GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / mtd / nand / spi / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *      Peter Pan <peterpandong@micron.com>
7  *      Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9
10 #define pr_fmt(fmt)     "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21
22 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
23                                           const struct nand_page_io_req *req,
24                                           u16 *column)
25 {
26         struct nand_device *nand = spinand_to_nand(spinand);
27         unsigned int shift;
28
29         if (nand->memorg.planes_per_lun < 2)
30                 return;
31
32         /* The plane number is passed in MSB just above the column address */
33         shift = fls(nand->memorg.pagesize);
34         *column |= req->pos.plane << shift;
35 }
36
37 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
38 {
39         struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
40                                                       spinand->scratchbuf);
41         int ret;
42
43         ret = spi_mem_exec_op(spinand->spimem, &op);
44         if (ret)
45                 return ret;
46
47         *val = *spinand->scratchbuf;
48         return 0;
49 }
50
51 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
52 {
53         struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
54                                                       spinand->scratchbuf);
55
56         *spinand->scratchbuf = val;
57         return spi_mem_exec_op(spinand->spimem, &op);
58 }
59
60 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
61 {
62         return spinand_read_reg_op(spinand, REG_STATUS, status);
63 }
64
65 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
66 {
67         struct nand_device *nand = spinand_to_nand(spinand);
68
69         if (WARN_ON(spinand->cur_target < 0 ||
70                     spinand->cur_target >= nand->memorg.ntargets))
71                 return -EINVAL;
72
73         *cfg = spinand->cfg_cache[spinand->cur_target];
74         return 0;
75 }
76
77 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
78 {
79         struct nand_device *nand = spinand_to_nand(spinand);
80         int ret;
81
82         if (WARN_ON(spinand->cur_target < 0 ||
83                     spinand->cur_target >= nand->memorg.ntargets))
84                 return -EINVAL;
85
86         if (spinand->cfg_cache[spinand->cur_target] == cfg)
87                 return 0;
88
89         ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
90         if (ret)
91                 return ret;
92
93         spinand->cfg_cache[spinand->cur_target] = cfg;
94         return 0;
95 }
96
97 /**
98  * spinand_upd_cfg() - Update the configuration register
99  * @spinand: the spinand device
100  * @mask: the mask encoding the bits to update in the config reg
101  * @val: the new value to apply
102  *
103  * Update the configuration register.
104  *
105  * Return: 0 on success, a negative error code otherwise.
106  */
107 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
108 {
109         int ret;
110         u8 cfg;
111
112         ret = spinand_get_cfg(spinand, &cfg);
113         if (ret)
114                 return ret;
115
116         cfg &= ~mask;
117         cfg |= val;
118
119         return spinand_set_cfg(spinand, cfg);
120 }
121
122 /**
123  * spinand_select_target() - Select a specific NAND target/die
124  * @spinand: the spinand device
125  * @target: the target/die to select
126  *
127  * Select a new target/die. If chip only has one die, this function is a NOOP.
128  *
129  * Return: 0 on success, a negative error code otherwise.
130  */
131 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
132 {
133         struct nand_device *nand = spinand_to_nand(spinand);
134         int ret;
135
136         if (WARN_ON(target >= nand->memorg.ntargets))
137                 return -EINVAL;
138
139         if (spinand->cur_target == target)
140                 return 0;
141
142         if (nand->memorg.ntargets == 1) {
143                 spinand->cur_target = target;
144                 return 0;
145         }
146
147         ret = spinand->select_target(spinand, target);
148         if (ret)
149                 return ret;
150
151         spinand->cur_target = target;
152         return 0;
153 }
154
155 static int spinand_init_cfg_cache(struct spinand_device *spinand)
156 {
157         struct nand_device *nand = spinand_to_nand(spinand);
158         struct device *dev = &spinand->spimem->spi->dev;
159         unsigned int target;
160         int ret;
161
162         spinand->cfg_cache = devm_kcalloc(dev,
163                                           nand->memorg.ntargets,
164                                           sizeof(*spinand->cfg_cache),
165                                           GFP_KERNEL);
166         if (!spinand->cfg_cache)
167                 return -ENOMEM;
168
169         for (target = 0; target < nand->memorg.ntargets; target++) {
170                 ret = spinand_select_target(spinand, target);
171                 if (ret)
172                         return ret;
173
174                 /*
175                  * We use spinand_read_reg_op() instead of spinand_get_cfg()
176                  * here to bypass the config cache.
