GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / mtd / nand / raw / nand_hynix.c
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/mtd/rawnand.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
21
22 #define NAND_HYNIX_CMD_SET_PARAMS       0x36
23 #define NAND_HYNIX_CMD_APPLY_PARAMS     0x16
24
25 #define NAND_HYNIX_1XNM_RR_REPEAT       8
26
27 /**
28  * struct hynix_read_retry - read-retry data
29  * @nregs: number of register to set when applying a new read-retry mode
30  * @regs: register offsets (NAND chip dependent)
31  * @values: array of values to set in registers. The array size is equal to
32  *          (nregs * nmodes)
33  */
34 struct hynix_read_retry {
35         int nregs;
36         const u8 *regs;
37         u8 values[0];
38 };
39
40 /**
41  * struct hynix_nand - private Hynix NAND struct
42  * @nand_technology: manufacturing process expressed in picometer
43  * @read_retry: read-retry information
44  */
45 struct hynix_nand {
46         const struct hynix_read_retry *read_retry;
47 };
48
49 /**
50  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
51  *                               area
52  * @nregs: number of hynix private registers to set before reading the reading
53  *         the OTP area
54  * @regs: registers that should be configured
55  * @values: values that should be set in regs
56  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
57  *        chip
58  * @size: size of the read-retry OTP section
59  */
60 struct hynix_read_retry_otp {
61         int nregs;
62         const u8 *regs;
63         const u8 *values;
64         int page;
65         int size;
66 };
67
68 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
69 {
70         u8 jedecid[5] = { };
71         int ret;
72
73         ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
74         if (ret)
75                 return false;
76
77         return !strncmp("JEDEC", jedecid, sizeof(jedecid));
78 }
79
80 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
81 {
82         struct mtd_info *mtd = nand_to_mtd(chip);
83
84         if (chip->exec_op) {
85                 struct nand_op_instr instrs[] = {
86                         NAND_OP_CMD(cmd, 0),
87                 };
88                 struct nand_operation op = NAND_OPERATION(instrs);
89
90                 return nand_exec_op(chip, &op);
91         }
92
93         chip->cmdfunc(mtd, cmd, -1, -1);
94
95         return 0;
96 }
97
98 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
99 {
100         struct mtd_info *mtd = nand_to_mtd(chip);
101         u16 column = ((u16)addr << 8) | addr;
102
103         if (chip->exec_op) {
104                 struct nand_op_instr instrs[] = {
105                         NAND_OP_ADDR(1, &addr, 0),
106                         NAND_OP_8BIT_DATA_OUT(1, &val, 0),
107                 };
108                 struct nand_operation op = NAND_OPERATION(instrs);
109
110                 return nand_exec_op(chip, &op);
111         }
112
113         chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
114         chip->write_byte(mtd, val);
115
116         return 0;
117 }
118
119 static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
120 {
121         struct nand_chip *chip = mtd_to_nand(mtd);
122         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
123         const u8 *values;
124         int i, ret;
125
126         values = hynix->read_retry->values +
127                  (retry_mode * hynix->read_retry->nregs);
128
129         /* Enter 'Set Hynix Parameters' mode */
130         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
131         if (ret)
132                 return ret;
133
134         /*
135          * Configure the NAND in the requested read-retry mode.
136          * This is done by setting pre-defined values in internal NAND
137          * registers.
138          *
139          * The set of registers is NAND specific, and the values are either
140          * predefined or extracted from an OTP area on the NAND (values are
141          * probably tweaked at production in this case).
142          */
143         for (i = 0; i < hynix->read_retry->nregs; i++) {
144                 ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
145                                               values[i]);
146                 if (ret)
147                         return ret;
148         }
149
150         /* Apply the new settings. */
151         return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
152 }
153
154 /**
155  * hynix_get_majority - get the value that is occurring the most in a given
156  *                      set of values
157  * @in: the array of values to test
158  * @repeat: the size of the in array
159  * @out: pointer used to store the output value
160  *
161  * This function implements the 'majority check' logic that is supposed to
162  * overcome the unreliability of MLC NANDs when reading the OTP area storing
163  * the read-retry parameters.
164  *
165  * It's based on a pretty simple assumption: if we repeat the same value
166  * several times and then take the one that is occurring the most, we should
167  * find the correct value.
168  * Let's hope this dummy algorithm prevents us from losing the read-retry
169  * parameters.
170  */
171 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
172 {
173         int i, j, half = repeat / 2;
174
175         /*
176          * We only test the first half of the in array because we must ensure
177          * that the value is at least occurring repeat / 2 times.
178          *
179          * This loop is suboptimal since we may count the occurrences of the
180          * same value several time, but we are doing that on small sets, which
181          * makes it acceptable.
