GNU Linux-libre 4.4.284-gnu1
[releases.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT         (5 * HZ)
60
61 static const char version[] =
62         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 92
73
74 enum board_idx {
75         BCM57302,
76         BCM57304,
77         BCM57404,
78         BCM57406,
79         BCM57304_VF,
80         BCM57404_VF,
81 };
82
83 /* indexed by enum above */
84 static const struct {
85         char *name;
86 } board_info[] = {
87         { "Broadcom BCM57302 NetXtreme-C Single-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
88         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
89         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
90         { "Broadcom BCM57406 NetXtreme-E Dual-port 10Gb Ethernet" },
91         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
92         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
93 };
94
95 static const struct pci_device_id bnxt_pci_tbl[] = {
96         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
97         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
98         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
99         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
100 #ifdef CONFIG_BNXT_SRIOV
101         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
102         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
103 #endif
104         { 0 }
105 };
106
107 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
108
109 static const u16 bnxt_vf_req_snif[] = {
110         HWRM_FUNC_CFG,
111         HWRM_PORT_PHY_QCFG,
112         HWRM_CFA_L2_FILTER_ALLOC,
113 };
114
115 static bool bnxt_vf_pciid(enum board_idx idx)
116 {
117         return (idx == BCM57304_VF || idx == BCM57404_VF);
118 }
119
120 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
121 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
122 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
123
124 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
125                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
126
127 #define BNXT_CP_DB(db, raw_cons)                                        \
128                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
129
130 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
131                 writel(DB_CP_IRQ_DIS_FLAGS, db)
132
133 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
134 {
135         /* Tell compiler to fetch tx indices from memory. */
136         barrier();
137
138         return bp->tx_ring_size -
139                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
140 }
141
142 static const u16 bnxt_lhint_arr[] = {
143         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
144         TX_BD_FLAGS_LHINT_512_TO_1023,
145         TX_BD_FLAGS_LHINT_1024_TO_2047,
146         TX_BD_FLAGS_LHINT_1024_TO_2047,
147         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
148         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
149         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
150         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
151         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
152         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
153         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 };
163
164 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
165 {
166         struct bnxt *bp = netdev_priv(dev);
167         struct tx_bd *txbd;
168         struct tx_bd_ext *txbd1;
169         struct netdev_queue *txq;
170         int i;
171         dma_addr_t mapping;
172         unsigned int length, pad = 0;
173         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
174         u16 prod, last_frag;
175         struct pci_dev *pdev = bp->pdev;
176         struct bnxt_napi *bnapi;
177         struct bnxt_tx_ring_info *txr;
178         struct bnxt_sw_tx_bd *tx_buf;
179
180         i = skb_get_queue_mapping(skb);
181         if (unlikely(i >= bp->tx_nr_rings)) {
182                 dev_kfree_skb_any(skb);
183                 return NETDEV_TX_OK;
184         }
185
186         bnapi = bp->bnapi[i];
187         txr = &bnapi->tx_ring;
188         txq = netdev_get_tx_queue(dev, i);
189         prod = txr->tx_prod;
190
191         free_size = bnxt_tx_avail(bp, txr);
192         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
193                 netif_tx_stop_queue(txq);
194                 return NETDEV_TX_BUSY;
195         }
196
197         length = skb->len;
198         len = skb_headlen(skb);
199         last_frag = skb_shinfo(skb)->nr_frags;
200
201         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
202
203         txbd->tx_bd_opaque = prod;
204
205         tx_buf = &txr->tx_buf_ring[prod];
206         tx_buf->skb = skb;
207         tx_buf->nr_frags = last_frag;
208
209         vlan_tag_flags = 0;
210         cfa_action = 0;
211         if (skb_vlan_tag_present(skb)) {
212                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
213                                  skb_vlan_tag_get(skb);
214                 /* Currently supports 8021Q, 8021AD vlan offloads
215                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
216                  */
