GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / mtd / nand / raw / qcom_nandc.c
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 #include <linux/clk.h>
14 #include <linux/slab.h>
15 #include <linux/bitops.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/module.h>
19 #include <linux/mtd/rawnand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/delay.h>
24 #include <linux/dma/qcom_bam_dma.h>
25
26 /* NANDc reg offsets */
27 #define NAND_FLASH_CMD                  0x00
28 #define NAND_ADDR0                      0x04
29 #define NAND_ADDR1                      0x08
30 #define NAND_FLASH_CHIP_SELECT          0x0c
31 #define NAND_EXEC_CMD                   0x10
32 #define NAND_FLASH_STATUS               0x14
33 #define NAND_BUFFER_STATUS              0x18
34 #define NAND_DEV0_CFG0                  0x20
35 #define NAND_DEV0_CFG1                  0x24
36 #define NAND_DEV0_ECC_CFG               0x28
37 #define NAND_DEV1_ECC_CFG               0x2c
38 #define NAND_DEV1_CFG0                  0x30
39 #define NAND_DEV1_CFG1                  0x34
40 #define NAND_READ_ID                    0x40
41 #define NAND_READ_STATUS                0x44
42 #define NAND_DEV_CMD0                   0xa0
43 #define NAND_DEV_CMD1                   0xa4
44 #define NAND_DEV_CMD2                   0xa8
45 #define NAND_DEV_CMD_VLD                0xac
46 #define SFLASHC_BURST_CFG               0xe0
47 #define NAND_ERASED_CW_DETECT_CFG       0xe8
48 #define NAND_ERASED_CW_DETECT_STATUS    0xec
49 #define NAND_EBI2_ECC_BUF_CFG           0xf0
50 #define FLASH_BUF_ACC                   0x100
51
52 #define NAND_CTRL                       0xf00
53 #define NAND_VERSION                    0xf08
54 #define NAND_READ_LOCATION_0            0xf20
55 #define NAND_READ_LOCATION_1            0xf24
56 #define NAND_READ_LOCATION_2            0xf28
57 #define NAND_READ_LOCATION_3            0xf2c
58
59 /* dummy register offsets, used by write_reg_dma */
60 #define NAND_DEV_CMD1_RESTORE           0xdead
61 #define NAND_DEV_CMD_VLD_RESTORE        0xbeef
62
63 /* NAND_FLASH_CMD bits */
64 #define PAGE_ACC                        BIT(4)
65 #define LAST_PAGE                       BIT(5)
66
67 /* NAND_FLASH_CHIP_SELECT bits */
68 #define NAND_DEV_SEL                    0
69 #define DM_EN                           BIT(2)
70
71 /* NAND_FLASH_STATUS bits */
72 #define FS_OP_ERR                       BIT(4)
73 #define FS_READY_BSY_N                  BIT(5)
74 #define FS_MPU_ERR                      BIT(8)
75 #define FS_DEVICE_STS_ERR               BIT(16)
76 #define FS_DEVICE_WP                    BIT(23)
77
78 /* NAND_BUFFER_STATUS bits */
79 #define BS_UNCORRECTABLE_BIT            BIT(8)
80 #define BS_CORRECTABLE_ERR_MSK          0x1f
81
82 /* NAND_DEVn_CFG0 bits */
83 #define DISABLE_STATUS_AFTER_WRITE      4
84 #define CW_PER_PAGE                     6
85 #define UD_SIZE_BYTES                   9
86 #define ECC_PARITY_SIZE_BYTES_RS        19
87 #define SPARE_SIZE_BYTES                23
88 #define NUM_ADDR_CYCLES                 27
89 #define STATUS_BFR_READ                 30
90 #define SET_RD_MODE_AFTER_STATUS        31
91
92 /* NAND_DEVn_CFG0 bits */
93 #define DEV0_CFG1_ECC_DISABLE           0
94 #define WIDE_FLASH                      1
95 #define NAND_RECOVERY_CYCLES            2
96 #define CS_ACTIVE_BSY                   5
97 #define BAD_BLOCK_BYTE_NUM              6
98 #define BAD_BLOCK_IN_SPARE_AREA         16
99 #define WR_RD_BSY_GAP                   17
100 #define ENABLE_BCH_ECC                  27
101
102 /* NAND_DEV0_ECC_CFG bits */
103 #define ECC_CFG_ECC_DISABLE             0
104 #define ECC_SW_RESET                    1
105 #define ECC_MODE                        4
106 #define ECC_PARITY_SIZE_BYTES_BCH       8
107 #define ECC_NUM_DATA_BYTES              16
108 #define ECC_FORCE_CLK_OPEN              30
109
110 /* NAND_DEV_CMD1 bits */
111 #define READ_ADDR                       0
112
113 /* NAND_DEV_CMD_VLD bits */
114 #define READ_START_VLD                  BIT(0)
115 #define READ_STOP_VLD                   BIT(1)
116 #define WRITE_START_VLD                 BIT(2)
117 #define ERASE_START_VLD                 BIT(3)
118 #define SEQ_READ_START_VLD              BIT(4)
119
120 /* NAND_EBI2_ECC_BUF_CFG bits */
121 #define NUM_STEPS                       0
122
123 /* NAND_ERASED_CW_DETECT_CFG bits */
124 #define ERASED_CW_ECC_MASK              1
125 #define AUTO_DETECT_RES                 0
126 #define MASK_ECC                        (1 << ERASED_CW_ECC_MASK)
127 #define RESET_ERASED_DET                (1 << AUTO_DETECT_RES)
128 #define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
129 #define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
130 #define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
131
132 /* NAND_ERASED_CW_DETECT_STATUS bits */
133 #define PAGE_ALL_ERASED                 BIT(7)
134 #define CODEWORD_ALL_ERASED             BIT(6)
135 #define PAGE_ERASED                     BIT(5)
136 #define CODEWORD_ERASED                 BIT(4)
137 #define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
138 #define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139
140 /* NAND_READ_LOCATION_n bits */
141 #define READ_LOCATION_OFFSET            0
142 #define READ_LOCATION_SIZE              16
143 #define READ_LOCATION_LAST              31
144
145 /* Version Mask */
146 #define NAND_VERSION_MAJOR_MASK         0xf0000000
147 #define NAND_VERSION_MAJOR_SHIFT        28
148 #define NAND_VERSION_MINOR_MASK         0x0fff0000
149 #define NAND_VERSION_MINOR_SHIFT        16
150
151 /* NAND OP_CMDs */
152 #define OP_PAGE_READ                    0x2
153 #define OP_PAGE_READ_WITH_ECC           0x3
154 #define OP_PAGE_READ_WITH_ECC_SPARE     0x4
155 #define OP_PROGRAM_PAGE                 0x6
156 #define OP_PAGE_PROGRAM_WITH_ECC        0x7
157 #define OP_PROGRAM_PAGE_SPARE           0x9
158 #define OP_BLOCK_ERASE                  0xa
159 #define OP_FETCH_ID                     0xb
160 #define OP_RESET_DEVICE                 0xd
161
162 /* Default Value for NAND_DEV_CMD_VLD */
163 #define NAND_DEV_CMD_VLD_VAL            (READ_START_VLD | WRITE_START_VLD | \
164                                          ERASE_START_VLD | SEQ_READ_START_VLD)
165
166 /* NAND_CTRL bits */
167 #define BAM_MODE_EN                     BIT(0)
168
169 /*
170  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
171  * the driver calls the chunks 'step' or 'codeword' interchangeably
172  */
173 #define NANDC_STEP_SIZE                 512
174
175 /*
176  * the largest page size we support is 8K, this will have 16 steps/codewords
177  * of 512 bytes each
178  */
179 #define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
180
181 /* we read at most 3 registers per codeword scan */
182 #define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
183
184 /* ECC modes supported by the controller */
185 #define ECC_NONE        BIT(0)
186 #define ECC_RS_4BIT     BIT(1)
187 #define ECC_BCH_4BIT    BIT(2)
188 #define ECC_BCH_8BIT    BIT(3)
189
190 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)   \
191 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,                  \
192               ((offset) << READ_LOCATION_OFFSET) |              \
193               ((size) << READ_LOCATION_SIZE) |                  \
194               ((is_last) << READ_LOCATION_LAST))
195
196 /*
197  * Returns the actual register address for all NAND_DEV_ registers
198  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
199  */
200 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
201
202 /* Returns the NAND register physical address */
203 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
204
205 /* Returns the dma address for reg read buffer */
206 #define reg_buf_dma_addr(chip, vaddr) \
207         ((chip)->reg_read_dma + \
208         ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
209
210 #define QPIC_PER_CW_CMD_ELEMENTS        32
211 #define QPIC_PER_CW_CMD_SGL             32
212 #define QPIC_PER_CW_DATA_SGL            8
213
214 #define QPIC_NAND_COMPLETION_TIMEOUT    msecs_to_jiffies(2000)
215
216 /*
217  * Flags used in DMA descriptor preparation helper functions
218  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
219  */
220 /* Don't set the EOT in current tx BAM sgl */
221 #define NAND_BAM_NO_EOT                 BIT(0)
222 /* Set the NWD flag in current BAM sgl */
223 #define NAND_BAM_NWD                    BIT(1)
224 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
225 #define NAND_BAM_NEXT_SGL               BIT(2)
226 /*
227  * Erased codeword status is being used two times in single transfer so this
228  * flag will determine the current value of erased codeword status register
229  */
230 #define NAND_ERASED_CW_SET              BIT(4)
231
232 /*
233  * This data type corresponds to the BAM transaction which will be used for all
234  * NAND transfers.
235  * @bam_ce - the array of BAM command elements
236  * @cmd_sgl - sgl for NAND BAM command pipe
237  * @data_sgl - sgl for NAND BAM consumer/producer pipe
238  * @bam_ce_pos - the index in bam_ce which is available for next sgl
239  * @bam_ce_start - the index in bam_ce which marks the start position ce
240  *                 for current sgl. It will be used for size calculation
241  *                 for current sgl
242  * @cmd_sgl_pos - current index in command sgl.
243  * @cmd_sgl_start - start index in command sgl.
244  * @tx_sgl_pos - current index in data sgl for tx.
245  * @tx_sgl_start - start index in data sgl for tx.
246  * @rx_sgl_pos - current index in data sgl for rx.
247  * @rx_sgl_start - start index in data sgl for rx.
248  * @wait_second_completion - wait for second DMA desc completion before making
249  *                           the NAND transfer completion.
250  * @txn_done - completion for NAND transfer.
251  * @last_data_desc - last DMA desc in data channel (tx/rx).
252  * @last_cmd_desc - last DMA desc in command channel.
253  */
254 struct bam_transaction {
255         struct bam_cmd_element *bam_ce;
256         struct scatterlist *cmd_sgl;
257         struct scatterlist *data_sgl;
258         u32 bam_ce_pos;
259         u32 bam_ce_start;
260         u32 cmd_sgl_pos;
261         u32 cmd_sgl_start;
262         u32 tx_sgl_pos;
263         u32 tx_sgl_start;
264         u32 rx_sgl_pos;
265         u32 rx_sgl_start;
266         bool wait_second_completion;
267         struct completion txn_done;
268         struct dma_async_tx_descriptor *last_data_desc;
269         struct dma_async_tx_descriptor *last_cmd_desc;
270 };
271
272 /*
273  * This data type corresponds to the nand dma descriptor
274  * @list - list for desc_info
275  * @dir - DMA transfer direction
276  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
277  *            ADM
278  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
279  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
280  * @dma_desc - low level DMA engine descriptor
281  */
282 struct desc_info {
283         struct list_head node;
284
285         enum dma_data_direction dir;
286         union {
287                 struct scatterlist adm_sgl;
288                 struct {
289                         struct scatterlist *bam_sgl;
290                         int sgl_cnt;
291                 };
292         };
293         struct dma_async_tx_descriptor *dma_desc;
294 };
295
296 /*
297  * holds the current register values that we want to write. acts as a contiguous
298  * chunk of memory which we use to write the controller registers through DMA.
