GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41                              8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
44 u8 can_dlc2len(u8 can_dlc)
45 {
46         return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
51                              9, 9, 9, 9,                        /* 9 - 12 */
52                              10, 10, 10, 10,                    /* 13 - 16 */
53                              11, 11, 11, 11,                    /* 17 - 20 */
54                              12, 12, 12, 12,                    /* 21 - 24 */
55                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
56                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
57                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
58                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
59                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
62 u8 can_len2dlc(u8 len)
63 {
64         if (unlikely(len > 64))
65                 return 0xF;
66
67         return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73
74 /*
75  * Bit-timing calculation derived from:
76  *
77  * Code based on LinCAN sources and H8S2638 project
78  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79  * Copyright 2005      Stanislav Marek
80  * email: pisa@cmp.felk.cvut.cz
81  *
82  * Calculates proper bit-timing parameters for a specified bit-rate
83  * and sample-point, which can then be used to set the bit-timing
84  * registers of the CAN controller. You can find more information
85  * in the header file linux/can/netlink.h.
86  */
87 static int can_update_spt(const struct can_bittiming_const *btc,
88                           int sampl_pt, int tseg, int *tseg1, int *tseg2)
89 {
90         *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91         if (*tseg2 < btc->tseg2_min)
92                 *tseg2 = btc->tseg2_min;
93         if (*tseg2 > btc->tseg2_max)
94                 *tseg2 = btc->tseg2_max;
95         *tseg1 = tseg - *tseg2;
96         if (*tseg1 > btc->tseg1_max) {
97                 *tseg1 = btc->tseg1_max;
98                 *tseg2 = tseg - *tseg1;
99         }
100         return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
101 }
102
103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
104                               const struct can_bittiming_const *btc)
105 {
106         struct can_priv *priv = netdev_priv(dev);
107         long best_error = 1000000000, error = 0;
108         int best_tseg = 0, best_brp = 0, brp = 0;
109         int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110         int spt_error = 1000, spt = 0, sampl_pt;
111         long rate;
112         u64 v64;
113
114         /* Use CiA recommended sample points */
115         if (bt->sample_point) {
116                 sampl_pt = bt->sample_point;
117         } else {
118                 if (bt->bitrate > 800000)
119                         sampl_pt = 750;
120                 else if (bt->bitrate > 500000)
121                         sampl_pt = 800;
122                 else
123                         sampl_pt = 875;
124         }
125
126         /* tseg even = round down, odd = round up */
127         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
128              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
129                 tsegall = 1 + tseg / 2;
130                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
131                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
132                 /* chose brp step which is possible in system */
133                 brp = (brp / btc->brp_inc) * btc->brp_inc;
134                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
135                         continue;
136                 rate = priv->clock.freq / (brp * tsegall);
137                 error = bt->bitrate - rate;
138                 /* tseg brp biterror */
139                 if (error < 0)
140                         error = -error;
141                 if (error > best_error)
142                         continue;
143                 best_error = error;
144                 if (error == 0) {
145                         spt = can_update_spt(btc, sampl_pt, tseg / 2,
146                                              &tseg1, &tseg2);
147                         error = sampl_pt - spt;
148                         if (error < 0)
149                                 error = -error;
150                         if (error > spt_error)
151                                 continue;
152                         spt_error = error;
153                 }
154                 best_tseg = tseg / 2;
155                 best_brp = brp;
156                 if (error == 0)
157                         break;
158         }
159
160         if (best_error) {
161                 /* Error in one-tenth of a percent */
162                 error = (best_error * 1000) / bt->bitrate;
163                 if (error > CAN_CALC_MAX_ERROR) {
