GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / mtd / nand / raw / s3c2410.c
1 /*
2  * Copyright © 2004-2008 Simtec Electronics
3  *      http://armlinux.simtec.co.uk/
4  *      Ben Dooks <ben@simtec.co.uk>
5  *
6  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 */
22
23 #define pr_fmt(fmt) "nand-s3c2410: " fmt
24
25 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26 #define DEBUG
27 #endif
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/io.h>
34 #include <linux/ioport.h>
35 #include <linux/platform_device.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/slab.h>
39 #include <linux/clk.h>
40 #include <linux/cpufreq.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/rawnand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48
49 #include <linux/platform_data/mtd-nand-s3c2410.h>
50
51 #define S3C2410_NFREG(x) (x)
52
53 #define S3C2410_NFCONF          S3C2410_NFREG(0x00)
54 #define S3C2410_NFCMD           S3C2410_NFREG(0x04)
55 #define S3C2410_NFADDR          S3C2410_NFREG(0x08)
56 #define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
57 #define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
58 #define S3C2410_NFECC           S3C2410_NFREG(0x14)
59 #define S3C2440_NFCONT          S3C2410_NFREG(0x04)
60 #define S3C2440_NFCMD           S3C2410_NFREG(0x08)
61 #define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
62 #define S3C2440_NFDATA          S3C2410_NFREG(0x10)
63 #define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
64 #define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
65 #define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
66 #define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
67 #define S3C2410_NFCONF_EN               (1<<15)
68 #define S3C2410_NFCONF_INITECC          (1<<12)
69 #define S3C2410_NFCONF_nFCE             (1<<11)
70 #define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
71 #define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
72 #define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
73 #define S3C2410_NFSTAT_BUSY             (1<<0)
74 #define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
75 #define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
76 #define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
77 #define S3C2440_NFCONT_INITECC          (1<<4)
78 #define S3C2440_NFCONT_nFCE             (1<<1)
79 #define S3C2440_NFCONT_ENABLE           (1<<0)
80 #define S3C2440_NFSTAT_READY            (1<<0)
81 #define S3C2412_NFCONF_NANDBOOT         (1<<31)
82 #define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
83 #define S3C2412_NFCONT_nFCE0            (1<<1)
84 #define S3C2412_NFSTAT_READY            (1<<0)
85
86 /* new oob placement block for use with hardware ecc generation
87  */
88 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89                                  struct mtd_oob_region *oobregion)
90 {
91         if (section)
92                 return -ERANGE;
93
94         oobregion->offset = 0;
95         oobregion->length = 3;
96
97         return 0;
98 }
99
100 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101                                   struct mtd_oob_region *oobregion)
102 {
103         if (section)
104                 return -ERANGE;
105
106         oobregion->offset = 8;
107         oobregion->length = 8;
108
109         return 0;
110 }
111
112 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113         .ecc = s3c2410_ooblayout_ecc,
114         .free = s3c2410_ooblayout_free,
115 };
116
117 /* controller and mtd information */
118
119 struct s3c2410_nand_info;
120
121 /**
122  * struct s3c2410_nand_mtd - driver MTD structure
123  * @mtd: The MTD instance to pass to the MTD layer.
124  * @chip: The NAND chip information.
125  * @set: The platform information supplied for this set of NAND chips.
126  * @info: Link back to the hardware information.
127 */
128 struct s3c2410_nand_mtd {
129         struct nand_chip                chip;
130         struct s3c2410_nand_set         *set;
131         struct s3c2410_nand_info        *info;
132 };
133
134 enum s3c_cpu_type {
135         TYPE_S3C2410,
136         TYPE_S3C2412,
137         TYPE_S3C2440,
138 };
139
140 enum s3c_nand_clk_state {
141         CLOCK_DISABLE   = 0,
142         CLOCK_ENABLE,
143         CLOCK_SUSPEND,
144 };
145
146 /* overview of the s3c2410 nand state */
147
148 /**
149  * struct s3c2410_nand_info - NAND controller state.
150  * @mtds: An array of MTD instances on this controoler.
151  * @platform: The platform data for this board.
152  * @device: The platform device we bound to.
153  * @clk: The clock resource for this controller.
154  * @regs: The area mapped for the hardware registers.
155  * @sel_reg: Pointer to the register controlling the NAND selection.