182          */
183         for (i = 0; i < half; i++) {
184                 int cnt = 0;
185                 u8 val = in[i];
186
187                 /* Count all values that are matching the one at index i. */
188                 for (j = i + 1; j < repeat; j++) {
189                         if (in[j] == val)
190                                 cnt++;
191                 }
192
193                 /* We found a value occurring more than repeat / 2. */
194                 if (cnt > half) {
195                         *out = val;
196                         return 0;
197                 }
198         }
199
200         return -EIO;
201 }
202
203 static int hynix_read_rr_otp(struct nand_chip *chip,
204                              const struct hynix_read_retry_otp *info,
205                              void *buf)
206 {
207         int i, ret;
208
209         ret = nand_reset_op(chip);
210         if (ret)
211                 return ret;
212
213         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
214         if (ret)
215                 return ret;
216
217         for (i = 0; i < info->nregs; i++) {
218                 ret = hynix_nand_reg_write_op(chip, info->regs[i],
219                                               info->values[i]);
220                 if (ret)
221                         return ret;
222         }
223
224         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
225         if (ret)
226                 return ret;
227
228         /* Sequence to enter OTP mode? */
229         ret = hynix_nand_cmd_op(chip, 0x17);
230         if (ret)
231                 return ret;
232
233         ret = hynix_nand_cmd_op(chip, 0x4);
234         if (ret)
235                 return ret;
236
237         ret = hynix_nand_cmd_op(chip, 0x19);
238         if (ret)
239                 return ret;
240
241         /* Now read the page */
242         ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
243         if (ret)
244                 return ret;
245
246         /* Put everything back to normal */
247         ret = nand_reset_op(chip);
248         if (ret)
249                 return ret;
250
251         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
252         if (ret)
253                 return ret;
254
255         ret = hynix_nand_reg_write_op(chip, 0x38, 0);
256         if (ret)
257                 return ret;
258
259         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
260         if (ret)
261                 return ret;
262
263         return nand_read_page_op(chip, 0, 0, NULL, 0);
264 }
265
266 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS                           0
267 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS                       8
268 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)            \
269         (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
270
271 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
272                                    int mode, int reg, bool inv, u8 *val)
273 {
274         u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
275         int val_offs = (mode * nregs) + reg;
276         int set_size = nmodes * nregs;
277         int i, ret;
278
279         for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
280                 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
281
282                 tmp[i] = buf[val_offs + set_offs];
283         }
284
285         ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
286         if (ret)
287                 return ret;
288
289         if (inv)
290                 *val = ~*val;
291
292         return 0;
293 }
294
295 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
296         0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
297 };
298
299 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
300                                   const struct hynix_read_retry_otp *info)
301 {
302         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
303         struct hynix_read_retry *rr = NULL;
304         int ret, i, j;
305         u8 nregs, nmodes;
306         u8 *buf;
307
308         buf = kmalloc(info->size, GFP_KERNEL);
309         if (!buf)
310                 return -ENOMEM;
311
312         ret = hynix_read_rr_otp(chip, info, buf);
313         if (ret)
314                 goto out;
315
316         ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
317                                  &nmodes);
318         if (ret)
319                 goto out;
320
321         ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
322                                  NAND_HYNIX_1XNM_RR_REPEAT,
323                                  &nregs);
324         if (ret)
325                 goto out;
326
327         rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
328         if (!rr) {
329                 ret = -ENOMEM;
330                 goto out;
331         }
332
333         for (i = 0; i < nmodes; i++) {
334                 for (j = 0; j < nregs; j++) {
335                         u8 *val = rr->values + (i * nregs);
336
337                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
338                                                       false, val);
339                         if (!ret)
340                                 continue;
341
342                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
343                                                       true, val);
344                         if (ret)
345                                 goto out;
346                 }
347         }
348
349         rr->nregs = nregs;
350         rr->regs = hynix_1xnm_mlc_read_retry_regs;
351         hynix->read_retry = rr;
352         chip->setup_read_retry = hynix_nand_setup_read_retry;
353         chip->read_retries = nmodes;
354
355 out:
356         kfree(buf);
357
358         if (ret)
359                 kfree(rr);
360
361         return ret;
362 }
363
364 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
365 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
366
367 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
368         {
369                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
370                 .regs = hynix_mlc_1xnm_rr_otp_regs,
371                 .values = hynix_mlc_1xnm_rr_otp_values,
372                 .page = 0x21f,
373                 .size = 784
374         },
375         {
376                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
377                 .regs = hynix_mlc_1xnm_rr_otp_regs,
378                 .values = hynix_mlc_1xnm_rr_otp_values,
379                 .page = 0x200,
380                 .size = 528,
381         },
382 };
383
384 static int hynix_nand_rr_init(struct nand_chip *chip)
385 {
386         int i, ret = 0;
387         bool valid_jedecid;
388
389         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
390
391         /*
392          * We only support read-retry for 1xnm NANDs, and those NANDs all
393          * expose a valid JEDEC ID.