164                         netdev_err(dev,
165                                    "bitrate error %ld.%ld%% too high\n",
166                                    error / 10, error % 10);
167                         return -EDOM;
168                 } else {
169                         netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170                                     error / 10, error % 10);
171                 }
172         }
173
174         /* real sample point */
175         bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176                                           &tseg1, &tseg2);
177
178         v64 = (u64)best_brp * 1000000000UL;
179         do_div(v64, priv->clock.freq);
180         bt->tq = (u32)v64;
181         bt->prop_seg = tseg1 / 2;
182         bt->phase_seg1 = tseg1 - bt->prop_seg;
183         bt->phase_seg2 = tseg2;
184
185         /* check for sjw user settings */
186         if (!bt->sjw || !btc->sjw_max)
187                 bt->sjw = 1;
188         else {
189                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190                 if (bt->sjw > btc->sjw_max)
191                         bt->sjw = btc->sjw_max;
192                 /* bt->sjw must not be higher than tseg2 */
193                 if (tseg2 < bt->sjw)
194                         bt->sjw = tseg2;
195         }
196
197         bt->brp = best_brp;
198         /* real bit-rate */
199         bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201         return 0;
202 }
203 #else /* !CONFIG_CAN_CALC_BITTIMING */
204 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205                               const struct can_bittiming_const *btc)
206 {
207         netdev_err(dev, "bit-timing calculation not available\n");
208         return -EINVAL;
209 }
210 #endif /* CONFIG_CAN_CALC_BITTIMING */
211
212 /*
213  * Checks the validity of the specified bit-timing parameters prop_seg,
214  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215  * prescaler value brp. You can find more information in the header
216  * file linux/can/netlink.h.
217  */
218 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219                                const struct can_bittiming_const *btc)
220 {
221         struct can_priv *priv = netdev_priv(dev);
222         int tseg1, alltseg;
223         u64 brp64;
224
225         tseg1 = bt->prop_seg + bt->phase_seg1;
226         if (!bt->sjw)
227                 bt->sjw = 1;
228         if (bt->sjw > btc->sjw_max ||
229             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231                 return -ERANGE;
232
233         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234         if (btc->brp_inc > 1)
235                 do_div(brp64, btc->brp_inc);
236         brp64 += 500000000UL - 1;
237         do_div(brp64, 1000000000UL); /* the practicable BRP */
238         if (btc->brp_inc > 1)
239                 brp64 *= btc->brp_inc;
240         bt->brp = (u32)brp64;
241
242         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243                 return -EINVAL;
244
245         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249         return 0;
250 }
251
252 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253                              const struct can_bittiming_const *btc)
254 {
255         int err;
256
257         /* Check if the CAN device has bit-timing parameters */
258         if (!btc)
259                 return -EOPNOTSUPP;
260
261         /*
262          * Depending on the given can_bittiming parameter structure the CAN
263          * timing parameters are calculated based on the provided bitrate OR
264          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265          * provided directly which are then checked and fixed up.
266          */
267         if (!bt->tq && bt->bitrate)
268                 err = can_calc_bittiming(dev, bt, btc);
269         else if (bt->tq && !bt->bitrate)
270                 err = can_fixup_bittiming(dev, bt, btc);
271         else
272                 err = -EINVAL;
273
274         return err;
275 }
276
277 static void can_update_state_error_stats(struct net_device *dev,
278                                          enum can_state new_state)
279 {
280         struct can_priv *priv = netdev_priv(dev);
281
282         if (new_state <= priv->state)
283                 return;
284
285         switch (new_state) {
286         case CAN_STATE_ERROR_WARNING:
287                 priv->can_stats.error_warning++;
288                 break;
289         case CAN_STATE_ERROR_PASSIVE:
290                 priv->can_stats.error_passive++;
291                 break;
292         case CAN_STATE_BUS_OFF:
293                 priv->can_stats.bus_off++;
294                 break;
295         default:
296                 break;
297         }
298 }
299
300 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
301 {
302         switch (state) {
303         case CAN_STATE_ERROR_ACTIVE:
304                 return CAN_ERR_CRTL_ACTIVE;
