peer;
977         alloc_msg->flags = entry->qp.flags;
978         alloc_msg->produce_size = entry->qp.produce_size;
979         alloc_msg->consume_size = entry->qp.consume_size;
980         alloc_msg->num_ppns = entry->num_ppns;
981
982         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
983                                      &entry->ppn_set);
984         if (result == VMCI_SUCCESS)
985                 result = vmci_send_datagram(&alloc_msg->hdr);
986
987         kfree(alloc_msg);
988
989         return result;
990 }
991
992 /*
993  * Helper to make a queue_pairDetach hypercall when the driver is
994  * supporting a guest device.
995  */
996 static int qp_detatch_hypercall(struct vmci_handle handle)
997 {
998         struct vmci_qp_detach_msg detach_msg;
999
1000         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1001                                               VMCI_QUEUEPAIR_DETACH);
1002         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1003         detach_msg.hdr.payload_size = sizeof(handle);
1004         detach_msg.handle = handle;
1005
1006         return vmci_send_datagram(&detach_msg.hdr);
1007 }
1008
1009 /*
1010  * Adds the given entry to the list. Assumes that the list is locked.
1011  */
1012 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1013 {
1014         if (entry)
1015                 list_add(&entry->list_item, &qp_list->head);
1016 }
1017
1018 /*
1019  * Removes the given entry from the list. Assumes that the list is locked.
1020  */
1021 static void qp_list_remove_entry(struct qp_list *qp_list,
1022                                  struct qp_entry *entry)
1023 {
1024         if (entry)
1025                 list_del(&entry->list_item);
1026 }
1027
1028 /*
1029  * Helper for VMCI queue_pair detach interface. Frees the physical
1030  * pages for the queue pair.
1031  */
1032 static int qp_detatch_guest_work(struct vmci_handle handle)
1033 {
1034         int result;
1035         struct qp_guest_endpoint *entry;
1036         u32 ref_count = ~0;     /* To avoid compiler warning below */
1037
1038         mutex_lock(&qp_guest_endpoints.mutex);
1039
1040         entry = qp_guest_handle_to_entry(handle);
1041         if (!entry) {
1042                 mutex_unlock(&qp_guest_endpoints.mutex);
1043                 return VMCI_ERROR_NOT_FOUND;
1044         }
1045
1046         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1047                 result = VMCI_SUCCESS;
1048
1049                 if (entry->qp.ref_count > 1) {
1050                         result = qp_notify_peer_local(false, handle);
1051                         /*
1052                          * We can fail to notify a local queuepair
1053                          * because we can't allocate.  We still want
1054                          * to release the entry if that happens, so
1055                          * don't bail out yet.
1056                          */
1057                 }
1058         } else {
1059                 result = qp_detatch_hypercall(handle);
1060                 if (result < VMCI_SUCCESS) {
1061                         /*
1062                          * We failed to notify a non-local queuepair.
1063                          * That other queuepair might still be
1064                          * accessing the shared memory, so don't
1065                          * release the entry yet.  It will get cleaned
1066                          * up by VMCIqueue_pair_Exit() if necessary
1067                          * (assuming we are going away, otherwise why
1068                          * did this fail?).
1069                          */
1070
1071                         mutex_unlock(&qp_guest_endpoints.mutex);
1072                         return result;
1073                 }
1074         }
1075
1076         /*
1077          * If we get here then we either failed to notify a local queuepair, or
1078          * we succeeded in all cases.  Release the entry if required.
1079          */
1080
1081         entry->qp.ref_count--;
1082         if (entry->qp.ref_count == 0)
1083                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1084
1085         /* If we didn't remove the entry, this could change once we unlock. */
1086         if (entry)
1087                 ref_count = entry->qp.ref_count;
1088
1089         mutex_unlock(&qp_guest_endpoints.mutex);
1090
1091         if (ref_count == 0)
1092                 qp_guest_endpoint_destroy(entry);
1093
1094         return result;
1095 }
1096
1097 /*
1098  * This functions handles the actual allocation of a VMCI queue
1099  * pair guest endpoint. Allocates physical pages for the queue
1100  * pair. It makes OS dependent calls through generic wrappers.
1101  */
1102 static int qp_alloc_guest_work(struct vmci_handle *handle,
1103                                struct vmci_queue **produce_q,
1104                                u64 produce_size,
1105                                struct vmci_queue **consume_q,
1106                                u64 consume_size,
1107                                u32 peer,
1108                                u32 flags,
1109                                u32 priv_flags)
1110 {
1111         const u64 num_produce_pages =
1112             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1113         const u64 num_consume_pages =
1114             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1115         void *my_produce_q = NULL;
1116         void *my_consume_q = NULL;
1117         int result;
1118         struct qp_guest_endpoint *queue_pair_entry = NULL;
1119
1120         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1121                 return VMCI_ERROR_NO_ACCESS;
1122
1123         mutex_lock(&qp_guest_endpoints.mutex);
1124
1125         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1126         if (queue_pair_entry) {
1127                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1128                         /* Local attach case. */
1129                         if (queue_pair_entry->qp.ref_count > 1) {
1130                                 pr_devel("Error attempting to attach more than once\n");
1131                                 result = VMCI_ERROR_UNAVAILABLE;
1132                                 goto error_keep_entry;
1133                         }
1134
1135                         if (queue_pair_entry->qp.produce_size != consume_size ||
1136                             queue_pair_entry->qp.consume_size !=
1137                             produce_size ||
1138                             queue_pair_entry->qp.flags !=
1139                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1140                                 pr_devel("Error mismatched queue pair in local attach\n");
1141                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1142                                 goto error_keep_entry;
1143                         }
1144
1145                         /*
1146                          * Do a local attach.  We swap the consume and
1147                          * produce queues for the attacher and deliver
1148                          * an attach event.
1149                          */
1150                         result = qp_notify_peer_local(true, *handle);
1151                         if (result < VMCI_SUCCESS)
1152                                 goto error_keep_entry;
1153
1154                         my_produce_q = queue_pair_entry->consume_q;
1155                         my_consume_q = queue_pair_entry->produce_q;
1156                         goto out;
1157                 }
1158
1159                 result = VMCI_ERROR_ALREADY_EXISTS;
1160                 goto error_keep_entry;
1161         }
1162
1163         my_produce_q = qp_alloc_queue(produce_size, flags);
1164         if (!my_produce_q) {
1165                 pr_warn("Error allocating pages for produce queue\n");
1166                 result = VMCI_ERROR_NO_MEM;
1167                 goto error;
1168         }
1169
1170         my_consume_q = qp_alloc_queue(consume_size, flags);
1171         if (!my_consume_q) {
1172                 pr_warn("Error allocating pages for consume queue\n");
1173                 result = VMCI_ERROR_NO_MEM;
1174                 goto error;
1175         }
1176
1177         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1178                                                     produce_size, consume_size,
1179                                                     my_produce_q, my_consume_q);
1180         if (!queue_pair_entry) {
1181                 pr_warn("Error allocating memory in %s\n", __func__);
1182                 result = VMCI_ERROR_NO_MEM;
1183                 goto error;
1184         }
1185
1186         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1187                                   num_consume_pages,
1188                                   &queue_pair_entry->ppn_set);
1189         if (result < VMCI_SUCCESS) {
1190                 pr_warn("qp_alloc_ppn_set failed\n");
1191                 goto error;
1192         }
1193
1194         /*
1195          * It's only necessary to notify the host if this queue pair will be
1196          * attached to from another context.
1197          */
1198         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1199                 /* Local create case. */
1200                 u32 context_id = vmci_get_context_id();
1201
1202                 /*
1203                  * Enforce similar checks on local queue pairs as we
1204                  * do for regular ones.  The handle's context must
1205                  * match the creator or attacher context id (here they
1206                  * are both the current context id) and the
1207                  * attach-only flag cannot exist during create.  We
1208                  * also ensure specified peer is this context or an
1209                  * invalid one.
1210                  */
1211                 if (queue_pair_entry->qp.handle.context != context_id ||
1212                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1213                      queue_pair_entry->qp.peer != context_id)) {
1214                         result = VMCI_ERROR_NO_ACCESS;
1215                         goto error;
1216                 }
1217
1218                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1219                         result = VMCI_ERROR_NOT_FOUND;
1220                         goto error;
1221                 }
1222         } else {
1223                 result = qp_alloc_hypercall(queue_pair_entry);
1224                 if (result < VMCI_SUCCESS) {
1225                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1226                         goto error;
1227                 }
1228         }
1229
1230         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1231                             (struct vmci_queue *)my_consume_q);
1232
1233         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1234
1235  out:
1236         queue_pair_entry->qp.ref_count++;
1237         *handle = queue_pair_entry->qp.handle;
1238         *produce_q = (struct vmci_queue *)my_produce_q;
1239         *consume_q = (struct vmci_queue *)my_consume_q;
1240
1241         /*
1242          * We should initialize the queue pair header pages on a local
1243          * queue pair create.  For non-local queue pairs, the
1244          * hypervisor initializes the header pages in the create step.