156  * @sel_bit: The bit in @sel_reg to select the NAND chip.
157  * @mtd_count: The number of MTDs created from this controller.
158  * @save_sel: The contents of @sel_reg to be saved over suspend.
159  * @clk_rate: The clock rate from @clk.
160  * @clk_state: The current clock state.
161  * @cpu_type: The exact type of this controller.
162  */
163 struct s3c2410_nand_info {
164         /* mtd info */
165         struct nand_controller          controller;
166         struct s3c2410_nand_mtd         *mtds;
167         struct s3c2410_platform_nand    *platform;
168
169         /* device info */
170         struct device                   *device;
171         struct clk                      *clk;
172         void __iomem                    *regs;
173         void __iomem                    *sel_reg;
174         int                             sel_bit;
175         int                             mtd_count;
176         unsigned long                   save_sel;
177         unsigned long                   clk_rate;
178         enum s3c_nand_clk_state         clk_state;
179
180         enum s3c_cpu_type               cpu_type;
181
182 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
183         struct notifier_block   freq_transition;
184 #endif
185 };
186
187 struct s3c24XX_nand_devtype_data {
188         enum s3c_cpu_type type;
189 };
190
191 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192         .type = TYPE_S3C2410,
193 };
194
195 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196         .type = TYPE_S3C2412,
197 };
198
199 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200         .type = TYPE_S3C2440,
201 };
202
203 /* conversion functions */
204
205 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206 {
207         return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208                             chip);
209 }
210
211 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212 {
213         return s3c2410_nand_mtd_toours(mtd)->info;
214 }
215
216 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
217 {
218         return platform_get_drvdata(dev);
219 }
220
221 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
222 {
223         return dev_get_platdata(&dev->dev);
224 }
225
226 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
227 {
228 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229         return 1;
230 #else
231         return 0;
232 #endif
233 }
234
235 /**
236  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237  * @info: The controller instance.
238  * @new_state: State to which clock should be set.
239  */
240 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241                 enum s3c_nand_clk_state new_state)
242 {
243         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244                 return;
245
246         if (info->clk_state == CLOCK_ENABLE) {
247                 if (new_state != CLOCK_ENABLE)
248                         clk_disable_unprepare(info->clk);
249         } else {
250                 if (new_state == CLOCK_ENABLE)
251                         clk_prepare_enable(info->clk);
252         }
253
254         info->clk_state = new_state;
255 }
256
257 /* timing calculations */
258
259 #define NS_IN_KHZ 1000000
260
261 /**
262  * s3c_nand_calc_rate - calculate timing data.
263  * @wanted: The cycle time in nanoseconds.
264  * @clk: The clock rate in kHz.
265  * @max: The maximum divider value.
266  *
267  * Calculate the timing value from the given parameters.
268  */
269 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
270 {
271         int result;
272
273         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
274
275         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276
277         if (result > max) {
278                 pr_err("%d ns is too big for current clock rate %ld\n",
279                         wanted, clk);
280                 return -1;
281         }
282
283         if (result < 1)
284                 result = 1;
285
286         return result;
287 }
288
289 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
290
291 /* controller setup */
292
293 /**
294  * s3c2410_nand_setrate - setup controller timing information.
295  * @info: The controller instance.
296  *
297  * Given the information supplied by the platform, calculate and set
298  * the necessary timing registers in the hardware to generate the
299  * necessary timing cycles to the hardware.