305         case CAN_STATE_ERROR_WARNING:
306                 return CAN_ERR_CRTL_TX_WARNING;
307         case CAN_STATE_ERROR_PASSIVE:
308                 return CAN_ERR_CRTL_TX_PASSIVE;
309         default:
310                 return 0;
311         }
312 }
313
314 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
315 {
316         switch (state) {
317         case CAN_STATE_ERROR_ACTIVE:
318                 return CAN_ERR_CRTL_ACTIVE;
319         case CAN_STATE_ERROR_WARNING:
320                 return CAN_ERR_CRTL_RX_WARNING;
321         case CAN_STATE_ERROR_PASSIVE:
322                 return CAN_ERR_CRTL_RX_PASSIVE;
323         default:
324                 return 0;
325         }
326 }
327
328 void can_change_state(struct net_device *dev, struct can_frame *cf,
329                       enum can_state tx_state, enum can_state rx_state)
330 {
331         struct can_priv *priv = netdev_priv(dev);
332         enum can_state new_state = max(tx_state, rx_state);
333
334         if (unlikely(new_state == priv->state)) {
335                 netdev_warn(dev, "%s: oops, state did not change", __func__);
336                 return;
337         }
338
339         netdev_dbg(dev, "New error state: %d\n", new_state);
340
341         can_update_state_error_stats(dev, new_state);
342         priv->state = new_state;
343
344         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
345                 cf->can_id |= CAN_ERR_BUSOFF;
346                 return;
347         }
348
349         cf->can_id |= CAN_ERR_CRTL;
350         cf->data[1] |= tx_state >= rx_state ?
351                        can_tx_state_to_frame(dev, tx_state) : 0;
352         cf->data[1] |= tx_state <= rx_state ?
353                        can_rx_state_to_frame(dev, rx_state) : 0;
354 }
355 EXPORT_SYMBOL_GPL(can_change_state);
356
357 /*
358  * Local echo of CAN messages
359  *
360  * CAN network devices *should* support a local echo functionality
361  * (see Documentation/networking/can.txt). To test the handling of CAN
362  * interfaces that do not support the local echo both driver types are
363  * implemented. In the case that the driver does not support the echo
364  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
365  * to perform the echo as a fallback solution.
366  */
367 static void can_flush_echo_skb(struct net_device *dev)
368 {
369         struct can_priv *priv = netdev_priv(dev);
370         struct net_device_stats *stats = &dev->stats;
371         int i;
372
373         for (i = 0; i < priv->echo_skb_max; i++) {
374                 if (priv->echo_skb[i]) {
375                         kfree_skb(priv->echo_skb[i]);
376                         priv->echo_skb[i] = NULL;
377                         stats->tx_dropped++;
378                         stats->tx_aborted_errors++;
379                 }
380         }
381 }
382
383 /*
384  * Put the skb on the stack to be looped backed locally lateron
385  *
386  * The function is typically called in the start_xmit function
387  * of the device driver. The driver must protect access to
388  * priv->echo_skb, if necessary.
389  */
390 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
391                       unsigned int idx)
392 {
393         struct can_priv *priv = netdev_priv(dev);
394
395         BUG_ON(idx >= priv->echo_skb_max);
396
397         /* check flag whether this packet has to be looped back */
398         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
399             (skb->protocol != htons(ETH_P_CAN) &&
400              skb->protocol != htons(ETH_P_CANFD))) {
401                 kfree_skb(skb);
402                 return;
403         }
404
405         if (!priv->echo_skb[idx]) {
406
407                 skb = can_create_echo_skb(skb);
408                 if (!skb)
409                         return;
410
411                 /* make settings for echo to reduce code in irq context */
412                 skb->pkt_type = PACKET_BROADCAST;
413                 skb->ip_summed = CHECKSUM_UNNECESSARY;
414                 skb->dev = dev;
415
416                 /* save this skb for tx interrupt echo handling */
417                 priv->echo_skb[idx] = skb;
418         } else {
419                 /* locking problem with netif_stop_queue() ?? */
420                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
421                 kfree_skb(skb);
422         }
423 }
424 EXPORT_SYMBOL_GPL(can_put_echo_skb);
425
426 struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
427 {
428         struct can_priv *priv = netdev_priv(dev);
429
430         if (idx >= priv->echo_skb_max) {
431                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
432                            __func__, idx, priv->echo_skb_max);
433                 return NULL;
434         }
435
436         if (priv->echo_skb[idx]) {
437                 /* Using "struct canfd_frame::len" for the frame
438                  * length is supported on both CAN and CANFD frames.