1245          */
1246         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1247             queue_pair_entry->qp.ref_count == 1) {
1248                 vmci_q_header_init((*produce_q)->q_header, *handle);
1249                 vmci_q_header_init((*consume_q)->q_header, *handle);
1250         }
1251
1252         mutex_unlock(&qp_guest_endpoints.mutex);
1253
1254         return VMCI_SUCCESS;
1255
1256  error:
1257         mutex_unlock(&qp_guest_endpoints.mutex);
1258         if (queue_pair_entry) {
1259                 /* The queues will be freed inside the destroy routine. */
1260                 qp_guest_endpoint_destroy(queue_pair_entry);
1261         } else {
1262                 qp_free_queue(my_produce_q, produce_size);
1263                 qp_free_queue(my_consume_q, consume_size);
1264         }
1265         return result;
1266
1267  error_keep_entry:
1268         /* This path should only be used when an existing entry was found. */
1269         mutex_unlock(&qp_guest_endpoints.mutex);
1270         return result;
1271 }
1272
1273 /*
1274  * The first endpoint issuing a queue pair allocation will create the state
1275  * of the queue pair in the queue pair broker.
1276  *
1277  * If the creator is a guest, it will associate a VMX virtual address range
1278  * with the queue pair as specified by the page_store. For compatibility with
1279  * older VMX'en, that would use a separate step to set the VMX virtual
1280  * address range, the virtual address range can be registered later using
1281  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1282  * used.
1283  *
1284  * If the creator is the host, a page_store of NULL should be used as well,
1285  * since the host is not able to supply a page store for the queue pair.
1286  *
1287  * For older VMX and host callers, the queue pair will be created in the
1288  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1289  * created in VMCOQPB_CREATED_MEM state.
1290  */
1291 static int qp_broker_create(struct vmci_handle handle,
1292                             u32 peer,
1293                             u32 flags,
1294                             u32 priv_flags,
1295                             u64 produce_size,
1296                             u64 consume_size,
1297                             struct vmci_qp_page_store *page_store,
1298                             struct vmci_ctx *context,
1299                             vmci_event_release_cb wakeup_cb,
1300                             void *client_data, struct qp_broker_entry **ent)
1301 {
1302         struct qp_broker_entry *entry = NULL;
1303         const u32 context_id = vmci_ctx_get_id(context);
1304         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1305         int result;
1306         u64 guest_produce_size;
1307         u64 guest_consume_size;
1308
1309         /* Do not create if the caller asked not to. */
1310         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1311                 return VMCI_ERROR_NOT_FOUND;
1312
1313         /*
1314          * Creator's context ID should match handle's context ID or the creator
1315          * must allow the context in handle's context ID as the "peer".
1316          */
1317         if (handle.context != context_id && handle.context != peer)
1318                 return VMCI_ERROR_NO_ACCESS;
1319
1320         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1321                 return VMCI_ERROR_DST_UNREACHABLE;
1322
1323         /*
1324          * Creator's context ID for local queue pairs should match the
1325          * peer, if a peer is specified.
1326          */
1327         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1328                 return VMCI_ERROR_NO_ACCESS;
1329
1330         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1331         if (!entry)
1332                 return VMCI_ERROR_NO_MEM;
1333
1334         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1335                 /*
1336                  * The queue pair broker entry stores values from the guest
1337                  * point of view, so a creating host side endpoint should swap
1338                  * produce and consume values -- unless it is a local queue
1339                  * pair, in which case no swapping is necessary, since the local
1340                  * attacher will swap queues.
1341                  */
1342
1343                 guest_produce_size = consume_size;
1344                 guest_consume_size = produce_size;
1345         } else {
1346                 guest_produce_size = produce_size;
1347                 guest_consume_size = consume_size;
1348         }
1349
1350         entry->qp.handle = handle;
1351         entry->qp.peer = peer;
1352         entry->qp.flags = flags;
1353         entry->qp.produce_size = guest_produce_size;
1354         entry->qp.consume_size = guest_consume_size;
1355         entry->qp.ref_count = 1;
1356         entry->create_id = context_id;
1357         entry->attach_id = VMCI_INVALID_ID;
1358         entry->state = VMCIQPB_NEW;
1359         entry->require_trusted_attach =
1360             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1361         entry->created_by_trusted =
1362             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1363         entry->vmci_page_files = false;
1364         entry->wakeup_cb = wakeup_cb;
1365         entry->client_data = client_data;
1366         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1367         if (entry->produce_q == NULL) {
1368                 result = VMCI_ERROR_NO_MEM;
1369                 goto error;
1370         }
1371         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1372         if (entry->consume_q == NULL) {
1373                 result = VMCI_ERROR_NO_MEM;
1374                 goto error;
1375         }
1376
1377         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1378
1379         INIT_LIST_HEAD(&entry->qp.list_item);
1380
1381         if (is_local) {
1382                 u8 *tmp;
1383
1384                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1385                                            PAGE_SIZE, GFP_KERNEL);
1386                 if (entry->local_mem == NULL) {
1387                         result = VMCI_ERROR_NO_MEM;
1388                         goto error;
1389                 }
1390                 entry->state = VMCIQPB_CREATED_MEM;
1391                 entry->produce_q->q_header = entry->local_mem;
1392                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1393                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1394                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1395         } else if (page_store) {
1396                 /*
1397                  * The VMX already initialized the queue pair headers, so no
1398                  * need for the kernel side to do that.
1399                  */
1400                 result = qp_host_register_user_memory(page_store,
1401                                                       entry->produce_q,
1402                                                       entry->consume_q);
1403                 if (result < VMCI_SUCCESS)
1404                         goto error;
1405
1406                 entry->state = VMCIQPB_CREATED_MEM;
1407         } else {
1408                 /*
1409                  * A create without a page_store may be either a host
1410                  * side create (in which case we are waiting for the
1411                  * guest side to supply the memory) or an old style
1412                  * queue pair create (in which case we will expect a
1413                  * set page store call as the next step).
1414                  */
1415                 entry->state = VMCIQPB_CREATED_NO_MEM;
1416         }
1417
1418         qp_list_add_entry(&qp_broker_list, &entry->qp);
1419         if (ent != NULL)
1420                 *ent = entry;
1421
1422         /* Add to resource obj */
1423         result = vmci_resource_add(&entry->resource,
1424                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1425                                    handle);
1426         if (result != VMCI_SUCCESS) {
1427                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1428                         handle.context, handle.resource, result);
1429                 goto error;
1430         }
1431
1432         entry->qp.handle = vmci_resource_handle(&entry->resource);
1433         if (is_local) {
1434                 vmci_q_header_init(entry->produce_q->q_header,
1435                                    entry->qp.handle);
1436                 vmci_q_header_init(entry->consume_q->q_header,
1437                                    entry->qp.handle);
1438         }
1439
1440         vmci_ctx_qp_create(context, entry->qp.handle);
1441
1442         return VMCI_SUCCESS;
1443
1444  error:
1445         if (entry != NULL) {
1446                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1447                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1448                 kfree(entry);
1449         }
1450
1451         return result;
1452 }
1453
1454 /*
1455  * Enqueues an event datagram to notify the peer VM attached to
1456  * the given queue pair handle about attach/detach event by the
1457  * given VM.  Returns Payload size of datagram enqueued on
1458  * success, error code otherwise.
1459  */
1460 static int qp_notify_peer(bool attach,
1461                           struct vmci_handle handle,
1462                           u32 my_id,
1463                           u32 peer_id)
1464 {
1465         int rv;
1466         struct vmci_event_qp ev;
1467
1468         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1469             peer_id == VMCI_INVALID_ID)
1470                 return VMCI_ERROR_INVALID_ARGS;
1471
1472         /*
1473          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1474          * number of pending events from the hypervisor to a given VM
1475          * otherwise a rogue VM could do an arbitrary number of attach
1476          * and detach operations causing memory pressure in the host
1477          * kernel.
1478          */
1479
1480         memset(&ev, 0, sizeof(ev));
1481         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1482         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1483                                           VMCI_CONTEXT_RESOURCE_ID);
1484         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1485         ev.msg.event_data.event = attach ?
1486             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1487         ev.payload.handle = handle;
1488         ev.payload.peer_id = my_id;
1489
1490         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1491                                     &ev.msg.hdr, false);
1492         if (rv < VMCI_SUCCESS)
1493                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1494                         attach ? "ATTACH" : "DETACH", peer_id);
1495
1496         return rv;
1497 }
1498
1499 /*
1500  * The second endpoint issuing a queue pair allocation will attach to
1501  * the queue pair registered with the queue pair broker.
1502  *
1503  * If the attacher is a guest, it will associate a VMX virtual address
1504  * range with the queue pair as specified by the page_store. At this
1505  * point, the already attach host endpoint may start using the queue
1506  * pair, and an attach event is sent to it. For compatibility with
1507  * older VMX'en, that used a separate step to set the VMX virtual
1508  * address range, the virtual address range can be registered later
1509  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1510  * NULL should be used, and the attach event will be generated once
1511  * the actual page store has been set.
1512  *
1513  * If the attacher is the host, a page_store of NULL should be used as
1514  * well, since the page store information is already set by the guest.