299  */
300 struct nandc_regs {
301         __le32 cmd;
302         __le32 addr0;
303         __le32 addr1;
304         __le32 chip_sel;
305         __le32 exec;
306
307         __le32 cfg0;
308         __le32 cfg1;
309         __le32 ecc_bch_cfg;
310
311         __le32 clrflashstatus;
312         __le32 clrreadstatus;
313
314         __le32 cmd1;
315         __le32 vld;
316
317         __le32 orig_cmd1;
318         __le32 orig_vld;
319
320         __le32 ecc_buf_cfg;
321         __le32 read_location0;
322         __le32 read_location1;
323         __le32 read_location2;
324         __le32 read_location3;
325
326         __le32 erased_cw_detect_cfg_clr;
327         __le32 erased_cw_detect_cfg_set;
328 };
329
330 /*
331  * NAND controller data struct
332  *
333  * @controller:                 base controller structure
334  * @host_list:                  list containing all the chips attached to the
335  *                              controller
336  * @dev:                        parent device
337  * @base:                       MMIO base
338  * @base_phys:                  physical base address of controller registers
339  * @base_dma:                   dma base address of controller registers
340  * @core_clk:                   controller clock
341  * @aon_clk:                    another controller clock
342  *
343  * @chan:                       dma channel
344  * @cmd_crci:                   ADM DMA CRCI for command flow control
345  * @data_crci:                  ADM DMA CRCI for data flow control
346  * @desc_list:                  DMA descriptor list (list of desc_infos)
347  *
348  * @data_buffer:                our local DMA buffer for page read/writes,
349  *                              used when we can't use the buffer provided
350  *                              by upper layers directly
351  * @buf_size/count/start:       markers for chip->read_buf/write_buf functions
352  * @reg_read_buf:               local buffer for reading back registers via DMA
353  * @reg_read_dma:               contains dma address for register read buffer
354  * @reg_read_pos:               marker for data read in reg_read_buf
355  *
356  * @regs:                       a contiguous chunk of memory for DMA register
357  *                              writes. contains the register values to be
358  *                              written to controller
359  * @cmd1/vld:                   some fixed controller register values
360  * @props:                      properties of current NAND controller,
361  *                              initialized via DT match data
362  * @max_cwperpage:              maximum QPIC codewords required. calculated
363  *                              from all connected NAND devices pagesize
364  */
365 struct qcom_nand_controller {
366         struct nand_controller controller;
367         struct list_head host_list;
368
369         struct device *dev;
370
371         void __iomem *base;
372         phys_addr_t base_phys;
373         dma_addr_t base_dma;
374
375         struct clk *core_clk;
376         struct clk *aon_clk;
377
378         union {
379                 /* will be used only by QPIC for BAM DMA */
380                 struct {
381                         struct dma_chan *tx_chan;
382                         struct dma_chan *rx_chan;
383                         struct dma_chan *cmd_chan;
384                 };
385
386                 /* will be used only by EBI2 for ADM DMA */
387                 struct {
388                         struct dma_chan *chan;
389                         unsigned int cmd_crci;
390                         unsigned int data_crci;
391                 };
392         };
393
394         struct list_head desc_list;
395         struct bam_transaction *bam_txn;
396
397         u8              *data_buffer;
398         int             buf_size;
399         int             buf_count;
400         int             buf_start;
401         unsigned int    max_cwperpage;
402
403         __le32 *reg_read_buf;
404         dma_addr_t reg_read_dma;
405         int reg_read_pos;
406
407         struct nandc_regs *regs;
408
409         u32 cmd1, vld;
410         const struct qcom_nandc_props *props;
411 };
412
413 /*
414  * NAND chip structure
415  *
416  * @chip:                       base NAND chip structure
417  * @node:                       list node to add itself to host_list in
418  *                              qcom_nand_controller
419  *
420  * @cs:                         chip select value for this chip
421  * @cw_size:                    the number of bytes in a single step/codeword
422  *                              of a page, consisting of all data, ecc, spare
423  *                              and reserved bytes
424  * @cw_data:                    the number of bytes within a codeword protected
425  *                              by ECC
426  * @use_ecc:                    request the controller to use ECC for the
427  *                              upcoming read/write
428  * @bch_enabled:                flag to tell whether BCH ECC mode is used
429  * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
430  *                              chip
431  * @status:                     value to be returned if NAND_CMD_STATUS command
432  *                              is executed
433  * @last_command:               keeps track of last command on this chip. used
434  *                              for reading correct status
435  *
436  * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
437  *                              ecc/non-ecc mode for the current nand flash
438  *                              device
439  */
440 struct qcom_nand_host {
441         struct nand_chip chip;
442         struct list_head node;
443
444         int cs;
445         int cw_size;
446         int cw_data;
447         bool use_ecc;
448         bool bch_enabled;
449         int ecc_bytes_hw;
450         int spare_bytes;
451         int bbm_size;
452         u8 status;
453         int last_command;
454
455         u32 cfg0, cfg1;
456         u32 cfg0_raw, cfg1_raw;
457         u32 ecc_buf_cfg;
458         u32 ecc_bch_cfg;
459         u32 clrflashstatus;
460         u32 clrreadstatus;
461 };
462
463 /*
464  * This data type corresponds to the NAND controller properties which varies
465  * among different NAND controllers.
466  * @ecc_modes - ecc mode for NAND
467  * @is_bam - whether NAND controller is using BAM
468  * @is_qpic - whether NAND CTRL is part of qpic IP
469  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
470  */
471 struct qcom_nandc_props {
472         u32 ecc_modes;
473         bool is_bam;
474         bool is_qpic;
475         u32 dev_cmd_reg_start;
476 };
477
478 /* Frees the BAM transaction memory */
479 static void free_bam_transaction(struct qcom_nand_controller *nandc)
480 {
481         struct bam_transaction *bam_txn = nandc->bam_txn;
482
483         devm_kfree(nandc->dev, bam_txn);
484 }
485
486 /* Allocates and Initializes the BAM transaction */
487 static struct bam_transaction *
488 alloc_bam_transaction(struct qcom_nand_controller *nandc)
489 {
490         struct bam_transaction *bam_txn;
491         size_t bam_txn_size;
492         unsigned int num_cw = nandc->max_cwperpage;
493         void *bam_txn_buf;
494
495         bam_txn_size =
496                 sizeof(*bam_txn) + num_cw *
497                 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
498                 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
499                 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
500
501         bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
502         if (!bam_txn_buf)
503                 return NULL;
504
505         bam_txn = bam_txn_buf;
506         bam_txn_buf += sizeof(*bam_txn);
507
508         bam_txn->bam_ce = bam_txn_buf;
509         bam_txn_buf +=
510                 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
511
512         bam_txn->cmd_sgl = bam_txn_buf;
513         bam_txn_buf +=
514                 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
515
516         bam_txn->data_sgl = bam_txn_buf;
517
518         init_completion(&bam_txn->txn_done);
519
520         return bam_txn;
521 }
522
523 /* Clears the BAM transaction indexes */
524 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
525 {
526         struct bam_transaction *bam_txn = nandc->bam_txn;
527
528         if (!nandc->props->is_bam)
529                 return;
530
531         bam_txn->bam_ce_pos = 0;
532         bam_txn->bam_ce_start = 0;
533         bam_txn->cmd_sgl_pos = 0;
534         bam_txn->cmd_sgl_start = 0;
535         bam_txn->tx_sgl_pos = 0;
536         bam_txn->tx_sgl_start = 0;
537         bam_txn->rx_sgl_pos = 0;
538         bam_txn->rx_sgl_start = 0;
539         bam_txn->last_data_desc = NULL;
540         bam_txn->wait_second_completion = false;
541
542         sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
543                       QPIC_PER_CW_CMD_SGL);
544         sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
545                       QPIC_PER_CW_DATA_SGL);
546
547         reinit_completion(&bam_txn->txn_done);
548 }
549
550 /* Callback for DMA descriptor completion */
551 static void qpic_bam_dma_done(void *data)
552 {
553         struct bam_transaction *bam_txn = data;
554
555         /*
556          * In case of data transfer with NAND, 2 callbacks will be generated.
557          * One for command channel and another one for data channel.
558          * If current transaction has data descriptors
559          * (i.e. wait_second_completion is true), then set this to false
560          * and wait for second DMA descriptor completion.
561          */
562         if (bam_txn->wait_second_completion)
563                 bam_txn->wait_second_completion = false;
564         else
565                 complete(&bam_txn->txn_done);
566 }
567
568 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
569 {
570         return container_of(chip, struct qcom_nand_host, chip);
571 }
572
573 static inline struct qcom_nand_controller *
574 get_qcom_nand_controller(struct nand_chip *chip)
575 {
576         return container_of(chip->controller, struct qcom_nand_controller,
577                             controller);
578 }
579
580 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
581 {
582         return ioread32(nandc->base + offset);
583 }
584
585 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
586                                u32 val)
587 {
588         iowrite32(val, nandc->base + offset);
589 }
590
591 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
592                                           bool is_cpu)
593 {
594         if (!nandc->props->is_bam)
595                 return;
596
597         if (is_cpu)
598                 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
599                                         MAX_REG_RD *
600                                         sizeof(*nandc->reg_read_buf),
601                                         DMA_FROM_DEVICE);
602         else
603                 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
604                                            MAX_REG_RD *
605                                            sizeof(*nandc->reg_read_buf),
606                                            DMA_FROM_DEVICE);
607 }
608
609 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
610 {
611         switch (offset) {
612         case NAND_FLASH_CMD:
613                 return &regs->cmd;
614         case NAND_ADDR0:
615                 return &regs->addr0;
616         case NAND_ADDR1:
617                 return &regs->addr1;
618         case NAND_FLASH_CHIP_SELECT:
619                 return &regs->chip_sel;
620         case NAND_EXEC_CMD:
621                 return &regs->exec;
622         case NAND_FLASH_STATUS:
623                 return &regs->clrflashstatus;
624         case NAND_DEV0_CFG0:
625                 return &regs->cfg0;
626         case NAND_DEV0_CFG1:
627                 return &regs->cfg1;
628         case NAND_DEV0_ECC_CFG:
629                 return &regs->ecc_bch_cfg;
630         case NAND_READ_STATUS:
631                 return &regs->clrreadstatus;
632         case NAND_DEV_CMD1:
633                 return &regs->cmd1;
634         case NAND_DEV_CMD1_RESTORE:
635                 return &regs->orig_cmd1;
636         case NAND_DEV_CMD_VLD:
637                 return &regs->vld;
638         case NAND_DEV_CMD_VLD_RESTORE:
639                 return &regs->orig_vld;
640         case NAND_EBI2_ECC_BUF_CFG:
641                 return &regs->ecc_buf_cfg;
642         case NAND_READ_LOCATION_0:
643                 return &regs->read_location0;
644         case NAND_READ_LOCATION_1:
645                 return &regs->read_location1;
646         case NAND_READ_LOCATION_2:
647                 return &regs->read_location2;
648         case NAND_READ_LOCATION_3:
649                 return &regs->read_location3;
650         default:
651                 return NULL;
652         }
653 }
654
655 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
656                           u32 val)
657 {
658         struct nandc_regs *regs = nandc->regs;
659         __le32 *reg;
660
661         reg = offset_to_nandc_reg(regs, offset);
662
663         if (reg)
664                 *reg = cpu_to_le32(val);
665 }
666
667 /* helper to configure address register values */
668 static void set_address(struct qcom_nand_host *host, u16 column, int page)
669 {
670         struct nand_chip *chip = &host->chip;
671         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
672
673         if (chip->options & NAND_BUSWIDTH_16)
674                 column >>= 1;
675
676         nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
677         nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
678 }
679
680 /*
681  * update_rw_regs:      set up read/write register values, these will be
682  *                      written to the NAND controller registers via DMA
683  *
684  * @num_cw:             number of steps for the read/write operation
685  * @read:               read or write operation
686  */
687 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
688 {
689         struct nand_chip *chip = &host->chip;
690         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
691         u32 cmd, cfg0, cfg1, ecc_bch_cfg;
692
693         if (read) {
694                 if (host->use_ecc)
695                         cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
696                 else
697                         cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
698         } else {
699                 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
700         }
701
702         if (host->use_ecc) {
703                 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
704                                 (num_cw - 1) << CW_PER_PAGE;
705
706                 cfg1 = host->cfg1;
707                 ecc_bch_cfg = host->ecc_bch_cfg;
708         } else {
709                 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
710                                 (num_cw - 1) << CW_PER_PAGE;
711
712                 cfg1 = host->cfg1_raw;
713                 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
714         }
715
716         nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
717         nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
718         nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
719         nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
720         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
721         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
722         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
723         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
724
725         if (read)
726                 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
727                                    host->cw_data : host->cw_size, 1);
728 }
729
730 /*
731  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
732  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
733  * which will be submitted to DMA engine.