439                  */
440                 struct sk_buff *skb = priv->echo_skb[idx];
441                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
442
443                 /* get the real payload length for netdev statistics */
444                 if (cf->can_id & CAN_RTR_FLAG)
445                         *len_ptr = 0;
446                 else
447                         *len_ptr = cf->len;
448
449                 priv->echo_skb[idx] = NULL;
450
451                 return skb;
452         }
453
454         return NULL;
455 }
456
457 /*
458  * Get the skb from the stack and loop it back locally
459  *
460  * The function is typically called when the TX done interrupt
461  * is handled in the device driver. The driver must protect
462  * access to priv->echo_skb, if necessary.
463  */
464 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
465 {
466         struct sk_buff *skb;
467         u8 len;
468
469         skb = __can_get_echo_skb(dev, idx, &len);
470         if (!skb)
471                 return 0;
472
473         skb_get(skb);
474         if (netif_rx(skb) == NET_RX_SUCCESS)
475                 dev_consume_skb_any(skb);
476         else
477                 dev_kfree_skb_any(skb);
478
479         return len;
480 }
481 EXPORT_SYMBOL_GPL(can_get_echo_skb);
482
483 /*
484   * Remove the skb from the stack and free it.
485   *
486   * The function is typically called when TX failed.
487   */
488 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
489 {
490         struct can_priv *priv = netdev_priv(dev);
491
492         BUG_ON(idx >= priv->echo_skb_max);
493
494         if (priv->echo_skb[idx]) {
495                 dev_kfree_skb_any(priv->echo_skb[idx]);
496                 priv->echo_skb[idx] = NULL;
497         }
498 }
499 EXPORT_SYMBOL_GPL(can_free_echo_skb);
500
501 /*
502  * CAN device restart for bus-off recovery
503  */
504 static void can_restart(struct net_device *dev)
505 {
506         struct can_priv *priv = netdev_priv(dev);
507         struct net_device_stats *stats = &dev->stats;
508         struct sk_buff *skb;
509         struct can_frame *cf;
510         int err;
511
512         BUG_ON(netif_carrier_ok(dev));
513
514         /*
515          * No synchronization needed because the device is bus-off and
516          * no messages can come in or go out.
517          */
518         can_flush_echo_skb(dev);
519
520         /* send restart message upstream */
521         skb = alloc_can_err_skb(dev, &cf);
522         if (skb == NULL) {
523                 err = -ENOMEM;
524                 goto restart;
525         }
526         cf->can_id |= CAN_ERR_RESTARTED;
527
528         stats->rx_packets++;
529         stats->rx_bytes += cf->can_dlc;
530
531         netif_rx_ni(skb);
532
533 restart:
534         netdev_dbg(dev, "restarted\n");
535         priv->can_stats.restarts++;
536
537         /* Now restart the device */
538         err = priv->do_set_mode(dev, CAN_MODE_START);
539
540         netif_carrier_on(dev);
541         if (err)
542                 netdev_err(dev, "Error %d during restart", err);
543 }
544
545 static void can_restart_work(struct work_struct *work)
546 {
547         struct delayed_work *dwork = to_delayed_work(work);
548         struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
549
550         can_restart(priv->dev);
551 }
552
553 int can_restart_now(struct net_device *dev)
554 {
555         struct can_priv *priv = netdev_priv(dev);
556
557         /*
558          * A manual restart is only permitted if automatic restart is
559          * disabled and the device is in the bus-off state
560          */
561         if (priv->restart_ms)
562                 return -EINVAL;
563         if (priv->state != CAN_STATE_BUS_OFF)
564                 return -EBUSY;
565
566         cancel_delayed_work_sync(&priv->restart_work);
567         can_restart(dev);
568
569         return 0;
570 }
571
572 /*
573  * CAN bus-off
574  *
575  * This functions should be called when the device goes bus-off to
576  * tell the netif layer that no more packets can be sent or received.