177                  */
178                 ret = spinand_read_reg_op(spinand, REG_CFG,
179                                           &spinand->cfg_cache[target]);
180                 if (ret)
181                         return ret;
182         }
183
184         return 0;
185 }
186
187 static int spinand_init_quad_enable(struct spinand_device *spinand)
188 {
189         bool enable = false;
190
191         if (!(spinand->flags & SPINAND_HAS_QE_BIT))
192                 return 0;
193
194         if (spinand->op_templates.read_cache->data.buswidth == 4 ||
195             spinand->op_templates.write_cache->data.buswidth == 4 ||
196             spinand->op_templates.update_cache->data.buswidth == 4)
197                 enable = true;
198
199         return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
200                                enable ? CFG_QUAD_ENABLE : 0);
201 }
202
203 static int spinand_ecc_enable(struct spinand_device *spinand,
204                               bool enable)
205 {
206         return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
207                                enable ? CFG_ECC_ENABLE : 0);
208 }
209
210 static int spinand_write_enable_op(struct spinand_device *spinand)
211 {
212         struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
213
214         return spi_mem_exec_op(spinand->spimem, &op);
215 }
216
217 static int spinand_load_page_op(struct spinand_device *spinand,
218                                 const struct nand_page_io_req *req)
219 {
220         struct nand_device *nand = spinand_to_nand(spinand);
221         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
222         struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
223
224         return spi_mem_exec_op(spinand->spimem, &op);
225 }
226
227 static int spinand_read_from_cache_op(struct spinand_device *spinand,
228                                       const struct nand_page_io_req *req)
229 {
230         struct spi_mem_op op = *spinand->op_templates.read_cache;
231         struct nand_device *nand = spinand_to_nand(spinand);
232         struct mtd_info *mtd = nanddev_to_mtd(nand);
233         struct nand_page_io_req adjreq = *req;
234         unsigned int nbytes = 0;
235         void *buf = NULL;
236         u16 column = 0;
237         int ret;
238
239         if (req->datalen) {
240                 adjreq.datalen = nanddev_page_size(nand);
241                 adjreq.dataoffs = 0;
242                 adjreq.databuf.in = spinand->databuf;
243                 buf = spinand->databuf;
244                 nbytes = adjreq.datalen;
245         }
246
247         if (req->ooblen) {
248                 adjreq.ooblen = nanddev_per_page_oobsize(nand);
249                 adjreq.ooboffs = 0;
250                 adjreq.oobbuf.in = spinand->oobbuf;
251                 nbytes += nanddev_per_page_oobsize(nand);
252                 if (!buf) {
253                         buf = spinand->oobbuf;
254                         column = nanddev_page_size(nand);
255                 }
256         }
257
258         spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
259         op.addr.val = column;
260
261         /*
262          * Some controllers are limited in term of max RX data size. In this
263          * case, just repeat the READ_CACHE operation after updating the
264          * column.
265          */
266         while (nbytes) {
267                 op.data.buf.in = buf;
268                 op.data.nbytes = nbytes;
269                 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
270                 if (ret)
271                         return ret;
272
273                 ret = spi_mem_exec_op(spinand->spimem, &op);
274                 if (ret)
275                         return ret;
276
277                 buf += op.data.nbytes;
278                 nbytes -= op.data.nbytes;
279                 op.addr.val += op.data.nbytes;
280         }
281
282         if (req->datalen)
283                 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
284                        req->datalen);
285
286         if (req->ooblen) {
287                 if (req->mode == MTD_OPS_AUTO_OOB)
288                         mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
289                                                     spinand->oobbuf,
290                                                     req->ooboffs,
291                                                     req->ooblen);
292                 else
293                         memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
294                                req->ooblen);
295         }
296
297         return 0;
298 }
299
300 static int spinand_write_to_cache_op(struct spinand_device *spinand,
301                                      const struct nand_page_io_req *req)
302 {
303         struct spi_mem_op op = *spinand->op_templates.write_cache;
304         struct nand_device *nand = spinand_to_nand(spinand);
305         struct mtd_info *mtd = nanddev_to_mtd(nand);
306         struct nand_page_io_req adjreq = *req;
307         void *buf = spinand->databuf;
308         unsigned int nbytes;
309         u16 column = 0;
310         int ret;
311
312         /*
313          * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
314          * the cache content to 0xFF (depends on vendor implementation), so we
315          * must fill the page cache entirely even if we only want to program
316          * the data portion of the page, otherwise we might corrupt the BBM or
317          * user data previously programmed in OOB area.
