GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154         struct rb_node **p, *parent = NULL;
155
156         p = &root->rb_node;
157         while (*p) {
158                 struct ubi_wl_entry *e1;
159
160                 parent = *p;
161                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163                 if (e->ec < e1->ec)
164                         p = &(*p)->rb_left;
165                 else if (e->ec > e1->ec)
166                         p = &(*p)->rb_right;
167                 else {
168                         ubi_assert(e->pnum != e1->pnum);
169                         if (e->pnum < e1->pnum)
170                                 p = &(*p)->rb_left;
171                         else
172                                 p = &(*p)->rb_right;
173                 }
174         }
175
176         rb_link_node(&e->u.rb, parent, p);
177         rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190         ubi->lookuptbl[e->pnum] = NULL;
191         kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203         int err;
204         struct ubi_work *wrk;
205
206         cond_resched();
207
208         /*
209          * @ubi->work_sem is used to synchronize with the workers. Workers take
210          * it in read mode, so many of them may be doing works at a time. But
211          * the queue flush code has to be sure the whole queue of works is
212          * done, and it takes the mutex in write mode.
213          */
214         down_read(&ubi->work_sem);
215         spin_lock(&ubi->wl_lock);
216         if (list_empty(&ubi->works)) {
217                 spin_unlock(&ubi->wl_lock);
218                 up_read(&ubi->work_sem);
219                 return 0;
220         }
221
222         wrk = list_entry(ubi->works.next, struct ubi_work, list);
223         list_del(&wrk->list);
224         ubi->works_count -= 1;
225         ubi_assert(ubi->works_count >= 0);
226         spin_unlock(&ubi->wl_lock);
227
228         /*
229          * Call the worker function. Do not touch the work structure
230          * after this call as it will have been freed or reused by that
231          * time by the worker function.
232          */
233         err = wrk->func(ubi, wrk, 0);
234         if (err)
235                 ubi_err(ubi, "work failed with error code %d", err);
236         up_read(&ubi->work_sem);
237
238         return err;
239 }
240
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251         struct rb_node *p;
252
253         p = root->rb_node;
254         while (p) {
255                 struct ubi_wl_entry *e1;
256
257                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259                 if (e->pnum == e1->pnum) {
260                         ubi_assert(e == e1);
261                         return 1;
262                 }
263
264                 if (e->ec < e1->ec)
265                         p = p->rb_left;
266                 else if (e->ec > e1->ec)
267                         p = p->rb_right;
268                 else {
269                         ubi_assert(e->pnum != e1->pnum);
270                         if (e->pnum < e1->pnum)
271                                 p = p->rb_left;
272                         else
273                                 p = p->rb_right;
274                 }
275         }
276
277         return 0;
278 }
279
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292         int pq_tail = ubi->pq_head - 1;
293
294         if (pq_tail < 0)
295                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311                                           struct rb_root *root, int diff)
312 {
313         struct rb_node *p;
314         struct ubi_wl_entry *e, *prev_e = NULL;
315         int max;
316
317         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318         max = e->ec + diff;
319
320         p = root->rb_node;
321         while (p) {
322                 struct ubi_wl_entry *e1;
323
324                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325                 if (e1->ec >= max)
326                         p = p->rb_left;
327                 else {
328                         p = p->rb_right;
329                         prev_e = e;
330                         e = e1;
331                 }
332         }
333
334         /* If no fastmap has been written and this WL entry can be used
335          * as anchor PEB, hold it back and return the second best WL entry
336          * such that fastmap can use the anchor PEB later. */
337         if (prev_e && !ubi->fm_disabled &&
338             !ubi->fm && e->pnum < UBI_FM_MAX_START)
339                 return prev_e;
340
341         return e;
342 }
343
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354                                                struct rb_root *root)
355 {
356         struct ubi_wl_entry *e, *first, *last;
357
358         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364                 /* If no fastmap has been written and this WL entry can be used
365                  * as anchor PEB, hold it back and return the second best
366                  * WL entry such that fastmap can use the anchor PEB later. */
367                 e = may_reserve_for_fm(ubi, e, root);
368         } else
369                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371         return e;
372 }
373
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384         struct ubi_wl_entry *e;
385
386         e = find_mean_wl_entry(ubi, &ubi->free);
387         if (!e) {
388                 ubi_err(ubi, "no free eraseblocks");
389                 return NULL;
390         }
391
392         self_check_in_wl_tree(ubi, e, &ubi->free);
393
394         /*
395          * Move the physical eraseblock to the protection queue where it will
396          * be protected from being moved for some time.
397          */
398         rb_erase(&e->u.rb, &ubi->free);
399         ubi->free_count--;
400         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402         return e;
403 }
404
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415         struct ubi_wl_entry *e;
416
417         e = ubi->lookuptbl[pnum];
418         if (!e)
419                 return -ENODEV;
420
421         if (self_check_in_pq(ubi, e))
422                 return -ENODEV;
423
424         list_del(&e->u.list);
425         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426         return 0;
427 }
428
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439                       int torture)
440 {
441         int err;
442         struct ubi_ec_hdr *ec_hdr;
443         unsigned long long ec = e->ec;
444
445         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447         err = self_check_ec(ubi, e->pnum, e->ec);
448         if (err)
449                 return -EINVAL;
450
451         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452         if (!ec_hdr)
453                 return -ENOMEM;
454
455         err = ubi_io_sync_erase(ubi, e->pnum, torture);
456         if (err < 0)
457                 goto out_free;
458
459         ec += err;
460         if (ec > UBI_MAX_ERASECOUNTER) {
461                 /*
462                  * Erase counter overflow. Upgrade UBI and use 64-bit
463                  * erase counters internally.
464                  */
465                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466                         e->pnum, ec);
467                 err = -EINVAL;
468                 goto out_free;
469         }
470
471         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473         ec_hdr->ec = cpu_to_be64(ec);
474
475         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476         if (err)
477                 goto out_free;
478
479         e->ec = ec;
480         spin_lock(&ubi->wl_lock);
481         if (e->ec > ubi->max_ec)
482                 ubi->max_ec = e->ec;
483         spin_unlock(&ubi->wl_lock);
484
485 out_free:
486         kfree(ec_hdr);
487         return err;
488 }
489
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500         struct ubi_wl_entry *e, *tmp;
501         int count;
502
503         /*
504          * There may be several protected physical eraseblock to remove,
505          * process them all.