1515  *
1516  * For new VMX and host callers, the queue pair will be moved to the
1517  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1518  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1519  */
1520 static int qp_broker_attach(struct qp_broker_entry *entry,
1521                             u32 peer,
1522                             u32 flags,
1523                             u32 priv_flags,
1524                             u64 produce_size,
1525                             u64 consume_size,
1526                             struct vmci_qp_page_store *page_store,
1527                             struct vmci_ctx *context,
1528                             vmci_event_release_cb wakeup_cb,
1529                             void *client_data,
1530                             struct qp_broker_entry **ent)
1531 {
1532         const u32 context_id = vmci_ctx_get_id(context);
1533         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1534         int result;
1535
1536         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1537             entry->state != VMCIQPB_CREATED_MEM)
1538                 return VMCI_ERROR_UNAVAILABLE;
1539
1540         if (is_local) {
1541                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1542                     context_id != entry->create_id) {
1543                         return VMCI_ERROR_INVALID_ARGS;
1544                 }
1545         } else if (context_id == entry->create_id ||
1546                    context_id == entry->attach_id) {
1547                 return VMCI_ERROR_ALREADY_EXISTS;
1548         }
1549
1550         if (VMCI_CONTEXT_IS_VM(context_id) &&
1551             VMCI_CONTEXT_IS_VM(entry->create_id))
1552                 return VMCI_ERROR_DST_UNREACHABLE;
1553
1554         /*
1555          * If we are attaching from a restricted context then the queuepair
1556          * must have been created by a trusted endpoint.
1557          */
1558         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1559             !entry->created_by_trusted)
1560                 return VMCI_ERROR_NO_ACCESS;
1561
1562         /*
1563          * If we are attaching to a queuepair that was created by a restricted
1564          * context then we must be trusted.
1565          */
1566         if (entry->require_trusted_attach &&
1567             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1568                 return VMCI_ERROR_NO_ACCESS;
1569
1570         /*
1571          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1572          * control check is not performed.
1573          */
1574         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1575                 return VMCI_ERROR_NO_ACCESS;
1576
1577         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1578                 /*
1579                  * Do not attach if the caller doesn't support Host Queue Pairs
1580                  * and a host created this queue pair.
1581                  */
1582
1583                 if (!vmci_ctx_supports_host_qp(context))
1584                         return VMCI_ERROR_INVALID_RESOURCE;
1585
1586         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1587                 struct vmci_ctx *create_context;
1588                 bool supports_host_qp;
1589
1590                 /*
1591                  * Do not attach a host to a user created queue pair if that
1592                  * user doesn't support host queue pair end points.
1593                  */
1594
1595                 create_context = vmci_ctx_get(entry->create_id);
1596                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1597                 vmci_ctx_put(create_context);
1598
1599                 if (!supports_host_qp)
1600                         return VMCI_ERROR_INVALID_RESOURCE;
1601         }
1602
1603         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1604                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1605
1606         if (context_id != VMCI_HOST_CONTEXT_ID) {
1607                 /*
1608                  * The queue pair broker entry stores values from the guest
1609                  * point of view, so an attaching guest should match the values
1610                  * stored in the entry.
1611                  */
1612
1613                 if (entry->qp.produce_size != produce_size ||
1614                     entry->qp.consume_size != consume_size) {
1615                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1616                 }
1617         } else if (entry->qp.produce_size != consume_size ||
1618                    entry->qp.consume_size != produce_size) {
1619                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1620         }
1621
1622         if (context_id != VMCI_HOST_CONTEXT_ID) {
1623                 /*
1624                  * If a guest attached to a queue pair, it will supply
1625                  * the backing memory.  If this is a pre NOVMVM vmx,
1626                  * the backing memory will be supplied by calling
1627                  * vmci_qp_broker_set_page_store() following the
1628                  * return of the vmci_qp_broker_alloc() call. If it is
1629                  * a vmx of version NOVMVM or later, the page store
1630                  * must be supplied as part of the
1631                  * vmci_qp_broker_alloc call.  Under all circumstances
1632                  * must the initially created queue pair not have any
1633                  * memory associated with it already.
1634                  */
1635
1636                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1637                         return VMCI_ERROR_INVALID_ARGS;
1638
1639                 if (page_store != NULL) {
1640                         /*
1641                          * Patch up host state to point to guest
1642                          * supplied memory. The VMX already
1643                          * initialized the queue pair headers, so no
1644                          * need for the kernel side to do that.
1645                          */
1646
1647                         result = qp_host_register_user_memory(page_store,
1648                                                               entry->produce_q,
1649                                                               entry->consume_q);
1650                         if (result < VMCI_SUCCESS)
1651                                 return result;
1652
1653                         entry->state = VMCIQPB_ATTACHED_MEM;
1654                 } else {
1655                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1656                 }
1657         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1658                 /*
1659                  * The host side is attempting to attach to a queue
1660                  * pair that doesn't have any memory associated with
1661                  * it. This must be a pre NOVMVM vmx that hasn't set
1662                  * the page store information yet, or a quiesced VM.
1663                  */
1664
1665                 return VMCI_ERROR_UNAVAILABLE;
1666         } else {
1667                 /* The host side has successfully attached to a queue pair. */
1668                 entry->state = VMCIQPB_ATTACHED_MEM;
1669         }
1670
1671         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1672                 result =
1673                     qp_notify_peer(true, entry->qp.handle, context_id,
1674                                    entry->create_id);
1675                 if (result < VMCI_SUCCESS)
1676                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1677                                 entry->create_id, entry->qp.handle.context,
1678                                 entry->qp.handle.resource);
1679         }
1680
1681         entry->attach_id = context_id;
1682         entry->qp.ref_count++;
1683         if (wakeup_cb) {
1684                 entry->wakeup_cb = wakeup_cb;
1685                 entry->client_data = client_data;
1686         }
1687
1688         /*
1689          * When attaching to local queue pairs, the context already has
1690          * an entry tracking the queue pair, so don't add another one.
1691          */
1692         if (!is_local)
1693                 vmci_ctx_qp_create(context, entry->qp.handle);
1694
1695         if (ent != NULL)
1696                 *ent = entry;
1697
1698         return VMCI_SUCCESS;
1699 }
1700
1701 /*
1702  * queue_pair_Alloc for use when setting up queue pair endpoints
1703  * on the host.
1704  */
1705 static int qp_broker_alloc(struct vmci_handle handle,
1706                            u32 peer,
1707                            u32 flags,
1708                            u32 priv_flags,
1709                            u64 produce_size,
1710                            u64 consume_size,
1711                            struct vmci_qp_page_store *page_store,
1712                            struct vmci_ctx *context,
1713                            vmci_event_release_cb wakeup_cb,
1714                            void *client_data,
1715                            struct qp_broker_entry **ent,
1716                            bool *swap)
1717 {
1718         const u32 context_id = vmci_ctx_get_id(context);
1719         bool create;
1720         struct qp_broker_entry *entry = NULL;
1721         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1722         int result;
1723
1724         if (vmci_handle_is_invalid(handle) ||
1725             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1726             !(produce_size || consume_size) ||
1727             !context || context_id == VMCI_INVALID_ID ||
1728             handle.context == VMCI_INVALID_ID) {
1729                 return VMCI_ERROR_INVALID_ARGS;
1730         }
1731
1732         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1733                 return VMCI_ERROR_INVALID_ARGS;
1734
1735         /*
1736          * In the initial argument check, we ensure that non-vmkernel hosts
1737          * are not allowed to create local queue pairs.
1738          */
1739
1740         mutex_lock(&qp_broker_list.mutex);
1741
1742         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1743                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1744                          context_id, handle.context, handle.resource);
1745                 mutex_unlock(&qp_broker_list.mutex);
1746                 return VMCI_ERROR_ALREADY_EXISTS;
1747         }
1748
1749         if (handle.resource != VMCI_INVALID_ID)
1750                 entry = qp_broker_handle_to_entry(handle);
1751
1752         if (!entry) {
1753                 create = true;
1754                 result =
1755                     qp_broker_create(handle, peer, flags, priv_flags,
1756                                      produce_size, consume_size, page_store,
1757                                      context, wakeup_cb, client_data, ent);
1758         } else {
1759                 create = false;
1760                 result =
1761                     qp_broker_attach(entry, peer, flags, priv_flags,
1762                                      produce_size, consume_size, page_store,
1763                                      context, wakeup_cb, client_data, ent);
1764         }
1765
1766         mutex_unlock(&qp_broker_list.mutex);
1767
1768         if (swap)
1769                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1770                     !(create && is_local);
1771
1772         return result;
1773 }
1774
1775 /*
1776  * This function implements the kernel API for allocating a queue
1777  * pair.
1778  */
1779 static int qp_alloc_host_work(struct vmci_handle *handle,
1780                               struct vmci_queue **produce_q,
1781                               u64 produce_size,
1782                               struct vmci_queue **consume_q,
1783                               u64 consume_size,
1784                               u32 peer,
1785                               u32 flags,
1786                               u32 priv_flags,
1787                               vmci_event_release_cb wakeup_cb,
1788                               void *client_data)
1789 {
1790         struct vmci_handle new_handle;
1791         struct vmci_ctx *context;
1792         struct qp_broker_entry *entry;
1793         int result;
1794         bool swap;
1795
1796         if (vmci_handle_is_invalid(*handle)) {
1797                 new_handle = vmci_make_handle(
1798                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1799         } else
1800                 new_handle = *handle;
1801
1802         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1803         entry = NULL;
1804         result =
1805             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1806                             produce_size, consume_size, NULL, context,
1807                             wakeup_cb, client_data, &entry, &swap);
1808         if (result == VMCI_SUCCESS) {
1809                 if (swap) {
1810                         /*
1811                          * If this is a local queue pair, the attacher
1812                          * will swap around produce and consume
1813                          * queues.