734  */
735 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
736                                   struct dma_chan *chan,
737                                   unsigned long flags)
738 {
739         struct desc_info *desc;
740         struct scatterlist *sgl;
741         unsigned int sgl_cnt;
742         int ret;
743         struct bam_transaction *bam_txn = nandc->bam_txn;
744         enum dma_transfer_direction dir_eng;
745         struct dma_async_tx_descriptor *dma_desc;
746
747         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
748         if (!desc)
749                 return -ENOMEM;
750
751         if (chan == nandc->cmd_chan) {
752                 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
753                 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
754                 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
755                 dir_eng = DMA_MEM_TO_DEV;
756                 desc->dir = DMA_TO_DEVICE;
757         } else if (chan == nandc->tx_chan) {
758                 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
759                 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
760                 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
761                 dir_eng = DMA_MEM_TO_DEV;
762                 desc->dir = DMA_TO_DEVICE;
763         } else {
764                 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
765                 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
766                 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
767                 dir_eng = DMA_DEV_TO_MEM;
768                 desc->dir = DMA_FROM_DEVICE;
769         }
770
771         sg_mark_end(sgl + sgl_cnt - 1);
772         ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
773         if (ret == 0) {
774                 dev_err(nandc->dev, "failure in mapping desc\n");
775                 kfree(desc);
776                 return -ENOMEM;
777         }
778
779         desc->sgl_cnt = sgl_cnt;
780         desc->bam_sgl = sgl;
781
782         dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
783                                            flags);
784
785         if (!dma_desc) {
786                 dev_err(nandc->dev, "failure in prep desc\n");
787                 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
788                 kfree(desc);
789                 return -EINVAL;
790         }
791
792         desc->dma_desc = dma_desc;
793
794         /* update last data/command descriptor */
795         if (chan == nandc->cmd_chan)
796                 bam_txn->last_cmd_desc = dma_desc;
797         else
798                 bam_txn->last_data_desc = dma_desc;
799
800         list_add_tail(&desc->node, &nandc->desc_list);
801
802         return 0;
803 }
804
805 /*
806  * Prepares the command descriptor for BAM DMA which will be used for NAND
807  * register reads and writes. The command descriptor requires the command
808  * to be formed in command element type so this function uses the command
809  * element from bam transaction ce array and fills the same with required
810  * data. A single SGL can contain multiple command elements so
811  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
812  * after the current command element.
813  */
814 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
815                                  int reg_off, const void *vaddr,
816                                  int size, unsigned int flags)
817 {
818         int bam_ce_size;
819         int i, ret;
820         struct bam_cmd_element *bam_ce_buffer;
821         struct bam_transaction *bam_txn = nandc->bam_txn;
822
823         bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
824
825         /* fill the command desc */
826         for (i = 0; i < size; i++) {
827                 if (read)
828                         bam_prep_ce(&bam_ce_buffer[i],
829                                     nandc_reg_phys(nandc, reg_off + 4 * i),
830                                     BAM_READ_COMMAND,
831                                     reg_buf_dma_addr(nandc,
832                                                      (__le32 *)vaddr + i));
833                 else
834                         bam_prep_ce_le32(&bam_ce_buffer[i],
835                                          nandc_reg_phys(nandc, reg_off + 4 * i),
836                                          BAM_WRITE_COMMAND,
837                                          *((__le32 *)vaddr + i));
838         }
839
840         bam_txn->bam_ce_pos += size;
841
842         /* use the separate sgl after this command */
843         if (flags & NAND_BAM_NEXT_SGL) {
844                 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
845                 bam_ce_size = (bam_txn->bam_ce_pos -
846                                 bam_txn->bam_ce_start) *
847                                 sizeof(struct bam_cmd_element);
848                 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
849                            bam_ce_buffer, bam_ce_size);
850                 bam_txn->cmd_sgl_pos++;
851                 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
852
853                 if (flags & NAND_BAM_NWD) {
854                         ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
855                                                      DMA_PREP_FENCE |
856                                                      DMA_PREP_CMD);
857                         if (ret)
858                                 return ret;
859                 }
860         }
861
862         return 0;
863 }
864
865 /*
866  * Prepares the data descriptor for BAM DMA which will be used for NAND
867  * data reads and writes.
868  */
869 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
870                                   const void *vaddr,
871                                   int size, unsigned int flags)
872 {
873         int ret;
874         struct bam_transaction *bam_txn = nandc->bam_txn;
875
876         if (read) {
877                 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
878                            vaddr, size);
879                 bam_txn->rx_sgl_pos++;
880         } else {
881                 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
882                            vaddr, size);
883                 bam_txn->tx_sgl_pos++;
884
885                 /*
886                  * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
887                  * is not set, form the DMA descriptor
888                  */
889                 if (!(flags & NAND_BAM_NO_EOT)) {
890                         ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
891                                                      DMA_PREP_INTERRUPT);
892                         if (ret)
893                                 return ret;
894                 }
895         }
896
897         return 0;
898 }
899
900 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
901                              int reg_off, const void *vaddr, int size,
902                              bool flow_control)
903 {
904         struct desc_info *desc;
905         struct dma_async_tx_descriptor *dma_desc;
906         struct scatterlist *sgl;
907         struct dma_slave_config slave_conf;
908         enum dma_transfer_direction dir_eng;
909         int ret;
910
911         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
912         if (!desc)
913                 return -ENOMEM;
914
915         sgl = &desc->adm_sgl;
916
917         sg_init_one(sgl, vaddr, size);
918
919         if (read) {
920                 dir_eng = DMA_DEV_TO_MEM;
921                 desc->dir = DMA_FROM_DEVICE;
922         } else {
923                 dir_eng = DMA_MEM_TO_DEV;
924                 desc->dir = DMA_TO_DEVICE;
925         }
926
927         ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
928         if (ret == 0) {
929                 ret = -ENOMEM;
930                 goto err;
931         }
932
933         memset(&slave_conf, 0x00, sizeof(slave_conf));
934
935         slave_conf.device_fc = flow_control;
936         if (read) {
937                 slave_conf.src_maxburst = 16;
938                 slave_conf.src_addr = nandc->base_dma + reg_off;
939                 slave_conf.slave_id = nandc->data_crci;
940         } else {
941                 slave_conf.dst_maxburst = 16;
942                 slave_conf.dst_addr = nandc->base_dma + reg_off;
943                 slave_conf.slave_id = nandc->cmd_crci;
944         }
945
946         ret = dmaengine_slave_config(nandc->chan, &slave_conf);
947         if (ret) {
948                 dev_err(nandc->dev, "failed to configure dma channel\n");
949                 goto err;
950         }
951
952         dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
953         if (!dma_desc) {
954                 dev_err(nandc->dev, "failed to prepare desc\n");
955                 ret = -EINVAL;
956                 goto err;
957         }
958
959         desc->dma_desc = dma_desc;
960
961         list_add_tail(&desc->node, &nandc->desc_list);
962
963         return 0;
964 err:
965         kfree(desc);
966
967         return ret;
968 }
969
970 /*
971  * read_reg_dma:        prepares a descriptor to read a given number of
972  *                      contiguous registers to the reg_read_buf pointer
973  *
974  * @first:              offset of the first register in the contiguous block
975  * @num_regs:           number of registers to read
976  * @flags:              flags to control DMA descriptor preparation
977  */
978 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
979                         int num_regs, unsigned int flags)
980 {
981         bool flow_control = false;
982         void *vaddr;
983
984         vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
985         nandc->reg_read_pos += num_regs;
986
987         if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
988                 first = dev_cmd_reg_addr(nandc, first);
989
990         if (nandc->props->is_bam)
991                 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
992                                              num_regs, flags);
993
994         if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
995                 flow_control = true;
996
997         return prep_adm_dma_desc(nandc, true, first, vaddr,
998                                  num_regs * sizeof(u32), flow_control);
999 }
1000
1001 /*
1002  * write_reg_dma:       prepares a descriptor to write a given number of
1003  *                      contiguous registers
1004  *
1005  * @first:              offset of the first register in the contiguous block
1006  * @num_regs:           number of registers to write
1007  * @flags:              flags to control DMA descriptor preparation
1008  */
1009 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1010                          int num_regs, unsigned int flags)
1011 {
1012         bool flow_control = false;
1013         struct nandc_regs *regs = nandc->regs;
1014         void *vaddr;
1015
1016         vaddr = offset_to_nandc_reg(regs, first);
1017
1018         if (first == NAND_ERASED_CW_DETECT_CFG) {
1019                 if (flags & NAND_ERASED_CW_SET)
1020                         vaddr = &regs->erased_cw_detect_cfg_set;
1021                 else
1022                         vaddr = &regs->erased_cw_detect_cfg_clr;
1023         }
1024
1025         if (first == NAND_EXEC_CMD)
1026                 flags |= NAND_BAM_NWD;
1027
1028         if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1029                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1030
1031         if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1032                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1033
1034         if (nandc->props->is_bam)
1035                 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1036                                              num_regs, flags);
1037
1038         if (first == NAND_FLASH_CMD)
1039                 flow_control = true;
1040
1041         return prep_adm_dma_desc(nandc, false, first, vaddr,
1042                                  num_regs * sizeof(u32), flow_control);
1043 }
1044
1045 /*
1046  * read_data_dma:       prepares a DMA descriptor to transfer data from the
1047  *                      controller's internal buffer to the buffer 'vaddr'
1048  *
1049  * @reg_off:            offset within the controller's data buffer
1050  * @vaddr:              virtual address of the buffer we want to write to
1051  * @size:               DMA transaction size in bytes
1052  * @flags:              flags to control DMA descriptor preparation
1053  */
1054 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1055                          const u8 *vaddr, int size, unsigned int flags)
1056 {
1057         if (nandc->props->is_bam)
1058                 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1059
1060         return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1061 }
1062
1063 /*
1064  * write_data_dma:      prepares a DMA descriptor to transfer data from
1065  *                      'vaddr' to the controller's internal buffer
1066  *
1067  * @reg_off:            offset within the controller's data buffer
1068  * @vaddr:              virtual address of the buffer we want to read from
1069  * @size:               DMA transaction size in bytes
1070  * @flags:              flags to control DMA descriptor preparation
1071  */
1072 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1073                           const u8 *vaddr, int size, unsigned int flags)
1074 {
1075         if (nandc->props->is_bam)
1076                 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1077
1078         return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1079 }
1080
1081 /*
1082  * Helper to prepare DMA descriptors for configuring registers
1083  * before reading a NAND page.
1084  */
1085 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1086 {
1087         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1088         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1089         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1090         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1091         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1092                       NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1093 }
1094
1095 /*
1096  * Helper to prepare DMA descriptors for configuring registers
1097  * before reading each codeword in NAND page.