506          */
507 repeat:
508         count = 0;
509         spin_lock(&ubi->wl_lock);
510         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511                 dbg_wl("PEB %d EC %d protection over, move to used tree",
512                         e->pnum, e->ec);
513
514                 list_del(&e->u.list);
515                 wl_tree_add(e, &ubi->used);
516                 if (count++ > 32) {
517                         /*
518                          * Let's be nice and avoid holding the spinlock for
519                          * too long.
520                          */
521                         spin_unlock(&ubi->wl_lock);
522                         cond_resched();
523                         goto repeat;
524                 }
525         }
526
527         ubi->pq_head += 1;
528         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529                 ubi->pq_head = 0;
530         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531         spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544         spin_lock(&ubi->wl_lock);
545         list_add_tail(&wrk->list, &ubi->works);
546         ubi_assert(ubi->works_count >= 0);
547         ubi->works_count += 1;
548         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549                 wake_up_process(ubi->bgt_thread);
550         spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563         down_read(&ubi->work_sem);
564         __schedule_ubi_work(ubi, wrk);
565         up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569                         int shutdown);
570
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583                           int vol_id, int lnum, int torture, bool nested)
584 {
585         struct ubi_work *wl_wrk;
586
587         ubi_assert(e);
588
589         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590                e->pnum, e->ec, torture);
591
592         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593         if (!wl_wrk)
594                 return -ENOMEM;
595
596         wl_wrk->func = &erase_worker;
597         wl_wrk->e = e;
598         wl_wrk->vol_id = vol_id;
599         wl_wrk->lnum = lnum;
600         wl_wrk->torture = torture;
601
602         if (nested)
603                 __schedule_ubi_work(ubi, wl_wrk);
604         else
605                 schedule_ubi_work(ubi, wl_wrk);
606         return 0;
607 }
608
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610 /**
611  * do_sync_erase - run the erase worker synchronously.
612  * @ubi: UBI device description object
613  * @e: the WL entry of the physical eraseblock to erase
614  * @vol_id: the volume ID that last used this PEB
615  * @lnum: the last used logical eraseblock number for the PEB
616  * @torture: if the physical eraseblock has to be tortured
617  *
618  */
619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620                          int vol_id, int lnum, int torture)
621 {
622         struct ubi_work wl_wrk;
623
624         dbg_wl("sync erase of PEB %i", e->pnum);
625
626         wl_wrk.e = e;
627         wl_wrk.vol_id = vol_id;
628         wl_wrk.lnum = lnum;
629         wl_wrk.torture = torture;
630
631         return __erase_worker(ubi, &wl_wrk);
632 }
633
634 /**
635  * wear_leveling_worker - wear-leveling worker function.
636  * @ubi: UBI device description object
637  * @wrk: the work object
638  * @shutdown: non-zero if the worker has to free memory and exit
639  * because the WL-subsystem is shutting down
640  *
641  * This function copies a more worn out physical eraseblock to a less worn out
642  * one. Returns zero in case of success and a negative error code in case of
643  * failure.
644  */
645 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
646                                 int shutdown)
647 {
648         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
649         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
650 #ifdef CONFIG_MTD_UBI_FASTMAP
651         int anchor = wrk->anchor;
652 #endif
653         struct ubi_wl_entry *e1, *e2;
654         struct ubi_vid_hdr *vid_hdr;
655
656         kfree(wrk);
657         if (shutdown)
658                 return 0;
659
660         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
661         if (!vid_hdr)
662                 return -ENOMEM;
663
664         down_read(&ubi->fm_eba_sem);
665         mutex_lock(&ubi->move_mutex);
666         spin_lock(&ubi->wl_lock);
667         ubi_assert(!ubi->move_from && !ubi->move_to);
668         ubi_assert(!ubi->move_to_put);
669
670         if (!ubi->free.rb_node ||
671             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
672                 /*
673                  * No free physical eraseblocks? Well, they must be waiting in
674                  * the queue to be erased. Cancel movement - it will be
675                  * triggered again when a free physical eraseblock appears.
676                  *
677                  * No used physical eraseblocks? They must be temporarily
678                  * protected from being moved. They will be moved to the
679                  * @ubi->used tree later and the wear-leveling will be
680                  * triggered again.
681                  */
682                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
683                        !ubi->free.rb_node, !ubi->used.rb_node);
684                 goto out_cancel;
685         }
686
687 #ifdef CONFIG_MTD_UBI_FASTMAP
688         /* Check whether we need to produce an anchor PEB */
689         if (!anchor)
690                 anchor = !anchor_pebs_avalible(&ubi->free);
691
692         if (anchor) {
693                 e1 = find_anchor_wl_entry(&ubi->used);
694                 if (!e1)
695                         goto out_cancel;
696                 e2 = get_peb_for_wl(ubi);
697                 if (!e2)
698                         goto out_cancel;
699
700                 self_check_in_wl_tree(ubi, e1, &ubi->used);
701                 rb_erase(&e1->u.rb, &ubi->used);
702                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
703         } else if (!ubi->scrub.rb_node) {
704 #else
705         if (!ubi->scrub.rb_node) {
706 #endif
707                 /*
708                  * Now pick the least worn-out used physical eraseblock and a
709                  * highly worn-out free physical eraseblock. If the erase
710                  * counters differ much enough, start wear-leveling.
711                  */
712                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
713                 e2 = get_peb_for_wl(ubi);
714                 if (!e2)
715                         goto out_cancel;
716
717                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
718                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
719                                e1->ec, e2->ec);
720
721                         /* Give the unused PEB back */
722                         wl_tree_add(e2, &ubi->free);
723                         ubi->free_count++;
724                         goto out_cancel;
725                 }
726                 self_check_in_wl_tree(ubi, e1, &ubi->used);
727                 rb_erase(&e1->u.rb, &ubi->used);
728                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
729                        e1->pnum, e1->ec, e2->pnum, e2->ec);
730         } else {
731                 /* Perform scrubbing */
732                 scrubbing = 1;
733                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
734                 e2 = get_peb_for_wl(ubi);
735                 if (!e2)
736                         goto out_cancel;
737
738                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
739                 rb_erase(&e1->u.rb, &ubi->scrub);
740                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
741         }
742
743         ubi->move_from = e1;
744         ubi->move_to = e2;
745         spin_unlock(&ubi->wl_lock);
746
747         /*
748          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
749          * We so far do not know which logical eraseblock our physical
750          * eraseblock (@e1) belongs to. We have to read the volume identifier
751          * header first.