300  */
301 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
302 {
303         struct s3c2410_platform_nand *plat = info->platform;
304         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
305         int tacls, twrph0, twrph1;
306         unsigned long clkrate = clk_get_rate(info->clk);
307         unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
308         unsigned long flags;
309
310         /* calculate the timing information for the controller */
311
312         info->clk_rate = clkrate;
313         clkrate /= 1000;        /* turn clock into kHz for ease of use */
314
315         if (plat != NULL) {
316                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
319         } else {
320                 /* default timings */
321                 tacls = tacls_max;
322                 twrph0 = 8;
323                 twrph1 = 8;
324         }
325
326         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
327                 dev_err(info->device, "cannot get suitable timings\n");
328                 return -EINVAL;
329         }
330
331         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
332                 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333                                                 twrph1, to_ns(twrph1, clkrate));
334
335         switch (info->cpu_type) {
336         case TYPE_S3C2410:
337                 mask = (S3C2410_NFCONF_TACLS(3) |
338                         S3C2410_NFCONF_TWRPH0(7) |
339                         S3C2410_NFCONF_TWRPH1(7));
340                 set = S3C2410_NFCONF_EN;
341                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
342                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344                 break;
345
346         case TYPE_S3C2440:
347         case TYPE_S3C2412:
348                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349                         S3C2440_NFCONF_TWRPH0(7) |
350                         S3C2440_NFCONF_TWRPH1(7));
351
352                 set = S3C2440_NFCONF_TACLS(tacls - 1);
353                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355                 break;
356
357         default:
358                 BUG();
359         }
360
361         local_irq_save(flags);
362
363         cfg = readl(info->regs + S3C2410_NFCONF);
364         cfg &= ~mask;
365         cfg |= set;
366         writel(cfg, info->regs + S3C2410_NFCONF);
367
368         local_irq_restore(flags);
369
370         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371
372         return 0;
373 }
374
375 /**
376  * s3c2410_nand_inithw - basic hardware initialisation
377  * @info: The hardware state.
378  *
379  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380  * to setup the hardware access speeds and set the controller to be enabled.
381 */
382 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383 {
384         int ret;
385
386         ret = s3c2410_nand_setrate(info);
387         if (ret < 0)
388                 return ret;
389
390         switch (info->cpu_type) {
391         case TYPE_S3C2410:
392         default:
393                 break;
394
395         case TYPE_S3C2440:
396         case TYPE_S3C2412:
397                 /* enable the controller and de-assert nFCE */
398
399                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
400         }
401
402         return 0;
403 }
404
405 /**
406  * s3c2410_nand_select_chip - select the given nand chip
407  * @mtd: The MTD instance for this chip.
408  * @chip: The chip number.
409  *
410  * This is called by the MTD layer to either select a given chip for the
411  * @mtd instance, or to indicate that the access has finished and the
412  * chip can be de-selected.
413  *
414  * The routine ensures that the nFCE line is correctly setup, and any
415  * platform specific selection code is called to route nFCE to the specific
416  * chip.
417  */
418 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
419 {
420         struct s3c2410_nand_info *info;
421         struct s3c2410_nand_mtd *nmtd;
422         struct nand_chip *this = mtd_to_nand(mtd);
423         unsigned long cur;
424
425         nmtd = nand_get_controller_data(this);
426         info = nmtd->info;
427
428         if (chip != -1)
429                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
430
431         cur = readl(info->sel_reg);
432
433         if (chip == -1) {
434                 cur |= info->sel_bit;
435         } else {
436                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
437                         dev_err(info->device, "invalid chip %d\n", chip);
438                         return;
439                 }
440
441                 if (info->platform != NULL) {
442                         if (info->platform->select_chip != NULL)
443                                 (info->platform->select_chip) (nmtd->set, chip);
444                 }
445
446                 cur &= ~info->sel_bit;
447         }
448
449         writel(cur, info->sel_reg);
450
451         if (chip == -1)
452                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
453 }
454
455 /* s3c2410_nand_hwcontrol
456  *
457  * Issue command and address cycles to the chip
458 */
459
460 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
461                                    unsigned int ctrl)
462 {
463         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
464
465         if (cmd == NAND_CMD_NONE)
466                 return;
467
468         if (ctrl & NAND_CLE)
469                 writeb(cmd, info->regs + S3C2410_NFCMD);
470         else
471                 writeb(cmd, info->regs + S3C2410_NFADDR);
472 }
473
474 /* command and control functions */
475
476 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
477                                    unsigned int ctrl)
478 {
479         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
480
481         if (cmd == NAND_CMD_NONE)
482                 return;
483
484         if (ctrl & NAND_CLE)
485                 writeb(cmd, info->regs + S3C2440_NFCMD);
486         else
487                 writeb(cmd, info->regs + S3C2440_NFADDR);
488 }
489
490 /* s3c2410_nand_devready()
491  *
492  * returns 0 if the nand is busy, 1 if it is ready
493 */
494
495 static int s3c2410_nand_devready(struct mtd_info *mtd)
496 {
497         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
498         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
499 }
500
501 static int s3c2440_nand_devready(struct mtd_info *mtd)
502 {
503         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
504         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
505 }
506
507 static int s3c2412_nand_devready(struct mtd_info *mtd)
508 {
509         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
510         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
511 }
512
513 /* ECC handling functions */
514
515 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
516                                      u_char *read_ecc, u_char *calc_ecc)
517 {
518         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
519         unsigned int diff0, diff1, diff2;
520         unsigned int bit, byte;
521
522         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
523
524         diff0 = read_ecc[0] ^ calc_ecc[0];
525         diff1 = read_ecc[1] ^ calc_ecc[1];
526         diff2 = read_ecc[2] ^ calc_ecc[2];
527
528         pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
529                  __func__, 3, read_ecc, 3, calc_ecc,
530                  diff0, diff1, diff2);
531
532         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
533                 return 0;               /* ECC is ok */
534
535         /* sometimes people do not think about using the ECC, so check
536          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
537          * the error, on the assumption that this is an un-eccd page.