1098  */
1099 static void
1100 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1101 {
1102         if (nandc->props->is_bam)
1103                 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1104                               NAND_BAM_NEXT_SGL);
1105
1106         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1107         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1108
1109         if (use_ecc) {
1110                 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1111                 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1112                              NAND_BAM_NEXT_SGL);
1113         } else {
1114                 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1115         }
1116 }
1117
1118 /*
1119  * Helper to prepare dma descriptors to configure registers needed for reading a
1120  * single codeword in page
1121  */
1122 static void
1123 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1124                                 bool use_ecc)
1125 {
1126         config_nand_page_read(nandc);
1127         config_nand_cw_read(nandc, use_ecc);
1128 }
1129
1130 /*
1131  * Helper to prepare DMA descriptors used to configure registers needed for
1132  * before writing a NAND page.
1133  */
1134 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1135 {
1136         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1137         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1138         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1139                       NAND_BAM_NEXT_SGL);
1140 }
1141
1142 /*
1143  * Helper to prepare DMA descriptors for configuring registers
1144  * before writing each codeword in NAND page.
1145  */
1146 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1147 {
1148         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1149         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1150
1151         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1152
1153         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1154         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1155 }
1156
1157 /*
1158  * the following functions are used within chip->cmdfunc() to perform different
1159  * NAND_CMD_* commands
1160  */
1161
1162 /* sets up descriptors for NAND_CMD_PARAM */
1163 static int nandc_param(struct qcom_nand_host *host)
1164 {
1165         struct nand_chip *chip = &host->chip;
1166         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1167
1168         /*
1169          * NAND_CMD_PARAM is called before we know much about the FLASH chip
1170          * in use. we configure the controller to perform a raw read of 512
1171          * bytes to read onfi params
1172          */
1173         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1174         nandc_set_reg(nandc, NAND_ADDR0, 0);
1175         nandc_set_reg(nandc, NAND_ADDR1, 0);
1176         nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1177                                         | 512 << UD_SIZE_BYTES
1178                                         | 5 << NUM_ADDR_CYCLES
1179                                         | 0 << SPARE_SIZE_BYTES);
1180         nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1181                                         | 0 << CS_ACTIVE_BSY
1182                                         | 17 << BAD_BLOCK_BYTE_NUM
1183                                         | 1 << BAD_BLOCK_IN_SPARE_AREA
1184                                         | 2 << WR_RD_BSY_GAP
1185                                         | 0 << WIDE_FLASH
1186                                         | 1 << DEV0_CFG1_ECC_DISABLE);
1187         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1188
1189         /* configure CMD1 and VLD for ONFI param probing */
1190         nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1191                       (nandc->vld & ~READ_START_VLD));
1192         nandc_set_reg(nandc, NAND_DEV_CMD1,
1193                       (nandc->cmd1 & ~(0xFF << READ_ADDR))
1194                       | NAND_CMD_PARAM << READ_ADDR);
1195
1196         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1197
1198         nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1199         nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1200         nandc_set_read_loc(nandc, 0, 0, 512, 1);
1201
1202         write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1203         write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1204
1205         nandc->buf_count = 512;
1206         memset(nandc->data_buffer, 0xff, nandc->buf_count);
1207
1208         config_nand_single_cw_page_read(nandc, false);
1209
1210         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1211                       nandc->buf_count, 0);
1212
1213         /* restore CMD1 and VLD regs */
1214         write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1215         write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1216
1217         return 0;
1218 }
1219
1220 /* sets up descriptors for NAND_CMD_ERASE1 */
1221 static int erase_block(struct qcom_nand_host *host, int page_addr)
1222 {
1223         struct nand_chip *chip = &host->chip;
1224         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225
1226         nandc_set_reg(nandc, NAND_FLASH_CMD,
1227                       OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1228         nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1229         nandc_set_reg(nandc, NAND_ADDR1, 0);
1230         nandc_set_reg(nandc, NAND_DEV0_CFG0,
1231                       host->cfg0_raw & ~(7 << CW_PER_PAGE));
1232         nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1233         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1234         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1235         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1236
1237         write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1238         write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1239         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1240
1241         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1242
1243         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1244         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1245
1246         return 0;
1247 }
1248
1249 /* sets up descriptors for NAND_CMD_READID */
1250 static int read_id(struct qcom_nand_host *host, int column)
1251 {
1252         struct nand_chip *chip = &host->chip;
1253         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1254
1255         if (column == -1)
1256                 return 0;
1257
1258         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1259         nandc_set_reg(nandc, NAND_ADDR0, column);
1260         nandc_set_reg(nandc, NAND_ADDR1, 0);
1261         nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1262                       nandc->props->is_bam ? 0 : DM_EN);
1263         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1264
1265         write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1266         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1267
1268         read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1269
1270         return 0;
1271 }
1272
1273 /* sets up descriptors for NAND_CMD_RESET */
1274 static int reset(struct qcom_nand_host *host)
1275 {
1276         struct nand_chip *chip = &host->chip;
1277         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1278
1279         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1280         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1281
1282         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1283         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1284
1285         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1286
1287         return 0;
1288 }
1289
1290 /* helpers to submit/free our list of dma descriptors */
1291 static int submit_descs(struct qcom_nand_controller *nandc)
1292 {
1293         struct desc_info *desc;
1294         dma_cookie_t cookie = 0;
1295         struct bam_transaction *bam_txn = nandc->bam_txn;
1296         int r;
1297
1298         if (nandc->props->is_bam) {
1299                 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1300                         r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1301                         if (r)
1302                                 return r;
1303                 }
1304
1305                 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1306                         r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1307                                                    DMA_PREP_INTERRUPT);
1308                         if (r)
1309                                 return r;
1310                 }
1311
1312                 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1313                         r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1314                                                    DMA_PREP_CMD);
1315                         if (r)
1316                                 return r;
1317                 }
1318         }
1319
1320         list_for_each_entry(desc, &nandc->desc_list, node)
1321                 cookie = dmaengine_submit(desc->dma_desc);
1322
1323         if (nandc->props->is_bam) {
1324                 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1325                 bam_txn->last_cmd_desc->callback_param = bam_txn;
1326                 if (bam_txn->last_data_desc) {
1327                         bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1328                         bam_txn->last_data_desc->callback_param = bam_txn;
1329                         bam_txn->wait_second_completion = true;
1330                 }
1331
1332                 dma_async_issue_pending(nandc->tx_chan);
1333                 dma_async_issue_pending(nandc->rx_chan);
1334                 dma_async_issue_pending(nandc->cmd_chan);
1335
1336                 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1337                                                  QPIC_NAND_COMPLETION_TIMEOUT))
1338                         return -ETIMEDOUT;
1339         } else {
1340                 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1341                         return -ETIMEDOUT;
1342         }
1343
1344         return 0;
1345 }
1346
1347 static void free_descs(struct qcom_nand_controller *nandc)
1348 {
1349         struct desc_info *desc, *n;
1350
1351         list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1352                 list_del(&desc->node);
1353
1354                 if (nandc->props->is_bam)
1355                         dma_unmap_sg(nandc->dev, desc->bam_sgl,
1356                                      desc->sgl_cnt, desc->dir);
1357                 else
1358                         dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1359                                      desc->dir);
1360
1361                 kfree(desc);
1362         }
1363 }
1364
1365 /* reset the register read buffer for next NAND operation */
1366 static void clear_read_regs(struct qcom_nand_controller *nandc)
1367 {
1368         nandc->reg_read_pos = 0;
1369         nandc_read_buffer_sync(nandc, false);
1370 }
1371
1372 static void pre_command(struct qcom_nand_host *host, int command)
1373 {
1374         struct nand_chip *chip = &host->chip;
1375         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1376
1377         nandc->buf_count = 0;
1378         nandc->buf_start = 0;
1379         host->use_ecc = false;
1380         host->last_command = command;
1381
1382         clear_read_regs(nandc);
1383
1384         if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1385             command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1386                 clear_bam_transaction(nandc);
1387 }
1388
1389 /*
1390  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1391  * privately maintained status byte, this status byte can be read after
1392  * NAND_CMD_STATUS is called
1393  */
1394 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1395 {
1396         struct nand_chip *chip = &host->chip;
1397         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1398         struct nand_ecc_ctrl *ecc = &chip->ecc;
1399         int num_cw;
1400         int i;
1401
1402         num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1403         nandc_read_buffer_sync(nandc, true);
1404
1405         for (i = 0; i < num_cw; i++) {
1406                 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1407
1408                 if (flash_status & FS_MPU_ERR)
1409                         host->status &= ~NAND_STATUS_WP;
1410
1411                 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1412                                                  (flash_status &
1413                                                   FS_DEVICE_STS_ERR)))
1414                         host->status |= NAND_STATUS_FAIL;
1415         }
1416 }
1417
1418 static void post_command(struct qcom_nand_host *host, int command)
1419 {
1420         struct nand_chip *chip = &host->chip;
1421         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1422
1423         switch (command) {
1424         case NAND_CMD_READID:
1425                 nandc_read_buffer_sync(nandc, true);
1426                 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1427                        nandc->buf_count);
1428                 break;
1429         case NAND_CMD_PAGEPROG:
1430         case NAND_CMD_ERASE1:
1431                 parse_erase_write_errors(host, command);
1432                 break;
1433         default:
1434                 break;
1435         }
1436 }
1437
1438 /*
1439  * Implements chip->cmdfunc. It's  only used for a limited set of commands.
1440  * The rest of the commands wouldn't be called by upper layers. For example,
1441  * NAND_CMD_READOOB would never be called because we have our own versions
1442  * of read_oob ops for nand_ecc_ctrl.
1443  */
1444 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1445                                int column, int page_addr)
1446 {
1447         struct nand_chip *chip = mtd_to_nand(mtd);
1448         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1449         struct nand_ecc_ctrl *ecc = &chip->ecc;
1450         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1451         bool wait = false;
1452         int ret = 0;
1453
1454         pre_command(host, command);
1455
1456         switch (command) {
1457         case NAND_CMD_RESET:
1458                 ret = reset(host);
1459                 wait = true;
1460                 break;
1461
1462         case NAND_CMD_READID:
1463                 nandc->buf_count = 4;
1464                 ret = read_id(host, column);
1465                 wait = true;
1466                 break;
1467
1468         case NAND_CMD_PARAM:
1469                 ret = nandc_param(host);
1470                 wait = true;
1471                 break;
1472
1473         case NAND_CMD_ERASE1:
1474                 ret = erase_block(host, page_addr);
1475                 wait = true;
1476                 break;
1477
1478         case NAND_CMD_READ0:
1479                 /* we read the entire page for now */
1480                 WARN_ON(column != 0);
1481
1482                 host->use_ecc = true;
1483                 set_address(host, 0, page_addr);
1484                 update_rw_regs(host, ecc->steps, true);
1485                 break;
1486
1487         case NAND_CMD_SEQIN:
1488                 WARN_ON(column != 0);
1489                 set_address(host, 0, page_addr);
1490                 break;
1491
1492         case NAND_CMD_PAGEPROG:
1493         case NAND_CMD_STATUS:
1494         case NAND_CMD_NONE:
1495         default:
1496                 break;
1497         }
1498
1499         if (ret) {
1500                 dev_err(nandc->dev, "failure executing command %d\n",
1501                         command);
1502                 free_descs(nandc);
1503                 return;
1504         }
1505
1506         if (wait) {
1507                 ret = submit_descs(nandc);
1508                 if (ret)
1509                         dev_err(nandc->dev,
1510                                 "failure submitting descs for command %d\n",
1511                                 command);
1512         }
1513
1514         free_descs(nandc);
1515
1516         post_command(host, command);
1517 }
1518
1519 /*
1520  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1521  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1522  *
1523  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1524  * but it notifies that it is an erased CW by placing special characters at
1525  * certain offsets in the buffer.
1526  *
1527  * verify if the page is erased or not, and fix up the page for RS ECC by
1528  * replacing the special characters with 0xff.
