GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / mtd / nand / raw / vf610_nfc.c
1 /*
2  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Jason ported to M54418TWR and MVFA5 (VF610).
6  * Authors: Stefan Agner <stefan.agner@toradex.com>
7  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
8  *          Shaohui Xie <b21989@freescale.com>
9  *          Jason Jin <Jason.jin@freescale.com>
10  *
11  * Based on original driver mpc5121_nfc.c.
12  *
13  * This is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * Limitations:
19  * - Untested on MPC5125 and M54418.
20  * - DMA and pipelining not used.
21  * - 2K pages or less.
22  * - HW ECC: Only 2K page with 64+ OOB.
23  * - HW ECC: Only 24 and 32-bit error correction implemented.
24  */
25
26 #include <linux/module.h>
27 #include <linux/bitops.h>
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/rawnand.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38 #include <linux/slab.h>
39 #include <linux/swab.h>
40
41 #define DRV_NAME                "vf610_nfc"
42
43 /* Register Offsets */
44 #define NFC_FLASH_CMD1                  0x3F00
45 #define NFC_FLASH_CMD2                  0x3F04
46 #define NFC_COL_ADDR                    0x3F08
47 #define NFC_ROW_ADDR                    0x3F0c
48 #define NFC_ROW_ADDR_INC                0x3F14
49 #define NFC_FLASH_STATUS1               0x3F18
50 #define NFC_FLASH_STATUS2               0x3F1c
51 #define NFC_CACHE_SWAP                  0x3F28
52 #define NFC_SECTOR_SIZE                 0x3F2c
53 #define NFC_FLASH_CONFIG                0x3F30
54 #define NFC_IRQ_STATUS                  0x3F38
55
56 /* Addresses for NFC MAIN RAM BUFFER areas */
57 #define NFC_MAIN_AREA(n)                ((n) *  0x1000)
58
59 #define PAGE_2K                         0x0800
60 #define OOB_64                          0x0040
61 #define OOB_MAX                         0x0100
62
63 /* NFC_CMD2[CODE] controller cycle bit masks */
64 #define COMMAND_CMD_BYTE1               BIT(14)
65 #define COMMAND_CAR_BYTE1               BIT(13)
66 #define COMMAND_CAR_BYTE2               BIT(12)
67 #define COMMAND_RAR_BYTE1               BIT(11)
68 #define COMMAND_RAR_BYTE2               BIT(10)
69 #define COMMAND_RAR_BYTE3               BIT(9)
70 #define COMMAND_NADDR_BYTES(x)          GENMASK(13, 13 - (x) + 1)
71 #define COMMAND_WRITE_DATA              BIT(8)
72 #define COMMAND_CMD_BYTE2               BIT(7)
73 #define COMMAND_RB_HANDSHAKE            BIT(6)
74 #define COMMAND_READ_DATA               BIT(5)
75 #define COMMAND_CMD_BYTE3               BIT(4)
76 #define COMMAND_READ_STATUS             BIT(3)
77 #define COMMAND_READ_ID                 BIT(2)
78
79 /* NFC ECC mode define */
80 #define ECC_BYPASS                      0
81 #define ECC_45_BYTE                     6
82 #define ECC_60_BYTE                     7
83
84 /*** Register Mask and bit definitions */
85
86 /* NFC_FLASH_CMD1 Field */
87 #define CMD_BYTE2_MASK                          0xFF000000
88 #define CMD_BYTE2_SHIFT                         24
89
90 /* NFC_FLASH_CM2 Field */
91 #define CMD_BYTE1_MASK                          0xFF000000
92 #define CMD_BYTE1_SHIFT                         24
93 #define CMD_CODE_MASK                           0x00FFFF00
94 #define CMD_CODE_SHIFT                          8
95 #define BUFNO_MASK                              0x00000006
96 #define BUFNO_SHIFT                             1
97 #define START_BIT                               BIT(0)
98
99 /* NFC_COL_ADDR Field */
100 #define COL_ADDR_MASK                           0x0000FFFF
101 #define COL_ADDR_SHIFT                          0
102 #define COL_ADDR(pos, val)                      (((val) & 0xFF) << (8 * (pos)))
103
104 /* NFC_ROW_ADDR Field */
105 #define ROW_ADDR_MASK                           0x00FFFFFF
106 #define ROW_ADDR_SHIFT                          0
107 #define ROW_ADDR(pos, val)                      (((val) & 0xFF) << (8 * (pos)))
108
109 #define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
110 #define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
111 #define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