217                 if (skb->vlan_proto == htons(ETH_P_8021Q))
218                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
219         }
220
221         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
222                 struct tx_push_bd *push = txr->tx_push;
223                 struct tx_bd *tx_push = &push->txbd1;
224                 struct tx_bd_ext *tx_push1 = &push->txbd2;
225                 void *pdata = tx_push1 + 1;
226                 int j;
227
228                 /* Set COAL_NOW to be ready quickly for the next push */
229                 tx_push->tx_bd_len_flags_type =
230                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
231                                         TX_BD_TYPE_LONG_TX_BD |
232                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
233                                         TX_BD_FLAGS_COAL_NOW |
234                                         TX_BD_FLAGS_PACKET_END |
235                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
236
237                 if (skb->ip_summed == CHECKSUM_PARTIAL)
238                         tx_push1->tx_bd_hsize_lflags =
239                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
240                 else
241                         tx_push1->tx_bd_hsize_lflags = 0;
242
243                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
244                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
245
246                 skb_copy_from_linear_data(skb, pdata, len);
247                 pdata += len;
248                 for (j = 0; j < last_frag; j++) {
249                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
250                         void *fptr;
251
252                         fptr = skb_frag_address_safe(frag);
253                         if (!fptr)
254                                 goto normal_tx;
255
256                         memcpy(pdata, fptr, skb_frag_size(frag));
257                         pdata += skb_frag_size(frag);
258                 }
259
260                 memcpy(txbd, tx_push, sizeof(*txbd));
261                 prod = NEXT_TX(prod);
262                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
263                 memcpy(txbd, tx_push1, sizeof(*txbd));
264                 prod = NEXT_TX(prod);
265                 push->doorbell =
266                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
267                 txr->tx_prod = prod;
268
269                 netdev_tx_sent_queue(txq, skb->len);
270
271                 __iowrite64_copy(txr->tx_doorbell, push,
272                                  (length + sizeof(*push) + 8) / 8);
273
274                 tx_buf->is_push = 1;
275
276                 goto tx_done;
277         }
278
279 normal_tx:
280         if (length < BNXT_MIN_PKT_SIZE) {
281                 pad = BNXT_MIN_PKT_SIZE - length;
282                 if (skb_pad(skb, pad)) {
283                         /* SKB already freed. */
284                         tx_buf->skb = NULL;
285                         return NETDEV_TX_OK;
286                 }
287                 length = BNXT_MIN_PKT_SIZE;
288         }
289
290         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
291
292         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
293                 dev_kfree_skb_any(skb);
294                 tx_buf->skb = NULL;
295                 return NETDEV_TX_OK;
296         }
297
298         dma_unmap_addr_set(tx_buf, mapping, mapping);
299         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
300                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
301
302         txbd->tx_bd_haddr = cpu_to_le64(mapping);
303
304         prod = NEXT_TX(prod);
305         txbd1 = (struct tx_bd_ext *)
306                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
307
308         txbd1->tx_bd_hsize_lflags = 0;
309         if (skb_is_gso(skb)) {
310                 u32 hdr_len;
311
312                 if (skb->encapsulation)
313                         hdr_len = skb_inner_network_offset(skb) +
314                                 skb_inner_network_header_len(skb) +
315                                 inner_tcp_hdrlen(skb);
316                 else
317                         hdr_len = skb_transport_offset(skb) +
318                                 tcp_hdrlen(skb);
319
320                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
321                                         TX_BD_FLAGS_T_IPID |
322                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
323                 length = skb_shinfo(skb)->gso_size;
324                 txbd1->tx_bd_mss = cpu_to_le32(length);
325                 length += hdr_len;
326         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
327                 txbd1->tx_bd_hsize_lflags =
328                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
329                 txbd1->tx_bd_mss = 0;
330         }
331
332         length >>= 9;
333         if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
334                 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
335                                      skb->len);
336                 i = 0;
337                 goto tx_dma_error;
338         }
339         flags |= bnxt_lhint_arr[length];