538          */
539         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
540             && info->platform->ignore_unset_ecc)
541                 return 0;
542
543         /* Can we correct this ECC (ie, one row and column change).
544          * Note, this is similar to the 256 error code on smartmedia */
545
546         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
547             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
548             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
549                 /* calculate the bit position of the error */
550
551                 bit  = ((diff2 >> 3) & 1) |
552                        ((diff2 >> 4) & 2) |
553                        ((diff2 >> 5) & 4);
554
555                 /* calculate the byte position of the error */
556
557                 byte = ((diff2 << 7) & 0x100) |
558                        ((diff1 << 0) & 0x80)  |
559                        ((diff1 << 1) & 0x40)  |
560                        ((diff1 << 2) & 0x20)  |
561                        ((diff1 << 3) & 0x10)  |
562                        ((diff0 >> 4) & 0x08)  |
563                        ((diff0 >> 3) & 0x04)  |
564                        ((diff0 >> 2) & 0x02)  |
565                        ((diff0 >> 1) & 0x01);
566
567                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
568                         bit, byte);
569
570                 dat[byte] ^= (1 << bit);
571                 return 1;
572         }
573
574         /* if there is only one bit difference in the ECC, then
575          * one of only a row or column parity has changed, which
576          * means the error is most probably in the ECC itself */
577
578         diff0 |= (diff1 << 8);
579         diff0 |= (diff2 << 16);
580
581         /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
582         if ((diff0 & (diff0 - 1)) == 0)
583                 return 1;
584
585         return -1;
586 }
587
588 /* ECC functions
589  *
590  * These allow the s3c2410 and s3c2440 to use the controller's ECC
591  * generator block to ECC the data as it passes through]
592 */
593
594 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
595 {
596         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
597         unsigned long ctrl;
598
599         ctrl = readl(info->regs + S3C2410_NFCONF);
600         ctrl |= S3C2410_NFCONF_INITECC;
601         writel(ctrl, info->regs + S3C2410_NFCONF);
602 }
603
604 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
605 {
606         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
607         unsigned long ctrl;
608
609         ctrl = readl(info->regs + S3C2440_NFCONT);
610         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
611                info->regs + S3C2440_NFCONT);
612 }
613
614 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
615 {
616         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
617         unsigned long ctrl;
618
619         ctrl = readl(info->regs + S3C2440_NFCONT);
620         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
621 }
622
623 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
624                                       u_char *ecc_code)
625 {
626         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
627
628         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
629         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
630         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
631
632         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
633
634         return 0;
635 }
636
637 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
638                                       u_char *ecc_code)
639 {
640         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
641         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
642
643         ecc_code[0] = ecc;
644         ecc_code[1] = ecc >> 8;
645         ecc_code[2] = ecc >> 16;
646
647         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
648
649         return 0;
650 }
651
652 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
653                                       u_char *ecc_code)
654 {
655         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
656         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
657
658         ecc_code[0] = ecc;
659         ecc_code[1] = ecc >> 8;
660         ecc_code[2] = ecc >> 16;
661
662         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
663
664         return 0;
665 }
666
667 /* over-ride the standard functions for a little more speed. We can
668  * use read/write block to move the data buffers to/from the controller
669 */
670
671 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
672 {
673         struct nand_chip *this = mtd_to_nand(mtd);
674         readsb(this->IO_ADDR_R, buf, len);
675 }
676
677 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
678 {
679         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
680
681         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
682
683         /* cleanup if we've got less than a word to do */
684         if (len & 3) {
685                 buf += len & ~3;
686
687                 for (; len & 3; len--)
688                         *buf++ = readb(info->regs + S3C2440_NFDATA);
689         }
690 }
691
692 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
693                                    int len)
694 {
695         struct nand_chip *this = mtd_to_nand(mtd);
696         writesb(this->IO_ADDR_W, buf, len);
697 }
698
699 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
700                                    int len)
701 {