752          *
753          * Note, we are protected from this PEB being unmapped and erased. The
754          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
755          * which is being moved was unmapped.
756          */
757
758         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
759         if (err && err != UBI_IO_BITFLIPS) {
760                 if (err == UBI_IO_FF) {
761                         /*
762                          * We are trying to move PEB without a VID header. UBI
763                          * always write VID headers shortly after the PEB was
764                          * given, so we have a situation when it has not yet
765                          * had a chance to write it, because it was preempted.
766                          * So add this PEB to the protection queue so far,
767                          * because presumably more data will be written there
768                          * (including the missing VID header), and then we'll
769                          * move it.
770                          */
771                         dbg_wl("PEB %d has no VID header", e1->pnum);
772                         protect = 1;
773                         goto out_not_moved;
774                 } else if (err == UBI_IO_FF_BITFLIPS) {
775                         /*
776                          * The same situation as %UBI_IO_FF, but bit-flips were
777                          * detected. It is better to schedule this PEB for
778                          * scrubbing.
779                          */
780                         dbg_wl("PEB %d has no VID header but has bit-flips",
781                                e1->pnum);
782                         scrubbing = 1;
783                         goto out_not_moved;
784                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
785                         /*
786                          * While a full scan would detect interrupted erasures
787                          * at attach time we can face them here when attached from
788                          * Fastmap.
789                          */
790                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
791                                e1->pnum);
792                         erase = 1;
793                         goto out_not_moved;
794                 }
795
796                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
797                         err, e1->pnum);
798                 goto out_error;
799         }
800
801         vol_id = be32_to_cpu(vid_hdr->vol_id);
802         lnum = be32_to_cpu(vid_hdr->lnum);
803
804         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
805         if (err) {
806                 if (err == MOVE_CANCEL_RACE) {
807                         /*
808                          * The LEB has not been moved because the volume is
809                          * being deleted or the PEB has been put meanwhile. We
810                          * should prevent this PEB from being selected for
811                          * wear-leveling movement again, so put it to the
812                          * protection queue.
813                          */
814                         protect = 1;
815                         goto out_not_moved;
816                 }
817                 if (err == MOVE_RETRY) {
818                         scrubbing = 1;
819                         goto out_not_moved;
820                 }
821                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
822                     err == MOVE_TARGET_RD_ERR) {
823                         /*
824                          * Target PEB had bit-flips or write error - torture it.
825                          */
826                         torture = 1;
827                         keep = 1;
828                         goto out_not_moved;
829                 }
830
831                 if (err == MOVE_SOURCE_RD_ERR) {
832                         /*
833                          * An error happened while reading the source PEB. Do
834                          * not switch to R/O mode in this case, and give the
835                          * upper layers a possibility to recover from this,
836                          * e.g. by unmapping corresponding LEB. Instead, just
837                          * put this PEB to the @ubi->erroneous list to prevent
838                          * UBI from trying to move it over and over again.
839                          */
840                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
841                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
842                                         ubi->erroneous_peb_count);
843                                 goto out_error;
844                         }
845                         erroneous = 1;
846                         goto out_not_moved;
847                 }
848
849                 if (err < 0)
850                         goto out_error;
851
852                 ubi_assert(0);
853         }
854
855         /* The PEB has been successfully moved */
856         if (scrubbing)
857                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
858                         e1->pnum, vol_id, lnum, e2->pnum);
859         ubi_free_vid_hdr(ubi, vid_hdr);
860
861         spin_lock(&ubi->wl_lock);
862         if (!ubi->move_to_put) {
863                 wl_tree_add(e2, &ubi->used);
864                 e2 = NULL;
865         }
866         ubi->move_from = ubi->move_to = NULL;
867         ubi->move_to_put = ubi->wl_scheduled = 0;
868         spin_unlock(&ubi->wl_lock);
869
870         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
871         if (err) {
872                 if (e2)
873                         wl_entry_destroy(ubi, e2);
874                 goto out_ro;
875         }
876
877         if (e2) {
878                 /*
879                  * Well, the target PEB was put meanwhile, schedule it for
880                  * erasure.
881                  */
882                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
883                        e2->pnum, vol_id, lnum);
884                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
885                 if (err)
886                         goto out_ro;
887         }
888
889         dbg_wl("done");
890         mutex_unlock(&ubi->move_mutex);
891         up_read(&ubi->fm_eba_sem);
892         return 0;
893
894         /*
895          * For some reasons the LEB was not moved, might be an error, might be
896          * something else. @e1 was not changed, so return it back. @e2 might
897          * have been changed, schedule it for erasure.
898          */
899 out_not_moved:
900         if (vol_id != -1)
901                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
902                        e1->pnum, vol_id, lnum, e2->pnum, err);
903         else
904                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
905                        e1->pnum, e2->pnum, err);
906         spin_lock(&ubi->wl_lock);
907         if (protect)
908                 prot_queue_add(ubi, e1);
909         else if (erroneous) {
910                 wl_tree_add(e1, &ubi->erroneous);
911                 ubi->erroneous_peb_count += 1;
912         } else if (scrubbing)
913                 wl_tree_add(e1, &ubi->scrub);
914         else if (keep)
915                 wl_tree_add(e1, &ubi->used);
916         ubi_assert(!ubi->move_to_put);
917         ubi->move_from = ubi->move_to = NULL;
918         ubi->wl_scheduled = 0;
919         spin_unlock(&ubi->wl_lock);
920
921         ubi_free_vid_hdr(ubi, vid_hdr);
922         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
923         if (err)
924                 goto out_ro;
925
926         if (erase) {
927                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
928                 if (err)
929                         goto out_ro;
930         }
931
932         mutex_unlock(&ubi->move_mutex);
933         up_read(&ubi->fm_eba_sem);
934         return 0;
935
936 out_error:
937         if (vol_id != -1)
938                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
939                         err, e1->pnum, e2->pnum);
940         else
941                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
942                         err, e1->pnum, vol_id, lnum, e2->pnum);
943         spin_lock(&ubi->wl_lock);
944         ubi->move_from = ubi->move_to = NULL;
945         ubi->move_to_put = ubi->wl_scheduled = 0;
946         spin_unlock(&ubi->wl_lock);
947
948         ubi_free_vid_hdr(ubi, vid_hdr);
949         wl_entry_destroy(ubi, e1);
950         wl_entry_destroy(ubi, e2);
951
952 out_ro:
953         ubi_ro_mode(ubi);
954         mutex_unlock(&ubi->move_mutex);
955         up_read(&ubi->fm_eba_sem);
956         ubi_assert(err != 0);
957         return err < 0 ? err : -EIO;
958
959 out_cancel:
960         ubi->wl_scheduled = 0;
961         spin_unlock(&ubi->wl_lock);
962         mutex_unlock(&ubi->move_mutex);
963         up_read(&ubi->fm_eba_sem);
964         ubi_free_vid_hdr(ubi, vid_hdr);
965         return 0;
966 }
967
968 /**
969  * ensure_wear_leveling - schedule wear-leveling if it is needed.