112 #define ROW_ADDR_CHIP_SEL_SHIFT                 24
113
114 /* NFC_FLASH_STATUS2 Field */
115 #define STATUS_BYTE1_MASK                       0x000000FF
116
117 /* NFC_FLASH_CONFIG Field */
118 #define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
119 #define CONFIG_ECC_SRAM_ADDR_SHIFT              22
120 #define CONFIG_ECC_SRAM_REQ_BIT                 BIT(21)
121 #define CONFIG_DMA_REQ_BIT                      BIT(20)
122 #define CONFIG_ECC_MODE_MASK                    0x000E0000
123 #define CONFIG_ECC_MODE_SHIFT                   17
124 #define CONFIG_FAST_FLASH_BIT                   BIT(16)
125 #define CONFIG_16BIT                            BIT(7)
126 #define CONFIG_BOOT_MODE_BIT                    BIT(6)
127 #define CONFIG_ADDR_AUTO_INCR_BIT               BIT(5)
128 #define CONFIG_BUFNO_AUTO_INCR_BIT              BIT(4)
129 #define CONFIG_PAGE_CNT_MASK                    0xF
130 #define CONFIG_PAGE_CNT_SHIFT                   0
131
132 /* NFC_IRQ_STATUS Field */
133 #define IDLE_IRQ_BIT                            BIT(29)
134 #define IDLE_EN_BIT                             BIT(20)
135 #define CMD_DONE_CLEAR_BIT                      BIT(18)
136 #define IDLE_CLEAR_BIT                          BIT(17)
137
138 /*
139  * ECC status - seems to consume 8 bytes (double word). The documented
140  * status byte is located in the lowest byte of the second word (which is
141  * the 4th or 7th byte depending on endianness).
142  * Calculate an offset to store the ECC status at the end of the buffer.
143  */
144 #define ECC_SRAM_ADDR           (PAGE_2K + OOB_MAX - 8)
145
146 #define ECC_STATUS              0x4
147 #define ECC_STATUS_MASK         0x80
148 #define ECC_STATUS_ERR_COUNT    0x3F
149
150 enum vf610_nfc_variant {
151         NFC_VFC610 = 1,
152 };
153
154 struct vf610_nfc {
155         struct nand_chip chip;
156         struct device *dev;
157         void __iomem *regs;
158         struct completion cmd_done;
159         /* Status and ID are in alternate locations. */
160         enum vf610_nfc_variant variant;
161         struct clk *clk;
162         /*
163          * Indicate that user data is accessed (full page/oob). This is
164          * useful to indicate the driver whether to swap byte endianness.
165          * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
166          */
167         bool data_access;
168         u32 ecc_mode;
169 };
170
171 static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
172 {
173         return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
174 }
175
176 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
177 {
178         return container_of(chip, struct vf610_nfc, chip);
179 }
180
181 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
182 {
183         return readl(nfc->regs + reg);
184 }
185
186 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
187 {
188         writel(val, nfc->regs + reg);
189 }
190
191 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
192 {
193         vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
194 }
195
196 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
197 {
198         vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
199 }
200
201 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
202                                        u32 mask, u32 shift, u32 val)
203 {
204         vf610_nfc_write(nfc, reg,
205                         (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
206 }
207
208 static inline bool vf610_nfc_kernel_is_little_endian(void)
209 {
210 #ifdef __LITTLE_ENDIAN
211         return true;
212 #else
213         return false;
214 #endif
215 }
216
217 /**
218  * Read accessor for internal SRAM buffer
219  * @dst: destination address in regular memory
220  * @src: source address in SRAM buffer
221  * @len: bytes to copy
222  * @fix_endian: Fix endianness if required
223  *
224  * Use this accessor for the internal SRAM buffers. On the ARM
225  * Freescale Vybrid SoC it's known that the driver can treat
226  * the SRAM buffer as if it's memory. Other platform might need
227  * to treat the buffers differently.
