GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / mtd / nand / raw / cafe_nand.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets 
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26
27 #define CAFE_NAND_CTRL1         0x00
28 #define CAFE_NAND_CTRL2         0x04
29 #define CAFE_NAND_CTRL3         0x08
30 #define CAFE_NAND_STATUS        0x0c
31 #define CAFE_NAND_IRQ           0x10
32 #define CAFE_NAND_IRQ_MASK      0x14
33 #define CAFE_NAND_DATA_LEN      0x18
34 #define CAFE_NAND_ADDR1         0x1c
35 #define CAFE_NAND_ADDR2         0x20
36 #define CAFE_NAND_TIMING1       0x24
37 #define CAFE_NAND_TIMING2       0x28
38 #define CAFE_NAND_TIMING3       0x2c
39 #define CAFE_NAND_NONMEM        0x30
40 #define CAFE_NAND_ECC_RESULT    0x3C
41 #define CAFE_NAND_DMA_CTRL      0x40
42 #define CAFE_NAND_DMA_ADDR0     0x44
43 #define CAFE_NAND_DMA_ADDR1     0x48
44 #define CAFE_NAND_ECC_SYN01     0x50
45 #define CAFE_NAND_ECC_SYN23     0x54
46 #define CAFE_NAND_ECC_SYN45     0x58
47 #define CAFE_NAND_ECC_SYN67     0x5c
48 #define CAFE_NAND_READ_DATA     0x1000
49 #define CAFE_NAND_WRITE_DATA    0x2000
50
51 #define CAFE_GLOBAL_CTRL        0x3004
52 #define CAFE_GLOBAL_IRQ         0x3008
53 #define CAFE_GLOBAL_IRQ_MASK    0x300c
54 #define CAFE_NAND_RESET         0x3034
55
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT        (1<<19)
58
59 struct cafe_priv {
60         struct nand_chip nand;
61         struct pci_dev *pdev;
62         void __iomem *mmio;
63         struct rs_control *rs;
64         uint32_t ctl1;
65         uint32_t ctl2;
66         int datalen;
67         int nr_data;
68         int data_pos;
69         int page_addr;
70         bool usedma;
71         dma_addr_t dmaaddr;
72         unsigned char *dmabuf;
73 };
74
75 static int usedma = 1;
76 module_param(usedma, int, 0644);
77
78 static int skipbbt = 0;
79 module_param(skipbbt, int, 0644);
80
81 static int debug = 0;
82 module_param(debug, int, 0644);
83
84 static int regdebug = 0;
85 module_param(regdebug, int, 0644);
86
87 static int checkecc = 1;
88 module_param(checkecc, int, 0644);
89
90 static unsigned int numtimings;
91 static int timing[3];
92 module_param_array(timing, int, &numtimings, 0644);
93
94 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
102
103 static int cafe_device_ready(struct mtd_info *mtd)
104 {
105         struct nand_chip *chip = mtd_to_nand(mtd);
106         struct cafe_priv *cafe = nand_get_controller_data(chip);
107         int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
108         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109
110         cafe_writel(cafe, irqs, NAND_IRQ);
111
112         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
114                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
115
116         return result;
117 }
118
119
120 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
121 {
122         struct nand_chip *chip = mtd_to_nand(mtd);
123         struct cafe_priv *cafe = nand_get_controller_data(chip);
124
125         if (cafe->usedma)
126                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
127         else
128                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
129
130         cafe->datalen += len;
131
132         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
133                 len, cafe->datalen);
134 }
135
136 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
137 {
138         struct nand_chip *chip = mtd_to_nand(mtd);
139         struct cafe_priv *cafe = nand_get_controller_data(chip);
140
141         if (cafe->usedma)
142                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
143         else
144                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
145
146         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
147                   len, cafe->datalen);
148         cafe->datalen += len;
149 }
150
151 static uint8_t cafe_read_byte(struct mtd_info *mtd)
152 {
153         struct nand_chip *chip = mtd_to_nand(mtd);
154         struct cafe_priv *cafe = nand_get_controller_data(chip);
155         uint8_t d;
156
157         cafe_read_buf(mtd, &d, 1);
158         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
159
160         return d;
161 }
162
163 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
164                               int column, int page_addr)
165 {
166         struct nand_chip *chip = mtd_to_nand(mtd);
167         struct cafe_priv *cafe = nand_get_controller_data(chip);
168         int adrbytes = 0;
169         uint32_t ctl1;
170         uint32_t doneint = 0x80000000;
171
172         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
173                 command, column, page_addr);
174
175         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
176                 /* Second half of a command we already calculated */
177                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
178                 ctl1 = cafe->ctl1;
179                 cafe->ctl2 &= ~(1<<30);
180                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
181                           cafe->ctl1, cafe->nr_data);
182                 goto do_command;
183         }
184         /* Reset ECC engine */
185         cafe_writel(cafe, 0, NAND_CTRL2);
186
187         /* Emulate NAND_CMD_READOOB on large-page chips */
188         if (mtd->writesize > 512 &&
189             command == NAND_CMD_READOOB) {