970  * @ubi: UBI device description object
971  * @nested: set to non-zero if this function is called from UBI worker
972  *
973  * This function checks if it is time to start wear-leveling and schedules it
974  * if yes. This function returns zero in case of success and a negative error
975  * code in case of failure.
976  */
977 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
978 {
979         int err = 0;
980         struct ubi_wl_entry *e1;
981         struct ubi_wl_entry *e2;
982         struct ubi_work *wrk;
983
984         spin_lock(&ubi->wl_lock);
985         if (ubi->wl_scheduled)
986                 /* Wear-leveling is already in the work queue */
987                 goto out_unlock;
988
989         /*
990          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
991          * the WL worker has to be scheduled anyway.
992          */
993         if (!ubi->scrub.rb_node) {
994                 if (!ubi->used.rb_node || !ubi->free.rb_node)
995                         /* No physical eraseblocks - no deal */
996                         goto out_unlock;
997
998                 /*
999                  * We schedule wear-leveling only if the difference between the
1000                  * lowest erase counter of used physical eraseblocks and a high
1001                  * erase counter of free physical eraseblocks is greater than
1002                  * %UBI_WL_THRESHOLD.
1003                  */
1004                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1005                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1006
1007                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1008                         goto out_unlock;
1009                 dbg_wl("schedule wear-leveling");
1010         } else
1011                 dbg_wl("schedule scrubbing");
1012
1013         ubi->wl_scheduled = 1;
1014         spin_unlock(&ubi->wl_lock);
1015
1016         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1017         if (!wrk) {
1018                 err = -ENOMEM;
1019                 goto out_cancel;
1020         }
1021
1022         wrk->anchor = 0;
1023         wrk->func = &wear_leveling_worker;
1024         if (nested)
1025                 __schedule_ubi_work(ubi, wrk);
1026         else
1027                 schedule_ubi_work(ubi, wrk);
1028         return err;
1029
1030 out_cancel:
1031         spin_lock(&ubi->wl_lock);
1032         ubi->wl_scheduled = 0;
1033 out_unlock:
1034         spin_unlock(&ubi->wl_lock);
1035         return err;
1036 }
1037
1038 /**
1039  * __erase_worker - physical eraseblock erase worker function.
1040  * @ubi: UBI device description object
1041  * @wl_wrk: the work object
1042  * @shutdown: non-zero if the worker has to free memory and exit
1043  * because the WL sub-system is shutting down
1044  *
1045  * This function erases a physical eraseblock and perform torture testing if
1046  * needed. It also takes care about marking the physical eraseblock bad if
1047  * needed. Returns zero in case of success and a negative error code in case of
1048  * failure.
1049  */
1050 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1051 {
1052         struct ubi_wl_entry *e = wl_wrk->e;
1053         int pnum = e->pnum;
1054         int vol_id = wl_wrk->vol_id;
1055         int lnum = wl_wrk->lnum;
1056         int err, available_consumed = 0;
1057
1058         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1059                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1060
1061         err = sync_erase(ubi, e, wl_wrk->torture);
1062         if (!err) {
1063                 spin_lock(&ubi->wl_lock);
1064                 wl_tree_add(e, &ubi->free);
1065                 ubi->free_count++;
1066                 spin_unlock(&ubi->wl_lock);
1067
1068                 /*
1069                  * One more erase operation has happened, take care about
1070                  * protected physical eraseblocks.
1071                  */
1072                 serve_prot_queue(ubi);
1073
1074                 /* And take care about wear-leveling */
1075                 err = ensure_wear_leveling(ubi, 1);
1076                 return err;
1077         }
1078
1079         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1080
1081         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1082             err == -EBUSY) {
1083                 int err1;
1084
1085                 /* Re-schedule the LEB for erasure */
1086                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1087                 if (err1) {
1088                         wl_entry_destroy(ubi, e);
1089                         err = err1;
1090                         goto out_ro;
1091                 }
1092                 return err;
1093         }
1094
1095         wl_entry_destroy(ubi, e);
1096         if (err != -EIO)
1097                 /*
1098                  * If this is not %-EIO, we have no idea what to do. Scheduling
1099                  * this physical eraseblock for erasure again would cause
1100                  * errors again and again. Well, lets switch to R/O mode.
1101                  */
1102                 goto out_ro;
1103
1104         /* It is %-EIO, the PEB went bad */
1105
1106         if (!ubi->bad_allowed) {
1107                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1108                 goto out_ro;
1109         }
1110
1111         spin_lock(&ubi->volumes_lock);
1112         if (ubi->beb_rsvd_pebs == 0) {
1113                 if (ubi->avail_pebs == 0) {
1114                         spin_unlock(&ubi->volumes_lock);
1115                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1116                         goto out_ro;
1117                 }
1118                 ubi->avail_pebs -= 1;
1119                 available_consumed = 1;
1120         }
1121         spin_unlock(&ubi->volumes_lock);
1122
1123         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1124         err = ubi_io_mark_bad(ubi, pnum);
1125         if (err)
1126                 goto out_ro;
1127
1128         spin_lock(&ubi->volumes_lock);
1129         if (ubi->beb_rsvd_pebs > 0) {
1130                 if (available_consumed) {
1131                         /*
1132                          * The amount of reserved PEBs increased since we last
1133                          * checked.