318          */
319         nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
320         memset(spinand->databuf, 0xff, nbytes);
321         adjreq.dataoffs = 0;
322         adjreq.datalen = nanddev_page_size(nand);
323         adjreq.databuf.out = spinand->databuf;
324         adjreq.ooblen = nanddev_per_page_oobsize(nand);
325         adjreq.ooboffs = 0;
326         adjreq.oobbuf.out = spinand->oobbuf;
327
328         if (req->datalen)
329                 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
330                        req->datalen);
331
332         if (req->ooblen) {
333                 if (req->mode == MTD_OPS_AUTO_OOB)
334                         mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
335                                                     spinand->oobbuf,
336                                                     req->ooboffs,
337                                                     req->ooblen);
338                 else
339                         memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
340                                req->ooblen);
341         }
342
343         spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
344
345         op = *spinand->op_templates.write_cache;
346         op.addr.val = column;
347
348         /*
349          * Some controllers are limited in term of max TX data size. In this
350          * case, split the operation into one LOAD CACHE and one or more
351          * LOAD RANDOM CACHE.
352          */
353         while (nbytes) {
354                 op.data.buf.out = buf;
355                 op.data.nbytes = nbytes;
356
357                 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
358                 if (ret)
359                         return ret;
360
361                 ret = spi_mem_exec_op(spinand->spimem, &op);
362                 if (ret)
363                         return ret;
364
365                 buf += op.data.nbytes;
366                 nbytes -= op.data.nbytes;
367                 op.addr.val += op.data.nbytes;
368
369                 /*
370                  * We need to use the RANDOM LOAD CACHE operation if there's
371                  * more than one iteration, because the LOAD operation might
372                  * reset the cache to 0xff.
373                  */
374                 if (nbytes) {
375                         column = op.addr.val;
376                         op = *spinand->op_templates.update_cache;
377                         op.addr.val = column;
378                 }
379         }
380
381         return 0;
382 }
383
384 static int spinand_program_op(struct spinand_device *spinand,
385                               const struct nand_page_io_req *req)
386 {
387         struct nand_device *nand = spinand_to_nand(spinand);
388         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
389         struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
390
391         return spi_mem_exec_op(spinand->spimem, &op);
392 }
393
394 static int spinand_erase_op(struct spinand_device *spinand,
395                             const struct nand_pos *pos)
396 {
397         struct nand_device *nand = spinand_to_nand(spinand);
398         unsigned int row = nanddev_pos_to_row(nand, pos);
399         struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
400
401         return spi_mem_exec_op(spinand->spimem, &op);
402 }
403
404 static int spinand_wait(struct spinand_device *spinand, u8 *s)
405 {
406         unsigned long timeo =  jiffies + msecs_to_jiffies(400);
407         u8 status;
408         int ret;
409
410         do {
411                 ret = spinand_read_status(spinand, &status);
412                 if (ret)
413                         return ret;
414
415                 if (!(status & STATUS_BUSY))
416                         goto out;
417         } while (time_before(jiffies, timeo));
418
419         /*
420          * Extra read, just in case the STATUS_READY bit has changed
421          * since our last check
422          */
423         ret = spinand_read_status(spinand, &status);
424         if (ret)
425                 return ret;
426
427 out:
428         if (s)
429                 *s = status;
430
431         return status & STATUS_BUSY ? -ETIMEDOUT : 0;
432 }
433
434 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
435 {
436         struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
437                                                  SPINAND_MAX_ID_LEN);
438         int ret;
439
440         ret = spi_mem_exec_op(spinand->spimem, &op);
441         if (!ret)
442                 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
443
444         return ret;
445 }
446
447 static int spinand_reset_op(struct spinand_device *spinand)
448 {
449         struct spi_mem_op op = SPINAND_RESET_OP;
450         int ret;
451
452         ret = spi_mem_exec_op(spinand->spimem, &op);
453         if (ret)
454                 return ret;
455
456         return spinand_wait(spinand, NULL);
457 }
458
459 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
460 {
461         return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
462 }
463
464 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
465 {
466         struct nand_device *nand = spinand_to_nand(spinand);
467
468         if (spinand->eccinfo.get_status)
469                 return spinand->eccinfo.get_status(spinand, status);
470
471         switch (status & STATUS_ECC_MASK) {
472         case STATUS_ECC_NO_BITFLIPS:
473                 return 0;
474
475         case STATUS_ECC_HAS_BITFLIPS:
476                 /*
477                  * We have no way to know exactly how many bitflips have been
478                  * fixed, so let's return the maximum possible value so that
479                  * wear-leveling layers move the data immediately.