577  * If enabled, a timer is started to trigger bus-off recovery.
578  */
579 void can_bus_off(struct net_device *dev)
580 {
581         struct can_priv *priv = netdev_priv(dev);
582
583         netdev_dbg(dev, "bus-off\n");
584
585         netif_carrier_off(dev);
586
587         if (priv->restart_ms)
588                 schedule_delayed_work(&priv->restart_work,
589                                       msecs_to_jiffies(priv->restart_ms));
590 }
591 EXPORT_SYMBOL_GPL(can_bus_off);
592
593 static void can_setup(struct net_device *dev)
594 {
595         dev->type = ARPHRD_CAN;
596         dev->mtu = CAN_MTU;
597         dev->hard_header_len = 0;
598         dev->addr_len = 0;
599         dev->tx_queue_len = 10;
600
601         /* New-style flags. */
602         dev->flags = IFF_NOARP;
603         dev->features = NETIF_F_HW_CSUM;
604 }
605
606 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
607 {
608         struct sk_buff *skb;
609
610         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
611                                sizeof(struct can_frame));
612         if (unlikely(!skb))
613                 return NULL;
614
615         skb->protocol = htons(ETH_P_CAN);
616         skb->pkt_type = PACKET_BROADCAST;
617         skb->ip_summed = CHECKSUM_UNNECESSARY;
618
619         skb_reset_mac_header(skb);
620         skb_reset_network_header(skb);
621         skb_reset_transport_header(skb);
622
623         can_skb_reserve(skb);
624         can_skb_prv(skb)->ifindex = dev->ifindex;
625         can_skb_prv(skb)->skbcnt = 0;
626
627         *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
628         memset(*cf, 0, sizeof(struct can_frame));
629
630         return skb;
631 }
632 EXPORT_SYMBOL_GPL(alloc_can_skb);
633
634 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
635                                 struct canfd_frame **cfd)
636 {
637         struct sk_buff *skb;
638
639         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
640                                sizeof(struct canfd_frame));
641         if (unlikely(!skb))
642                 return NULL;
643
644         skb->protocol = htons(ETH_P_CANFD);
645         skb->pkt_type = PACKET_BROADCAST;
646         skb->ip_summed = CHECKSUM_UNNECESSARY;
647
648         skb_reset_mac_header(skb);
649         skb_reset_network_header(skb);
650         skb_reset_transport_header(skb);
651
652         can_skb_reserve(skb);
653         can_skb_prv(skb)->ifindex = dev->ifindex;
654         can_skb_prv(skb)->skbcnt = 0;
655
656         *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
657         memset(*cfd, 0, sizeof(struct canfd_frame));
658
659         return skb;
660 }
661 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
662
663 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
664 {
665         struct sk_buff *skb;
666
667         skb = alloc_can_skb(dev, cf);
668         if (unlikely(!skb))
669                 return NULL;
670
671         (*cf)->can_id = CAN_ERR_FLAG;
672         (*cf)->can_dlc = CAN_ERR_DLC;
673
674         return skb;
675 }
676 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
677
678 /*
679  * Allocate and setup space for the CAN network device
680  */
681 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
682 {
683         struct net_device *dev;
684         struct can_priv *priv;
685         int size;
686
687         if (echo_skb_max)
688                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
689                         echo_skb_max * sizeof(struct sk_buff *);
690         else
691                 size = sizeof_priv;
692
693         dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
694         if (!dev)
695                 return NULL;
696
697         priv = netdev_priv(dev);
698         priv->dev = dev;
699
700         if (echo_skb_max) {
701                 priv->echo_skb_max = echo_skb_max;
702                 priv->echo_skb = (void *)priv +
703                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
704         }
705
706         priv->state = CAN_STATE_STOPPED;
707
708         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
709
710         return dev;
711 }
712 EXPORT_SYMBOL_GPL(alloc_candev);
713
714 /*
715  * Free space of the CAN network device
716  */
717 void free_candev(struct net_device *dev)
718 {
719         free_netdev(dev);
720 }
721 EXPORT_SYMBOL_GPL(free_candev);
722
723 /*
724  * changing MTU and control mode for CAN/CANFD devices
725  */
726 int can_change_mtu(struct net_device *dev, int new_mtu)
727 {
728         struct can_priv *priv = netdev_priv(dev);
729
730         /* Do not allow changing the MTU while running */
731         if (dev->flags & IFF_UP)
732                 return -EBUSY;
733
734         /* allow change of MTU according to the CANFD ability of the device */