1134                          */
1135                         ubi->avail_pebs += 1;
1136                         available_consumed = 0;
1137                 }
1138                 ubi->beb_rsvd_pebs -= 1;
1139         }
1140         ubi->bad_peb_count += 1;
1141         ubi->good_peb_count -= 1;
1142         ubi_calculate_reserved(ubi);
1143         if (available_consumed)
1144                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1145         else if (ubi->beb_rsvd_pebs)
1146                 ubi_msg(ubi, "%d PEBs left in the reserve",
1147                         ubi->beb_rsvd_pebs);
1148         else
1149                 ubi_warn(ubi, "last PEB from the reserve was used");
1150         spin_unlock(&ubi->volumes_lock);
1151
1152         return err;
1153
1154 out_ro:
1155         if (available_consumed) {
1156                 spin_lock(&ubi->volumes_lock);
1157                 ubi->avail_pebs += 1;
1158                 spin_unlock(&ubi->volumes_lock);
1159         }
1160         ubi_ro_mode(ubi);
1161         return err;
1162 }
1163
1164 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1165                           int shutdown)
1166 {
1167         int ret;
1168
1169         if (shutdown) {
1170                 struct ubi_wl_entry *e = wl_wrk->e;
1171
1172                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1173                 kfree(wl_wrk);
1174                 wl_entry_destroy(ubi, e);
1175                 return 0;
1176         }
1177
1178         ret = __erase_worker(ubi, wl_wrk);
1179         kfree(wl_wrk);
1180         return ret;
1181 }
1182
1183 /**
1184  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1185  * @ubi: UBI device description object
1186  * @vol_id: the volume ID that last used this PEB
1187  * @lnum: the last used logical eraseblock number for the PEB
1188  * @pnum: physical eraseblock to return
1189  * @torture: if this physical eraseblock has to be tortured
1190  *
1191  * This function is called to return physical eraseblock @pnum to the pool of
1192  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1193  * occurred to this @pnum and it has to be tested. This function returns zero
1194  * in case of success, and a negative error code in case of failure.
1195  */
1196 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1197                    int pnum, int torture)
1198 {
1199         int err;
1200         struct ubi_wl_entry *e;
1201
1202         dbg_wl("PEB %d", pnum);
1203         ubi_assert(pnum >= 0);
1204         ubi_assert(pnum < ubi->peb_count);
1205
1206         down_read(&ubi->fm_protect);
1207
1208 retry:
1209         spin_lock(&ubi->wl_lock);
1210         e = ubi->lookuptbl[pnum];
1211         if (e == ubi->move_from) {
1212                 /*
1213                  * User is putting the physical eraseblock which was selected to
1214                  * be moved. It will be scheduled for erasure in the
1215                  * wear-leveling worker.
1216                  */
1217                 dbg_wl("PEB %d is being moved, wait", pnum);
1218                 spin_unlock(&ubi->wl_lock);
1219
1220                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1221                 mutex_lock(&ubi->move_mutex);
1222                 mutex_unlock(&ubi->move_mutex);
1223                 goto retry;
1224         } else if (e == ubi->move_to) {
1225                 /*
1226                  * User is putting the physical eraseblock which was selected
1227                  * as the target the data is moved to. It may happen if the EBA
1228                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1229                  * but the WL sub-system has not put the PEB to the "used" tree
1230                  * yet, but it is about to do this. So we just set a flag which
1231                  * will tell the WL worker that the PEB is not needed anymore
1232                  * and should be scheduled for erasure.
1233                  */
1234                 dbg_wl("PEB %d is the target of data moving", pnum);
1235                 ubi_assert(!ubi->move_to_put);
1236                 ubi->move_to_put = 1;
1237                 spin_unlock(&ubi->wl_lock);
1238                 up_read(&ubi->fm_protect);
1239                 return 0;
1240         } else {
1241                 if (in_wl_tree(e, &ubi->used)) {
1242                         self_check_in_wl_tree(ubi, e, &ubi->used);
1243                         rb_erase(&e->u.rb, &ubi->used);
1244                 } else if (in_wl_tree(e, &ubi->scrub)) {
1245                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1246                         rb_erase(&e->u.rb, &ubi->scrub);
1247                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1248                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1249                         rb_erase(&e->u.rb, &ubi->erroneous);
1250                         ubi->erroneous_peb_count -= 1;
1251                         ubi_assert(ubi->erroneous_peb_count >= 0);
1252                         /* Erroneous PEBs should be tortured */
1253                         torture = 1;
1254                 } else {
1255                         err = prot_queue_del(ubi, e->pnum);
1256                         if (err) {
1257                                 ubi_err(ubi, "PEB %d not found", pnum);
1258                                 ubi_ro_mode(ubi);
1259                                 spin_unlock(&ubi->wl_lock);
1260                                 up_read(&ubi->fm_protect);
1261                                 return err;
1262                         }
1263                 }
1264         }
1265         spin_unlock(&ubi->wl_lock);
1266
1267         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1268         if (err) {
1269                 spin_lock(&ubi->wl_lock);
1270                 wl_tree_add(e, &ubi->used);
1271                 spin_unlock(&ubi->wl_lock);
1272         }
1273
1274         up_read(&ubi->fm_protect);
1275         return err;
1276 }
1277
1278 /**
1279  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1280  * @ubi: UBI device description object
1281  * @pnum: the physical eraseblock to schedule
1282  *
1283  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1284  * needs scrubbing. This function schedules a physical eraseblock for
1285  * scrubbing which is done in background. This function returns zero in case of
1286  * success and a negative error code in case of failure.
1287  */
1288 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1289 {
1290         struct ubi_wl_entry *e;
1291
1292         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1293
1294 retry:
1295         spin_lock(&ubi->wl_lock);
1296         e = ubi->lookuptbl[pnum];
1297         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1298                                    in_wl_tree(e, &ubi->erroneous)) {
1299                 spin_unlock(&ubi->wl_lock);
1300                 return 0;
1301         }
1302
1303         if (e == ubi->move_to) {
1304                 /*
1305                  * This physical eraseblock was used to move data to. The data
1306                  * was moved but the PEB was not yet inserted to the proper
1307                  * tree. We should just wait a little and let the WL worker
1308                  * proceed.