480                  */
481                 return nand->eccreq.strength;
482
483         case STATUS_ECC_UNCOR_ERROR:
484                 return -EBADMSG;
485
486         default:
487                 break;
488         }
489
490         return -EINVAL;
491 }
492
493 static int spinand_read_page(struct spinand_device *spinand,
494                              const struct nand_page_io_req *req,
495                              bool ecc_enabled)
496 {
497         u8 status;
498         int ret;
499
500         ret = spinand_load_page_op(spinand, req);
501         if (ret)
502                 return ret;
503
504         ret = spinand_wait(spinand, &status);
505         if (ret < 0)
506                 return ret;
507
508         ret = spinand_read_from_cache_op(spinand, req);
509         if (ret)
510                 return ret;
511
512         if (!ecc_enabled)
513                 return 0;
514
515         return spinand_check_ecc_status(spinand, status);
516 }
517
518 static int spinand_write_page(struct spinand_device *spinand,
519                               const struct nand_page_io_req *req)
520 {
521         u8 status;
522         int ret;
523
524         ret = spinand_write_enable_op(spinand);
525         if (ret)
526                 return ret;
527
528         ret = spinand_write_to_cache_op(spinand, req);
529         if (ret)
530                 return ret;
531
532         ret = spinand_program_op(spinand, req);
533         if (ret)
534                 return ret;
535
536         ret = spinand_wait(spinand, &status);
537         if (!ret && (status & STATUS_PROG_FAILED))
538                 ret = -EIO;
539
540         return ret;
541 }
542
543 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
544                             struct mtd_oob_ops *ops)
545 {
546         struct spinand_device *spinand = mtd_to_spinand(mtd);
547         struct nand_device *nand = mtd_to_nanddev(mtd);
548         unsigned int max_bitflips = 0;
549         struct nand_io_iter iter;
550         bool enable_ecc = false;
551         bool ecc_failed = false;
552         int ret = 0;
553
554         if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
555                 enable_ecc = true;
556
557         mutex_lock(&spinand->lock);
558
559         nanddev_io_for_each_page(nand, from, ops, &iter) {
560                 ret = spinand_select_target(spinand, iter.req.pos.target);
561                 if (ret)
562                         break;
563
564                 ret = spinand_ecc_enable(spinand, enable_ecc);
565                 if (ret)
566                         break;
567
568                 ret = spinand_read_page(spinand, &iter.req, enable_ecc);
569                 if (ret < 0 && ret != -EBADMSG)
570                         break;
571
572                 if (ret == -EBADMSG) {
573                         ecc_failed = true;
574                         mtd->ecc_stats.failed++;
575                 } else {
576                         mtd->ecc_stats.corrected += ret;
577                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
578                 }
579
580                 ret = 0;
581                 ops->retlen += iter.req.datalen;
582                 ops->oobretlen += iter.req.ooblen;
583         }
584
585         mutex_unlock(&spinand->lock);
586
587         if (ecc_failed && !ret)
588                 ret = -EBADMSG;
589
590         return ret ? ret : max_bitflips;
591 }
592
593 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
594                              struct mtd_oob_ops *ops)
595 {
596         struct spinand_device *spinand = mtd_to_spinand(mtd);
597         struct nand_device *nand = mtd_to_nanddev(mtd);
598         struct nand_io_iter iter;
599         bool enable_ecc = false;
600         int ret = 0;
601
602         if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
603                 enable_ecc = true;
604
605         mutex_lock(&spinand->lock);
606