1814                          */
1815
1816                         *produce_q = entry->consume_q;
1817                         *consume_q = entry->produce_q;
1818                 } else {
1819                         *produce_q = entry->produce_q;
1820                         *consume_q = entry->consume_q;
1821                 }
1822
1823                 *handle = vmci_resource_handle(&entry->resource);
1824         } else {
1825                 *handle = VMCI_INVALID_HANDLE;
1826                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1827                          result);
1828         }
1829         vmci_ctx_put(context);
1830         return result;
1831 }
1832
1833 /*
1834  * Allocates a VMCI queue_pair. Only checks validity of input
1835  * arguments. The real work is done in the host or guest
1836  * specific function.
1837  */
1838 int vmci_qp_alloc(struct vmci_handle *handle,
1839                   struct vmci_queue **produce_q,
1840                   u64 produce_size,
1841                   struct vmci_queue **consume_q,
1842                   u64 consume_size,
1843                   u32 peer,
1844                   u32 flags,
1845                   u32 priv_flags,
1846                   bool guest_endpoint,
1847                   vmci_event_release_cb wakeup_cb,
1848                   void *client_data)
1849 {
1850         if (!handle || !produce_q || !consume_q ||
1851             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1852                 return VMCI_ERROR_INVALID_ARGS;
1853
1854         if (guest_endpoint) {
1855                 return qp_alloc_guest_work(handle, produce_q,
1856                                            produce_size, consume_q,
1857                                            consume_size, peer,
1858                                            flags, priv_flags);
1859         } else {
1860                 return qp_alloc_host_work(handle, produce_q,
1861                                           produce_size, consume_q,
1862                                           consume_size, peer, flags,
1863                                           priv_flags, wakeup_cb, client_data);
1864         }
1865 }
1866
1867 /*
1868  * This function implements the host kernel API for detaching from
1869  * a queue pair.
1870  */
1871 static int qp_detatch_host_work(struct vmci_handle handle)
1872 {
1873         int result;
1874         struct vmci_ctx *context;
1875
1876         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1877
1878         result = vmci_qp_broker_detach(handle, context);
1879
1880         vmci_ctx_put(context);
1881         return result;
1882 }
1883
1884 /*
1885  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1886  * Real work is done in the host or guest specific function.
1887  */
1888 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1889 {
1890         if (vmci_handle_is_invalid(handle))
1891                 return VMCI_ERROR_INVALID_ARGS;
1892
1893         if (guest_endpoint)
1894                 return qp_detatch_guest_work(handle);
1895         else
1896                 return qp_detatch_host_work(handle);
1897 }
1898
1899 /*
1900  * Returns the entry from the head of the list. Assumes that the list is
1901  * locked.
1902  */
1903 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1904 {
1905         if (!list_empty(&qp_list->head)) {
1906                 struct qp_entry *entry =
1907                     list_first_entry(&qp_list->head, struct qp_entry,
1908                                      list_item);
1909                 return entry;
1910         }
1911
1912         return NULL;
1913 }
1914
1915 void vmci_qp_broker_exit(void)
1916 {
1917         struct qp_entry *entry;
1918         struct qp_broker_entry *be;
1919
1920         mutex_lock(&qp_broker_list.mutex);
1921
1922         while ((entry = qp_list_get_head(&qp_broker_list))) {
1923                 be = (struct qp_broker_entry *)entry;
1924
1925                 qp_list_remove_entry(&qp_broker_list, entry);
1926                 kfree(be);
1927         }
1928
1929         mutex_unlock(&qp_broker_list.mutex);
1930 }
1931
1932 /*
1933  * Requests that a queue pair be allocated with the VMCI queue
1934  * pair broker. Allocates a queue pair entry if one does not
1935  * exist. Attaches to one if it exists, and retrieves the page
1936  * files backing that queue_pair.  Assumes that the queue pair
1937  * broker lock is held.
1938  */
1939 int vmci_qp_broker_alloc(struct vmci_handle handle,
1940                          u32 peer,
1941                          u32 flags,
1942                          u32 priv_flags,
1943                          u64 produce_size,
1944                          u64 consume_size,
1945                          struct vmci_qp_page_store *page_store,
1946                          struct vmci_ctx *context)
1947 {
1948         return qp_broker_alloc(handle, peer, flags, priv_flags,
1949                                produce_size, consume_size,
1950                                page_store, context, NULL, NULL, NULL, NULL);
1951 }
1952
1953 /*
1954  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1955  * step to add the UVAs of the VMX mapping of the queue pair. This function
1956  * provides backwards compatibility with such VMX'en, and takes care of
1957  * registering the page store for a queue pair previously allocated by the
1958  * VMX during create or attach. This function will move the queue pair state
1959  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1960  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1961  * attached state with memory, the queue pair is ready to be used by the
1962  * host peer, and an attached event will be generated.
1963  *
1964  * Assumes that the queue pair broker lock is held.
1965  *
1966  * This function is only used by the hosted platform, since there is no
1967  * issue with backwards compatibility for vmkernel.
1968  */
1969 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1970                                   u64 produce_uva,
1971                                   u64 consume_uva,
1972                                   struct vmci_ctx *context)
1973 {
1974         struct qp_broker_entry *entry;
1975         int result;
1976         const u32 context_id = vmci_ctx_get_id(context);
1977
1978         if (vmci_handle_is_invalid(handle) || !context ||
1979             context_id == VMCI_INVALID_ID)
1980                 return VMCI_ERROR_INVALID_ARGS;
1981
1982         /*
1983          * We only support guest to host queue pairs, so the VMX must
1984          * supply UVAs for the mapped page files.
1985          */
1986
1987         if (produce_uva == 0 || consume_uva == 0)
1988                 return VMCI_ERROR_INVALID_ARGS;
1989
1990         mutex_lock(&qp_broker_list.mutex);
1991
1992         if (!vmci_ctx_qp_exists(context, handle)) {
1993                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1994                         context_id, handle.context, handle.resource);
1995                 result = VMCI_ERROR_NOT_FOUND;
1996                 goto out;
1997         }
1998
1999         entry = qp_broker_handle_to_entry(handle);
2000         if (!entry) {
2001                 result = VMCI_ERROR_NOT_FOUND;
2002                 goto out;
2003         }
2004
2005         /*
2006          * If I'm the owner then I can set the page store.
2007          *
2008          * Or, if a host created the queue_pair and I'm the attached peer
2009          * then I can set the page store.
2010          */
2011         if (entry->create_id != context_id &&
2012             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2013              entry->attach_id != context_id)) {
2014                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2015                 goto out;
2016         }
2017
2018         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2019             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2020                 result = VMCI_ERROR_UNAVAILABLE;
2021                 goto out;
2022         }
2023
2024         result = qp_host_get_user_memory(produce_uva, consume_uva,
2025                                          entry->produce_q, entry->consume_q);
2026         if (result < VMCI_SUCCESS)
2027                 goto out;
2028
2029         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2030         if (result < VMCI_SUCCESS) {
2031                 qp_host_unregister_user_memory(entry->produce_q,
2032                                                entry->consume_q);
2033                 goto out;
2034         }
2035
2036         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2037                 entry->state = VMCIQPB_CREATED_MEM;
2038         else
2039                 entry->state = VMCIQPB_ATTACHED_MEM;
2040
2041         entry->vmci_page_files = true;
2042
2043         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2044                 result =
2045                     qp_notify_peer(true, handle, context_id, entry->create_id);
2046                 if (result < VMCI_SUCCESS) {
2047                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2048                                 entry->create_id, entry->qp.handle.context,
2049                                 entry->qp.handle.resource);
2050                 }
2051         }
2052
2053         result = VMCI_SUCCESS;
2054  out:
2055         mutex_unlock(&qp_broker_list.mutex);
2056         return result;
2057 }
2058
2059 /*
2060  * Resets saved queue headers for the given QP broker
2061  * entry. Should be used when guest memory becomes available
2062  * again, or the guest detaches.
2063  */
2064 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2065 {
2066         entry->produce_q->saved_header = NULL;
2067         entry->consume_q->saved_header = NULL;
2068 }
2069
2070 /*
2071  * The main entry point for detaching from a queue pair registered with the
2072  * queue pair broker. If more than one endpoint is attached to the queue
2073  * pair, the first endpoint will mainly decrement a reference count and
2074  * generate a notification to its peer. The last endpoint will clean up
2075  * the queue pair state registered with the broker.
2076  *
2077  * When a guest endpoint detaches, it will unmap and unregister the guest
2078  * memory backing the queue pair. If the host is still attached, it will
2079  * no longer be able to access the queue pair content.
2080  *
2081  * If the queue pair is already in a state where there is no memory
2082  * registered for the queue pair (any *_NO_MEM state), it will transition to
2083  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2084  * endpoint is the first of two endpoints to detach. If the host endpoint is
2085  * the first out of two to detach, the queue pair will move to the
2086  * VMCIQPB_SHUTDOWN_MEM state.