1309                  */
1310                 spin_unlock(&ubi->wl_lock);
1311                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1312                 yield();
1313                 goto retry;
1314         }
1315
1316         if (in_wl_tree(e, &ubi->used)) {
1317                 self_check_in_wl_tree(ubi, e, &ubi->used);
1318                 rb_erase(&e->u.rb, &ubi->used);
1319         } else {
1320                 int err;
1321
1322                 err = prot_queue_del(ubi, e->pnum);
1323                 if (err) {
1324                         ubi_err(ubi, "PEB %d not found", pnum);
1325                         ubi_ro_mode(ubi);
1326                         spin_unlock(&ubi->wl_lock);
1327                         return err;
1328                 }
1329         }
1330
1331         wl_tree_add(e, &ubi->scrub);
1332         spin_unlock(&ubi->wl_lock);
1333
1334         /*
1335          * Technically scrubbing is the same as wear-leveling, so it is done
1336          * by the WL worker.
1337          */
1338         return ensure_wear_leveling(ubi, 0);
1339 }
1340
1341 /**
1342  * ubi_wl_flush - flush all pending works.
1343  * @ubi: UBI device description object
1344  * @vol_id: the volume id to flush for
1345  * @lnum: the logical eraseblock number to flush for
1346  *
1347  * This function executes all pending works for a particular volume id /
1348  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1349  * acts as a wildcard for all of the corresponding volume numbers or logical
1350  * eraseblock numbers. It returns zero in case of success and a negative error
1351  * code in case of failure.
1352  */
1353 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1354 {
1355         int err = 0;
1356         int found = 1;
1357
1358         /*
1359          * Erase while the pending works queue is not empty, but not more than
1360          * the number of currently pending works.
1361          */
1362         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1363                vol_id, lnum, ubi->works_count);
1364
1365         while (found) {
1366                 struct ubi_work *wrk, *tmp;
1367                 found = 0;
1368
1369                 down_read(&ubi->work_sem);
1370                 spin_lock(&ubi->wl_lock);
1371                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1372                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1373                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1374                                 list_del(&wrk->list);
1375                                 ubi->works_count -= 1;
1376                                 ubi_assert(ubi->works_count >= 0);
1377                                 spin_unlock(&ubi->wl_lock);
1378
1379                                 err = wrk->func(ubi, wrk, 0);
1380                                 if (err) {
1381                                         up_read(&ubi->work_sem);
1382                                         return err;
1383                                 }
1384
1385                                 spin_lock(&ubi->wl_lock);
1386                                 found = 1;
1387                                 break;
1388                         }
1389                 }
1390                 spin_unlock(&ubi->wl_lock);
1391                 up_read(&ubi->work_sem);
1392         }
1393
1394         /*
1395          * Make sure all the works which have been done in parallel are
1396          * finished.
1397          */
1398         down_write(&ubi->work_sem);
1399         up_write(&ubi->work_sem);
1400
1401         return err;
1402 }
1403
1404 /**
1405  * tree_destroy - destroy an RB-tree.
1406  * @ubi: UBI device description object
1407  * @root: the root of the tree to destroy
1408  */
1409 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1410 {
1411         struct rb_node *rb;
1412         struct ubi_wl_entry *e;
1413
1414         rb = root->rb_node;
1415         while (rb) {
1416                 if (rb->rb_left)
1417                         rb = rb->rb_left;
1418                 else if (rb->rb_right)
1419                         rb = rb->rb_right;
1420                 else {
1421                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1422
1423                         rb = rb_parent(rb);
1424                         if (rb) {
1425                                 if (rb->rb_left == &e->u.rb)
1426                                         rb->rb_left = NULL;
1427                                 else
1428                                         rb->rb_right = NULL;
1429                         }
1430
1431                         wl_entry_destroy(ubi, e);
1432                 }
1433         }
1434 }
1435
1436 /**
1437  * ubi_thread - UBI background thread.
1438  * @u: the UBI device description object pointer
1439  */
1440 int ubi_thread(void *u)
1441 {
1442         int failures = 0;
1443         struct ubi_device *ubi = u;
1444
1445         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1446                 ubi->bgt_name, task_pid_nr(current));
1447
1448         set_freezable();
1449         for (;;) {
1450                 int err;
1451
1452                 if (kthread_should_stop())
1453                         break;
1454
1455                 if (try_to_freeze())
1456                         continue;
1457
1458                 spin_lock(&ubi->wl_lock);
1459                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1460                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1461                         set_current_state(TASK_INTERRUPTIBLE);
1462                         spin_unlock(&ubi->wl_lock);
1463
1464                         /*
1465                          * Check kthread_should_stop() after we set the task
1466                          * state to guarantee that we either see the stop bit
1467                          * and exit or the task state is reset to runnable such
1468                          * that it's not scheduled out indefinitely and detects
1469                          * the stop bit at kthread_should_stop().
1470                          */
1471                         if (kthread_should_stop()) {
1472                                 set_current_state(TASK_RUNNING);
1473                                 break;
1474                         }
1475
1476                         schedule();
1477                         continue;
1478                 }
1479                 spin_unlock(&ubi->wl_lock);
1480
1481                 err = do_work(ubi);
1482                 if (err) {
1483                         ubi_err(ubi, "%s: work failed with error code %d",
1484                                 ubi->bgt_name, err);
1485                         if (failures++ > WL_MAX_FAILURES) {
1486                                 /*
1487                                  * Too many failures, disable the thread and
1488                                  * switch to read-only mode.
1489                                  */
1490                                 ubi_msg(ubi, "%s: %d consecutive failures",
1491                                         ubi->bgt_name, WL_MAX_FAILURES);
1492                                 ubi_ro_mode(ubi);
1493                                 ubi->thread_enabled = 0;
1494                                 continue;
1495                         }
1496                 } else
1497                         failures = 0;
1498
1499                 cond_resched();
1500         }
1501
1502         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1503         ubi->thread_enabled = 0;
1504         return 0;
1505 }
1506
1507 /**
1508  * shutdown_work - shutdown all pending works.