228  *
229  * The controller stores bytes from the NAND chip internally in big
230  * endianness. On little endian platforms such as Vybrid this leads
231  * to reversed byte order.
232  * For performance reason (and earlier probably due to unawareness)
233  * the driver avoids correcting endianness where it has control over
234  * write and read side (e.g. page wise data access).
235  */
236 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
237                                           size_t len, bool fix_endian)
238 {
239         if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
240                 unsigned int i;
241
242                 for (i = 0; i < len; i += 4) {
243                         u32 val = swab32(__raw_readl(src + i));
244
245                         memcpy(dst + i, &val, min(sizeof(val), len - i));
246                 }
247         } else {
248                 memcpy_fromio(dst, src, len);
249         }
250 }
251
252 /**
253  * Write accessor for internal SRAM buffer
254  * @dst: destination address in SRAM buffer
255  * @src: source address in regular memory
256  * @len: bytes to copy
257  * @fix_endian: Fix endianness if required
258  *
259  * Use this accessor for the internal SRAM buffers. On the ARM
260  * Freescale Vybrid SoC it's known that the driver can treat
261  * the SRAM buffer as if it's memory. Other platform might need
262  * to treat the buffers differently.
263  *
264  * The controller stores bytes from the NAND chip internally in big
265  * endianness. On little endian platforms such as Vybrid this leads
266  * to reversed byte order.
267  * For performance reason (and earlier probably due to unawareness)
268  * the driver avoids correcting endianness where it has control over
269  * write and read side (e.g. page wise data access).
270  */
271 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
272                                         size_t len, bool fix_endian)
273 {
274         if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
275                 unsigned int i;
276
277                 for (i = 0; i < len; i += 4) {
278                         u32 val;
279
280                         memcpy(&val, src + i, min(sizeof(val), len - i));
281                         __raw_writel(swab32(val), dst + i);
282                 }
283         } else {
284                 memcpy_toio(dst, src, len);
285         }
286 }
287
288 /* Clear flags for upcoming command */
289 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
290 {
291         u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
292
293         tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
294         vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
295 }
296
297 static void vf610_nfc_done(struct vf610_nfc *nfc)
298 {
299         unsigned long timeout = msecs_to_jiffies(100);
300
301         /*
302          * Barrier is needed after this write. This write need
303          * to be done before reading the next register the first
304          * time.
305          * vf610_nfc_set implicates such a barrier by using writel
306          * to write to the register.
307          */
308         vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
309         vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
310
311         if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
312                 dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
313
314         vf610_nfc_clear_status(nfc);
315 }
316
317 static irqreturn_t vf610_nfc_irq(int irq, void *data)
318 {
319         struct mtd_info *mtd = data;
320         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
321
322         vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
323         complete(&nfc->cmd_done);
324
325         return IRQ_HANDLED;
326 }
327
328 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
329 {
330         vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
331                             CONFIG_ECC_MODE_MASK,
332                             CONFIG_ECC_MODE_SHIFT, ecc_mode);
333 }
334
335 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
336 {
337         vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
338 }
339
340 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
341                                  u32 cmd1, u32 cmd2, u32 trfr_sz)
342 {
343         vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
344                             COL_ADDR_SHIFT, col);
345
346         vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
347                             ROW_ADDR_SHIFT, row);
348
349         vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
350         vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
351         vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
352
353         dev_dbg(nfc->dev,
354                 "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
355                 col, row, cmd1, cmd2, trfr_sz);
356
357         vf610_nfc_done(nfc);
358 }
359
360 static inline const struct nand_op_instr *
361 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
362 {
363         if (*op_id + 1 >= subop->ninstrs)
364                 return NULL;
365
366         (*op_id)++;
367
368         return &subop->instrs[*op_id];
369 }
370
371 static int vf610_nfc_cmd(struct nand_chip *chip,
372                          const struct nand_subop *subop)
373 {
374         const struct nand_op_instr *instr;
375         struct vf610_nfc *nfc = chip_to_nfc(chip);
376         int op_id = -1, trfr_sz = 0, offset;
377         u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
378         bool force8bit = false;
379
380         /*
381          * Some ops are optional, but the hardware requires the operations
382          * to be in this exact order.