340         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
341
342         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
343         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
344         for (i = 0; i < last_frag; i++) {
345                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
346
347                 prod = NEXT_TX(prod);
348                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
349
350                 len = skb_frag_size(frag);
351                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
352                                            DMA_TO_DEVICE);
353
354                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
355                         goto tx_dma_error;
356
357                 tx_buf = &txr->tx_buf_ring[prod];
358                 dma_unmap_addr_set(tx_buf, mapping, mapping);
359
360                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
361
362                 flags = len << TX_BD_LEN_SHIFT;
363                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
364         }
365
366         flags &= ~TX_BD_LEN;
367         txbd->tx_bd_len_flags_type =
368                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
369                             TX_BD_FLAGS_PACKET_END);
370
371         netdev_tx_sent_queue(txq, skb->len);
372
373         /* Sync BD data before updating doorbell */
374         wmb();
375
376         prod = NEXT_TX(prod);
377         txr->tx_prod = prod;
378
379         writel(DB_KEY_TX | prod, txr->tx_doorbell);
380         writel(DB_KEY_TX | prod, txr->tx_doorbell);
381
382 tx_done:
383
384         mmiowb();
385
386         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
387                 netif_tx_stop_queue(txq);
388
389                 /* netif_tx_stop_queue() must be done before checking
390                  * tx index in bnxt_tx_avail() below, because in
391                  * bnxt_tx_int(), we update tx index before checking for
392                  * netif_tx_queue_stopped().
393                  */
394                 smp_mb();
395                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
396                         netif_tx_wake_queue(txq);
397         }
398         return NETDEV_TX_OK;
399
400 tx_dma_error:
401         last_frag = i;
402
403         /* start back at beginning and unmap skb */
404         prod = txr->tx_prod;
405         tx_buf = &txr->tx_buf_ring[prod];
406         tx_buf->skb = NULL;
407         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
408                          skb_headlen(skb), PCI_DMA_TODEVICE);
409         prod = NEXT_TX(prod);
410
411         /* unmap remaining mapped pages */
412         for (i = 0; i < last_frag; i++) {
413                 prod = NEXT_TX(prod);
414                 tx_buf = &txr->tx_buf_ring[prod];
415                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
416                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
417                                PCI_DMA_TODEVICE);
418         }
419
420         dev_kfree_skb_any(skb);
421         return NETDEV_TX_OK;
422 }
423
424 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
425 {
426         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
427         int index = bnapi->index;
428         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
429         u16 cons = txr->tx_cons;
430         struct pci_dev *pdev = bp->pdev;
431         int i;
432         unsigned int tx_bytes = 0;
433
434         for (i = 0; i < nr_pkts; i++) {
435                 struct bnxt_sw_tx_bd *tx_buf;
436                 struct sk_buff *skb;
437                 int j, last;
438
439                 tx_buf = &txr->tx_buf_ring[cons];
440                 cons = NEXT_TX(cons);
441                 skb = tx_buf->skb;
442                 tx_buf->skb = NULL;
443
444                 if (tx_buf->is_push) {
445                         tx_buf->is_push = 0;
446                         goto next_tx_int;
447                 }
448
449                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
450                                  skb_headlen(skb), PCI_DMA_TODEVICE);
451                 last = tx_buf->nr_frags;
452
453                 for (j = 0; j < last; j++) {
454                         cons = NEXT_TX(cons);
455                         tx_buf = &txr->tx_buf_ring[cons];
456                         dma_unmap_page(
457                                 &pdev->dev,
458                                 dma_unmap_addr(tx_buf, mapping),
459                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
460                                 PCI_DMA_TODEVICE);
461                 }
462
463 next_tx_int:
464                 cons = NEXT_TX(cons);
465
466                 tx_bytes += skb->len;
467                 dev_kfree_skb_any(skb);
468         }
469
470         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
471         txr->tx_cons = cons;
472
473         /* Need to make the tx_cons update visible to bnxt_start_xmit()
474          * before checking for netif_tx_queue_stopped().  Without the
475          * memory barrier, there is a small possibility that bnxt_start_xmit()
476          * will miss it and cause the queue to be stopped forever.