735         switch (new_mtu) {
736         case CAN_MTU:
737                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
738                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
739                         return -EINVAL;
740
741                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
742                 break;
743
744         case CANFD_MTU:
745                 /* check for potential CANFD ability */
746                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
747                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
748                         return -EINVAL;
749
750                 priv->ctrlmode |= CAN_CTRLMODE_FD;
751                 break;
752
753         default:
754                 return -EINVAL;
755         }
756
757         dev->mtu = new_mtu;
758         return 0;
759 }
760 EXPORT_SYMBOL_GPL(can_change_mtu);
761
762 /*
763  * Common open function when the device gets opened.
764  *
765  * This function should be called in the open function of the device
766  * driver.
767  */
768 int open_candev(struct net_device *dev)
769 {
770         struct can_priv *priv = netdev_priv(dev);
771
772         if (!priv->bittiming.bitrate) {
773                 netdev_err(dev, "bit-timing not yet defined\n");
774                 return -EINVAL;
775         }
776
777         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
778         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
779             (!priv->data_bittiming.bitrate ||
780              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
781                 netdev_err(dev, "incorrect/missing data bit-timing\n");
782                 return -EINVAL;
783         }
784
785         /* Switch carrier on if device was stopped while in bus-off state */
786         if (!netif_carrier_ok(dev))
787                 netif_carrier_on(dev);
788
789         return 0;
790 }
791 EXPORT_SYMBOL_GPL(open_candev);
792
793 /*
794  * Common close function for cleanup before the device gets closed.
795  *
796  * This function should be called in the close function of the device
797  * driver.
798  */
799 void close_candev(struct net_device *dev)
800 {
801         struct can_priv *priv = netdev_priv(dev);
802
803         cancel_delayed_work_sync(&priv->restart_work);
804         can_flush_echo_skb(dev);
805 }
806 EXPORT_SYMBOL_GPL(close_candev);
807
808 /*
809  * CAN netlink interface
810  */
811 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
812         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
813         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
814         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
815         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
816         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
817         [IFLA_CAN_BITTIMING_CONST]
818                                 = { .len = sizeof(struct can_bittiming_const) },
819         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
820         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
821         [IFLA_CAN_DATA_BITTIMING]
822                                 = { .len = sizeof(struct can_bittiming) },
823         [IFLA_CAN_DATA_BITTIMING_CONST]
824                                 = { .len = sizeof(struct can_bittiming_const) },
825 };
826
827 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
828 {
829         bool is_can_fd = false;
830
831         /* Make sure that valid CAN FD configurations always consist of
832          * - nominal/arbitration bittiming
833          * - data bittiming
834          * - control mode with CAN_CTRLMODE_FD set
835          */
836
837         if (!data)
838                 return 0;
839
840         if (data[IFLA_CAN_CTRLMODE]) {
841                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
842
843                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
844         }
845
846         if (is_can_fd) {
847                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
848                         return -EOPNOTSUPP;
849         }
850
851         if (data[IFLA_CAN_DATA_BITTIMING]) {
852                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
853                         return -EOPNOTSUPP;
854         }
855
856         return 0;
857 }
858
859 static int can_changelink(struct net_device *dev,
860                           struct nlattr *tb[], struct nlattr *data[])
861 {
862         struct can_priv *priv = netdev_priv(dev);
863         int err;
864
865         /* We need synchronization with dev->stop() */
866         ASSERT_RTNL();
867
868         if (data[IFLA_CAN_BITTIMING]) {
869                 struct can_bittiming bt;
870
871                 /* Do not allow changing bittiming while running */
872                 if (dev->flags & IFF_UP)