383          * The op parser enforces the order and makes sure that there isn't
384          * a read and write element in a single operation.
385          */
386         instr = vf610_get_next_instr(subop, &op_id);
387         if (!instr)
388                 return -EINVAL;
389
390         if (instr && instr->type == NAND_OP_CMD_INSTR) {
391                 cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
392                 code |= COMMAND_CMD_BYTE1;
393
394                 instr = vf610_get_next_instr(subop, &op_id);
395         }
396
397         if (instr && instr->type == NAND_OP_ADDR_INSTR) {
398                 int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
399                 int i = nand_subop_get_addr_start_off(subop, op_id);
400
401                 for (; i < naddrs; i++) {
402                         u8 val = instr->ctx.addr.addrs[i];
403
404                         if (i < 2)
405                                 col |= COL_ADDR(i, val);
406                         else
407                                 row |= ROW_ADDR(i - 2, val);
408                 }
409                 code |= COMMAND_NADDR_BYTES(naddrs);
410
411                 instr = vf610_get_next_instr(subop, &op_id);
412         }
413
414         if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
415                 trfr_sz = nand_subop_get_data_len(subop, op_id);
416                 offset = nand_subop_get_data_start_off(subop, op_id);
417                 force8bit = instr->ctx.data.force_8bit;
418
419                 /*
420                  * Don't fix endianness on page access for historical reasons.
421                  * See comment in vf610_nfc_wr_to_sram
422                  */
423                 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
424                                      instr->ctx.data.buf.out + offset,
425                                      trfr_sz, !nfc->data_access);
426                 code |= COMMAND_WRITE_DATA;
427
428                 instr = vf610_get_next_instr(subop, &op_id);
429         }
430
431         if (instr && instr->type == NAND_OP_CMD_INSTR) {
432                 cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
433                 code |= COMMAND_CMD_BYTE2;
434
435                 instr = vf610_get_next_instr(subop, &op_id);
436         }
437
438         if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
439                 code |= COMMAND_RB_HANDSHAKE;
440
441                 instr = vf610_get_next_instr(subop, &op_id);
442         }
443
444         if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
445                 trfr_sz = nand_subop_get_data_len(subop, op_id);
446                 offset = nand_subop_get_data_start_off(subop, op_id);
447                 force8bit = instr->ctx.data.force_8bit;
448
449                 code |= COMMAND_READ_DATA;
450         }
451
452         if (force8bit && (chip->options & NAND_BUSWIDTH_16))
453                 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
454
455         cmd2 |= code << CMD_CODE_SHIFT;
456
457         vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
458
459         if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
460                 /*
461                  * Don't fix endianness on page access for historical reasons.
462                  * See comment in vf610_nfc_rd_from_sram
463                  */
464                 vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
465                                        nfc->regs + NFC_MAIN_AREA(0) + offset,
466                                        trfr_sz, !nfc->data_access);
467         }
468
469         if (force8bit && (chip->options & NAND_BUSWIDTH_16))
470                 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
471
472         return 0;
473 }
474
475 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
476         NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
477                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
478                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
479                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
480                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
481                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
482         NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
483                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
484                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
485                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
486                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
487                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
488         );
489
490 static int vf610_nfc_exec_op(struct nand_chip *chip,
491                              const struct nand_operation *op,
492                              bool check_only)
493 {
494         return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
495                                       check_only);
496 }
497
498 /*
499  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
500  */
501 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
502 {
503         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
504         u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
505
506         /* Vybrid only (MPC5125 would have full RB and four CS) */
507         if (nfc->variant != NFC_VFC610)
508                 return;
509
510         tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
511
512         if (chip >= 0) {
513                 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
514                 tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
515         }
516
517         vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
518 }
519
520 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
521                                          uint8_t *oob, int page)
522 {
523         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
524         u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
525         u8 ecc_status;
526         u8 ecc_count;
527         int flips_threshold = nfc->chip.ecc.strength / 2;
528
529         ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
530         ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
531
532         if (!(ecc_status & ECC_STATUS_MASK))
533                 return ecc_count;
534
535         nfc->data_access = true;
536         nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
537         nfc->data_access = false;
538
539         /*
540          * On an erased page, bit count (including OOB) should be zero or
541          * at least less then half of the ECC strength.