702         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
703
704         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
705
706         /* cleanup any fractional write */
707         if (len & 3) {
708                 buf += len & ~3;
709
710                 for (; len & 3; len--, buf++)
711                         writeb(*buf, info->regs + S3C2440_NFDATA);
712         }
713 }
714
715 /* cpufreq driver support */
716
717 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
718
719 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
720                                           unsigned long val, void *data)
721 {
722         struct s3c2410_nand_info *info;
723         unsigned long newclk;
724
725         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
726         newclk = clk_get_rate(info->clk);
727
728         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
729             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
730                 s3c2410_nand_setrate(info);
731         }
732
733         return 0;
734 }
735
736 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
737 {
738         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
739
740         return cpufreq_register_notifier(&info->freq_transition,
741                                          CPUFREQ_TRANSITION_NOTIFIER);
742 }
743
744 static inline void
745 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
746 {
747         cpufreq_unregister_notifier(&info->freq_transition,
748                                     CPUFREQ_TRANSITION_NOTIFIER);
749 }
750
751 #else
752 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
753 {
754         return 0;
755 }
756
757 static inline void
758 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
759 {
760 }
761 #endif
762
763 /* device management functions */
764
765 static int s3c24xx_nand_remove(struct platform_device *pdev)
766 {
767         struct s3c2410_nand_info *info = to_nand_info(pdev);
768
769         if (info == NULL)
770                 return 0;
771
772         s3c2410_nand_cpufreq_deregister(info);
773
774         /* Release all our mtds  and their partitions, then go through
775          * freeing the resources used
776          */
777
778         if (info->mtds != NULL) {
779                 struct s3c2410_nand_mtd *ptr = info->mtds;
780                 int mtdno;
781
782                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
783                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
784                         nand_release(&ptr->chip);
785                 }
786         }
787
788         /* free the common resources */
789
790         if (!IS_ERR(info->clk))
791                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
792
793         return 0;
794 }
795
796 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
797                                       struct s3c2410_nand_mtd *mtd,
798                                       struct s3c2410_nand_set *set)
799 {
800         if (set) {
801                 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
802
803                 mtdinfo->name = set->name;
804
805                 return mtd_device_register(mtdinfo, set->partitions,
806                                            set->nr_partitions);
807         }
808
809         return -ENODEV;
810 }
811
812 static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
813                                         const struct nand_data_interface *conf)
814 {
815         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816         struct s3c2410_platform_nand *pdata = info->platform;
817         const struct nand_sdr_timings *timings;
818         int tacls;
819
820         timings = nand_get_sdr_timings(conf);
821         if (IS_ERR(timings))
822                 return -ENOTSUPP;
823
824         tacls = timings->tCLS_min - timings->tWP_min;
825         if (tacls < 0)
826                 tacls = 0;
827
828         pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
829         pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830         pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831
832         return s3c2410_nand_setrate(info);
833 }
834
835 /**
836  * s3c2410_nand_init_chip - initialise a single instance of an chip
837  * @info: The base NAND controller the chip is on.
838  * @nmtd: The new controller MTD instance to fill in.
839  * @set: The information passed from the board specific platform data.
840  *
841  * Initialise the given @nmtd from the information in @info and @set. This
842  * readies the structure for use with the MTD layer functions by ensuring
843  * all pointers are setup and the necessary control routines selected.
844  */
845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846                                    struct s3c2410_nand_mtd *nmtd,
847                                    struct s3c2410_nand_set *set)
848 {
849         struct device_node *np = info->device->of_node;
850         struct nand_chip *chip = &nmtd->chip;
851         void __iomem *regs = info->regs;
852
853         nand_set_flash_node(chip, set->of_node);
854
855         chip->write_buf    = s3c2410_nand_write_buf;
856         chip->read_buf     = s3c2410_nand_read_buf;
857         chip->select_chip  = s3c2410_nand_select_chip;
858         chip->chip_delay   = 50;
859         nand_set_controller_data(chip, nmtd);
860         chip->options      = set->options;
861         chip->controller   = &info->controller;
862
863         /*
864          * let's keep behavior unchanged for legacy boards booting via pdata and
865          * auto-detect timings only when booting with a device tree.