1529  */
1530 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1531 {
1532         u8 empty1, empty2;
1533
1534         /*
1535          * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1536          * is erased by looking for 0x54s at offsets 3 and 175 from the
1537          * beginning of each codeword
1538          */
1539
1540         empty1 = data_buf[3];
1541         empty2 = data_buf[175];
1542
1543         /*
1544          * if the erased codework markers, if they exist override them with
1545          * 0xffs
1546          */
1547         if ((empty1 == 0x54 && empty2 == 0xff) ||
1548             (empty1 == 0xff && empty2 == 0x54)) {
1549                 data_buf[3] = 0xff;
1550                 data_buf[175] = 0xff;
1551         }
1552
1553         /*
1554          * check if the entire chunk contains 0xffs or not. if it doesn't, then
1555          * restore the original values at the special offsets
1556          */
1557         if (memchr_inv(data_buf, 0xff, data_len)) {
1558                 data_buf[3] = empty1;
1559                 data_buf[175] = empty2;
1560
1561                 return false;
1562         }
1563
1564         return true;
1565 }
1566
1567 struct read_stats {
1568         __le32 flash;
1569         __le32 buffer;
1570         __le32 erased_cw;
1571 };
1572
1573 /* reads back FLASH_STATUS register set by the controller */
1574 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1575 {
1576         struct nand_chip *chip = &host->chip;
1577         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1578         int i;
1579
1580         nandc_read_buffer_sync(nandc, true);
1581
1582         for (i = 0; i < cw_cnt; i++) {
1583                 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1584
1585                 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1586                         return -EIO;
1587         }
1588
1589         return 0;
1590 }
1591
1592 /* performs raw read for one codeword */
1593 static int
1594 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1595                        u8 *data_buf, u8 *oob_buf, int page, int cw)
1596 {
1597         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1598         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1599         struct nand_ecc_ctrl *ecc = &chip->ecc;
1600         int data_size1, data_size2, oob_size1, oob_size2;
1601         int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1602
1603         nand_read_page_op(chip, page, 0, NULL, 0);
1604         host->use_ecc = false;
1605
1606         clear_bam_transaction(nandc);
1607         set_address(host, host->cw_size * cw, page);
1608         update_rw_regs(host, 1, true);
1609         config_nand_page_read(nandc);
1610
1611         data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1612         oob_size1 = host->bbm_size;
1613
1614         if (cw == (ecc->steps - 1)) {
1615                 data_size2 = ecc->size - data_size1 -
1616                              ((ecc->steps - 1) * 4);
1617                 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1618                             host->spare_bytes;
1619         } else {
1620                 data_size2 = host->cw_data - data_size1;
1621                 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1622         }
1623
1624         if (nandc->props->is_bam) {
1625                 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1626                 read_loc += data_size1;
1627
1628                 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1629                 read_loc += oob_size1;
1630
1631                 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1632                 read_loc += data_size2;
1633
1634                 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1635         }
1636
1637         config_nand_cw_read(nandc, false);
1638
1639         read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1640         reg_off += data_size1;
1641
1642         read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1643         reg_off += oob_size1;
1644
1645         read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1646         reg_off += data_size2;
1647
1648         read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1649
1650         ret = submit_descs(nandc);
1651         free_descs(nandc);
1652         if (ret) {
1653                 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1654                 return ret;
1655         }
1656
1657         return check_flash_errors(host, 1);
1658 }
1659
1660 /*
1661  * Bitflips can happen in erased codewords also so this function counts the
1662  * number of 0 in each CW for which ECC engine returns the uncorrectable
1663  * error. The page will be assumed as erased if this count is less than or
1664  * equal to the ecc->strength for each CW.
1665  *
1666  * 1. Both DATA and OOB need to be checked for number of 0. The
1667  *    top-level API can be called with only data buf or OOB buf so use
1668  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1669  *    is null for copying the raw bytes.
1670  * 2. Perform raw read for all the CW which has uncorrectable errors.
1671  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1672  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1673  *    the number of bitflips in this area.
1674  */
1675 static int
1676 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1677                       u8 *oob_buf, unsigned long uncorrectable_cws,
1678                       int page, unsigned int max_bitflips)
1679 {
1680         struct nand_chip *chip = &host->chip;
1681         struct mtd_info *mtd = nand_to_mtd(chip);
1682         struct nand_ecc_ctrl *ecc = &chip->ecc;
1683         u8 *cw_data_buf, *cw_oob_buf;
1684         int cw, data_size, oob_size, ret = 0;
1685
1686         if (!data_buf) {
1687                 data_buf = chip->data_buf;
1688                 chip->pagebuf = -1;
1689         }
1690
1691         if (!oob_buf) {
1692                 oob_buf = chip->oob_poi;
1693                 chip->pagebuf = -1;
1694         }
1695
1696         for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1697                 if (cw == (ecc->steps - 1)) {
1698                         data_size = ecc->size - ((ecc->steps - 1) * 4);
1699                         oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1700                 } else {
1701                         data_size = host->cw_data;
1702                         oob_size = host->ecc_bytes_hw;
1703                 }
1704
1705                 /* determine starting buffer address for current CW */
1706                 cw_data_buf = data_buf + (cw * host->cw_data);
1707                 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1708
1709                 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1710                                              cw_oob_buf, page, cw);
1711                 if (ret)
1712                         return ret;
1713
1714                 /*
1715                  * make sure it isn't an erased page reported
1716                  * as not-erased by HW because of a few bitflips
1717                  */
1718                 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1719                                                   cw_oob_buf + host->bbm_size,
1720                                                   oob_size, NULL,
1721                                                   0, ecc->strength);
1722                 if (ret < 0) {
1723                         mtd->ecc_stats.failed++;
1724                 } else {
1725                         mtd->ecc_stats.corrected += ret;
1726                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1727                 }
1728         }
1729
1730         return max_bitflips;
1731 }
1732
1733 /*
1734  * reads back status registers set by the controller to notify page read
1735  * errors. this is equivalent to what 'ecc->correct()' would do.
1736  */
1737 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1738                              u8 *oob_buf, int page)
1739 {
1740         struct nand_chip *chip = &host->chip;
1741         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1742         struct mtd_info *mtd = nand_to_mtd(chip);
1743         struct nand_ecc_ctrl *ecc = &chip->ecc;
1744         unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1745         struct read_stats *buf;
1746         bool flash_op_err = false, erased;
1747         int i;
1748         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1749
1750         buf = (struct read_stats *)nandc->reg_read_buf;
1751         nandc_read_buffer_sync(nandc, true);
1752
1753         for (i = 0; i < ecc->steps; i++, buf++) {
1754                 u32 flash, buffer, erased_cw;
1755                 int data_len, oob_len;
1756
1757                 if (i == (ecc->steps - 1)) {
1758                         data_len = ecc->size - ((ecc->steps - 1) << 2);
1759                         oob_len = ecc->steps << 2;
1760                 } else {
1761                         data_len = host->cw_data;
1762                         oob_len = 0;
1763                 }
1764
1765                 flash = le32_to_cpu(buf->flash);
1766                 buffer = le32_to_cpu(buf->buffer);
1767                 erased_cw = le32_to_cpu(buf->erased_cw);
1768
1769                 /*
1770                  * Check ECC failure for each codeword. ECC failure can
1771                  * happen in either of the following conditions
1772                  * 1. If number of bitflips are greater than ECC engine
1773                  *    capability.
1774                  * 2. If this codeword contains all 0xff for which erased
1775                  *    codeword detection check will be done.
1776                  */
1777                 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1778                         /*
1779                          * For BCH ECC, ignore erased codeword errors, if
1780                          * ERASED_CW bits are set.
1781                          */
1782                         if (host->bch_enabled) {
1783                                 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1784                                          true : false;
1785                         /*
1786                          * For RS ECC, HW reports the erased CW by placing
1787                          * special characters at certain offsets in the buffer.
1788                          * These special characters will be valid only if
1789                          * complete page is read i.e. data_buf is not NULL.
1790                          */
1791                         } else if (data_buf) {
1792                                 erased = erased_chunk_check_and_fixup(data_buf,
1793                                                                       data_len);
1794                         } else {
1795                                 erased = false;
1796                         }
1797
1798                         if (!erased)
1799                                 uncorrectable_cws |= BIT(i);
1800                 /*
1801                  * Check if MPU or any other operational error (timeout,
1802                  * device failure, etc.) happened for this codeword and
1803                  * make flash_op_err true. If flash_op_err is set, then
1804                  * EIO will be returned for page read.
1805                  */
1806                 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1807                         flash_op_err = true;
1808                 /*
1809                  * No ECC or operational errors happened. Check the number of
1810                  * bits corrected and update the ecc_stats.corrected.