477          */
478         smp_mb();
479
480         if (unlikely(netif_tx_queue_stopped(txq)) &&
481             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
482                 __netif_tx_lock(txq, smp_processor_id());
483                 if (netif_tx_queue_stopped(txq) &&
484                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
485                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
486                         netif_tx_wake_queue(txq);
487                 __netif_tx_unlock(txq);
488         }
489 }
490
491 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
492                                        gfp_t gfp)
493 {
494         u8 *data;
495         struct pci_dev *pdev = bp->pdev;
496
497         data = kmalloc(bp->rx_buf_size, gfp);
498         if (!data)
499                 return NULL;
500
501         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
502                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
503
504         if (dma_mapping_error(&pdev->dev, *mapping)) {
505                 kfree(data);
506                 data = NULL;
507         }
508         return data;
509 }
510
511 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
512                                      struct bnxt_rx_ring_info *rxr,
513                                      u16 prod, gfp_t gfp)
514 {
515         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
516         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
517         u8 *data;
518         dma_addr_t mapping;
519
520         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
521         if (!data)
522                 return -ENOMEM;
523
524         rx_buf->data = data;
525         dma_unmap_addr_set(rx_buf, mapping, mapping);
526
527         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
528
529         return 0;
530 }
531
532 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
533                                u8 *data)
534 {
535         u16 prod = rxr->rx_prod;
536         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
537         struct rx_bd *cons_bd, *prod_bd;
538
539         prod_rx_buf = &rxr->rx_buf_ring[prod];
540         cons_rx_buf = &rxr->rx_buf_ring[cons];
541
542         prod_rx_buf->data = data;
543
544         dma_unmap_addr_set(prod_rx_buf, mapping,
545                            dma_unmap_addr(cons_rx_buf, mapping));
546
547         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
548         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
549
550         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
551 }
552
553 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
554 {
555         u16 next, max = rxr->rx_agg_bmap_size;
556
557         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
558         if (next >= max)
559                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
560         return next;
561 }
562
563 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
564                                      struct bnxt_rx_ring_info *rxr,
565                                      u16 prod, gfp_t gfp)
566 {
567         struct rx_bd *rxbd =
568                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
569         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
570         struct pci_dev *pdev = bp->pdev;
571         struct page *page;
572         dma_addr_t mapping;
573         u16 sw_prod = rxr->rx_sw_agg_prod;
574
575         page = alloc_page(gfp);
576         if (!page)
577                 return -ENOMEM;
578
579         mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
580                                PCI_DMA_FROMDEVICE);
581         if (dma_mapping_error(&pdev->dev, mapping)) {
582                 __free_page(page);
583                 return -EIO;
584         }
585
586         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
587                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
588
589         __set_bit(sw_prod, rxr->rx_agg_bmap);
590         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
591         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
592
593         rx_agg_buf->page = page;
594         rx_agg_buf->mapping = mapping;
595         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
596         rxbd->rx_bd_opaque = sw_prod;
597         return 0;
598 }
599
600 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
601                                    u32 agg_bufs)
602 {
603         struct bnxt *bp = bnapi->bp;
604         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
605         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
606         u16 prod = rxr->rx_agg_prod;
607         u16 sw_prod = rxr->rx_sw_agg_prod;
608         u32 i;
609
610         for (i = 0; i < agg_bufs; i++) {
611                 u16 cons;
612                 struct rx_agg_cmp *agg;
613                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
614                 struct rx_bd *prod_bd;
615                 struct page *page;
616
617                 agg = (struct rx_agg_cmp *)
618                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
619                 cons = agg->rx_agg_cmp_opaque;
620                 __clear_bit(cons, rxr->rx_agg_bmap);
621
622                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
623                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
624
625                 __set_bit(sw_prod, rxr->rx_agg_bmap);
626                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
627                 cons_rx_buf = &rxr->rx_agg_ring[cons];
628
629                 /* It is possible for sw_prod to be equal to cons, so
630                  * set cons_rx_buf->page to NULL first.