2087  */
2088 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2089 {
2090         struct qp_broker_entry *entry;
2091         const u32 context_id = vmci_ctx_get_id(context);
2092         u32 peer_id;
2093         bool is_local = false;
2094         int result;
2095
2096         if (vmci_handle_is_invalid(handle) || !context ||
2097             context_id == VMCI_INVALID_ID) {
2098                 return VMCI_ERROR_INVALID_ARGS;
2099         }
2100
2101         mutex_lock(&qp_broker_list.mutex);
2102
2103         if (!vmci_ctx_qp_exists(context, handle)) {
2104                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2105                          context_id, handle.context, handle.resource);
2106                 result = VMCI_ERROR_NOT_FOUND;
2107                 goto out;
2108         }
2109
2110         entry = qp_broker_handle_to_entry(handle);
2111         if (!entry) {
2112                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2113                          context_id, handle.context, handle.resource);
2114                 result = VMCI_ERROR_NOT_FOUND;
2115                 goto out;
2116         }
2117
2118         if (context_id != entry->create_id && context_id != entry->attach_id) {
2119                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2120                 goto out;
2121         }
2122
2123         if (context_id == entry->create_id) {
2124                 peer_id = entry->attach_id;
2125                 entry->create_id = VMCI_INVALID_ID;
2126         } else {
2127                 peer_id = entry->create_id;
2128                 entry->attach_id = VMCI_INVALID_ID;
2129         }
2130         entry->qp.ref_count--;
2131
2132         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2133
2134         if (context_id != VMCI_HOST_CONTEXT_ID) {
2135                 bool headers_mapped;
2136
2137                 /*
2138                  * Pre NOVMVM vmx'en may detach from a queue pair
2139                  * before setting the page store, and in that case
2140                  * there is no user memory to detach from. Also, more
2141                  * recent VMX'en may detach from a queue pair in the
2142                  * quiesced state.
2143                  */
2144
2145                 qp_acquire_queue_mutex(entry->produce_q);
2146                 headers_mapped = entry->produce_q->q_header ||
2147                     entry->consume_q->q_header;
2148                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2149                         result =
2150                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2151                                                  entry->produce_q,
2152                                                  entry->consume_q);
2153                         if (result < VMCI_SUCCESS)
2154                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2155                                         handle.context, handle.resource,
2156                                         result);
2157
2158                         qp_host_unregister_user_memory(entry->produce_q,
2159                                                        entry->consume_q);
2160
2161                 }
2162
2163                 if (!headers_mapped)
2164                         qp_reset_saved_headers(entry);
2165
2166                 qp_release_queue_mutex(entry->produce_q);
2167
2168                 if (!headers_mapped && entry->wakeup_cb)
2169                         entry->wakeup_cb(entry->client_data);
2170
2171         } else {
2172                 if (entry->wakeup_cb) {
2173                         entry->wakeup_cb = NULL;
2174                         entry->client_data = NULL;
2175                 }
2176         }
2177
2178         if (entry->qp.ref_count == 0) {
2179                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2180
2181                 if (is_local)
2182                         kfree(entry->local_mem);
2183
2184                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2185                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2186                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2187                 /* Unlink from resource hash table and free callback */
2188                 vmci_resource_remove(&entry->resource);
2189
2190                 kfree(entry);
2191
2192                 vmci_ctx_qp_destroy(context, handle);
2193         } else {
2194                 qp_notify_peer(false, handle, context_id, peer_id);
2195                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2196                     QPBROKERSTATE_HAS_MEM(entry)) {
2197                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2198                 } else {
2199                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2200                 }
2201
2202                 if (!is_local)
2203                         vmci_ctx_qp_destroy(context, handle);
2204
2205         }
2206         result = VMCI_SUCCESS;
2207  out:
2208         mutex_unlock(&qp_broker_list.mutex);
2209         return result;
2210 }
2211
2212 /*
2213  * Establishes the necessary mappings for a queue pair given a
2214  * reference to the queue pair guest memory. This is usually
2215  * called when a guest is unquiesced and the VMX is allowed to
2216  * map guest memory once again.
2217  */
2218 int vmci_qp_broker_map(struct vmci_handle handle,
2219                        struct vmci_ctx *context,
2220                        u64 guest_mem)
2221 {
2222         struct qp_broker_entry *entry;
2223         const u32 context_id = vmci_ctx_get_id(context);
2224         int result;
2225
2226         if (vmci_handle_is_invalid(handle) || !context ||
2227             context_id == VMCI_INVALID_ID)
2228                 return VMCI_ERROR_INVALID_ARGS;
2229
2230         mutex_lock(&qp_broker_list.mutex);
2231
2232         if (!vmci_ctx_qp_exists(context, handle)) {
2233                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2234                          context_id, handle.context, handle.resource);
2235                 result = VMCI_ERROR_NOT_FOUND;
2236                 goto out;
2237         }
2238
2239         entry = qp_broker_handle_to_entry(handle);
2240         if (!entry) {
2241                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2242                          context_id, handle.context, handle.resource);
2243                 result = VMCI_ERROR_NOT_FOUND;
2244                 goto out;
2245         }
2246
2247         if (context_id != entry->create_id && context_id != entry->attach_id) {
2248                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2249                 goto out;
2250         }
2251
2252         result = VMCI_SUCCESS;
2253
2254         if (context_id != VMCI_HOST_CONTEXT_ID &&
2255             !QPBROKERSTATE_HAS_MEM(entry)) {
2256                 struct vmci_qp_page_store page_store;
2257
2258                 page_store.pages = guest_mem;
2259                 page_store.len = QPE_NUM_PAGES(entry->qp);
2260
2261                 qp_acquire_queue_mutex(entry->produce_q);
2262                 qp_reset_saved_headers(entry);
2263                 result =
2264                     qp_host_register_user_memory(&page_store,
2265                                                  entry->produce_q,
2266                                                  entry->consume_q);
2267                 qp_release_queue_mutex(entry->produce_q);
2268                 if (result == VMCI_SUCCESS) {
2269                         /* Move state from *_NO_MEM to *_MEM */
2270
2271                         entry->state++;
2272
2273                         if (entry->wakeup_cb)
2274                                 entry->wakeup_cb(entry->client_data);
2275                 }
2276         }
2277
2278  out:
2279         mutex_unlock(&qp_broker_list.mutex);
2280         return result;
2281 }
2282
2283 /*
2284  * Saves a snapshot of the queue headers for the given QP broker
2285  * entry. Should be used when guest memory is unmapped.
2286  * Results:
2287  * VMCI_SUCCESS on success, appropriate error code if guest memory
2288  * can't be accessed..
2289  */
2290 static int qp_save_headers(struct qp_broker_entry *entry)
2291 {
2292         int result;
2293
2294         if (entry->produce_q->saved_header != NULL &&
2295             entry->consume_q->saved_header != NULL) {
2296                 /*
2297                  *  If the headers have already been saved, we don't need to do
2298                  *  it again, and we don't want to map in the headers
2299                  *  unnecessarily.
2300                  */
2301
2302                 return VMCI_SUCCESS;
2303         }
2304
2305         if (NULL == entry->produce_q->q_header ||
2306             NULL == entry->consume_q->q_header) {
2307                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2308                 if (result < VMCI_SUCCESS)
2309                         return result;
2310         }
2311
2312         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2313                sizeof(entry->saved_produce_q));
2314         entry->produce_q->saved_header = &entry->saved_produce_q;
2315         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2316                sizeof(entry->saved_consume_q));
2317         entry->consume_q->saved_header = &entry->saved_consume_q;
2318
2319         return VMCI_SUCCESS;
2320 }
2321
2322 /*
2323  * Removes all references to the guest memory of a given queue pair, and
2324  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2325  * called when a VM is being quiesced where access to guest memory should
2326  * avoided.
2327  */
2328 int vmci_qp_broker_unmap(struct vmci_handle handle,
2329                          struct vmci_ctx *context,
2330                          u32 gid)
2331 {
2332         struct qp_broker_entry *entry;
2333         const u32 context_id = vmci_ctx_get_id(context);
2334         int result;
2335
2336         if (vmci_handle_is_invalid(handle) || !context ||
2337             context_id == VMCI_INVALID_ID)
2338                 return VMCI_ERROR_INVALID_ARGS;
2339
2340         mutex_lock(&qp_broker_list.mutex);
2341
2342         if (!vmci_ctx_qp_exists(context, handle)) {
2343                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2344                          context_id, handle.context, handle.resource);
2345                 result = VMCI_ERROR_NOT_FOUND;
2346                 goto out;
2347         }
2348
2349         entry = qp_broker_handle_to_entry(handle);
2350         if (!entry) {
2351                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2352                          context_id, handle.context, handle.resource);
2353                 result = VMCI_ERROR_NOT_FOUND;
2354                 goto out;
2355         }
2356
2357         if (context_id != entry->create_id && context_id != entry->attach_id) {
2358                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2359                 goto out;
2360         }
2361
2362         if (context_id != VMCI_HOST_CONTEXT_ID &&
2363             QPBROKERSTATE_HAS_MEM(entry)) {
2364                 qp_acquire_queue_mutex(entry->produce_q);
2365                 result = qp_save_headers(entry);
2366                 if (result < VMCI_SUCCESS)
2367                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2368                                 handle.context, handle.resource, result);
2369
2370                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2371
2372                 /*
2373                  * On hosted, when we unmap queue pairs, the VMX will also
2374                  * unmap the guest memory, so we invalidate the previously
2375                  * registered memory. If the queue pair is mapped again at a
2376                  * later point in time, we will need to reregister the user
2377                  * memory with a possibly new user VA.