542          */
543         return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
544                                            mtd->oobsize, NULL, 0,
545                                            flips_threshold);
546 }
547
548 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
549                                u32 *row)
550 {
551         *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
552         *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
553
554         if (chip->options & NAND_ROW_ADDR_3) {
555                 *row |= ROW_ADDR(2, page >> 16);
556                 *code |= COMMAND_RAR_BYTE3;
557         }
558 }
559
560 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
561                                 uint8_t *buf, int oob_required, int page)
562 {
563         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
564         int trfr_sz = mtd->writesize + mtd->oobsize;
565         u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
566         int stat;
567
568         cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
569         code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
570
571         vf610_nfc_fill_row(chip, page, &code, &row);
572
573         cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
574         code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
575
576         cmd2 |= code << CMD_CODE_SHIFT;
577
578         vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
579         vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
580         vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
581
582         /*
583          * Don't fix endianness on page access for historical reasons.
584          * See comment in vf610_nfc_rd_from_sram
585          */
586         vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
587                                mtd->writesize, false);
588         if (oob_required)
589                 vf610_nfc_rd_from_sram(chip->oob_poi,
590                                        nfc->regs + NFC_MAIN_AREA(0) +
591                                                    mtd->writesize,
592                                        mtd->oobsize, false);
593
594         stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
595
596         if (stat < 0) {
597                 mtd->ecc_stats.failed++;
598                 return 0;
599         } else {
600                 mtd->ecc_stats.corrected += stat;
601                 return stat;
602         }
603 }
604
605 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
606                                 const uint8_t *buf, int oob_required, int page)
607 {
608         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
609         int trfr_sz = mtd->writesize + mtd->oobsize;
610         u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
611         u8 status;
612         int ret;
613
614         cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
615         code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
616
617         vf610_nfc_fill_row(chip, page, &code, &row);
618
619         cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
620         code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
621
622         /*
623          * Don't fix endianness on page access for historical reasons.
624          * See comment in vf610_nfc_wr_to_sram
625          */
626         vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
627                              mtd->writesize, false);
628
629         code |= COMMAND_RB_HANDSHAKE;
630         cmd2 |= code << CMD_CODE_SHIFT;
631
632         vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
633         vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
634         vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
635
636         ret = nand_status_op(chip, &status);
637         if (ret)
638                 return ret;
639
640         if (status & NAND_STATUS_FAIL)
641                 return -EIO;
642
643         return 0;
644 }
645
646 static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
647                                    struct nand_chip *chip, u8 *buf,
648                                    int oob_required, int page)
649 {
650         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
651         int ret;
652
653         nfc->data_access = true;
654         ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
655         nfc->data_access = false;
656
657         return ret;
658 }
659
660 static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
661                                     struct nand_chip *chip, const u8 *buf,
662                                     int oob_required, int page)
663 {
664         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
665         int ret;
666
667         nfc->data_access = true;
668         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
669         if (!ret && oob_required)
670                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
671                                          false);
672         nfc->data_access = false;