190                 column += mtd->writesize;
191                 command = NAND_CMD_READ0;
192         }
193
194         /* FIXME: Do we need to send read command before sending data
195            for small-page chips, to position the buffer correctly? */
196
197         if (column != -1) {
198                 cafe_writel(cafe, column, NAND_ADDR1);
199                 adrbytes = 2;
200                 if (page_addr != -1)
201                         goto write_adr2;
202         } else if (page_addr != -1) {
203                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
204                 page_addr >>= 16;
205         write_adr2:
206                 cafe_writel(cafe, page_addr, NAND_ADDR2);
207                 adrbytes += 2;
208                 if (mtd->size > mtd->writesize << 16)
209                         adrbytes++;
210         }
211
212         cafe->data_pos = cafe->datalen = 0;
213
214         /* Set command valid bit, mask in the chip select bit  */
215         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
216
217         /* Set RD or WR bits as appropriate */
218         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
219                 ctl1 |= (1<<26); /* rd */
220                 /* Always 5 bytes, for now */
221                 cafe->datalen = 4;
222                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
223                 adrbytes = 1;
224         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
225                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
226                 ctl1 |= 1<<26; /* rd */
227                 /* For now, assume just read to end of page */
228                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
229         } else if (command == NAND_CMD_SEQIN)
230                 ctl1 |= 1<<25; /* wr */
231
232         /* Set number of address bytes */
233         if (adrbytes)
234                 ctl1 |= ((adrbytes-1)|8) << 27;
235
236         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
237                 /* Ignore the first command of a pair; the hardware
238                    deals with them both at once, later */
239                 cafe->ctl1 = ctl1;
240                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
241                           cafe->ctl1, cafe->datalen);
242                 return;
243         }
244         /* RNDOUT and READ0 commands need a following byte */
245         if (command == NAND_CMD_RNDOUT)
246                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
247         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
248                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
249
250  do_command:
251         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
252                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
253
254         /* NB: The datasheet lies -- we really should be subtracting 1 here */
255         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
256         cafe_writel(cafe, 0x90000000, NAND_IRQ);
257         if (cafe->usedma && (ctl1 & (3<<25))) {
258                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
259                 /* If WR or RD bits set, set up DMA */
260                 if (ctl1 & (1<<26)) {
261                         /* It's a read */
262                         dmactl |= (1<<29);
263                         /* ... so it's done when the DMA is done, not just
264                            the command. */
265                         doneint = 0x10000000;
266                 }
267                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
268         }
269         cafe->datalen = 0;
270
271         if (unlikely(regdebug)) {
272                 int i;
273                 printk("About to write command %08x to register 0\n", ctl1);
274                 for (i=4; i< 0x5c; i+=4)
275                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
276         }
277
278         cafe_writel(cafe, ctl1, NAND_CTRL1);
279         /* Apply this short delay always to ensure that we do wait tWB in
280          * any case on any machine. */
281         ndelay(100);
282
283         if (1) {
284                 int c;
285                 uint32_t irqs;
286
287                 for (c = 500000; c != 0; c--) {
288                         irqs = cafe_readl(cafe, NAND_IRQ);
289                         if (irqs & doneint)
290                                 break;
291                         udelay(1);
292                         if (!(c % 100000))
293                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
294                         cpu_relax();
295                 }
296                 cafe_writel(cafe, doneint, NAND_IRQ);
297                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
298                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
299         }
300
301         WARN_ON(cafe->ctl2 & (1<<30));
302
303         switch (command) {
304
305         case NAND_CMD_CACHEDPROG:
306         case NAND_CMD_PAGEPROG:
307         case NAND_CMD_ERASE1:
308         case NAND_CMD_ERASE2:
309         case NAND_CMD_SEQIN:
310         case NAND_CMD_RNDIN:
311         case NAND_CMD_STATUS:
312         case NAND_CMD_RNDOUT:
313                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314                 return;
315         }
316         nand_wait_ready(mtd);