2378                  */
2379                 qp_host_unregister_user_memory(entry->produce_q,
2380                                                entry->consume_q);
2381
2382                 /*
2383                  * Move state from *_MEM to *_NO_MEM.
2384                  */
2385                 entry->state--;
2386
2387                 qp_release_queue_mutex(entry->produce_q);
2388         }
2389
2390         result = VMCI_SUCCESS;
2391
2392  out:
2393         mutex_unlock(&qp_broker_list.mutex);
2394         return result;
2395 }
2396
2397 /*
2398  * Destroys all guest queue pair endpoints. If active guest queue
2399  * pairs still exist, hypercalls to attempt detach from these
2400  * queue pairs will be made. Any failure to detach is silently
2401  * ignored.
2402  */
2403 void vmci_qp_guest_endpoints_exit(void)
2404 {
2405         struct qp_entry *entry;
2406         struct qp_guest_endpoint *ep;
2407
2408         mutex_lock(&qp_guest_endpoints.mutex);
2409
2410         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2411                 ep = (struct qp_guest_endpoint *)entry;
2412
2413                 /* Don't make a hypercall for local queue_pairs. */
2414                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2415                         qp_detatch_hypercall(entry->handle);
2416
2417                 /* We cannot fail the exit, so let's reset ref_count. */
2418                 entry->ref_count = 0;
2419                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2420
2421                 qp_guest_endpoint_destroy(ep);
2422         }
2423
2424         mutex_unlock(&qp_guest_endpoints.mutex);
2425 }
2426
2427 /*
2428  * Helper routine that will lock the queue pair before subsequent
2429  * operations.
2430  * Note: Non-blocking on the host side is currently only implemented in ESX.
2431  * Since non-blocking isn't yet implemented on the host personality we
2432  * have no reason to acquire a spin lock.  So to avoid the use of an
2433  * unnecessary lock only acquire the mutex if we can block.
2434  */
2435 static void qp_lock(const struct vmci_qp *qpair)
2436 {
2437         qp_acquire_queue_mutex(qpair->produce_q);
2438 }
2439
2440 /*
2441  * Helper routine that unlocks the queue pair after calling
2442  * qp_lock.
2443  */
2444 static void qp_unlock(const struct vmci_qp *qpair)
2445 {
2446         qp_release_queue_mutex(qpair->produce_q);
2447 }
2448
2449 /*
2450  * The queue headers may not be mapped at all times. If a queue is
2451  * currently not mapped, it will be attempted to do so.
2452  */
2453 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2454                                 struct vmci_queue *consume_q)
2455 {
2456         int result;
2457
2458         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2459                 result = qp_host_map_queues(produce_q, consume_q);
2460                 if (result < VMCI_SUCCESS)
2461                         return (produce_q->saved_header &&
2462                                 consume_q->saved_header) ?
2463                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2464                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2465         }
2466
2467         return VMCI_SUCCESS;
2468 }
2469
2470 /*
2471  * Helper routine that will retrieve the produce and consume
2472  * headers of a given queue pair. If the guest memory of the
2473  * queue pair is currently not available, the saved queue headers
2474  * will be returned, if these are available.
2475  */
2476 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2477                                 struct vmci_queue_header **produce_q_header,
2478                                 struct vmci_queue_header **consume_q_header)
2479 {
2480         int result;
2481
2482         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2483         if (result == VMCI_SUCCESS) {
2484                 *produce_q_header = qpair->produce_q->q_header;
2485                 *consume_q_header = qpair->consume_q->q_header;
2486         } else if (qpair->produce_q->saved_header &&
2487                    qpair->consume_q->saved_header) {
2488                 *produce_q_header = qpair->produce_q->saved_header;
2489                 *consume_q_header = qpair->consume_q->saved_header;
2490                 result = VMCI_SUCCESS;
2491         }
2492
2493         return result;
2494 }
2495
2496 /*
2497  * Callback from VMCI queue pair broker indicating that a queue
2498  * pair that was previously not ready, now either is ready or
2499  * gone forever.
2500  */
2501 static int qp_wakeup_cb(void *client_data)
2502 {
2503         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2504
2505         qp_lock(qpair);
2506         while (qpair->blocked > 0) {
2507                 qpair->blocked--;
2508                 qpair->generation++;
2509                 wake_up(&qpair->event);
2510         }
2511         qp_unlock(qpair);
2512
2513         return VMCI_SUCCESS;
2514 }
2515
2516 /*
2517  * Makes the calling thread wait for the queue pair to become
2518  * ready for host side access.  Returns true when thread is
2519  * woken up after queue pair state change, false otherwise.
2520  */
2521 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2522 {
2523         unsigned int generation;
2524
2525         qpair->blocked++;
2526         generation = qpair->generation;
2527         qp_unlock(qpair);
2528         wait_event(qpair->event, generation != qpair->generation);
2529         qp_lock(qpair);
2530
2531         return true;
2532 }
2533
2534 /*
2535  * Enqueues a given buffer to the produce queue using the provided
2536  * function. As many bytes as possible (space available in the queue)
2537  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2538  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2539  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2540  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2541  * an error occured when accessing the buffer,
2542  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2543  * available.  Otherwise, the number of bytes written to the queue is
2544  * returned.  Updates the tail pointer of the produce queue.
2545  */
2546 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2547                                  struct vmci_queue *consume_q,
2548                                  const u64 produce_q_size,
2549                                  struct iov_iter *from)
2550 {
2551         s64 free_space;
2552         u64 tail;
2553         size_t buf_size = iov_iter_count(from);
2554         size_t written;
2555         ssize_t result;
2556
2557         result = qp_map_queue_headers(produce_q, consume_q);
2558         if (unlikely(result != VMCI_SUCCESS))
2559                 return result;
2560
2561         free_space = vmci_q_header_free_space(produce_q->q_header,
2562                                               consume_q->q_header,
2563                                               produce_q_size);
2564         if (free_space == 0)
2565                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2566
2567         if (free_space < VMCI_SUCCESS)
2568                 return (ssize_t) free_space;
2569
2570         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2571         tail = vmci_q_header_producer_tail(produce_q->q_header);
2572         if (likely(tail + written < produce_q_size)) {
2573                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2574         } else {
2575                 /* Tail pointer wraps around. */
2576
2577                 const size_t tmp = (size_t) (produce_q_size - tail);
2578
2579                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2580                 if (result >= VMCI_SUCCESS)
2581                         result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2582                                                  written - tmp);
2583         }
2584
2585         if (result < VMCI_SUCCESS)
2586                 return result;
2587
2588         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2589                                         produce_q_size);
2590         return written;
2591 }
2592
2593 /*
2594  * Dequeues data (if available) from the given consume queue. Writes data
2595  * to the user provided buffer using the provided function.
2596  * Assumes the queue->mutex has been acquired.
2597  * Results:
2598  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2599  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2600  * (as defined by the queue size).
2601  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2602  * Otherwise the number of bytes dequeued is returned.
2603  * Side effects:
2604  * Updates the head pointer of the consume queue.
2605  */
2606 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2607                                  struct vmci_queue *consume_q,
2608                                  const u64 consume_q_size,
2609                                  struct iov_iter *to,
2610                                  bool update_consumer)
2611 {
2612         size_t buf_size = iov_iter_count(to);
2613         s64 buf_ready;
2614         u64 head;
2615         size_t read;
2616         ssize_t result;
2617
2618         result = qp_map_queue_headers(produce_q, consume_q);
2619         if (unlikely(result != VMCI_SUCCESS))
2620                 return result;
2621
2622         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2623                                             produce_q->q_header,
2624                                             consume_q_size);
2625         if (buf_ready == 0)
2626                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2627
2628         if (buf_ready < VMCI_SUCCESS)
2629                 return (ssize_t) buf_ready;
2630
2631         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2632         head = vmci_q_header_consumer_head(produce_q->q_header);
2633         if (likely(head + read < consume_q_size)) {
2634                 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2635         } else {
2636                 /* Head pointer wraps around. */
2637
2638                 const size_t tmp = (size_t) (consume_q_size - head);
2639
2640                 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2641                 if (result >= VMCI_SUCCESS)
2642                         result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2643                                                    read - tmp);
2644
2645         }
2646
2647         if (result < VMCI_SUCCESS)
2648                 return result;
2649
2650         if (update_consumer)
2651                 vmci_q_header_add_consumer_head(produce_q->q_header,
2652                                                 read, consume_q_size);
2653
2654         return read;
2655 }
2656
2657 /*
2658  * vmci_qpair_alloc() - Allocates a queue pair.
2659  * @qpair:      Pointer for the new vmci_qp struct.
2660  * @handle:     Handle to track the resource.
2661  * @produce_qsize:      Desired size of the producer queue.
2662  * @consume_qsize:      Desired size of the consumer queue.
2663  * @peer:       ContextID of the peer.
2664  * @flags:      VMCI flags.
2665  * @priv_flags: VMCI priviledge flags.
2666  *
2667  * This is the client interface for allocating the memory for a
2668  * vmci_qp structure and then attaching to the underlying
2669  * queue.  If an error occurs allocating the memory for the
2670  * vmci_qp structure no attempt is made to attach.  If an
2671  * error occurs attaching, then the structure is freed.