673
674         if (ret)
675                 return ret;
676
677         return nand_prog_page_end_op(chip);
678 }
679
680 static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
681                               int page)
682 {
683         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
684         int ret;
685
686         nfc->data_access = true;
687         ret = nand_read_oob_std(mtd, chip, page);
688         nfc->data_access = false;
689
690         return ret;
691 }
692
693 static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
694                                int page)
695 {
696         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
697         int ret;
698
699         nfc->data_access = true;
700         ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
701                                       chip->oob_poi, mtd->oobsize);
702         nfc->data_access = false;
703
704         if (ret)
705                 return ret;
706
707         return nand_prog_page_end_op(chip);
708 }
709
710 static const struct of_device_id vf610_nfc_dt_ids[] = {
711         { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
712         { /* sentinel */ }
713 };
714 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
715
716 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
717 {
718         vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
719         vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
720         vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
721         vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
722         vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
723         vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
724         vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
725
726         /* Disable virtual pages, only one elementary transfer unit */
727         vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
728                             CONFIG_PAGE_CNT_SHIFT, 1);
729 }
730
731 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
732 {
733         if (nfc->chip.options & NAND_BUSWIDTH_16)
734                 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
735         else
736                 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
737
738         if (nfc->chip.ecc.mode == NAND_ECC_HW) {
739                 /* Set ECC status offset in SRAM */
740                 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
741                                     CONFIG_ECC_SRAM_ADDR_MASK,
742                                     CONFIG_ECC_SRAM_ADDR_SHIFT,
743                                     ECC_SRAM_ADDR >> 3);
744
745                 /* Enable ECC status in SRAM */
746                 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
747         }
748 }
749
750 static int vf610_nfc_attach_chip(struct nand_chip *chip)
751 {
752         struct mtd_info *mtd = nand_to_mtd(chip);
753         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
754
755         vf610_nfc_init_controller(nfc);
756
757         /* Bad block options. */
758         if (chip->bbt_options & NAND_BBT_USE_FLASH)
759                 chip->bbt_options |= NAND_BBT_NO_OOB;
760
761         /* Single buffer only, max 256 OOB minus ECC status */
762         if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
763                 dev_err(nfc->dev, "Unsupported flash page size\n");
764                 return -ENXIO;
765         }
766
767         if (chip->ecc.mode != NAND_ECC_HW)
768                 return 0;
769
770         if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
771                 dev_err(nfc->dev, "Unsupported flash with hwecc\n");
772                 return -ENXIO;
773         }
774
775         if (chip->ecc.size != mtd->writesize) {
776                 dev_err(nfc->dev, "Step size needs to be page size\n");
777                 return -ENXIO;
778         }
779
780         /* Only 64 byte ECC layouts known */
781         if (mtd->oobsize > 64)
782                 mtd->oobsize = 64;
783
784         /* Use default large page ECC layout defined in NAND core */
785         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
786         if (chip->ecc.strength == 32) {
787                 nfc->ecc_mode = ECC_60_BYTE;
788                 chip->ecc.bytes = 60;
789         } else if (chip->ecc.strength == 24) {
790                 nfc->ecc_mode = ECC_45_BYTE;
791                 chip->ecc.bytes = 45;
792         } else {
793                 dev_err(nfc->dev, "Unsupported ECC strength\n");
794                 return -ENXIO;
795         }
796
797         chip->ecc.read_page = vf610_nfc_read_page;
798         chip->ecc.write_page = vf610_nfc_write_page;
799         chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
800         chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
801         chip->ecc.read_oob = vf610_nfc_read_oob;
802         chip->ecc.write_oob = vf610_nfc_write_oob;
803
804         chip->ecc.size = PAGE_2K;
805
806         return 0;
807 }
808
809 static const struct nand_controller_ops vf610_nfc_controller_ops = {