317         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318 }
319
320 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321 {
322         struct nand_chip *chip = mtd_to_nand(mtd);
323         struct cafe_priv *cafe = nand_get_controller_data(chip);
324
325         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
326
327         /* Mask the appropriate bit into the stored value of ctl1
328            which will be used by cafe_nand_cmdfunc() */
329         if (chipnr)
330                 cafe->ctl1 |= CTRL1_CHIPSELECT;
331         else
332                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
333 }
334
335 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
336 {
337         struct mtd_info *mtd = id;
338         struct nand_chip *chip = mtd_to_nand(mtd);
339         struct cafe_priv *cafe = nand_get_controller_data(chip);
340         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
341         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
342         if (!irqs)
343                 return IRQ_NONE;
344
345         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
346         return IRQ_HANDLED;
347 }
348
349 static int cafe_nand_write_oob(struct mtd_info *mtd,
350                                struct nand_chip *chip, int page)
351 {
352         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
353                                  mtd->oobsize);
354 }
355
356 /* Don't use -- use nand_read_oob_std for now */
357 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
358                               int page)
359 {
360         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
361 }
362 /**
363  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
364  * @mtd:        mtd info structure
365  * @chip:       nand chip info structure
366  * @buf:        buffer to store read data
367  * @oob_required:       caller expects OOB data read to chip->oob_poi
368  *
369  * The hw generator calculates the error syndrome automatically. Therefore
370  * we need a special oob layout and handling.
371  */
372 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
373                                uint8_t *buf, int oob_required, int page)
374 {
375         struct cafe_priv *cafe = nand_get_controller_data(chip);
376         unsigned int max_bitflips = 0;
377
378         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
379                      cafe_readl(cafe, NAND_ECC_RESULT),
380                      cafe_readl(cafe, NAND_ECC_SYN01));
381
382         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
383         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
384
385         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
386                 unsigned short syn[8], pat[4];
387                 int pos[4];
388                 u8 *oob = chip->oob_poi;
389                 int i, n;
390
391                 for (i=0; i<8; i+=2) {
392                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
393
394                         syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
395                         syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
396                 }
397
398                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
399                                 pat);
400
401                 for (i = 0; i < n; i++) {
402                         int p = pos[i];
403
404                         /* The 12-bit symbols are mapped to bytes here */
405
406                         if (p > 1374) {
407                                 /* out of range */
408                                 n = -1374;
409                         } else if (p == 0) {
410                                 /* high four bits do not correspond to data */
411                                 if (pat[i] > 0xff)
412                                         n = -2048;
413                                 else
414                                         buf[0] ^= pat[i];
415                         } else if (p == 1365) {
416                                 buf[2047] ^= pat[i] >> 4;
417                                 oob[0] ^= pat[i] << 4;
418                         } else if (p > 1365) {
419                                 if ((p & 1) == 1) {
420                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
421                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
422                                 } else {
423                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
424                                         oob[3*p/2 - 2048] ^= pat[i];
425                                 }
426                         } else if ((p & 1) == 1) {
427                                 buf[3*p/2] ^= pat[i] >> 4;
428                                 buf[3*p/2 + 1] ^= pat[i] << 4;
429                         } else {
430                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
431                                 buf[3*p/2] ^= pat[i];
432                         }
433                 }
434
435                 if (n < 0) {
436                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
437                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
438                         for (i = 0; i < 0x5c; i += 4)
439                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
440                         mtd->ecc_stats.failed++;
441                 } else {