2672  */
2673 int vmci_qpair_alloc(struct vmci_qp **qpair,
2674                      struct vmci_handle *handle,
2675                      u64 produce_qsize,
2676                      u64 consume_qsize,
2677                      u32 peer,
2678                      u32 flags,
2679                      u32 priv_flags)
2680 {
2681         struct vmci_qp *my_qpair;
2682         int retval;
2683         struct vmci_handle src = VMCI_INVALID_HANDLE;
2684         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2685         enum vmci_route route;
2686         vmci_event_release_cb wakeup_cb;
2687         void *client_data;
2688
2689         /*
2690          * Restrict the size of a queuepair.  The device already
2691          * enforces a limit on the total amount of memory that can be
2692          * allocated to queuepairs for a guest.  However, we try to
2693          * allocate this memory before we make the queuepair
2694          * allocation hypercall.  On Linux, we allocate each page
2695          * separately, which means rather than fail, the guest will
2696          * thrash while it tries to allocate, and will become
2697          * increasingly unresponsive to the point where it appears to
2698          * be hung.  So we place a limit on the size of an individual
2699          * queuepair here, and leave the device to enforce the
2700          * restriction on total queuepair memory.  (Note that this
2701          * doesn't prevent all cases; a user with only this much
2702          * physical memory could still get into trouble.)  The error
2703          * used by the device is NO_RESOURCES, so use that here too.
2704          */
2705
2706         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2707             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2708                 return VMCI_ERROR_NO_RESOURCES;
2709
2710         retval = vmci_route(&src, &dst, false, &route);
2711         if (retval < VMCI_SUCCESS)
2712                 route = vmci_guest_code_active() ?
2713                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2714
2715         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2716                 pr_devel("NONBLOCK OR PINNED set");
2717                 return VMCI_ERROR_INVALID_ARGS;
2718         }
2719
2720         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2721         if (!my_qpair)
2722                 return VMCI_ERROR_NO_MEM;
2723
2724         my_qpair->produce_q_size = produce_qsize;
2725         my_qpair->consume_q_size = consume_qsize;
2726         my_qpair->peer = peer;
2727         my_qpair->flags = flags;
2728         my_qpair->priv_flags = priv_flags;
2729
2730         wakeup_cb = NULL;
2731         client_data = NULL;
2732
2733         if (VMCI_ROUTE_AS_HOST == route) {
2734                 my_qpair->guest_endpoint = false;
2735                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2736                         my_qpair->blocked = 0;
2737                         my_qpair->generation = 0;
2738                         init_waitqueue_head(&my_qpair->event);
2739                         wakeup_cb = qp_wakeup_cb;
2740                         client_data = (void *)my_qpair;
2741                 }
2742         } else {
2743                 my_qpair->guest_endpoint = true;
2744         }
2745
2746         retval = vmci_qp_alloc(handle,
2747                                &my_qpair->produce_q,
2748                                my_qpair->produce_q_size,
2749                                &my_qpair->consume_q,
2750                                my_qpair->consume_q_size,
2751                                my_qpair->peer,
2752                                my_qpair->flags,
2753                                my_qpair->priv_flags,
2754                                my_qpair->guest_endpoint,
2755                                wakeup_cb, client_data);
2756
2757         if (retval < VMCI_SUCCESS) {
2758                 kfree(my_qpair);
2759                 return retval;
2760         }
2761
2762         *qpair = my_qpair;
2763         my_qpair->handle = *handle;
2764
2765         return retval;
2766 }
2767 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2768
2769 /*
2770  * vmci_qpair_detach() - Detatches the client from a queue pair.
2771  * @qpair:      Reference of a pointer to the qpair struct.
2772  *
2773  * This is the client interface for detaching from a VMCIQPair.
2774  * Note that this routine will free the memory allocated for the
2775  * vmci_qp structure too.
2776  */
2777 int vmci_qpair_detach(struct vmci_qp **qpair)
2778 {
2779         int result;
2780         struct vmci_qp *old_qpair;
2781
2782         if (!qpair || !(*qpair))
2783                 return VMCI_ERROR_INVALID_ARGS;
2784
2785         old_qpair = *qpair;
2786         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2787
2788         /*
2789          * The guest can fail to detach for a number of reasons, and
2790          * if it does so, it will cleanup the entry (if there is one).
2791          * The host can fail too, but it won't cleanup the entry
2792          * immediately, it will do that later when the context is
2793          * freed.  Either way, we need to release the qpair struct
2794          * here; there isn't much the caller can do, and we don't want
2795          * to leak.
2796          */
2797
2798         memset(old_qpair, 0, sizeof(*old_qpair));
2799         old_qpair->handle = VMCI_INVALID_HANDLE;
2800         old_qpair->peer = VMCI_INVALID_ID;
2801         kfree(old_qpair);
2802         *qpair = NULL;
2803
2804         return result;
2805 }
2806 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2807
2808 /*
2809  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2810  * @qpair:      Pointer to the queue pair struct.
2811  * @producer_tail:      Reference used for storing producer tail index.
2812  * @consumer_head:      Reference used for storing the consumer head index.
2813  *
2814  * This is the client interface for getting the current indexes of the
2815  * QPair from the point of the view of the caller as the producer.
2816  */
2817 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2818                                    u64 *producer_tail,
2819                                    u64 *consumer_head)
2820 {
2821         struct vmci_queue_header *produce_q_header;
2822         struct vmci_queue_header *consume_q_header;
2823         int result;
2824
2825         if (!qpair)
2826                 return VMCI_ERROR_INVALID_ARGS;
2827
2828         qp_lock(qpair);
2829         result =
2830             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2831         if (result == VMCI_SUCCESS)
2832                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2833                                            producer_tail, consumer_head);
2834         qp_unlock(qpair);
2835
2836         if (result == VMCI_SUCCESS &&
2837             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2838              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2839                 return VMCI_ERROR_INVALID_SIZE;
2840
2841         return result;
2842 }
2843 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2844
2845 /*
2846  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2847  * @qpair:      Pointer to the queue pair struct.
2848  * @consumer_tail:      Reference used for storing consumer tail index.
2849  * @producer_head:      Reference used for storing the producer head index.
2850  *
2851  * This is the client interface for getting the current indexes of the
2852  * QPair from the point of the view of the caller as the consumer.
2853  */
2854 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2855                                    u64 *consumer_tail,
2856                                    u64 *producer_head)
2857 {
2858         struct vmci_queue_header *produce_q_header;
2859         struct vmci_queue_header *consume_q_header;
2860         int result;
2861
2862         if (!qpair)
2863                 return VMCI_ERROR_INVALID_ARGS;
2864
2865         qp_lock(qpair);
2866         result =
2867             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2868         if (result == VMCI_SUCCESS)
2869                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2870                                            consumer_tail, producer_head);
2871         qp_unlock(qpair);
2872
2873         if (result == VMCI_SUCCESS &&
2874             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2875              (producer_head && *producer_head >= qpair->consume_q_size)))
2876                 return VMCI_ERROR_INVALID_SIZE;
2877
2878         return result;
2879 }
2880 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2881
2882 /*
2883  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2884  * @qpair:      Pointer to the queue pair struct.
2885  *
2886  * This is the client interface for getting the amount of free
2887  * space in the QPair from the point of the view of the caller as
2888  * the producer which is the common case.  Returns < 0 if err, else
2889  * available bytes into which data can be enqueued if > 0.
2890  */
2891 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2892 {
2893         struct vmci_queue_header *produce_q_header;
2894         struct vmci_queue_header *consume_q_header;
2895         s64 result;
2896
2897         if (!qpair)
2898                 return VMCI_ERROR_INVALID_ARGS;
2899
2900         qp_lock(qpair);
2901         result =
2902             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2903         if (result == VMCI_SUCCESS)
2904                 result = vmci_q_header_free_space(produce_q_header,
2905                                                   consume_q_header,
2906                                                   qpair->produce_q_size);
2907         else
2908                 result = 0;
2909
2910         qp_unlock(qpair);
2911
2912         return result;
2913 }
2914 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2915
2916 /*
2917  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2918  * @qpair:      Pointer to the queue pair struct.
2919  *
2920  * This is the client interface for getting the amount of free
2921  * space in the QPair from the point of the view of the caller as
2922  * the consumer which is not the common case.  Returns < 0 if err, else
2923  * available bytes into which data can be enqueued if > 0.
2924  */
2925 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2926 {
2927         struct vmci_queue_header *produce_q_header;
2928         struct vmci_queue_header *consume_q_header;
2929         s64 result;
2930
2931         if (!qpair)
2932                 return VMCI_ERROR_INVALID_ARGS;
2933
2934         qp_lock(qpair);
2935         result =
2936             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2937         if (result == VMCI_SUCCESS)
2938                 result = vmci_q_header_free_space(consume_q_header,
2939                                                   produce_q_header,
2940                                                   qpair->consume_q_size);
2941         else
2942                 result = 0;
2943
2944         qp_unlock(qpair);
2945
2946         return result;
2947 }
2948 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2949
2950 /*
2951  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2952  * producer queue.
2953  * @qpair:      Pointer to the queue pair struct.
2954  *
2955  * This is the client interface for getting the amount of
2956  * enqueued data in the QPair from the point of the view of the
2957  * caller as the producer which is not the common case.  Returns < 0 if err,
2958  * else available bytes that may be read.