631                  */
632                 page = cons_rx_buf->page;
633                 cons_rx_buf->page = NULL;
634                 prod_rx_buf->page = page;
635
636                 prod_rx_buf->mapping = cons_rx_buf->mapping;
637
638                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
639
640                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
641                 prod_bd->rx_bd_opaque = sw_prod;
642
643                 prod = NEXT_RX_AGG(prod);
644                 sw_prod = NEXT_RX_AGG(sw_prod);
645                 cp_cons = NEXT_CMP(cp_cons);
646         }
647         rxr->rx_agg_prod = prod;
648         rxr->rx_sw_agg_prod = sw_prod;
649 }
650
651 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
652                                    struct bnxt_rx_ring_info *rxr, u16 cons,
653                                    u16 prod, u8 *data, dma_addr_t dma_addr,
654                                    unsigned int len)
655 {
656         int err;
657         struct sk_buff *skb;
658
659         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
660         if (unlikely(err)) {
661                 bnxt_reuse_rx_data(rxr, cons, data);
662                 return NULL;
663         }
664
665         skb = build_skb(data, 0);
666         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
667                          PCI_DMA_FROMDEVICE);
668         if (!skb) {
669                 kfree(data);
670                 return NULL;
671         }
672
673         skb_reserve(skb, BNXT_RX_OFFSET);
674         skb_put(skb, len);
675         return skb;
676 }
677
678 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
679                                      struct sk_buff *skb, u16 cp_cons,
680                                      u32 agg_bufs)
681 {
682         struct pci_dev *pdev = bp->pdev;
683         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
684         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
685         u16 prod = rxr->rx_agg_prod;
686         u32 i;
687
688         for (i = 0; i < agg_bufs; i++) {
689                 u16 cons, frag_len;
690                 struct rx_agg_cmp *agg;
691                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
692                 struct page *page;
693                 dma_addr_t mapping;
694
695                 agg = (struct rx_agg_cmp *)
696                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
697                 cons = agg->rx_agg_cmp_opaque;
698                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
699                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
700
701                 cons_rx_buf = &rxr->rx_agg_ring[cons];
702                 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
703                 __clear_bit(cons, rxr->rx_agg_bmap);
704
705                 /* It is possible for bnxt_alloc_rx_page() to allocate
706                  * a sw_prod index that equals the cons index, so we
707                  * need to clear the cons entry now.
708                  */
709                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
710                 page = cons_rx_buf->page;
711                 cons_rx_buf->page = NULL;
712
713                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
714                         struct skb_shared_info *shinfo;
715                         unsigned int nr_frags;
716
717                         shinfo = skb_shinfo(skb);
718                         nr_frags = --shinfo->nr_frags;
719                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
720
721                         dev_kfree_skb(skb);
722
723                         cons_rx_buf->page = page;
724
725                         /* Update prod since possibly some pages have been
726                          * allocated already.
727                          */
728                         rxr->rx_agg_prod = prod;
729                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
730                         return NULL;
731                 }
732
733                 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
734                                PCI_DMA_FROMDEVICE);
735
736                 skb->data_len += frag_len;
737                 skb->len += frag_len;
738                 skb->truesize += PAGE_SIZE;
739
740                 prod = NEXT_RX_AGG(prod);
741                 cp_cons = NEXT_CMP(cp_cons);
742         }
743         rxr->rx_agg_prod = prod;
744         return skb;
745 }
746
747 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
748                                u8 agg_bufs, u32 *raw_cons)
749 {
750         u16 last;
751         struct rx_agg_cmp *agg;
752
753         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
754         last = RING_CMP(*raw_cons);
755         agg = (struct rx_agg_cmp *)
756                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
757         return RX_AGG_CMP_VALID(agg, *raw_cons);
758 }
759
760 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
761                                             unsigned int len,
762                                             dma_addr_t mapping)
763 {
764         struct bnxt *bp = bnapi->bp;
765         struct pci_dev *pdev = bp->pdev;
766         struct sk_buff *skb;
767
768         skb = napi_alloc_skb(&bnapi->napi, len);
769         if (!skb)
770                 return NULL;
771
772         dma_sync_single_for_cpu(&pdev->dev, mapping,
773                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
774
775         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
776
777         dma_sync_single_for_device(&pdev->dev, mapping,