394          */
395         if (valid_jedecid) {
396                 u8 nand_tech = chip->id.data[5] >> 4;
397
398                 /* 1xnm technology */
399                 if (nand_tech == 4) {
400                         for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
401                              i++) {
402                                 /*
403                                  * FIXME: Hynix recommend to copy the
404                                  * read-retry OTP area into a normal page.
405                                  */
406                                 ret = hynix_mlc_1xnm_rr_init(chip,
407                                                 hynix_mlc_1xnm_rr_otps);
408                                 if (!ret)
409                                         break;
410                         }
411                 }
412         }
413
414         if (ret)
415                 pr_warn("failed to initialize read-retry infrastructure");
416
417         return 0;
418 }
419
420 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
421                                        bool valid_jedecid)
422 {
423         struct mtd_info *mtd = nand_to_mtd(chip);
424         u8 oobsize;
425
426         oobsize = ((chip->id.data[3] >> 2) & 0x3) |
427                   ((chip->id.data[3] >> 4) & 0x4);
428
429         if (valid_jedecid) {
430                 switch (oobsize) {
431                 case 0:
432                         mtd->oobsize = 2048;
433                         break;
434                 case 1:
435                         mtd->oobsize = 1664;
436                         break;
437                 case 2:
438                         mtd->oobsize = 1024;
439                         break;
440                 case 3:
441                         mtd->oobsize = 640;
442                         break;
443                 default:
444                         /*
445                          * We should never reach this case, but if that
446                          * happens, this probably means Hynix decided to use
447                          * a different extended ID format, and we should find
448                          * a way to support it.
449                          */
450                         WARN(1, "Invalid OOB size");
451                         break;
452                 }
453         } else {
454                 switch (oobsize) {
455                 case 0:
456                         mtd->oobsize = 128;
457                         break;
458                 case 1:
459                         mtd->oobsize = 224;
460                         break;
461                 case 2:
462                         mtd->oobsize = 448;
463                         break;
464                 case 3:
465                         mtd->oobsize = 64;
466                         break;
467                 case 4:
468                         mtd->oobsize = 32;
469                         break;
470                 case 5:
471                         mtd->oobsize = 16;
472                         break;
473                 case 6:
474                         mtd->oobsize = 640;
475                         break;
476                 default:
477                         /*
478                          * We should never reach this case, but if that
479                          * happens, this probably means Hynix decided to use
480                          * a different extended ID format, and we should find
481                          * a way to support it.
482                          */
483                         WARN(1, "Invalid OOB size");
484                         break;
485                 }
486
487                 /*
488                  * The datasheet of H27UCG8T2BTR mentions that the "Redundant
489                  * Area Size" is encoded "per 8KB" (page size). This chip uses
490                  * a page size of 16KiB. The datasheet mentions an OOB size of
491                  * 1.280 bytes, but the OOB size encoded in the ID bytes (using
492                  * the existing logic above) is 640 bytes.
493                  * Update the OOB size for this chip by taking the value
494                  * determined above and scaling it to the actual page size (so
495                  * the actual OOB size for this chip is: 640 * 16k / 8k).
496                  */
497                 if (chip->id.data[1] == 0xde)
498                         mtd->oobsize *= mtd->writesize / SZ_8K;
499         }
500 }
501
502 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
503                                                 bool valid_jedecid)
504 {
505         u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
506
507         if (valid_jedecid) {
508                 /* Reference: H27UCG8T2E datasheet */
509                 chip->ecc_step_ds = 1024;
510
511                 switch (ecc_level) {
512                 case 0:
513                         chip->ecc_step_ds = 0;
514                         chip->ecc_strength_ds = 0;
515                         break;
516                 case 1:
517                         chip->ecc_strength_ds = 4;
518                         break;
519                 case 2:
520                         chip->ecc_strength_ds = 24;
521                         break;
522                 case 3:
523                         chip->ecc_strength_ds = 32;
524                         break;
525                 case 4:
526                         chip->ecc_strength_ds = 40;
527                         break;
528                 case 5:
529                         chip->ecc_strength_ds = 50;
530                         break;
531                 case 6:
532                         chip->ecc_strength_ds = 60;
533                         break;
534                 default:
535                         /*
536                          * We should never reach this case, but if that
537                          * happens, this probably means Hynix decided to use
538                          * a different extended ID format, and we should find
539                          * a way to support it.
540                          */
541                         WARN(1, "Invalid ECC requirements");
542                 }
543         } else {
544                 /*
545                  * The ECC requirements field meaning depends on the
546                  * NAND technology.