442                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
443                         mtd->ecc_stats.corrected += n;
444                         max_bitflips = max_t(unsigned int, max_bitflips, n);
445                 }
446         }
447
448         return max_bitflips;
449 }
450
451 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
452                               struct mtd_oob_region *oobregion)
453 {
454         struct nand_chip *chip = mtd_to_nand(mtd);
455
456         if (section)
457                 return -ERANGE;
458
459         oobregion->offset = 0;
460         oobregion->length = chip->ecc.total;
461
462         return 0;
463 }
464
465 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
466                                struct mtd_oob_region *oobregion)
467 {
468         struct nand_chip *chip = mtd_to_nand(mtd);
469
470         if (section)
471                 return -ERANGE;
472
473         oobregion->offset = chip->ecc.total;
474         oobregion->length = mtd->oobsize - chip->ecc.total;
475
476         return 0;
477 }
478
479 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
480         .ecc = cafe_ooblayout_ecc,
481         .free = cafe_ooblayout_free,
482 };
483
484 /* Ick. The BBT code really ought to be able to work this bit out
485    for itself from the above, at least for the 2KiB case */
486 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
487 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
488
489 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
490 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
491
492
493 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
494         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
495                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
496         .offs = 14,
497         .len = 4,
498         .veroffs = 18,
499         .maxblocks = 4,
500         .pattern = cafe_bbt_pattern_2048
501 };
502
503 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
504         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
505                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
506         .offs = 14,
507         .len = 4,
508         .veroffs = 18,
509         .maxblocks = 4,
510         .pattern = cafe_mirror_pattern_2048
511 };
512
513 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
514         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
515                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
516         .offs = 14,
517         .len = 1,
518         .veroffs = 15,
519         .maxblocks = 4,
520         .pattern = cafe_bbt_pattern_512
521 };
522
523 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
524         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
525                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
526         .offs = 14,
527         .len = 1,
528         .veroffs = 15,
529         .maxblocks = 4,
530         .pattern = cafe_mirror_pattern_512
531 };
532
533
534 static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
535                                           struct nand_chip *chip,
536                                           const uint8_t *buf, int oob_required,
537                                           int page)
538 {
539         struct cafe_priv *cafe = nand_get_controller_data(chip);
540
541         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
542         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
543
544         /* Set up ECC autogeneration */
545         cafe->ctl2 |= (1<<30);
546
547         return nand_prog_page_end_op(chip);
548 }
549
550 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
551 {
552         return 0;
553 }
554
555 /* F_2[X]/(X**6+X+1)  */
556 static unsigned short gf64_mul(u8 a, u8 b)
557 {
558         u8 c;
559         unsigned int i;
560
561         c = 0;
562         for (i = 0; i < 6; i++) {
563                 if (a & 1)
564                         c ^= b;
565                 a >>= 1;
566                 b <<= 1;
567                 if ((b & 0x40) != 0)
568                         b ^= 0x43;
569         }
570
571         return c;
572 }
573
574 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
575 static u16 gf4096_mul(u16 a, u16 b)
576 {
577         u8 ah, al, bh, bl, ch, cl;
578
579         ah = a >> 6;
580         al = a & 0x3f;
581         bh = b >> 6;
582         bl = b & 0x3f;
583
584         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
585         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
586
587         return (ch << 6) ^ cl;
588 }
589
590 static int cafe_mul(int x)
591 {
592         if (x == 0)
593                 return 1;
594         return gf4096_mul(x, 0xe01);
595 }
596
597 static int cafe_nand_attach_chip(struct nand_chip *chip)
598 {
599         struct mtd_info *mtd = nand_to_mtd(chip);
600         struct cafe_priv *cafe = nand_get_controller_data(chip);
601         int err = 0;
602
603         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
604                                           &cafe->dmaaddr, GFP_KERNEL);
605         if (!cafe->dmabuf)
606                 return -ENOMEM;
607
608         /* Set up DMA address */
609         cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
610         cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
611
612         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