607         nanddev_io_for_each_page(nand, to, ops, &iter) {
608                 ret = spinand_select_target(spinand, iter.req.pos.target);
609                 if (ret)
610                         break;
611
612                 ret = spinand_ecc_enable(spinand, enable_ecc);
613                 if (ret)
614                         break;
615
616                 ret = spinand_write_page(spinand, &iter.req);
617                 if (ret)
618                         break;
619
620                 ops->retlen += iter.req.datalen;
621                 ops->oobretlen += iter.req.ooblen;
622         }
623
624         mutex_unlock(&spinand->lock);
625
626         return ret;
627 }
628
629 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
630 {
631         struct spinand_device *spinand = nand_to_spinand(nand);
632         u8 marker[2] = { };
633         struct nand_page_io_req req = {
634                 .pos = *pos,
635                 .ooblen = sizeof(marker),
636                 .ooboffs = 0,
637                 .oobbuf.in = marker,
638                 .mode = MTD_OPS_RAW,
639         };
640
641         spinand_select_target(spinand, pos->target);
642         spinand_read_page(spinand, &req, false);
643         if (marker[0] != 0xff || marker[1] != 0xff)
644                 return true;
645
646         return false;
647 }
648
649 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
650 {
651         struct nand_device *nand = mtd_to_nanddev(mtd);
652         struct spinand_device *spinand = nand_to_spinand(nand);
653         struct nand_pos pos;
654         int ret;
655
656         nanddev_offs_to_pos(nand, offs, &pos);
657         mutex_lock(&spinand->lock);
658         ret = nanddev_isbad(nand, &pos);
659         mutex_unlock(&spinand->lock);
660
661         return ret;
662 }
663
664 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
665 {
666         struct spinand_device *spinand = nand_to_spinand(nand);
667         u8 marker[2] = { };
668         struct nand_page_io_req req = {
669                 .pos = *pos,
670                 .ooboffs = 0,
671                 .ooblen = sizeof(marker),
672                 .oobbuf.out = marker,
673                 .mode = MTD_OPS_RAW,
674         };
675         int ret;
676
677         ret = spinand_select_target(spinand, pos->target);
678         if (ret)
679                 return ret;
680
681         ret = spinand_write_enable_op(spinand);
682         if (ret)
683                 return ret;
684
685         return spinand_write_page(spinand, &req);
686 }
687
688 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
689 {
690         struct nand_device *nand = mtd_to_nanddev(mtd);
691         struct spinand_device *spinand = nand_to_spinand(nand);
692         struct nand_pos pos;
693         int ret;
694
695         nanddev_offs_to_pos(nand, offs, &pos);
696         mutex_lock(&spinand->lock);
697         ret = nanddev_markbad(nand, &pos);
698         mutex_unlock(&spinand->lock);
699
700         return ret;
701 }
702
703 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
704 {
705         struct spinand_device *spinand = nand_to_spinand(nand);
706         u8 status;
707         int ret;
708
709         ret = spinand_select_target(spinand, pos->target);
710         if (ret)
711                 return ret;
712
713         ret = spinand_write_enable_op(spinand);
714         if (ret)
715                 return ret;
716
717         ret = spinand_erase_op(spinand, pos);
718         if (ret)
719                 return ret;
720
721         ret = spinand_wait(spinand, &status);
722         if (!ret && (status & STATUS_ERASE_FAILED))
723                 ret = -EIO;
724
725         return ret;
726 }
727
728 static int spinand_mtd_erase(struct mtd_info *mtd,
729                              struct erase_info *einfo)
730 {
731         struct spinand_device *spinand = mtd_to_spinand(mtd);
732         int ret;
733
734         mutex_lock(&spinand->lock);