866          */
867         if (np)
868                 chip->setup_data_interface = s3c2410_nand_setup_data_interface;
869
870         switch (info->cpu_type) {
871         case TYPE_S3C2410:
872                 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
873                 info->sel_reg   = regs + S3C2410_NFCONF;
874                 info->sel_bit   = S3C2410_NFCONF_nFCE;
875                 chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
876                 chip->dev_ready = s3c2410_nand_devready;
877                 break;
878
879         case TYPE_S3C2440:
880                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
881                 info->sel_reg   = regs + S3C2440_NFCONT;
882                 info->sel_bit   = S3C2440_NFCONT_nFCE;
883                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
884                 chip->dev_ready = s3c2440_nand_devready;
885                 chip->read_buf  = s3c2440_nand_read_buf;
886                 chip->write_buf = s3c2440_nand_write_buf;
887                 break;
888
889         case TYPE_S3C2412:
890                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
891                 info->sel_reg   = regs + S3C2440_NFCONT;
892                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
893                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
894                 chip->dev_ready = s3c2412_nand_devready;
895
896                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897                         dev_info(info->device, "System booted from NAND\n");
898
899                 break;
900         }
901
902         chip->IO_ADDR_R = chip->IO_ADDR_W;
903
904         nmtd->info         = info;
905         nmtd->set          = set;
906
907         chip->ecc.mode = info->platform->ecc_mode;
908
909         /*
910          * If you use u-boot BBT creation code, specifying this flag will
911          * let the kernel fish out the BBT from the NAND.
912          */
913         if (set->flash_bbt)
914                 chip->bbt_options |= NAND_BBT_USE_FLASH;
915 }
916
917 /**
918  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
919  * @chip: The NAND chip
920  *
921  * This hook is called by the core after the identification of the NAND chip,
922  * once the relevant per-chip information is up to date.. This call ensure that
923  * we update the internal state accordingly.
924  *
925  * The internal state is currently limited to the ECC state information.
926 */
927 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
928 {
929         struct mtd_info *mtd = nand_to_mtd(chip);
930         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
931
932         switch (chip->ecc.mode) {
933
934         case NAND_ECC_NONE:
935                 dev_info(info->device, "ECC disabled\n");
936                 break;
937
938         case NAND_ECC_SOFT:
939                 /*
940                  * This driver expects Hamming based ECC when ecc_mode is set
941                  * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
942                  * avoid adding an extra ecc_algo field to
943                  * s3c2410_platform_nand.
944                  */
945                 chip->ecc.algo = NAND_ECC_HAMMING;
946                 dev_info(info->device, "soft ECC\n");
947                 break;
948
949         case NAND_ECC_HW:
950                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
951                 chip->ecc.correct   = s3c2410_nand_correct_data;
952                 chip->ecc.strength  = 1;
953
954                 switch (info->cpu_type) {
955                 case TYPE_S3C2410:
956                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
957                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
958                         break;
959
960                 case TYPE_S3C2412:
961                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
962                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
963                         break;
964
965                 case TYPE_S3C2440:
966                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
967                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
968                         break;
969                 }
970
971                 dev_dbg(info->device, "chip %p => page shift %d\n",
972                         chip, chip->page_shift);
973
974                 /* change the behaviour depending on whether we are using
975                  * the large or small page nand device */
976                 if (chip->page_shift > 10) {
977                         chip->ecc.size      = 256;
978                         chip->ecc.bytes     = 3;
979                 } else {
980                         chip->ecc.size      = 512;
981                         chip->ecc.bytes     = 3;
982                         mtd_set_ooblayout(nand_to_mtd(chip),
983                                           &s3c2410_ooblayout_ops);
984                 }
985