613                      cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
614
615         /* Restore the DMA flag */
616         cafe->usedma = usedma;
617
618         cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
619         if (mtd->writesize == 2048)
620                 cafe->ctl2 |= BIT(29); /* 2KiB page size */
621
622         /* Set up ECC according to the type of chip we found */
623         mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
624         if (mtd->writesize == 2048) {
625                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
626                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
627         } else if (mtd->writesize == 512) {
628                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
629                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
630         } else {
631                 dev_warn(&cafe->pdev->dev,
632                          "Unexpected NAND flash writesize %d. Aborting\n",
633                          mtd->writesize);
634                 err = -ENOTSUPP;
635                 goto out_free_dma;
636         }
637
638         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
639         cafe->nand.ecc.size = mtd->writesize;
640         cafe->nand.ecc.bytes = 14;
641         cafe->nand.ecc.strength = 4;
642         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
643         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
644         cafe->nand.ecc.read_page = cafe_nand_read_page;
645         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
646
647         return 0;
648
649  out_free_dma:
650         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
651
652         return err;
653 }
654
655 static void cafe_nand_detach_chip(struct nand_chip *chip)
656 {
657         struct cafe_priv *cafe = nand_get_controller_data(chip);
658
659         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
660 }
661
662 static const struct nand_controller_ops cafe_nand_controller_ops = {
663         .attach_chip = cafe_nand_attach_chip,
664         .detach_chip = cafe_nand_detach_chip,
665 };
666
667 static int cafe_nand_probe(struct pci_dev *pdev,
668                                      const struct pci_device_id *ent)
669 {
670         struct mtd_info *mtd;
671         struct cafe_priv *cafe;
672         uint32_t ctrl;
673         int err = 0;
674
675         /* Very old versions shared the same PCI ident for all three
676            functions on the chip. Verify the class too... */
677         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
678                 return -ENODEV;
679
680         err = pci_enable_device(pdev);
681         if (err)
682                 return err;
683
684         pci_set_master(pdev);
685
686         cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
687         if (!cafe)
688                 return  -ENOMEM;
689
690         mtd = nand_to_mtd(&cafe->nand);
691         mtd->dev.parent = &pdev->dev;
692         nand_set_controller_data(&cafe->nand, cafe);
693
694         cafe->pdev = pdev;
695         cafe->mmio = pci_iomap(pdev, 0, 0);
696         if (!cafe->mmio) {
697                 dev_warn(&pdev->dev, "failed to iomap\n");
698                 err = -ENOMEM;
699                 goto out_free_mtd;
700         }
701
702         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
703         if (!cafe->rs) {
704                 err = -ENOMEM;
705                 goto out_ior;
706         }
707
708         cafe->nand.cmdfunc = cafe_nand_cmdfunc;
709         cafe->nand.dev_ready = cafe_device_ready;
710         cafe->nand.read_byte = cafe_read_byte;
711         cafe->nand.read_buf = cafe_read_buf;
712         cafe->nand.write_buf = cafe_write_buf;
713         cafe->nand.select_chip = cafe_select_chip;
714         cafe->nand.set_features = nand_get_set_features_notsupp;
715         cafe->nand.get_features = nand_get_set_features_notsupp;
716
717         cafe->nand.chip_delay = 0;
718
719         /* Enable the following for a flash based bad block table */
720         cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
721
722         if (skipbbt) {
723                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
724                 cafe->nand.block_bad = cafe_nand_block_bad;
725         }
726
727         if (numtimings && numtimings != 3) {
728                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
729         }
730
731         if (numtimings == 3) {
732                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
733                              timing[0], timing[1], timing[2]);
734         } else {
735                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
736                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
737                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
738
739                 if (timing[0] | timing[1] | timing[2]) {
740                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
741                                      timing[0], timing[1], timing[2]);
742                 } else {
743                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
744                         timing[0] = timing[1] = timing[2] = 0xffffffff;
745                 }
746         }
747
748         /* Start off by resetting the NAND controller completely */
749         cafe_writel(cafe, 1, NAND_RESET);