735         ret = nanddev_mtd_erase(mtd, einfo);
736         mutex_unlock(&spinand->lock);
737
738         return ret;
739 }
740
741 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
742 {
743         struct spinand_device *spinand = mtd_to_spinand(mtd);
744         struct nand_device *nand = mtd_to_nanddev(mtd);
745         struct nand_pos pos;
746         int ret;
747
748         nanddev_offs_to_pos(nand, offs, &pos);
749         mutex_lock(&spinand->lock);
750         ret = nanddev_isreserved(nand, &pos);
751         mutex_unlock(&spinand->lock);
752
753         return ret;
754 }
755
756 static const struct nand_ops spinand_ops = {
757         .erase = spinand_erase,
758         .markbad = spinand_markbad,
759         .isbad = spinand_isbad,
760 };
761
762 static const struct spinand_manufacturer *spinand_manufacturers[] = {
763         &macronix_spinand_manufacturer,
764         &micron_spinand_manufacturer,
765         &winbond_spinand_manufacturer,
766 };
767
768 static int spinand_manufacturer_detect(struct spinand_device *spinand)
769 {
770         unsigned int i;
771         int ret;
772
773         for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
774                 ret = spinand_manufacturers[i]->ops->detect(spinand);
775                 if (ret > 0) {
776                         spinand->manufacturer = spinand_manufacturers[i];
777                         return 0;
778                 } else if (ret < 0) {
779                         return ret;
780                 }
781         }
782
783         return -ENOTSUPP;
784 }
785
786 static int spinand_manufacturer_init(struct spinand_device *spinand)
787 {
788         if (spinand->manufacturer->ops->init)
789                 return spinand->manufacturer->ops->init(spinand);
790
791         return 0;
792 }
793
794 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
795 {
796         /* Release manufacturer private data */
797         if (spinand->manufacturer->ops->cleanup)
798                 return spinand->manufacturer->ops->cleanup(spinand);
799 }
800
801 static const struct spi_mem_op *
802 spinand_select_op_variant(struct spinand_device *spinand,
803                           const struct spinand_op_variants *variants)
804 {
805         struct nand_device *nand = spinand_to_nand(spinand);
806         unsigned int i;
807
808         for (i = 0; i < variants->nops; i++) {
809                 struct spi_mem_op op = variants->ops[i];
810                 unsigned int nbytes;
811                 int ret;
812
813                 nbytes = nanddev_per_page_oobsize(nand) +
814                          nanddev_page_size(nand);
815
816                 while (nbytes) {
817                         op.data.nbytes = nbytes;
818                         ret = spi_mem_adjust_op_size(spinand->spimem, &op);
819                         if (ret)
820                                 break;
821
822                         if (!spi_mem_supports_op(spinand->spimem, &op))
823                                 break;
824
825                         nbytes -= op.data.nbytes;
826                 }
827
828                 if (!nbytes)
829                         return &variants->ops[i];
830         }
831
832         return NULL;
833 }
834
835 /**
836  * spinand_match_and_init() - Try to find a match between a device ID and an
837  *                            entry in a spinand_info table
838  * @spinand: SPI NAND object
839  * @table: SPI NAND device description table
840  * @table_size: size of the device description table
841  *
842  * Should be used by SPI NAND manufacturer drivers when they want to find a
843  * match between a device ID retrieved through the READ_ID command and an
844  * entry in the SPI NAND description table. If a match is found, the spinand
845  * object will be initialized with information provided by the matching
846  * spinand_info entry.
847  *
848  * Return: 0 on success, a negative error code otherwise.