2959  */
2960 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2961 {
2962         struct vmci_queue_header *produce_q_header;
2963         struct vmci_queue_header *consume_q_header;
2964         s64 result;
2965
2966         if (!qpair)
2967                 return VMCI_ERROR_INVALID_ARGS;
2968
2969         qp_lock(qpair);
2970         result =
2971             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2972         if (result == VMCI_SUCCESS)
2973                 result = vmci_q_header_buf_ready(produce_q_header,
2974                                                  consume_q_header,
2975                                                  qpair->produce_q_size);
2976         else
2977                 result = 0;
2978
2979         qp_unlock(qpair);
2980
2981         return result;
2982 }
2983 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2984
2985 /*
2986  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2987  * consumer queue.
2988  * @qpair:      Pointer to the queue pair struct.
2989  *
2990  * This is the client interface for getting the amount of
2991  * enqueued data in the QPair from the point of the view of the
2992  * caller as the consumer which is the normal case.  Returns < 0 if err,
2993  * else available bytes that may be read.
2994  */
2995 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2996 {
2997         struct vmci_queue_header *produce_q_header;
2998         struct vmci_queue_header *consume_q_header;
2999         s64 result;
3000
3001         if (!qpair)
3002                 return VMCI_ERROR_INVALID_ARGS;
3003
3004         qp_lock(qpair);
3005         result =
3006             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3007         if (result == VMCI_SUCCESS)
3008                 result = vmci_q_header_buf_ready(consume_q_header,
3009                                                  produce_q_header,
3010                                                  qpair->consume_q_size);
3011         else
3012                 result = 0;
3013
3014         qp_unlock(qpair);
3015
3016         return result;
3017 }
3018 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3019
3020 /*
3021  * vmci_qpair_enqueue() - Throw data on the queue.
3022  * @qpair:      Pointer to the queue pair struct.
3023  * @buf:        Pointer to buffer containing data
3024  * @buf_size:   Length of buffer.
3025  * @buf_type:   Buffer type (Unused).
3026  *
3027  * This is the client interface for enqueueing data into the queue.
3028  * Returns number of bytes enqueued or < 0 on error.
3029  */
3030 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3031                            const void *buf,
3032                            size_t buf_size,
3033                            int buf_type)
3034 {
3035         ssize_t result;
3036         struct iov_iter from;
3037         struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3038
3039         if (!qpair || !buf)
3040                 return VMCI_ERROR_INVALID_ARGS;
3041
3042         iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3043
3044         qp_lock(qpair);
3045
3046         do {
3047                 result = qp_enqueue_locked(qpair->produce_q,
3048                                            qpair->consume_q,
3049                                            qpair->produce_q_size,
3050                                            &from);
3051
3052                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3053                     !qp_wait_for_ready_queue(qpair))
3054                         result = VMCI_ERROR_WOULD_BLOCK;
3055
3056         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3057
3058         qp_unlock(qpair);
3059
3060         return result;
3061 }
3062 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3063
3064 /*
3065  * vmci_qpair_dequeue() - Get data from the queue.
3066  * @qpair:      Pointer to the queue pair struct.
3067  * @buf:        Pointer to buffer for the data
3068  * @buf_size:   Length of buffer.
3069  * @buf_type:   Buffer type (Unused).
3070  *
3071  * This is the client interface for dequeueing data from the queue.
3072  * Returns number of bytes dequeued or < 0 on error.
3073  */
3074 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3075                            void *buf,
3076                            size_t buf_size,
3077                            int buf_type)
3078 {
3079         ssize_t result;
3080         struct iov_iter to;
3081         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3082
3083         if (!qpair || !buf)
3084                 return VMCI_ERROR_INVALID_ARGS;
3085
3086         iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3087
3088         qp_lock(qpair);
3089
3090         do {
3091                 result = qp_dequeue_locked(qpair->produce_q,
3092                                            qpair->consume_q,
3093                                            qpair->consume_q_size,
3094                                            &to, true);
3095
3096                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3097                     !qp_wait_for_ready_queue(qpair))
3098                         result = VMCI_ERROR_WOULD_BLOCK;
3099
3100         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3101
3102         qp_unlock(qpair);
3103
3104         return result;
3105 }
3106 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3107
3108 /*
3109  * vmci_qpair_peek() - Peek at the data in the queue.
3110  * @qpair:      Pointer to the queue pair struct.
3111  * @buf:        Pointer to buffer for the data
3112  * @buf_size:   Length of buffer.
3113  * @buf_type:   Buffer type (Unused on Linux).
3114  *
3115  * This is the client interface for peeking into a queue.  (I.e.,
3116  * copy data from the queue without updating the head pointer.)
3117  * Returns number of bytes dequeued or < 0 on error.
3118  */
3119 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3120                         void *buf,
3121                         size_t buf_size,
3122                         int buf_type)
3123 {
3124         struct iov_iter to;
3125         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3126         ssize_t result;
3127
3128         if (!qpair || !buf)
3129                 return VMCI_ERROR_INVALID_ARGS;
3130
3131         iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3132
3133         qp_lock(qpair);
3134
3135         do {
3136                 result = qp_dequeue_locked(qpair->produce_q,
3137                                            qpair->consume_q,
3138                                            qpair->consume_q_size,
3139                                            &to, false);
3140
3141                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3142                     !qp_wait_for_ready_queue(qpair))
3143                         result = VMCI_ERROR_WOULD_BLOCK;
3144
3145         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3146
3147         qp_unlock(qpair);
3148
3149         return result;
3150 }
3151 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3152
3153 /*
3154  * vmci_qpair_enquev() - Throw data on the queue using iov.
3155  * @qpair:      Pointer to the queue pair struct.
3156  * @iov:        Pointer to buffer containing data
3157  * @iov_size:   Length of buffer.
3158  * @buf_type:   Buffer type (Unused).
3159  *
3160  * This is the client interface for enqueueing data into the queue.
3161  * This function uses IO vectors to handle the work. Returns number
3162  * of bytes enqueued or < 0 on error.
3163  */
3164 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3165                           struct msghdr *msg,
3166                           size_t iov_size,
3167                           int buf_type)
3168 {
3169         ssize_t result;
3170
3171         if (!qpair)
3172                 return VMCI_ERROR_INVALID_ARGS;
3173
3174         qp_lock(qpair);
3175
3176         do {
3177                 result = qp_enqueue_locked(qpair->produce_q,
3178                                            qpair->consume_q,
3179                                            qpair->produce_q_size,
3180                                            &msg->msg_iter);
3181
3182                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3183                     !qp_wait_for_ready_queue(qpair))
3184                         result = VMCI_ERROR_WOULD_BLOCK;
3185
3186         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3187
3188         qp_unlock(qpair);
3189
3190         return result;
3191 }
3192 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3193
3194 /*
3195  * vmci_qpair_dequev() - Get data from the queue using iov.
3196  * @qpair:      Pointer to the queue pair struct.
3197  * @iov:        Pointer to buffer for the data
3198  * @iov_size:   Length of buffer.
3199  * @buf_type:   Buffer type (Unused).
3200  *
3201  * This is the client interface for dequeueing data from the queue.
3202  * This function uses IO vectors to handle the work. Returns number
3203  * of bytes dequeued or < 0 on error.
3204  */
3205 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3206                           struct msghdr *msg,
3207                           size_t iov_size,
3208                           int buf_type)
3209 {
3210         ssize_t result;
3211
3212         if (!qpair)
3213                 return VMCI_ERROR_INVALID_ARGS;
3214
3215         qp_lock(qpair);
3216
3217         do {
3218                 result = qp_dequeue_locked(qpair->produce_q,
3219                                            qpair->consume_q,
3220                                            qpair->consume_q_size,
3221                                            &msg->msg_iter, true);
3222
3223                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3224                     !qp_wait_for_ready_queue(qpair))
3225                         result = VMCI_ERROR_WOULD_BLOCK;
3226
3227         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3228
3229         qp_unlock(qpair);
3230
3231         return result;
3232 }
3233 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3234
3235 /*
3236  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3237  * @qpair:      Pointer to the queue pair struct.
3238  * @iov:        Pointer to buffer for the data
3239  * @iov_size:   Length of buffer.
3240  * @buf_type:   Buffer type (Unused on Linux).
3241  *
3242  * This is the client interface for peeking into a queue.  (I.e.,
3243  * copy data from the queue without updating the head pointer.)
3244  * This function uses IO vectors to handle the work. Returns number
3245  * of bytes peeked or < 0 on error.
3246  */
3247 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3248                          struct msghdr *msg,
3249                          size_t iov_size,
3250                          int buf_type)
3251 {
3252         ssize_t result;
3253
3254         if (!qpair)
3255                 return VMCI_ERROR_INVALID_ARGS;
3256
3257         qp_lock(qpair);
3258
3259         do {
3260                 result = qp_dequeue_locked(qpair->produce_q,
3261                                            qpair->consume_q,
3262                                            qpair->consume_q_size,
3263                                            &msg->msg_iter, false);
3264
3265                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3266                     !qp_wait_for_ready_queue(qpair))
3267                         result = VMCI_ERROR_WOULD_BLOCK;
3268
3269         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3270
3271         qp_unlock(qpair);
3272         return result;
3273 }
3274 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);