1509  * @ubi: UBI device description object
1510  */
1511 static void shutdown_work(struct ubi_device *ubi)
1512 {
1513         while (!list_empty(&ubi->works)) {
1514                 struct ubi_work *wrk;
1515
1516                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1517                 list_del(&wrk->list);
1518                 wrk->func(ubi, wrk, 1);
1519                 ubi->works_count -= 1;
1520                 ubi_assert(ubi->works_count >= 0);
1521         }
1522 }
1523
1524 /**
1525  * erase_aeb - erase a PEB given in UBI attach info PEB
1526  * @ubi: UBI device description object
1527  * @aeb: UBI attach info PEB
1528  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1529  */
1530 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1531 {
1532         struct ubi_wl_entry *e;
1533         int err;
1534
1535         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1536         if (!e)
1537                 return -ENOMEM;
1538
1539         e->pnum = aeb->pnum;
1540         e->ec = aeb->ec;
1541         ubi->lookuptbl[e->pnum] = e;
1542
1543         if (sync) {
1544                 err = sync_erase(ubi, e, false);
1545                 if (err)
1546                         goto out_free;
1547
1548                 wl_tree_add(e, &ubi->free);
1549                 ubi->free_count++;
1550         } else {
1551                 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1552                 if (err)
1553                         goto out_free;
1554         }
1555
1556         return 0;
1557
1558 out_free:
1559         wl_entry_destroy(ubi, e);
1560
1561         return err;
1562 }
1563
1564 /**
1565  * ubi_wl_init - initialize the WL sub-system using attaching information.
1566  * @ubi: UBI device description object
1567  * @ai: attaching information
1568  *
1569  * This function returns zero in case of success, and a negative error code in
1570  * case of failure.
1571  */
1572 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1573 {
1574         int err, i, reserved_pebs, found_pebs = 0;
1575         struct rb_node *rb1, *rb2;
1576         struct ubi_ainf_volume *av;
1577         struct ubi_ainf_peb *aeb, *tmp;
1578         struct ubi_wl_entry *e;
1579
1580         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1581         spin_lock_init(&ubi->wl_lock);
1582         mutex_init(&ubi->move_mutex);
1583         init_rwsem(&ubi->work_sem);
1584         ubi->max_ec = ai->max_ec;
1585         INIT_LIST_HEAD(&ubi->works);
1586
1587         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1588
1589         err = -ENOMEM;
1590         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1591         if (!ubi->lookuptbl)
1592                 return err;
1593
1594         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1595                 INIT_LIST_HEAD(&ubi->pq[i]);
1596         ubi->pq_head = 0;
1597
1598         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1599                 cond_resched();
1600
1601                 err = erase_aeb(ubi, aeb, false);
1602                 if (err)
1603                         goto out_free;
1604
1605                 found_pebs++;
1606         }
1607
1608         ubi->free_count = 0;
1609         list_for_each_entry(aeb, &ai->free, u.list) {
1610                 cond_resched();
1611
1612                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1613                 if (!e) {
1614                         err = -ENOMEM;
1615                         goto out_free;
1616                 }
1617
1618                 e->pnum = aeb->pnum;
1619                 e->ec = aeb->ec;
1620                 ubi_assert(e->ec >= 0);
1621
1622                 wl_tree_add(e, &ubi->free);
1623                 ubi->free_count++;
1624
1625                 ubi->lookuptbl[e->pnum] = e;
1626
1627                 found_pebs++;
1628         }
1629
1630         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1631                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1632                         cond_resched();
1633
1634                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1635                         if (!e) {
1636                                 err = -ENOMEM;
1637                                 goto out_free;
1638                         }
1639
1640                         e->pnum = aeb->pnum;
1641                         e->ec = aeb->ec;
1642                         ubi->lookuptbl[e->pnum] = e;
1643
1644                         if (!aeb->scrub) {
1645                                 dbg_wl("add PEB %d EC %d to the used tree",
1646                                        e->pnum, e->ec);
1647                                 wl_tree_add(e, &ubi->used);
1648                         } else {
1649                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1650                                        e->pnum, e->ec);
1651                                 wl_tree_add(e, &ubi->scrub);
1652                         }
1653
1654                         found_pebs++;
1655                 }
1656         }
1657
1658         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1659                 cond_resched();
1660
1661                 e = ubi_find_fm_block(ubi, aeb->pnum);
1662
1663                 if (e) {
1664                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1665                         ubi->lookuptbl[e->pnum] = e;
1666                 } else {
1667                         bool sync = false;
1668
1669                         /*
1670                          * Usually old Fastmap PEBs are scheduled for erasure
1671                          * and we don't have to care about them but if we face
1672                          * an power cut before scheduling them we need to
1673                          * take care of them here.
1674                          */
1675                         if (ubi->lookuptbl[aeb->pnum])
1676                                 continue;
1677
1678                         /*
1679                          * The fastmap update code might not find a free PEB for
1680                          * writing the fastmap anchor to and then reuses the
1681                          * current fastmap anchor PEB. When this PEB gets erased
1682                          * and a power cut happens before it is written again we
1683                          * must make sure that the fastmap attach code doesn't
1684                          * find any outdated fastmap anchors, hence we erase the
1685                          * outdated fastmap anchor PEBs synchronously here.
1686                          */
1687                         if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1688                                 sync = true;
1689
1690                         err = erase_aeb(ubi, aeb, sync);
1691                         if (err)
1692                                 goto out_free;
1693                 }
1694
1695                 found_pebs++;
1696         }
1697
1698         dbg_wl("found %i PEBs", found_pebs);
1699
1700         ubi_assert(ubi->good_peb_count == found_pebs);
1701
1702         reserved_pebs = WL_RESERVED_PEBS;
1703         ubi_fastmap_init(ubi, &reserved_pebs);
1704
1705         if (ubi->avail_pebs < reserved_pebs) {
1706                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1707                         ubi->avail_pebs, reserved_pebs);
1708                 if (ubi->corr_peb_count)
1709                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1710                                 ubi->corr_peb_count);
1711                 err = -ENOSPC;
1712                 goto out_free;
1713         }
1714         ubi->avail_pebs -= reserved_pebs;
1715         ubi->rsvd_pebs += reserved_pebs;
1716
1717         /* Schedule wear-leveling if needed */
1718         err = ensure_wear_leveling(ubi, 0);
1719         if (err)
1720                 goto out_free;
1721
1722         return 0;
1723
1724 out_free:
1725         shutdown_work(ubi);
1726         tree_destroy(ubi, &ubi->used);
1727         tree_destroy(ubi, &ubi->free);
1728         tree_destroy(ubi, &ubi->scrub);
1729         kfree(ubi->lookuptbl);
1730         return err;
1731 }
1732
1733 /**
1734  * protection_queue_destroy - destroy the protection queue.