547                  */
548                 u8 nand_tech = chip->id.data[5] & 0x7;
549
550                 if (nand_tech < 3) {
551                         /* > 26nm, reference: H27UBG8T2A datasheet */
552                         if (ecc_level < 5) {
553                                 chip->ecc_step_ds = 512;
554                                 chip->ecc_strength_ds = 1 << ecc_level;
555                         } else if (ecc_level < 7) {
556                                 if (ecc_level == 5)
557                                         chip->ecc_step_ds = 2048;
558                                 else
559                                         chip->ecc_step_ds = 1024;
560                                 chip->ecc_strength_ds = 24;
561                         } else {
562                                 /*
563                                  * We should never reach this case, but if that
564                                  * happens, this probably means Hynix decided
565                                  * to use a different extended ID format, and
566                                  * we should find a way to support it.
567                                  */
568                                 WARN(1, "Invalid ECC requirements");
569                         }
570                 } else {
571                         /* <= 26nm, reference: H27UBG8T2B datasheet */
572                         if (!ecc_level) {
573                                 chip->ecc_step_ds = 0;
574                                 chip->ecc_strength_ds = 0;
575                         } else if (ecc_level < 5) {
576                                 chip->ecc_step_ds = 512;
577                                 chip->ecc_strength_ds = 1 << (ecc_level - 1);
578                         } else {
579                                 chip->ecc_step_ds = 1024;
580                                 chip->ecc_strength_ds = 24 +
581                                                         (8 * (ecc_level - 5));
582                         }
583                 }
584         }
585 }
586
587 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
588                                                        bool valid_jedecid)
589 {
590         u8 nand_tech;
591
592         /* We need scrambling on all TLC NANDs*/
593         if (chip->bits_per_cell > 2)
594                 chip->options |= NAND_NEED_SCRAMBLING;
595
596         /* And on MLC NANDs with sub-3xnm process */
597         if (valid_jedecid) {
598                 nand_tech = chip->id.data[5] >> 4;
599
600                 /* < 3xnm */
601                 if (nand_tech > 0)
602                         chip->options |= NAND_NEED_SCRAMBLING;
603         } else {
604                 nand_tech = chip->id.data[5] & 0x7;
605
606                 /* < 32nm */
607                 if (nand_tech > 2)
608                         chip->options |= NAND_NEED_SCRAMBLING;
609         }
610 }
611
612 static void hynix_nand_decode_id(struct nand_chip *chip)
613 {
614         struct mtd_info *mtd = nand_to_mtd(chip);
615         bool valid_jedecid;
616         u8 tmp;
617
618         /*
619          * Exclude all SLC NANDs from this advanced detection scheme.
620          * According to the ranges defined in several datasheets, it might
621          * appear that even SLC NANDs could fall in this extended ID scheme.
622          * If that the case rework the test to let SLC NANDs go through the
623          * detection process.
624          */
625         if (chip->id.len < 6 || nand_is_slc(chip)) {
626                 nand_decode_ext_id(chip);
627                 return;
628         }
629
630         /* Extract pagesize */
631         mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
632
633         tmp = (chip->id.data[3] >> 4) & 0x3;
634         /*
635          * When bit7 is set that means we start counting at 1MiB, otherwise
636          * we start counting at 128KiB and shift this value the content of
637          * ID[3][4:5].
638          * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
639          * this case the erasesize is set to 768KiB.
640          */
641         if (chip->id.data[3] & 0x80)
642                 mtd->erasesize = SZ_1M << tmp;
643         else if (tmp == 3)
644                 mtd->erasesize = SZ_512K + SZ_256K;
645         else
646                 mtd->erasesize = SZ_128K << tmp;
647
648         /*
649          * Modern Toggle DDR NANDs have a valid JEDECID even though they are
650          * not exposing a valid JEDEC parameter table.
651          * These NANDs use a different NAND ID scheme.
652          */
653         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
654
655         hynix_nand_extract_oobsize(chip, valid_jedecid);
656         hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
657         hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
658 }
659
660 static void hynix_nand_cleanup(struct nand_chip *chip)
661 {
662         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
663
664         if (!hynix)
665                 return;
666
667         kfree(hynix->read_retry);
668         kfree(hynix);
669         nand_set_manufacturer_data(chip, NULL);
670 }
671
672 static int hynix_nand_init(struct nand_chip *chip)
673 {
674         struct hynix_nand *hynix;
675         int ret;
676
677         if (!nand_is_slc(chip))
678                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
679         else
680                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
681
682         hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
683         if (!hynix)
684                 return -ENOMEM;
685
686         nand_set_manufacturer_data(chip, hynix);
687
688         ret = hynix_nand_rr_init(chip);
689         if (ret)
690                 hynix_nand_cleanup(chip);
691
692         return ret;
693 }
694
695 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
696         .detect = hynix_nand_decode_id,
697         .init = hynix_nand_init,
698         .cleanup = hynix_nand_cleanup,
699 };