873                         return -EBUSY;
874                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
875                 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
876                 if (err)
877                         return err;
878                 memcpy(&priv->bittiming, &bt, sizeof(bt));
879
880                 if (priv->do_set_bittiming) {
881                         /* Finally, set the bit-timing registers */
882                         err = priv->do_set_bittiming(dev);
883                         if (err)
884                                 return err;
885                 }
886         }
887
888         if (data[IFLA_CAN_CTRLMODE]) {
889                 struct can_ctrlmode *cm;
890                 u32 ctrlstatic;
891                 u32 maskedflags;
892
893                 /* Do not allow changing controller mode while running */
894                 if (dev->flags & IFF_UP)
895                         return -EBUSY;
896                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
897                 ctrlstatic = priv->ctrlmode_static;
898                 maskedflags = cm->flags & cm->mask;
899
900                 /* check whether provided bits are allowed to be passed */
901                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
902                         return -EOPNOTSUPP;
903
904                 /* do not check for static fd-non-iso if 'fd' is disabled */
905                 if (!(maskedflags & CAN_CTRLMODE_FD))
906                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
907
908                 /* make sure static options are provided by configuration */
909                 if ((maskedflags & ctrlstatic) != ctrlstatic)
910                         return -EOPNOTSUPP;
911
912                 /* clear bits to be modified and copy the flag values */
913                 priv->ctrlmode &= ~cm->mask;
914                 priv->ctrlmode |= maskedflags;
915
916                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
917                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
918                         dev->mtu = CANFD_MTU;
919                 else
920                         dev->mtu = CAN_MTU;
921         }
922
923         if (data[IFLA_CAN_RESTART_MS]) {
924                 /* Do not allow changing restart delay while running */
925                 if (dev->flags & IFF_UP)
926                         return -EBUSY;
927                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
928         }
929
930         if (data[IFLA_CAN_RESTART]) {
931                 /* Do not allow a restart while not running */
932                 if (!(dev->flags & IFF_UP))
933                         return -EINVAL;
934                 err = can_restart_now(dev);
935                 if (err)
936                         return err;
937         }
938
939         if (data[IFLA_CAN_DATA_BITTIMING]) {
940                 struct can_bittiming dbt;
941
942                 /* Do not allow changing bittiming while running */
943                 if (dev->flags & IFF_UP)
944                         return -EBUSY;
945                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
946                        sizeof(dbt));
947                 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
948                 if (err)
949                         return err;
950                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
951
952                 if (priv->do_set_data_bittiming) {
953                         /* Finally, set the bit-timing registers */
954                         err = priv->do_set_data_bittiming(dev);
955                         if (err)
956                                 return err;
957                 }
958         }
959
960         return 0;
961 }
962
963 static size_t can_get_size(const struct net_device *dev)
964 {
965         struct can_priv *priv = netdev_priv(dev);
966         size_t size = 0;
967
968         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
969                 size += nla_total_size(sizeof(struct can_bittiming));
970         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
971                 size += nla_total_size(sizeof(struct can_bittiming_const));
972         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
973         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
974         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
975         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
976         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
977                 size += nla_total_size(sizeof(struct can_berr_counter));
978         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
979                 size += nla_total_size(sizeof(struct can_bittiming));