849  */
850 int spinand_match_and_init(struct spinand_device *spinand,
851                            const struct spinand_info *table,
852                            unsigned int table_size, u8 devid)
853 {
854         struct nand_device *nand = spinand_to_nand(spinand);
855         unsigned int i;
856
857         for (i = 0; i < table_size; i++) {
858                 const struct spinand_info *info = &table[i];
859                 const struct spi_mem_op *op;
860
861                 if (devid != info->devid)
862                         continue;
863
864                 nand->memorg = table[i].memorg;
865                 nand->eccreq = table[i].eccreq;
866                 spinand->eccinfo = table[i].eccinfo;
867                 spinand->flags = table[i].flags;
868                 spinand->select_target = table[i].select_target;
869
870                 op = spinand_select_op_variant(spinand,
871                                                info->op_variants.read_cache);
872                 if (!op)
873                         return -ENOTSUPP;
874
875                 spinand->op_templates.read_cache = op;
876
877                 op = spinand_select_op_variant(spinand,
878                                                info->op_variants.write_cache);
879                 if (!op)
880                         return -ENOTSUPP;
881
882                 spinand->op_templates.write_cache = op;
883
884                 op = spinand_select_op_variant(spinand,
885                                                info->op_variants.update_cache);
886                 spinand->op_templates.update_cache = op;
887
888                 return 0;
889         }
890
891         return -ENOTSUPP;
892 }
893
894 static int spinand_detect(struct spinand_device *spinand)
895 {
896         struct device *dev = &spinand->spimem->spi->dev;
897         struct nand_device *nand = spinand_to_nand(spinand);
898         int ret;
899
900         ret = spinand_reset_op(spinand);
901         if (ret)
902                 return ret;
903
904         ret = spinand_read_id_op(spinand, spinand->id.data);
905         if (ret)
906                 return ret;
907
908         spinand->id.len = SPINAND_MAX_ID_LEN;
909
910         ret = spinand_manufacturer_detect(spinand);
911         if (ret) {
912                 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
913                         spinand->id.data);
914                 return ret;
915         }
916
917         if (nand->memorg.ntargets > 1 && !spinand->select_target) {
918                 dev_err(dev,
919                         "SPI NANDs with more than one die must implement ->select_target()\n");
920                 return -EINVAL;
921         }
922
923         dev_info(&spinand->spimem->spi->dev,
924                  "%s SPI NAND was found.\n", spinand->manufacturer->name);
925         dev_info(&spinand->spimem->spi->dev,
926                  "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
927                  nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
928                  nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
929
930         return 0;
931 }
932
933 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
934                                        struct mtd_oob_region *region)
935 {
936         return -ERANGE;
937 }
938
939 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
940                                         struct mtd_oob_region *region)
941 {
942         if (section)
943                 return -ERANGE;
944
945         /* Reserve 2 bytes for the BBM. */
946         region->offset = 2;
947         region->length = 62;
948
949         return 0;
950 }
951
952 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
953         .ecc = spinand_noecc_ooblayout_ecc,
954         .free = spinand_noecc_ooblayout_free,
955 };
956
957 static int spinand_init(struct spinand_device *spinand)
958 {
959         struct device *dev = &spinand->spimem->spi->dev;
960         struct mtd_info *mtd = spinand_to_mtd(spinand);
961         struct nand_device *nand = mtd_to_nanddev(mtd);
962         int ret, i;
963
964         /*
965          * We need a scratch buffer because the spi_mem interface requires that
966          * buf passed in spi_mem_op->data.buf be DMA-able.
967          */
968         spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
969         if (!spinand->scratchbuf)
970                 return -ENOMEM;
971
972         ret = spinand_detect(spinand);
973         if (ret)
974                 goto err_free_bufs;
975
976         /*
977          * Use kzalloc() instead of devm_kzalloc() here, because some drivers
978          * may use this buffer for DMA access.
979          * Memory allocated by devm_ does not guarantee DMA-safe alignment.
980          */
981         spinand->databuf = kzalloc(nanddev_page_size(nand) +
982                                nanddev_per_page_oobsize(nand),
983                                GFP_KERNEL);
984         if (!spinand->databuf) {
985                 ret = -ENOMEM;
986                 goto err_free_bufs;
987         }
988
989         spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
990
991         ret = spinand_init_cfg_cache(spinand);
992         if (ret)
993                 goto err_free_bufs;
994
995         ret = spinand_init_quad_enable(spinand);
996         if (ret)
997                 goto err_free_bufs;
998
999         ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1000         if (ret)
1001                 goto err_free_bufs;
1002
1003         ret = spinand_manufacturer_init(spinand);
1004         if (ret) {
1005                 dev_err(dev,
1006                         "Failed to initialize the SPI NAND chip (err = %d)\n",
1007                         ret);
1008                 goto err_free_bufs;
1009         }
1010
1011         /* After power up, all blocks are locked, so unlock them here. */
1012         for (i = 0; i < nand->memorg.ntargets; i++) {
1013                 ret = spinand_select_target(spinand, i);
1014                 if (ret)
1015                         goto err_manuf_cleanup;
1016
1017                 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1018                 if (ret)
1019                         goto err_manuf_cleanup;
1020         }
1021
1022         ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1023         if (ret)
1024                 goto err_manuf_cleanup;
1025
1026         /*
1027          * Right now, we don't support ECC, so let the whole oob
1028          * area is available for user.