750         cafe_writel(cafe, 0, NAND_RESET);
751
752         cafe_writel(cafe, timing[0], NAND_TIMING1);
753         cafe_writel(cafe, timing[1], NAND_TIMING2);
754         cafe_writel(cafe, timing[2], NAND_TIMING3);
755
756         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
757         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
758                           "CAFE NAND", mtd);
759         if (err) {
760                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
761                 goto out_free_rs;
762         }
763
764         /* Disable master reset, enable NAND clock */
765         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
766         ctrl &= 0xffffeff0;
767         ctrl |= 0x00007000;
768         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
769         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
770         cafe_writel(cafe, 0, NAND_DMA_CTRL);
771
772         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
773         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
774
775         /* Enable NAND IRQ in global IRQ mask register */
776         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
777         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
778                 cafe_readl(cafe, GLOBAL_CTRL),
779                 cafe_readl(cafe, GLOBAL_IRQ_MASK));
780
781         /* Do not use the DMA during the NAND identification */
782         cafe->usedma = 0;
783
784         /* Scan to find existence of the device */
785         cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
786         err = nand_scan(&cafe->nand, 2);
787         if (err)
788                 goto out_irq;
789
790         pci_set_drvdata(pdev, mtd);
791
792         mtd->name = "cafe_nand";
793         err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
794         if (err)
795                 goto out_cleanup_nand;
796
797         goto out;
798
799  out_cleanup_nand:
800         nand_cleanup(&cafe->nand);
801  out_irq:
802         /* Disable NAND IRQ in global IRQ mask register */
803         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
804         free_irq(pdev->irq, mtd);
805  out_free_rs:
806         free_rs(cafe->rs);
807  out_ior:
808         pci_iounmap(pdev, cafe->mmio);
809  out_free_mtd:
810         kfree(cafe);
811  out:
812         return err;
813 }
814
815 static void cafe_nand_remove(struct pci_dev *pdev)
816 {
817         struct mtd_info *mtd = pci_get_drvdata(pdev);
818         struct nand_chip *chip = mtd_to_nand(mtd);
819         struct cafe_priv *cafe = nand_get_controller_data(chip);
820
821         /* Disable NAND IRQ in global IRQ mask register */
822         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
823         free_irq(pdev->irq, mtd);
824         nand_release(chip);
825         free_rs(cafe->rs);
826         pci_iounmap(pdev, cafe->mmio);
827         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
828         kfree(cafe);
829 }
830
831 static const struct pci_device_id cafe_nand_tbl[] = {
832         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
833           PCI_ANY_ID, PCI_ANY_ID },
834         { }
835 };
836
837 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
838
839 static int cafe_nand_resume(struct pci_dev *pdev)
840 {
841         uint32_t ctrl;
842         struct mtd_info *mtd = pci_get_drvdata(pdev);
843         struct nand_chip *chip = mtd_to_nand(mtd);
844         struct cafe_priv *cafe = nand_get_controller_data(chip);
845
846        /* Start off by resetting the NAND controller completely */
847         cafe_writel(cafe, 1, NAND_RESET);
848         cafe_writel(cafe, 0, NAND_RESET);
849         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
850
851         /* Restore timing configuration */
852         cafe_writel(cafe, timing[0], NAND_TIMING1);
853         cafe_writel(cafe, timing[1], NAND_TIMING2);
854         cafe_writel(cafe, timing[2], NAND_TIMING3);
855
856         /* Disable master reset, enable NAND clock */
857         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
858         ctrl &= 0xffffeff0;
859         ctrl |= 0x00007000;
860         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
861         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
862         cafe_writel(cafe, 0, NAND_DMA_CTRL);
863         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
864         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
865
866         /* Set up DMA address */
867         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
868         if (sizeof(cafe->dmaaddr) > 4)
869         /* Shift in two parts to shut the compiler up */
870                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
871         else
872                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
873
874         /* Enable NAND IRQ in global IRQ mask register */
875         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
876         return 0;
877 }
878
879 static struct pci_driver cafe_nand_pci_driver = {
880         .name = "CAFÉ NAND",
881         .id_table = cafe_nand_tbl,
882         .probe = cafe_nand_probe,
883         .remove = cafe_nand_remove,
884         .resume = cafe_nand_resume,
885 };
886
887 module_pci_driver(cafe_nand_pci_driver);
888
889 MODULE_LICENSE("GPL");
890 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
891 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");