1811                  */
1812                 } else {
1813                         unsigned int stat;
1814
1815                         stat = buffer & BS_CORRECTABLE_ERR_MSK;
1816                         mtd->ecc_stats.corrected += stat;
1817                         max_bitflips = max(max_bitflips, stat);
1818                 }
1819
1820                 if (data_buf)
1821                         data_buf += data_len;
1822                 if (oob_buf)
1823                         oob_buf += oob_len + ecc->bytes;
1824         }
1825
1826         if (flash_op_err)
1827                 return -EIO;
1828
1829         if (!uncorrectable_cws)
1830                 return max_bitflips;
1831
1832         return check_for_erased_page(host, data_buf_start, oob_buf_start,
1833                                      uncorrectable_cws, page,
1834                                      max_bitflips);
1835 }
1836
1837 /*
1838  * helper to perform the actual page read operation, used by ecc->read_page(),
1839  * ecc->read_oob()
1840  */
1841 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1842                          u8 *oob_buf, int page)
1843 {
1844         struct nand_chip *chip = &host->chip;
1845         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1846         struct nand_ecc_ctrl *ecc = &chip->ecc;
1847         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1848         int i, ret;
1849
1850         config_nand_page_read(nandc);
1851
1852         /* queue cmd descs for each codeword */
1853         for (i = 0; i < ecc->steps; i++) {
1854                 int data_size, oob_size;
1855
1856                 if (i == (ecc->steps - 1)) {
1857                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1858                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1859                                    host->spare_bytes;
1860                 } else {
1861                         data_size = host->cw_data;
1862                         oob_size = host->ecc_bytes_hw + host->spare_bytes;
1863                 }
1864
1865                 if (nandc->props->is_bam) {
1866                         if (data_buf && oob_buf) {
1867                                 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1868                                 nandc_set_read_loc(nandc, 1, data_size,
1869                                                    oob_size, 1);
1870                         } else if (data_buf) {
1871                                 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1872                         } else {
1873                                 nandc_set_read_loc(nandc, 0, data_size,
1874                                                    oob_size, 1);
1875                         }
1876                 }
1877
1878                 config_nand_cw_read(nandc, true);
1879
1880                 if (data_buf)
1881                         read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1882                                       data_size, 0);
1883
1884                 /*
1885                  * when ecc is enabled, the controller doesn't read the real
1886                  * or dummy bad block markers in each chunk. To maintain a
1887                  * consistent layout across RAW and ECC reads, we just
1888                  * leave the real/dummy BBM offsets empty (i.e, filled with
1889                  * 0xffs)
1890                  */
1891                 if (oob_buf) {
1892                         int j;
1893
1894                         for (j = 0; j < host->bbm_size; j++)
1895                                 *oob_buf++ = 0xff;
1896
1897                         read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1898                                       oob_buf, oob_size, 0);
1899                 }
1900
1901                 if (data_buf)
1902                         data_buf += data_size;
1903                 if (oob_buf)
1904                         oob_buf += oob_size;
1905         }
1906
1907         ret = submit_descs(nandc);
1908         free_descs(nandc);
1909
1910         if (ret) {
1911                 dev_err(nandc->dev, "failure to read page/oob\n");
1912                 return ret;
1913         }
1914
1915         return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1916 }
1917
1918 /*
1919  * a helper that copies the last step/codeword of a page (containing free oob)
1920  * into our local buffer
1921  */
1922 static int copy_last_cw(struct qcom_nand_host *host, int page)
1923 {
1924         struct nand_chip *chip = &host->chip;
1925         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1926         struct nand_ecc_ctrl *ecc = &chip->ecc;
1927         int size;
1928         int ret;
1929
1930         clear_read_regs(nandc);
1931
1932         size = host->use_ecc ? host->cw_data : host->cw_size;
1933
1934         /* prepare a clean read buffer */
1935         memset(nandc->data_buffer, 0xff, size);
1936
1937         set_address(host, host->cw_size * (ecc->steps - 1), page);
1938         update_rw_regs(host, 1, true);
1939
1940         config_nand_single_cw_page_read(nandc, host->use_ecc);
1941
1942         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1943
1944         ret = submit_descs(nandc);
1945         if (ret)
1946                 dev_err(nandc->dev, "failed to copy last codeword\n");
1947
1948         free_descs(nandc);
1949
1950         return ret;
1951 }
1952
1953 /* implements ecc->read_page() */
1954 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1955                                 uint8_t *buf, int oob_required, int page)
1956 {
1957         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1958         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1959         u8 *data_buf, *oob_buf = NULL;
1960
1961         nand_read_page_op(chip, page, 0, NULL, 0);
1962         data_buf = buf;
1963         oob_buf = oob_required ? chip->oob_poi : NULL;
1964
1965         clear_bam_transaction(nandc);
1966
1967         return read_page_ecc(host, data_buf, oob_buf, page);
1968 }
1969
1970 /* implements ecc->read_page_raw() */
1971 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1972                                     struct nand_chip *chip, uint8_t *buf,
1973                                     int oob_required, int page)
1974 {
1975         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1976         struct nand_ecc_ctrl *ecc = &chip->ecc;
1977         int cw, ret;
1978         u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1979
1980         for (cw = 0; cw < ecc->steps; cw++) {
1981                 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1982                                              page, cw);
1983                 if (ret)
1984                         return ret;
1985
1986                 data_buf += host->cw_data;
1987                 oob_buf += ecc->bytes;
1988         }
1989
1990         return 0;
1991 }
1992
1993 /* implements ecc->read_oob() */
1994 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1995                                int page)
1996 {
1997         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1998         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1999         struct nand_ecc_ctrl *ecc = &chip->ecc;
2000
2001         clear_read_regs(nandc);
2002         clear_bam_transaction(nandc);
2003
2004         host->use_ecc = true;
2005         set_address(host, 0, page);
2006         update_rw_regs(host, ecc->steps, true);
2007
2008         return read_page_ecc(host, NULL, chip->oob_poi, page);
2009 }
2010
2011 /* implements ecc->write_page() */
2012 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2013                                  const uint8_t *buf, int oob_required, int page)
2014 {
2015         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2016         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2017         struct nand_ecc_ctrl *ecc = &chip->ecc;
2018         u8 *data_buf, *oob_buf;
2019         int i, ret;
2020
2021         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2022
2023         clear_read_regs(nandc);
2024         clear_bam_transaction(nandc);
2025
2026         data_buf = (u8 *)buf;
2027         oob_buf = chip->oob_poi;
2028
2029         host->use_ecc = true;
2030         update_rw_regs(host, ecc->steps, false);
2031         config_nand_page_write(nandc);
2032
2033         for (i = 0; i < ecc->steps; i++) {
2034                 int data_size, oob_size;
2035
2036                 if (i == (ecc->steps - 1)) {
2037                         data_size = ecc->size - ((ecc->steps - 1) << 2);
2038                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2039                                    host->spare_bytes;
2040                 } else {
2041                         data_size = host->cw_data;
2042                         oob_size = ecc->bytes;
2043                 }
2044
2045
2046                 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2047                                i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2048
2049                 /*
2050                  * when ECC is enabled, we don't really need to write anything
2051                  * to oob for the first n - 1 codewords since these oob regions
2052                  * just contain ECC bytes that's written by the controller
2053                  * itself. For the last codeword, we skip the bbm positions and
2054                  * write to the free oob area.
2055                  */
2056                 if (i == (ecc->steps - 1)) {
2057                         oob_buf += host->bbm_size;
2058
2059                         write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2060                                        oob_buf, oob_size, 0);
2061                 }
2062
2063                 config_nand_cw_write(nandc);
2064
2065                 data_buf += data_size;
2066                 oob_buf += oob_size;
2067         }
2068
2069         ret = submit_descs(nandc);
2070         if (ret)
2071                 dev_err(nandc->dev, "failure to write page\n");
2072
2073         free_descs(nandc);
2074
2075         if (!ret)
2076                 ret = nand_prog_page_end_op(chip);
2077
2078         return ret;
2079 }
2080
2081 /* implements ecc->write_page_raw() */
2082 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
2083                                      struct nand_chip *chip, const uint8_t *buf,
2084                                      int oob_required, int page)
2085 {
2086         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2087         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2088         struct nand_ecc_ctrl *ecc = &chip->ecc;
2089         u8 *data_buf, *oob_buf;
2090         int i, ret;
2091
2092         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2093         clear_read_regs(nandc);
2094         clear_bam_transaction(nandc);
2095
2096         data_buf = (u8 *)buf;
2097         oob_buf = chip->oob_poi;
2098
2099         host->use_ecc = false;
2100         update_rw_regs(host, ecc->steps, false);
2101         config_nand_page_write(nandc);
2102
2103         for (i = 0; i < ecc->steps; i++) {
2104                 int data_size1, data_size2, oob_size1, oob_size2;
2105                 int reg_off = FLASH_BUF_ACC;
2106
2107                 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2108                 oob_size1 = host->bbm_size;
2109
2110                 if (i == (ecc->steps - 1)) {
2111                         data_size2 = ecc->size - data_size1 -
2112                                      ((ecc->steps - 1) << 2);
2113                         oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2114                                     host->spare_bytes;
2115                 } else {
2116                         data_size2 = host->cw_data - data_size1;
2117                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2118                 }
2119
2120                 write_data_dma(nandc, reg_off, data_buf, data_size1,
2121                                NAND_BAM_NO_EOT);
2122                 reg_off += data_size1;
2123                 data_buf += data_size1;
2124
2125                 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2126                                NAND_BAM_NO_EOT);
2127                 reg_off += oob_size1;
2128                 oob_buf += oob_size1;
2129
2130                 write_data_dma(nandc, reg_off, data_buf, data_size2,
2131                                NAND_BAM_NO_EOT);
2132                 reg_off += data_size2;
2133                 data_buf += data_size2;
2134
2135                 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2136                 oob_buf += oob_size2;
2137
2138                 config_nand_cw_write(nandc);
2139         }
2140
2141         ret = submit_descs(nandc);
2142         if (ret)
2143                 dev_err(nandc->dev, "failure to write raw page\n");
2144
2145         free_descs(nandc);
2146
2147         if (!ret)
2148                 ret = nand_prog_page_end_op(chip);
2149
2150         return ret;
2151 }
2152
2153 /*
2154  * implements ecc->write_oob()
2155  *
2156  * the NAND controller cannot write only data or only OOB within a codeword
2157  * since ECC is calculated for the combined codeword. So update the OOB from
2158  * chip->oob_poi, and pad the data area with OxFF before writing.
2159  */
2160 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
2161                                 int page)
2162 {
2163         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2164         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2165         struct nand_ecc_ctrl *ecc = &chip->ecc;
2166         u8 *oob = chip->oob_poi;
2167         int data_size, oob_size;
2168         int ret;
2169
2170         host->use_ecc = true;
2171         clear_bam_transaction(nandc);
2172
2173         /* calculate the data and oob size for the last codeword/step */
2174         data_size = ecc->size - ((ecc->steps - 1) << 2);
2175         oob_size = mtd->oobavail;
2176
2177         memset(nandc->data_buffer, 0xff, host->cw_data);
2178         /* override new oob content to last codeword */
2179         mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2180                                     0, mtd->oobavail);
2181
2182         set_address(host, host->cw_size * (ecc->steps - 1), page);
2183         update_rw_regs(host, 1, false);
2184
2185         config_nand_page_write(nandc);
2186         write_data_dma(nandc, FLASH_BUF_ACC,
2187                        nandc->data_buffer, data_size + oob_size, 0);
2188         config_nand_cw_write(nandc);
2189
2190         ret = submit_descs(nandc);
2191
2192         free_descs(nandc);
2193
2194         if (ret) {
2195                 dev_err(nandc->dev, "failure to write oob\n");
2196                 return -EIO;
2197         }
2198
2199         return nand_prog_page_end_op(chip);
2200 }
2201
2202 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
2203 {
2204         struct nand_chip *chip = mtd_to_nand(mtd);
2205         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2206         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2207         struct nand_ecc_ctrl *ecc = &chip->ecc;
2208         int page, ret, bbpos, bad = 0;
2209
2210         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2211
2212         /*
2213          * configure registers for a raw sub page read, the address is set to
2214          * the beginning of the last codeword, we don't care about reading ecc
2215          * portion of oob. we just want the first few bytes from this codeword
2216          * that contains the BBM
2217          */
2218         host->use_ecc = false;
2219
2220         clear_bam_transaction(nandc);
2221         ret = copy_last_cw(host, page);
2222         if (ret)
2223                 goto err;
2224
2225         if (check_flash_errors(host, 1)) {
2226                 dev_warn(nandc->dev, "error when trying to read BBM\n");
2227                 goto err;
2228         }
2229
2230         bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2231
2232         bad = nandc->data_buffer[bbpos] != 0xff;
2233
2234         if (chip->options & NAND_BUSWIDTH_16)
2235                 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2236 err:
2237         return bad;
2238 }
2239
2240 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
2241 {
2242         struct nand_chip *chip = mtd_to_nand(mtd);
2243         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2244         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2245         struct nand_ecc_ctrl *ecc = &chip->ecc;
2246         int page, ret;
2247
2248         clear_read_regs(nandc);
2249         clear_bam_transaction(nandc);
2250
2251         /*
2252          * to mark the BBM as bad, we flash the entire last codeword with 0s.
2253          * we don't care about the rest of the content in the codeword since
2254          * we aren't going to use this block again
2255          */
2256         memset(nandc->data_buffer, 0x00, host->cw_size);
2257
2258         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2259
2260         /* prepare write */
2261         host->use_ecc = false;
2262         set_address(host, host->cw_size * (ecc->steps - 1), page);
2263         update_rw_regs(host, 1, false);
2264
2265         config_nand_page_write(nandc);
2266         write_data_dma(nandc, FLASH_BUF_ACC,
2267                        nandc->data_buffer, host->cw_size, 0);
2268         config_nand_cw_write(nandc);
2269
2270         ret = submit_descs(nandc);
2271
2272         free_descs(nandc);
2273
2274         if (ret) {
2275                 dev_err(nandc->dev, "failure to update BBM\n");
2276                 return -EIO;
2277         }
2278
2279         return nand_prog_page_end_op(chip);
2280 }
2281
2282 /*
2283  * the three functions below implement chip->read_byte(), chip->read_buf()
2284  * and chip->write_buf() respectively. these aren't used for
2285  * reading/writing page data, they are used for smaller data like reading
2286  * id, status etc
2287  */
2288 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2289 {
2290         struct nand_chip *chip = mtd_to_nand(mtd);
2291         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2292         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2293         u8 *buf = nandc->data_buffer;
2294         u8 ret = 0x0;
2295
2296         if (host->last_command == NAND_CMD_STATUS) {
2297                 ret = host->status;
2298
2299                 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2300
2301                 return ret;
2302         }
2303
2304         if (nandc->buf_start < nandc->buf_count)
2305                 ret = buf[nandc->buf_start++];
2306
2307         return ret;
2308 }
2309
2310 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2311 {
2312         struct nand_chip *chip = mtd_to_nand(mtd);
2313         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2314         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2315
2316         memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2317         nandc->buf_start += real_len;
2318 }
2319
2320 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2321                                  int len)
2322 {
2323         struct nand_chip *chip = mtd_to_nand(mtd);
2324         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2325         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2326
2327         memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2328
2329         nandc->buf_start += real_len;
2330 }
2331
2332 /* we support only one external chip for now */
2333 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2334 {
2335         struct nand_chip *chip = mtd_to_nand(mtd);
2336         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2337
2338         if (chipnr <= 0)
2339                 return;
2340
2341         dev_warn(nandc->dev, "invalid chip select\n");
2342 }
2343
2344 /*
2345  * NAND controller page layout info
2346  *
2347  * Layout with ECC enabled:
2348  *
2349  * |----------------------|  |---------------------------------|
2350  * |           xx.......yy|  |             *********xx.......yy|
2351  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2352  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2353  * |           xx.......yy|  |             *********xx.......yy|
2354  * |----------------------|  |---------------------------------|
2355  *     codeword 1,2..n-1                  codeword n
2356  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2357  *
2358  * n = Number of codewords in the page
2359  * . = ECC bytes
2360  * * = Spare/free bytes
2361  * x = Unused byte(s)
2362  * y = Reserved byte(s)
2363  *
2364  * 2K page: n = 4, spare = 16 bytes
2365  * 4K page: n = 8, spare = 32 bytes
2366  * 8K page: n = 16, spare = 64 bytes
2367  *
2368  * the qcom nand controller operates at a sub page/codeword level. each
2369  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2370  * the number of ECC bytes vary based on the ECC strength and the bus width.