980         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
981                 size += nla_total_size(sizeof(struct can_bittiming_const));
982
983         return size;
984 }
985
986 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
987 {
988         struct can_priv *priv = netdev_priv(dev);
989         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
990         struct can_berr_counter bec = { };
991         enum can_state state = priv->state;
992
993         if (priv->do_get_state)
994                 priv->do_get_state(dev, &state);
995
996         if ((priv->bittiming.bitrate &&
997              nla_put(skb, IFLA_CAN_BITTIMING,
998                      sizeof(priv->bittiming), &priv->bittiming)) ||
999
1000             (priv->bittiming_const &&
1001              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1002                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1003
1004             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1005             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1006             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1007             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1008
1009             (priv->do_get_berr_counter &&
1010              !priv->do_get_berr_counter(dev, &bec) &&
1011              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1012
1013             (priv->data_bittiming.bitrate &&
1014              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1015                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1016
1017             (priv->data_bittiming_const &&
1018              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1019                      sizeof(*priv->data_bittiming_const),
1020                      priv->data_bittiming_const)))
1021                 return -EMSGSIZE;
1022
1023         return 0;
1024 }
1025
1026 static size_t can_get_xstats_size(const struct net_device *dev)
1027 {
1028         return sizeof(struct can_device_stats);
1029 }
1030
1031 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1032 {
1033         struct can_priv *priv = netdev_priv(dev);
1034
1035         if (nla_put(skb, IFLA_INFO_XSTATS,
1036                     sizeof(priv->can_stats), &priv->can_stats))
1037                 goto nla_put_failure;
1038         return 0;
1039
1040 nla_put_failure:
1041         return -EMSGSIZE;
1042 }
1043
1044 static int can_newlink(struct net *src_net, struct net_device *dev,
1045                        struct nlattr *tb[], struct nlattr *data[])
1046 {
1047         return -EOPNOTSUPP;
1048 }
1049
1050 static void can_dellink(struct net_device *dev, struct list_head *head)
1051 {
1052         return;
1053 }
1054
1055 static struct rtnl_link_ops can_link_ops __read_mostly = {
1056         .kind           = "can",
1057         .netns_refund   = true,
1058         .maxtype        = IFLA_CAN_MAX,
1059         .policy         = can_policy,
1060         .setup          = can_setup,
1061         .validate       = can_validate,
1062         .newlink        = can_newlink,
1063         .changelink     = can_changelink,
1064         .dellink        = can_dellink,
1065         .get_size       = can_get_size,
1066         .fill_info      = can_fill_info,
1067         .get_xstats_size = can_get_xstats_size,
1068         .fill_xstats    = can_fill_xstats,
1069 };
1070
1071 /*
1072  * Register the CAN network device
1073  */
1074 int register_candev(struct net_device *dev)
1075 {
1076         dev->rtnl_link_ops = &can_link_ops;
1077         netif_carrier_off(dev);
1078
1079         return register_netdev(dev);
1080 }
1081 EXPORT_SYMBOL_GPL(register_candev);
1082
1083 /*
1084  * Unregister the CAN network device
1085  */
1086 void unregister_candev(struct net_device *dev)
1087 {
1088         unregister_netdev(dev);
1089 }
1090 EXPORT_SYMBOL_GPL(unregister_candev);
1091
1092 /*
1093  * Test if a network device is a candev based device
1094  * and return the can_priv* if so.
1095  */
1096 struct can_priv *safe_candev_priv(struct net_device *dev)
1097 {
1098         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1099                 return NULL;
1100
1101         return netdev_priv(dev);
1102 }
1103 EXPORT_SYMBOL_GPL(safe_candev_priv);
1104
1105 static __init int can_dev_init(void)
1106 {
1107         int err;
1108
1109         can_led_notifier_init();
1110
1111         err = rtnl_link_register(&can_link_ops);
1112         if (!err)
1113                 printk(KERN_INFO MOD_DESC "\n");
1114
1115         return err;
1116 }
1117 module_init(can_dev_init);
1118
1119 static __exit void can_dev_exit(void)
1120 {
1121         rtnl_link_unregister(&can_link_ops);
1122
1123         can_led_notifier_exit();
1124 }
1125 module_exit(can_dev_exit);
1126
1127 MODULE_ALIAS_RTNL_LINK("can");