1029          */
1030         mtd->_read_oob = spinand_mtd_read;
1031         mtd->_write_oob = spinand_mtd_write;
1032         mtd->_block_isbad = spinand_mtd_block_isbad;
1033         mtd->_block_markbad = spinand_mtd_block_markbad;
1034         mtd->_block_isreserved = spinand_mtd_block_isreserved;
1035         mtd->_erase = spinand_mtd_erase;
1036
1037         if (spinand->eccinfo.ooblayout)
1038                 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1039         else
1040                 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1041
1042         ret = mtd_ooblayout_count_freebytes(mtd);
1043         if (ret < 0)
1044                 goto err_cleanup_nanddev;
1045
1046         mtd->oobavail = ret;
1047
1048         /* Propagate ECC information to mtd_info */
1049         mtd->ecc_strength = nand->eccreq.strength;
1050         mtd->ecc_step_size = nand->eccreq.step_size;
1051
1052         return 0;
1053
1054 err_cleanup_nanddev:
1055         nanddev_cleanup(nand);
1056
1057 err_manuf_cleanup:
1058         spinand_manufacturer_cleanup(spinand);
1059
1060 err_free_bufs:
1061         kfree(spinand->databuf);
1062         kfree(spinand->scratchbuf);
1063         return ret;
1064 }
1065
1066 static void spinand_cleanup(struct spinand_device *spinand)
1067 {
1068         struct nand_device *nand = spinand_to_nand(spinand);
1069
1070         nanddev_cleanup(nand);
1071         spinand_manufacturer_cleanup(spinand);
1072         kfree(spinand->databuf);
1073         kfree(spinand->scratchbuf);
1074 }
1075
1076 static int spinand_probe(struct spi_mem *mem)
1077 {
1078         struct spinand_device *spinand;
1079         struct mtd_info *mtd;
1080         int ret;
1081
1082         spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1083                                GFP_KERNEL);
1084         if (!spinand)
1085                 return -ENOMEM;
1086
1087         spinand->spimem = mem;
1088         spi_mem_set_drvdata(mem, spinand);
1089         spinand_set_of_node(spinand, mem->spi->dev.of_node);
1090         mutex_init(&spinand->lock);
1091         mtd = spinand_to_mtd(spinand);
1092         mtd->dev.parent = &mem->spi->dev;
1093
1094         ret = spinand_init(spinand);
1095         if (ret)
1096                 return ret;
1097
1098         ret = mtd_device_register(mtd, NULL, 0);
1099         if (ret)
1100                 goto err_spinand_cleanup;
1101
1102         return 0;
1103
1104 err_spinand_cleanup:
1105         spinand_cleanup(spinand);
1106
1107         return ret;
1108 }
1109
1110 static int spinand_remove(struct spi_mem *mem)
1111 {
1112         struct spinand_device *spinand;
1113         struct mtd_info *mtd;
1114         int ret;
1115
1116         spinand = spi_mem_get_drvdata(mem);
1117         mtd = spinand_to_mtd(spinand);
1118
1119         ret = mtd_device_unregister(mtd);
1120         if (ret)
1121                 return ret;
1122
1123         spinand_cleanup(spinand);
1124
1125         return 0;
1126 }
1127
1128 static const struct spi_device_id spinand_ids[] = {
1129         { .name = "spi-nand" },
1130         { /* sentinel */ },
1131 };
1132 MODULE_DEVICE_TABLE(spi, spinand_ids);
1133
1134 #ifdef CONFIG_OF
1135 static const struct of_device_id spinand_of_ids[] = {
1136         { .compatible = "spi-nand" },
1137         { /* sentinel */ },
1138 };
1139 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1140 #endif
1141
1142 static struct spi_mem_driver spinand_drv = {
1143         .spidrv = {
1144                 .id_table = spinand_ids,
1145                 .driver = {
1146                         .name = "spi-nand",
1147                         .of_match_table = of_match_ptr(spinand_of_ids),
1148                 },
1149         },
1150         .probe = spinand_probe,
1151         .remove = spinand_remove,
1152 };
1153 module_spi_mem_driver(spinand_drv);
1154
1155 MODULE_DESCRIPTION("SPI NAND framework");
1156 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1157 MODULE_LICENSE("GPL v2");