2371  *
2372  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2373  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2374  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2375  *
2376  * When we access a page with ECC enabled, the reserved bytes(s) are not
2377  * accessible at all. When reading, we fill up these unreadable positions
2378  * with 0xffs. When writing, the controller skips writing the inaccessible
2379  * bytes.
2380  *
2381  * Layout with ECC disabled:
2382  *
2383  * |------------------------------|  |---------------------------------------|
2384  * |         yy          xx.......|  |         bb          *********xx.......|
2385  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2386  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2387  * |         yy          xx.......|  |         bb          *********xx.......|
2388  * |------------------------------|  |---------------------------------------|
2389  *         codeword 1,2..n-1                        codeword n
2390  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2391  *
2392  * n = Number of codewords in the page
2393  * . = ECC bytes
2394  * * = Spare/free bytes
2395  * x = Unused byte(s)
2396  * y = Dummy Bad Bock byte(s)
2397  * b = Real Bad Block byte(s)
2398  * size1/size2 = function of codeword size and 'n'
2399  *
2400  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2401  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2402  * Block Markers. In the last codeword, this position contains the real BBM
2403  *
2404  * In order to have a consistent layout between RAW and ECC modes, we assume
2405  * the following OOB layout arrangement:
2406  *
2407  * |-----------|  |--------------------|
2408  * |yyxx.......|  |bb*********xx.......|
2409  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2410  * |yyxx.......|  |bb*********xx.......|
2411  * |yyxx.......|  |bb*********xx.......|
2412  * |-----------|  |--------------------|
2413  *  first n - 1       nth OOB region
2414  *  OOB regions
2415  *
2416  * n = Number of codewords in the page
2417  * . = ECC bytes
2418  * * = FREE OOB bytes
2419  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2420  * x = Unused byte(s)
2421  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2422  *
2423  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2424  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2425  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2426  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2427  * the sum of the three).
2428  */
2429 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2430                                    struct mtd_oob_region *oobregion)
2431 {
2432         struct nand_chip *chip = mtd_to_nand(mtd);
2433         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2434         struct nand_ecc_ctrl *ecc = &chip->ecc;
2435
2436         if (section > 1)
2437                 return -ERANGE;
2438
2439         if (!section) {
2440                 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2441                                     host->bbm_size;
2442                 oobregion->offset = 0;
2443         } else {
2444                 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2445                 oobregion->offset = mtd->oobsize - oobregion->length;
2446         }
2447
2448         return 0;
2449 }
2450
2451 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2452                                      struct mtd_oob_region *oobregion)
2453 {
2454         struct nand_chip *chip = mtd_to_nand(mtd);
2455         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2456         struct nand_ecc_ctrl *ecc = &chip->ecc;
2457
2458         if (section)
2459                 return -ERANGE;
2460
2461         oobregion->length = ecc->steps * 4;
2462         oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2463
2464         return 0;
2465 }
2466
2467 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2468         .ecc = qcom_nand_ooblayout_ecc,
2469         .free = qcom_nand_ooblayout_free,
2470 };
2471
2472 static int
2473 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2474 {
2475         return strength == 4 ? 12 : 16;
2476 }
2477 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2478                      NANDC_STEP_SIZE, 4, 8);
2479
2480 static int qcom_nand_attach_chip(struct nand_chip *chip)
2481 {
2482         struct mtd_info *mtd = nand_to_mtd(chip);
2483         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2484         struct nand_ecc_ctrl *ecc = &chip->ecc;
2485         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2486         int cwperpage, bad_block_byte, ret;
2487         bool wide_bus;
2488         int ecc_mode = 1;
2489
2490         /* controller only supports 512 bytes data steps */
2491         ecc->size = NANDC_STEP_SIZE;
2492         wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2493         cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2494
2495         /*
2496          * Each CW has 4 available OOB bytes which will be protected with ECC
2497          * so remaining bytes can be used for ECC.
2498          */
2499         ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2500                                    mtd->oobsize - (cwperpage * 4));
2501         if (ret) {
2502                 dev_err(nandc->dev, "No valid ECC settings possible\n");
2503                 return ret;
2504         }
2505
2506         if (ecc->strength >= 8) {
2507                 /* 8 bit ECC defaults to BCH ECC on all platforms */
2508                 host->bch_enabled = true;
2509                 ecc_mode = 1;
2510
2511                 if (wide_bus) {
2512                         host->ecc_bytes_hw = 14;
2513                         host->spare_bytes = 0;
2514                         host->bbm_size = 2;
2515                 } else {
2516                         host->ecc_bytes_hw = 13;
2517                         host->spare_bytes = 2;
2518                         host->bbm_size = 1;
2519                 }
2520         } else {
2521                 /*
2522                  * if the controller supports BCH for 4 bit ECC, the controller
2523                  * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2524                  * always 10 bytes
2525                  */
2526                 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2527                         /* BCH */
2528                         host->bch_enabled = true;
2529                         ecc_mode = 0;
2530
2531                         if (wide_bus) {
2532                                 host->ecc_bytes_hw = 8;
2533                                 host->spare_bytes = 2;
2534                                 host->bbm_size = 2;
2535                         } else {
2536                                 host->ecc_bytes_hw = 7;
2537                                 host->spare_bytes = 4;
2538                                 host->bbm_size = 1;
2539                         }
2540                 } else {
2541                         /* RS */
2542                         host->ecc_bytes_hw = 10;
2543
2544                         if (wide_bus) {
2545                                 host->spare_bytes = 0;
2546                                 host->bbm_size = 2;
2547                         } else {
2548                                 host->spare_bytes = 1;
2549                                 host->bbm_size = 1;
2550                         }
2551                 }
2552         }
2553
2554         /*
2555          * we consider ecc->bytes as the sum of all the non-data content in a
2556          * step. It gives us a clean representation of the oob area (even if
2557          * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2558          * ECC and 12 bytes for 4 bit ECC
2559          */
2560         ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2561
2562         ecc->read_page          = qcom_nandc_read_page;
2563         ecc->read_page_raw      = qcom_nandc_read_page_raw;
2564         ecc->read_oob           = qcom_nandc_read_oob;
2565         ecc->write_page         = qcom_nandc_write_page;
2566         ecc->write_page_raw     = qcom_nandc_write_page_raw;
2567         ecc->write_oob          = qcom_nandc_write_oob;
2568
2569         ecc->mode = NAND_ECC_HW;
2570
2571         mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2572
2573         nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2574                                      cwperpage);
2575
2576         /*
2577          * DATA_UD_BYTES varies based on whether the read/write command protects
2578          * spare data with ECC too. We protect spare data by default, so we set
2579          * it to main + spare data, which are 512 and 4 bytes respectively.
2580          */
2581         host->cw_data = 516;
2582
2583         /*
2584          * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2585          * for 8 bit ECC
2586          */
2587         host->cw_size = host->cw_data + ecc->bytes;
2588         bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2589
2590         host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2591                                 | host->cw_data << UD_SIZE_BYTES
2592                                 | 0 << DISABLE_STATUS_AFTER_WRITE
2593                                 | 5 << NUM_ADDR_CYCLES
2594                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2595                                 | 0 << STATUS_BFR_READ
2596                                 | 1 << SET_RD_MODE_AFTER_STATUS
2597                                 | host->spare_bytes << SPARE_SIZE_BYTES;
2598
2599         host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2600                                 | 0 <<  CS_ACTIVE_BSY
2601                                 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2602                                 | 0 << BAD_BLOCK_IN_SPARE_AREA
2603                                 | 2 << WR_RD_BSY_GAP
2604                                 | wide_bus << WIDE_FLASH
2605                                 | host->bch_enabled << ENABLE_BCH_ECC;
2606
2607         host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2608                                 | host->cw_size << UD_SIZE_BYTES
2609                                 | 5 << NUM_ADDR_CYCLES
2610                                 | 0 << SPARE_SIZE_BYTES;
2611
2612         host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2613                                 | 0 << CS_ACTIVE_BSY
2614                                 | 17 << BAD_BLOCK_BYTE_NUM
2615                                 | 1 << BAD_BLOCK_IN_SPARE_AREA
2616                                 | 2 << WR_RD_BSY_GAP
2617                                 | wide_bus << WIDE_FLASH
2618                                 | 1 << DEV0_CFG1_ECC_DISABLE;
2619
2620         host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2621                                 | 0 << ECC_SW_RESET
2622                                 | host->cw_data << ECC_NUM_DATA_BYTES
2623                                 | 1 << ECC_FORCE_CLK_OPEN
2624                                 | ecc_mode << ECC_MODE
2625                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2626
2627         host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2628
2629         host->clrflashstatus = FS_READY_BSY_N;
2630         host->clrreadstatus = 0xc0;
2631         nandc->regs->erased_cw_detect_cfg_clr =
2632                 cpu_to_le32(CLR_ERASED_PAGE_DET);
2633         nandc->regs->erased_cw_detect_cfg_set =
2634                 cpu_to_le32(SET_ERASED_PAGE_DET);
2635
2636         dev_dbg(nandc->dev,
2637                 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2638                 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2639                 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2640                 cwperpage);
2641
2642         return 0;
2643 }
2644
2645 static const struct nand_controller_ops qcom_nandc_ops = {
2646         .attach_chip = qcom_nand_attach_chip,
2647 };
2648
2649 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2650 {
2651         int ret;
2652
2653         ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2654         if (ret) {
2655                 dev_err(nandc->dev, "failed to set DMA mask\n");
2656                 return ret;
2657         }
2658
2659         /*
2660          * we use the internal buffer for reading ONFI params, reading small
2661          * data like ID and status, and preforming read-copy-write operations
2662          * when writing to a codeword partially. 532 is the maximum possible
2663          * size of a codeword for our nand controller
2664          */
2665         nandc->buf_size = 532;
2666
2667         nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2668                                         GFP_KERNEL);
2669         if (!nandc->data_buffer)
2670                 return -ENOMEM;
2671
2672         nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2673                                         GFP_KERNEL);
2674         if (!nandc->regs)
2675                 return -ENOMEM;
2676
2677         nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2678                                 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2679                                 GFP_KERNEL);
2680         if (!nandc->reg_read_buf)
2681                 return -ENOMEM;
2682
2683         if (nandc->props->is_bam) {
2684                 nandc->reg_read_dma =
2685                         dma_map_single(nandc->dev, nandc->reg_read_buf,
2686                                        MAX_REG_RD *
2687                                        sizeof(*nandc->reg_read_buf),
2688                                        DMA_FROM_DEVICE);
2689                 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2690                         dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2691                         return -EIO;
2692                 }
2693
2694                 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2695                 if (!nandc->tx_chan) {
2696                         dev_err(nandc->dev, "failed to request tx channel\n");
2697                         return -ENODEV;
2698                 }
2699
2700                 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2701                 if (!nandc->rx_chan) {
2702                         dev_err(nandc->dev, "failed to request rx channel\n");
2703                         return -ENODEV;
2704                 }
2705
2706                 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2707                 if (!nandc->cmd_chan) {
2708                         dev_err(nandc->dev, "failed to request cmd channel\n");
2709                         return -ENODEV;
2710                 }
2711
2712                 /*
2713                  * Initially allocate BAM transaction to read ONFI param page.