986                 dev_info(info->device, "hardware ECC\n");
987                 break;
988
989         default:
990                 dev_err(info->device, "invalid ECC mode!\n");
991                 return -EINVAL;
992         }
993
994         if (chip->bbt_options & NAND_BBT_USE_FLASH)
995                 chip->options |= NAND_SKIP_BBTSCAN;
996
997         return 0;
998 }
999
1000 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1001         .attach_chip = s3c2410_nand_attach_chip,
1002 };
1003
1004 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1005         {
1006                 .compatible = "samsung,s3c2410-nand",
1007                 .data = &s3c2410_nand_devtype_data,
1008         }, {
1009                 /* also compatible with s3c6400 */
1010                 .compatible = "samsung,s3c2412-nand",
1011                 .data = &s3c2412_nand_devtype_data,
1012         }, {
1013                 .compatible = "samsung,s3c2440-nand",
1014                 .data = &s3c2440_nand_devtype_data,
1015         },
1016         { /* sentinel */ }
1017 };
1018 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1019
1020 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1021 {
1022         const struct s3c24XX_nand_devtype_data *devtype_data;
1023         struct s3c2410_platform_nand *pdata;
1024         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025         struct device_node *np = pdev->dev.of_node, *child;
1026         struct s3c2410_nand_set *sets;
1027
1028         devtype_data = of_device_get_match_data(&pdev->dev);
1029         if (!devtype_data)
1030                 return -ENODEV;
1031
1032         info->cpu_type = devtype_data->type;
1033
1034         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035         if (!pdata)
1036                 return -ENOMEM;
1037
1038         pdev->dev.platform_data = pdata;
1039
1040         pdata->nr_sets = of_get_child_count(np);
1041         if (!pdata->nr_sets)
1042                 return 0;
1043
1044         sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1045                             GFP_KERNEL);
1046         if (!sets)
1047                 return -ENOMEM;
1048
1049         pdata->sets = sets;
1050
1051         for_each_available_child_of_node(np, child) {
1052                 sets->name = (char *)child->name;
1053                 sets->of_node = child;
1054                 sets->nr_chips = 1;
1055
1056                 of_node_get(child);
1057
1058                 sets++;
1059         }
1060
1061         return 0;
1062 }
1063
1064 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1065 {
1066         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1067
1068         info->cpu_type = platform_get_device_id(pdev)->driver_data;
1069
1070         return 0;
1071 }
1072
1073 /* s3c24xx_nand_probe
1074  *
1075  * called by device layer when it finds a device matching
1076  * one our driver can handled. This code checks to see if
1077  * it can allocate all necessary resources then calls the
1078  * nand layer to look for devices
1079 */
1080 static int s3c24xx_nand_probe(struct platform_device *pdev)
1081 {
1082         struct s3c2410_platform_nand *plat;
1083         struct s3c2410_nand_info *info;
1084         struct s3c2410_nand_mtd *nmtd;
1085         struct s3c2410_nand_set *sets;
1086         struct resource *res;
1087         int err = 0;
1088         int size;
1089         int nr_sets;
1090         int setno;
1091
1092         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1093         if (info == NULL) {
1094                 err = -ENOMEM;
1095                 goto exit_error;
1096         }
1097
1098         platform_set_drvdata(pdev, info);
1099
1100         nand_controller_init(&info->controller);
1101         info->controller.ops = &s3c24xx_nand_controller_ops;
1102
1103         /* get the clock source and enable it */
1104
1105         info->clk = devm_clk_get(&pdev->dev, "nand");
1106         if (IS_ERR(info->clk)) {
1107                 dev_err(&pdev->dev, "failed to get clock\n");
1108                 err = -ENOENT;
1109                 goto exit_error;
1110         }
1111
1112         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1113
1114         if (pdev->dev.of_node)
1115                 err = s3c24xx_nand_probe_dt(pdev);
1116         else
1117                 err = s3c24xx_nand_probe_pdata(pdev);
1118
1119         if (err)
1120                 goto exit_error;
1121
1122         plat = to_nand_plat(pdev);
1123
1124         /* allocate and map the resource */
1125
1126         /* currently we assume we have the one resource */
1127         res = pdev->resource;
1128         size = resource_size(res);
1129
1130         info->device    = &pdev->dev;
1131         info->platform  = plat;
1132
1133         info->regs = devm_ioremap_resource(&pdev->dev, res);
1134         if (IS_ERR(info->regs)) {
1135                 err = PTR_ERR(info->regs);
1136                 goto exit_error;
1137         }
1138
1139         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1140
1141         if (!plat->sets || plat->nr_sets < 1) {