1735  * @ubi: UBI device description object
1736  */
1737 static void protection_queue_destroy(struct ubi_device *ubi)
1738 {
1739         int i;
1740         struct ubi_wl_entry *e, *tmp;
1741
1742         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1743                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1744                         list_del(&e->u.list);
1745                         wl_entry_destroy(ubi, e);
1746                 }
1747         }
1748 }
1749
1750 /**
1751  * ubi_wl_close - close the wear-leveling sub-system.
1752  * @ubi: UBI device description object
1753  */
1754 void ubi_wl_close(struct ubi_device *ubi)
1755 {
1756         dbg_wl("close the WL sub-system");
1757         ubi_fastmap_close(ubi);
1758         shutdown_work(ubi);
1759         protection_queue_destroy(ubi);
1760         tree_destroy(ubi, &ubi->used);
1761         tree_destroy(ubi, &ubi->erroneous);
1762         tree_destroy(ubi, &ubi->free);
1763         tree_destroy(ubi, &ubi->scrub);
1764         kfree(ubi->lookuptbl);
1765 }
1766
1767 /**
1768  * self_check_ec - make sure that the erase counter of a PEB is correct.
1769  * @ubi: UBI device description object
1770  * @pnum: the physical eraseblock number to check
1771  * @ec: the erase counter to check
1772  *
1773  * This function returns zero if the erase counter of physical eraseblock @pnum
1774  * is equivalent to @ec, and a negative error code if not or if an error
1775  * occurred.
1776  */
1777 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1778 {
1779         int err;
1780         long long read_ec;
1781         struct ubi_ec_hdr *ec_hdr;
1782
1783         if (!ubi_dbg_chk_gen(ubi))
1784                 return 0;
1785
1786         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1787         if (!ec_hdr)
1788                 return -ENOMEM;
1789
1790         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1791         if (err && err != UBI_IO_BITFLIPS) {
1792                 /* The header does not have to exist */
1793                 err = 0;
1794                 goto out_free;
1795         }
1796
1797         read_ec = be64_to_cpu(ec_hdr->ec);
1798         if (ec != read_ec && read_ec - ec > 1) {
1799                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1800                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1801                 dump_stack();
1802                 err = 1;
1803         } else
1804                 err = 0;
1805
1806 out_free:
1807         kfree(ec_hdr);
1808         return err;
1809 }
1810
1811 /**
1812  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1813  * @ubi: UBI device description object
1814  * @e: the wear-leveling entry to check
1815  * @root: the root of the tree
1816  *
1817  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1818  * is not.
1819  */
1820 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1821                                  struct ubi_wl_entry *e, struct rb_root *root)
1822 {
1823         if (!ubi_dbg_chk_gen(ubi))
1824                 return 0;
1825
1826         if (in_wl_tree(e, root))
1827                 return 0;
1828
1829         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1830                 e->pnum, e->ec, root);
1831         dump_stack();
1832         return -EINVAL;
1833 }
1834
1835 /**
1836  * self_check_in_pq - check if wear-leveling entry is in the protection
1837  *                        queue.
1838  * @ubi: UBI device description object
1839  * @e: the wear-leveling entry to check
1840  *
1841  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1842  */
1843 static int self_check_in_pq(const struct ubi_device *ubi,
1844                             struct ubi_wl_entry *e)
1845 {
1846         struct ubi_wl_entry *p;
1847         int i;
1848
1849         if (!ubi_dbg_chk_gen(ubi))
1850                 return 0;
1851
1852         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1853                 list_for_each_entry(p, &ubi->pq[i], u.list)
1854                         if (p == e)
1855                                 return 0;
1856
1857         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1858                 e->pnum, e->ec);
1859         dump_stack();
1860         return -EINVAL;
1861 }
1862 #ifndef CONFIG_MTD_UBI_FASTMAP
1863 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1864 {
1865         struct ubi_wl_entry *e;
1866
1867         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1868         self_check_in_wl_tree(ubi, e, &ubi->free);
1869         ubi->free_count--;
1870         ubi_assert(ubi->free_count >= 0);
1871         rb_erase(&e->u.rb, &ubi->free);
1872
1873         return e;
1874 }
1875
1876 /**
1877  * produce_free_peb - produce a free physical eraseblock.
1878  * @ubi: UBI device description object
1879  *
1880  * This function tries to make a free PEB by means of synchronous execution of
1881  * pending works. This may be needed if, for example the background thread is
1882  * disabled. Returns zero in case of success and a negative error code in case
1883  * of failure.
1884  */
1885 static int produce_free_peb(struct ubi_device *ubi)
1886 {
1887         int err;
1888
1889         while (!ubi->free.rb_node && ubi->works_count) {
1890                 spin_unlock(&ubi->wl_lock);
1891
1892                 dbg_wl("do one work synchronously");
1893                 err = do_work(ubi);
1894
1895                 spin_lock(&ubi->wl_lock);
1896                 if (err)
1897                         return err;
1898         }
1899
1900         return 0;
1901 }
1902
1903 /**
1904  * ubi_wl_get_peb - get a physical eraseblock.
1905  * @ubi: UBI device description object
1906  *
1907  * This function returns a physical eraseblock in case of success and a
1908  * negative error code in case of failure.
1909  * Returns with ubi->fm_eba_sem held in read mode!
1910  */
1911 int ubi_wl_get_peb(struct ubi_device *ubi)
1912 {
1913         int err;
1914         struct ubi_wl_entry *e;
1915
1916 retry:
1917         down_read(&ubi->fm_eba_sem);
1918         spin_lock(&ubi->wl_lock);
1919         if (!ubi->free.rb_node) {
1920                 if (ubi->works_count == 0) {
1921                         ubi_err(ubi, "no free eraseblocks");
1922                         ubi_assert(list_empty(&ubi->works));
1923                         spin_unlock(&ubi->wl_lock);
1924                         return -ENOSPC;
1925                 }
1926
1927                 err = produce_free_peb(ubi);
1928                 if (err < 0) {
1929                         spin_unlock(&ubi->wl_lock);
1930                         return err;
1931                 }
1932                 spin_unlock(&ubi->wl_lock);
1933                 up_read(&ubi->fm_eba_sem);
1934                 goto retry;
1935
1936         }
1937         e = wl_get_wle(ubi);
1938         prot_queue_add(ubi, e);
1939         spin_unlock(&ubi->wl_lock);
1940
1941         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1942                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1943         if (err) {
1944                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1945                 return err;
1946         }
1947
1948         return e->pnum;
1949 }
1950 #else
1951 #include "fastmap-wl.c"
1952 #endif