2714                  * After detecting all the devices, this BAM transaction will
2715                  * be freed and the next BAM tranasction will be allocated with
2716                  * maximum codeword size
2717                  */
2718                 nandc->max_cwperpage = 1;
2719                 nandc->bam_txn = alloc_bam_transaction(nandc);
2720                 if (!nandc->bam_txn) {
2721                         dev_err(nandc->dev,
2722                                 "failed to allocate bam transaction\n");
2723                         return -ENOMEM;
2724                 }
2725         } else {
2726                 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2727                 if (!nandc->chan) {
2728                         dev_err(nandc->dev,
2729                                 "failed to request slave channel\n");
2730                         return -ENODEV;
2731                 }
2732         }
2733
2734         INIT_LIST_HEAD(&nandc->desc_list);
2735         INIT_LIST_HEAD(&nandc->host_list);
2736
2737         nand_controller_init(&nandc->controller);
2738         nandc->controller.ops = &qcom_nandc_ops;
2739
2740         return 0;
2741 }
2742
2743 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2744 {
2745         if (nandc->props->is_bam) {
2746                 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2747                         dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2748                                          MAX_REG_RD *
2749                                          sizeof(*nandc->reg_read_buf),
2750                                          DMA_FROM_DEVICE);
2751
2752                 if (nandc->tx_chan)
2753                         dma_release_channel(nandc->tx_chan);
2754
2755                 if (nandc->rx_chan)
2756                         dma_release_channel(nandc->rx_chan);
2757
2758                 if (nandc->cmd_chan)
2759                         dma_release_channel(nandc->cmd_chan);
2760         } else {
2761                 if (nandc->chan)
2762                         dma_release_channel(nandc->chan);
2763         }
2764 }
2765
2766 /* one time setup of a few nand controller registers */
2767 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2768 {
2769         u32 nand_ctrl;
2770
2771         /* kill onenand */
2772         if (!nandc->props->is_qpic)
2773                 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2774         nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2775                     NAND_DEV_CMD_VLD_VAL);
2776
2777         /* enable ADM or BAM DMA */
2778         if (nandc->props->is_bam) {
2779                 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2780                 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2781         } else {
2782                 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2783         }
2784
2785         /* save the original values of these registers */
2786         nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2787         nandc->vld = NAND_DEV_CMD_VLD_VAL;
2788
2789         return 0;
2790 }
2791
2792 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2793                                             struct qcom_nand_host *host,
2794                                             struct device_node *dn)
2795 {
2796         struct nand_chip *chip = &host->chip;
2797         struct mtd_info *mtd = nand_to_mtd(chip);
2798         struct device *dev = nandc->dev;
2799         int ret;
2800
2801         ret = of_property_read_u32(dn, "reg", &host->cs);
2802         if (ret) {
2803                 dev_err(dev, "can't get chip-select\n");
2804                 return -ENXIO;
2805         }
2806
2807         nand_set_flash_node(chip, dn);
2808         mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2809         if (!mtd->name)
2810                 return -ENOMEM;
2811
2812         mtd->owner = THIS_MODULE;
2813         mtd->dev.parent = dev;
2814
2815         chip->cmdfunc           = qcom_nandc_command;
2816         chip->select_chip       = qcom_nandc_select_chip;
2817         chip->read_byte         = qcom_nandc_read_byte;
2818         chip->read_buf          = qcom_nandc_read_buf;
2819         chip->write_buf         = qcom_nandc_write_buf;
2820         chip->set_features      = nand_get_set_features_notsupp;
2821         chip->get_features      = nand_get_set_features_notsupp;
2822
2823         /*
2824          * the bad block marker is readable only when we read the last codeword
2825          * of a page with ECC disabled. currently, the nand_base and nand_bbt
2826          * helpers don't allow us to read BB from a nand chip with ECC
2827          * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2828          * and block_markbad helpers until we permanently switch to using
2829          * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2830          */
2831         chip->block_bad         = qcom_nandc_block_bad;
2832         chip->block_markbad     = qcom_nandc_block_markbad;
2833
2834         chip->controller = &nandc->controller;
2835         chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2836                          NAND_SKIP_BBTSCAN;
2837
2838         /* set up initial status value */
2839         host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2840
2841         ret = nand_scan(chip, 1);
2842         if (ret)
2843                 return ret;
2844
2845         if (nandc->props->is_bam) {
2846                 free_bam_transaction(nandc);
2847                 nandc->bam_txn = alloc_bam_transaction(nandc);
2848                 if (!nandc->bam_txn) {
2849                         dev_err(nandc->dev,
2850                                 "failed to allocate bam transaction\n");
2851                         return -ENOMEM;
2852                 }
2853         }
2854
2855         ret = mtd_device_register(mtd, NULL, 0);
2856         if (ret)
2857                 nand_cleanup(chip);
2858
2859         return ret;
2860 }
2861
2862 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2863 {
2864         struct device *dev = nandc->dev;
2865         struct device_node *dn = dev->of_node, *child;
2866         struct qcom_nand_host *host;
2867         int ret = -ENODEV;
2868
2869         for_each_available_child_of_node(dn, child) {
2870                 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2871                 if (!host) {
2872                         of_node_put(child);
2873                         return -ENOMEM;
2874                 }
2875
2876                 ret = qcom_nand_host_init_and_register(nandc, host, child);
2877                 if (ret) {
2878                         devm_kfree(dev, host);
2879                         continue;
2880                 }
2881
2882                 list_add_tail(&host->node, &nandc->host_list);
2883         }
2884
2885         return ret;
2886 }
2887
2888 /* parse custom DT properties here */
2889 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2890 {
2891         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2892         struct device_node *np = nandc->dev->of_node;
2893         int ret;
2894
2895         if (!nandc->props->is_bam) {
2896                 ret = of_property_read_u32(np, "qcom,cmd-crci",
2897                                            &nandc->cmd_crci);
2898                 if (ret) {
2899                         dev_err(nandc->dev, "command CRCI unspecified\n");
2900                         return ret;
2901                 }
2902
2903                 ret = of_property_read_u32(np, "qcom,data-crci",
2904                                            &nandc->data_crci);
2905                 if (ret) {
2906                         dev_err(nandc->dev, "data CRCI unspecified\n");
2907                         return ret;
2908                 }
2909         }
2910
2911         return 0;
2912 }
2913
2914 static int qcom_nandc_probe(struct platform_device *pdev)
2915 {
2916         struct qcom_nand_controller *nandc;
2917         const void *dev_data;
2918         struct device *dev = &pdev->dev;
2919         struct resource *res;
2920         int ret;
2921
2922         nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2923         if (!nandc)
2924                 return -ENOMEM;
2925
2926         platform_set_drvdata(pdev, nandc);
2927         nandc->dev = dev;
2928
2929         dev_data = of_device_get_match_data(dev);
2930         if (!dev_data) {
2931                 dev_err(&pdev->dev, "failed to get device data\n");
2932                 return -ENODEV;
2933         }
2934
2935         nandc->props = dev_data;
2936
2937         nandc->core_clk = devm_clk_get(dev, "core");
2938         if (IS_ERR(nandc->core_clk))
2939                 return PTR_ERR(nandc->core_clk);
2940
2941         nandc->aon_clk = devm_clk_get(dev, "aon");
2942         if (IS_ERR(nandc->aon_clk))
2943                 return PTR_ERR(nandc->aon_clk);
2944
2945         ret = qcom_nandc_parse_dt(pdev);
2946         if (ret)
2947                 return ret;
2948
2949         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2950         nandc->base = devm_ioremap_resource(dev, res);
2951         if (IS_ERR(nandc->base))
2952                 return PTR_ERR(nandc->base);
2953
2954         nandc->base_phys = res->start;
2955         nandc->base_dma = dma_map_resource(dev, res->start,
2956                                            resource_size(res),
2957                                            DMA_BIDIRECTIONAL, 0);
2958         if (!nandc->base_dma)
2959                 return -ENXIO;
2960
2961         ret = clk_prepare_enable(nandc->core_clk);
2962         if (ret)
2963                 goto err_core_clk;
2964
2965         ret = clk_prepare_enable(nandc->aon_clk);
2966         if (ret)
2967                 goto err_aon_clk;
2968
2969         ret = qcom_nandc_alloc(nandc);
2970         if (ret)
2971                 goto err_nandc_alloc;
2972
2973         ret = qcom_nandc_setup(nandc);
2974         if (ret)
2975                 goto err_setup;
2976
2977         ret = qcom_probe_nand_devices(nandc);
2978         if (ret)
2979                 goto err_setup;
2980
2981         return 0;
2982
2983 err_setup:
2984         qcom_nandc_unalloc(nandc);
2985 err_nandc_alloc:
2986         clk_disable_unprepare(nandc->aon_clk);
2987 err_aon_clk:
2988         clk_disable_unprepare(nandc->core_clk);
2989 err_core_clk:
2990         dma_unmap_resource(dev, res->start, resource_size(res),
2991                            DMA_BIDIRECTIONAL, 0);
2992         return ret;
2993 }
2994
2995 static int qcom_nandc_remove(struct platform_device *pdev)
2996 {
2997         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2998         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2999         struct qcom_nand_host *host;
3000
3001         list_for_each_entry(host, &nandc->host_list, node)
3002                 nand_release(&host->chip);
3003
3004
3005         qcom_nandc_unalloc(nandc);
3006
3007         clk_disable_unprepare(nandc->aon_clk);
3008         clk_disable_unprepare(nandc->core_clk);
3009
3010         dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3011                            DMA_BIDIRECTIONAL, 0);
3012
3013         return 0;
3014 }
3015
3016 static const struct qcom_nandc_props ipq806x_nandc_props = {
3017         .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3018         .is_bam = false,
3019         .dev_cmd_reg_start = 0x0,
3020 };
3021
3022 static const struct qcom_nandc_props ipq4019_nandc_props = {
3023         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3024         .is_bam = true,
3025         .is_qpic = true,
3026         .dev_cmd_reg_start = 0x0,
3027 };
3028
3029 static const struct qcom_nandc_props ipq8074_nandc_props = {
3030         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3031         .is_bam = true,
3032         .is_qpic = true,
3033         .dev_cmd_reg_start = 0x7000,
3034 };
3035
3036 /*
3037  * data will hold a struct pointer containing more differences once we support
3038  * more controller variants
3039  */
3040 static const struct of_device_id qcom_nandc_of_match[] = {
3041         {
3042                 .compatible = "qcom,ipq806x-nand",
3043                 .data = &ipq806x_nandc_props,
3044         },
3045         {
3046                 .compatible = "qcom,ipq4019-nand",
3047                 .data = &ipq4019_nandc_props,
3048         },
3049         {
3050                 .compatible = "qcom,ipq8074-nand",
3051                 .data = &ipq8074_nandc_props,
3052         },
3053         {}
3054 };
3055 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3056
3057 static struct platform_driver qcom_nandc_driver = {
3058         .driver = {
3059                 .name = "qcom-nandc",
3060                 .of_match_table = qcom_nandc_of_match,
3061         },
3062         .probe   = qcom_nandc_probe,
3063         .remove  = qcom_nandc_remove,
3064 };
3065 module_platform_driver(qcom_nandc_driver);
3066
3067 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3068 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3069 MODULE_LICENSE("GPL v2");