1142                 err = -EINVAL;
1143                 goto exit_error;
1144         }
1145
1146         sets = plat->sets;
1147         nr_sets = plat->nr_sets;
1148
1149         info->mtd_count = nr_sets;
1150
1151         /* allocate our information */
1152
1153         size = nr_sets * sizeof(*info->mtds);
1154         info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1155         if (info->mtds == NULL) {
1156                 err = -ENOMEM;
1157                 goto exit_error;
1158         }
1159
1160         /* initialise all possible chips */
1161
1162         nmtd = info->mtds;
1163
1164         for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1165                 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1166
1167                 pr_debug("initialising set %d (%p, info %p)\n",
1168                          setno, nmtd, info);
1169
1170                 mtd->dev.parent = &pdev->dev;
1171                 s3c2410_nand_init_chip(info, nmtd, sets);
1172
1173                 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1174                 if (err)
1175                         goto exit_error;
1176
1177                 s3c2410_nand_add_partition(info, nmtd, sets);
1178         }
1179
1180         /* initialise the hardware */
1181         err = s3c2410_nand_inithw(info);
1182         if (err != 0)
1183                 goto exit_error;
1184
1185         err = s3c2410_nand_cpufreq_register(info);
1186         if (err < 0) {
1187                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1188                 goto exit_error;
1189         }
1190
1191         if (allow_clk_suspend(info)) {
1192                 dev_info(&pdev->dev, "clock idle support enabled\n");
1193                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1194         }
1195
1196         return 0;
1197
1198  exit_error:
1199         s3c24xx_nand_remove(pdev);
1200
1201         if (err == 0)
1202                 err = -EINVAL;
1203         return err;
1204 }
1205
1206 /* PM Support */
1207 #ifdef CONFIG_PM
1208
1209 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1210 {
1211         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1212
1213         if (info) {
1214                 info->save_sel = readl(info->sel_reg);
1215
1216                 /* For the moment, we must ensure nFCE is high during
1217                  * the time we are suspended. This really should be
1218                  * handled by suspending the MTDs we are using, but
1219                  * that is currently not the case. */
1220
1221                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1222
1223                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1224         }
1225
1226         return 0;
1227 }
1228
1229 static int s3c24xx_nand_resume(struct platform_device *dev)
1230 {
1231         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1232         unsigned long sel;
1233
1234         if (info) {
1235                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1236                 s3c2410_nand_inithw(info);
1237
1238                 /* Restore the state of the nFCE line. */
1239
1240                 sel = readl(info->sel_reg);
1241                 sel &= ~info->sel_bit;
1242                 sel |= info->save_sel & info->sel_bit;
1243                 writel(sel, info->sel_reg);
1244
1245                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1246         }
1247
1248         return 0;
1249 }
1250
1251 #else
1252 #define s3c24xx_nand_suspend NULL
1253 #define s3c24xx_nand_resume NULL
1254 #endif
1255
1256 /* driver device registration */
1257
1258 static const struct platform_device_id s3c24xx_driver_ids[] = {
1259         {
1260                 .name           = "s3c2410-nand",
1261                 .driver_data    = TYPE_S3C2410,
1262         }, {
1263                 .name           = "s3c2440-nand",
1264                 .driver_data    = TYPE_S3C2440,
1265         }, {
1266                 .name           = "s3c2412-nand",
1267                 .driver_data    = TYPE_S3C2412,
1268         }, {
1269                 .name           = "s3c6400-nand",
1270                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1271         },
1272         { }
1273 };
1274
1275 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1276
1277 static struct platform_driver s3c24xx_nand_driver = {
1278         .probe          = s3c24xx_nand_probe,
1279         .remove         = s3c24xx_nand_remove,
1280         .suspend        = s3c24xx_nand_suspend,
1281         .resume         = s3c24xx_nand_resume,
1282         .id_table       = s3c24xx_driver_ids,
1283         .driver         = {
1284                 .name   = "s3c24xx-nand",
1285                 .of_match_table = s3c24xx_nand_dt_ids,
1286         },
1287 };
1288
1289 module_platform_driver(s3c24xx_nand_driver);
1290
1291 MODULE_LICENSE("GPL");
1292 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1293 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");