810         .attach_chip = vf610_nfc_attach_chip,
811 };
812
813 static int vf610_nfc_probe(struct platform_device *pdev)
814 {
815         struct vf610_nfc *nfc;
816         struct resource *res;
817         struct mtd_info *mtd;
818         struct nand_chip *chip;
819         struct device_node *child;
820         const struct of_device_id *of_id;
821         int err;
822         int irq;
823
824         nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
825         if (!nfc)
826                 return -ENOMEM;
827
828         nfc->dev = &pdev->dev;
829         chip = &nfc->chip;
830         mtd = nand_to_mtd(chip);
831
832         mtd->owner = THIS_MODULE;
833         mtd->dev.parent = nfc->dev;
834         mtd->name = DRV_NAME;
835
836         irq = platform_get_irq(pdev, 0);
837         if (irq <= 0)
838                 return -EINVAL;
839
840         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
841         nfc->regs = devm_ioremap_resource(nfc->dev, res);
842         if (IS_ERR(nfc->regs))
843                 return PTR_ERR(nfc->regs);
844
845         nfc->clk = devm_clk_get(&pdev->dev, NULL);
846         if (IS_ERR(nfc->clk))
847                 return PTR_ERR(nfc->clk);
848
849         err = clk_prepare_enable(nfc->clk);
850         if (err) {
851                 dev_err(nfc->dev, "Unable to enable clock!\n");
852                 return err;
853         }
854
855         of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
856         nfc->variant = (enum vf610_nfc_variant)of_id->data;
857
858         for_each_available_child_of_node(nfc->dev->of_node, child) {
859                 if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
860
861                         if (nand_get_flash_node(chip)) {
862                                 dev_err(nfc->dev,
863                                         "Only one NAND chip supported!\n");
864                                 err = -EINVAL;
865                                 goto err_disable_clk;
866                         }
867
868                         nand_set_flash_node(chip, child);
869                 }
870         }
871
872         if (!nand_get_flash_node(chip)) {
873                 dev_err(nfc->dev, "NAND chip sub-node missing!\n");
874                 err = -ENODEV;
875                 goto err_disable_clk;
876         }
877
878         chip->exec_op = vf610_nfc_exec_op;
879         chip->select_chip = vf610_nfc_select_chip;
880
881         chip->options |= NAND_NO_SUBPAGE_WRITE;
882
883         init_completion(&nfc->cmd_done);
884
885         err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
886         if (err) {
887                 dev_err(nfc->dev, "Error requesting IRQ!\n");
888                 goto err_disable_clk;
889         }
890
891         vf610_nfc_preinit_controller(nfc);
892
893         /* Scan the NAND chip */
894         chip->dummy_controller.ops = &vf610_nfc_controller_ops;
895         err = nand_scan(chip, 1);
896         if (err)
897                 goto err_disable_clk;
898
899         platform_set_drvdata(pdev, mtd);
900
901         /* Register device in MTD */
902         err = mtd_device_register(mtd, NULL, 0);
903         if (err)
904                 goto err_cleanup_nand;
905         return 0;
906
907 err_cleanup_nand:
908         nand_cleanup(chip);
909 err_disable_clk:
910         clk_disable_unprepare(nfc->clk);
911         return err;
912 }
913
914 static int vf610_nfc_remove(struct platform_device *pdev)
915 {
916         struct mtd_info *mtd = platform_get_drvdata(pdev);
917         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
918
919         nand_release(mtd_to_nand(mtd));
920         clk_disable_unprepare(nfc->clk);
921         return 0;
922 }
923
924 #ifdef CONFIG_PM_SLEEP
925 static int vf610_nfc_suspend(struct device *dev)
926 {
927         struct mtd_info *mtd = dev_get_drvdata(dev);
928         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
929
930         clk_disable_unprepare(nfc->clk);
931         return 0;
932 }
933
934 static int vf610_nfc_resume(struct device *dev)
935 {
936         int err;
937
938         struct mtd_info *mtd = dev_get_drvdata(dev);
939         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
940
941         err = clk_prepare_enable(nfc->clk);
942         if (err)
943                 return err;
944
945         vf610_nfc_preinit_controller(nfc);
946         vf610_nfc_init_controller(nfc);
947         return 0;
948 }
949 #endif
950
951 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
952
953 static struct platform_driver vf610_nfc_driver = {
954         .driver         = {
955                 .name   = DRV_NAME,
956                 .of_match_table = vf610_nfc_dt_ids,
957                 .pm     = &vf610_nfc_pm_ops,
958         },
959         .probe          = vf610_nfc_probe,
960         .remove         = vf610_nfc_remove,
961 };
962
963 module_platform_driver(vf610_nfc_driver);
964
965 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
966 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
967 MODULE_LICENSE("GPL");