778                                    bp->rx_copy_thresh,
779                                    PCI_DMA_FROMDEVICE);
780
781         skb_put(skb, len);
782         return skb;
783 }
784
785 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
786                            struct rx_tpa_start_cmp *tpa_start,
787                            struct rx_tpa_start_cmp_ext *tpa_start1)
788 {
789         u8 agg_id = TPA_START_AGG_ID(tpa_start);
790         u16 cons, prod;
791         struct bnxt_tpa_info *tpa_info;
792         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
793         struct rx_bd *prod_bd;
794         dma_addr_t mapping;
795
796         cons = tpa_start->rx_tpa_start_cmp_opaque;
797         prod = rxr->rx_prod;
798         cons_rx_buf = &rxr->rx_buf_ring[cons];
799         prod_rx_buf = &rxr->rx_buf_ring[prod];
800         tpa_info = &rxr->rx_tpa[agg_id];
801
802         prod_rx_buf->data = tpa_info->data;
803
804         mapping = tpa_info->mapping;
805         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
806
807         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
808
809         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
810
811         tpa_info->data = cons_rx_buf->data;
812         cons_rx_buf->data = NULL;
813         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
814
815         tpa_info->len =
816                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
817                                 RX_TPA_START_CMP_LEN_SHIFT;
818         if (likely(TPA_START_HASH_VALID(tpa_start))) {
819                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
820
821                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
822                 tpa_info->gso_type = SKB_GSO_TCPV4;
823                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
824                 if (hash_type == 3)
825                         tpa_info->gso_type = SKB_GSO_TCPV6;
826                 tpa_info->rss_hash =
827                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
828         } else {
829                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
830                 tpa_info->gso_type = 0;
831                 if (netif_msg_rx_err(bp))
832                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
833         }
834         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
835         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
836
837         rxr->rx_prod = NEXT_RX(prod);
838         cons = NEXT_RX(cons);
839         cons_rx_buf = &rxr->rx_buf_ring[cons];
840
841         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
842         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
843         cons_rx_buf->data = NULL;
844 }
845
846 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
847                            u16 cp_cons, u32 agg_bufs)
848 {
849         if (agg_bufs)
850                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
851 }
852
853 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
854 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
855
856 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
857                                            struct rx_tpa_end_cmp *tpa_end,
858                                            struct rx_tpa_end_cmp_ext *tpa_end1,
859                                            struct sk_buff *skb)
860 {
861 #ifdef CONFIG_INET
862         struct tcphdr *th;
863         int payload_off, tcp_opt_len = 0;
864         int len, nw_off;
865
866         NAPI_GRO_CB(skb)->count = TPA_END_TPA_SEGS(tpa_end);
867         skb_shinfo(skb)->gso_size =
868                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
869         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
870         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
871                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
872                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
873         if (TPA_END_GRO_TS(tpa_end))
874                 tcp_opt_len = 12;
875
876         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
877                 struct iphdr *iph;
878
879                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
880                          ETH_HLEN;
881                 skb_set_network_header(skb, nw_off);
882                 iph = ip_hdr(skb);
883                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
884                 len = skb->len - skb_transport_offset(skb);
885                 th = tcp_hdr(skb);
886                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
887         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
888                 struct ipv6hdr *iph;
889
890                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
891                          ETH_HLEN;
892                 skb_set_network_header(skb, nw_off);
893                 iph = ipv6_hdr(skb);
894                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
895                 len = skb->len - skb_transport_offset(skb);
896                 th = tcp_hdr(skb);
897                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
898         } else {
899                 dev_kfree_skb_any(skb);
900                 return NULL;
901         }
902         tcp_gro_complete(skb);
903
904         if (nw_off) { /* tunnel */
905                 struct udphdr *uh = NULL;
906
907                 if (skb->protocol == htons(ETH_P_IP)) {
908                         struct iphdr *iph = (struct iphdr *)skb->data;
909
910                         if (iph->protocol == IPPROTO_UDP)
911                                 uh = (struct udphdr *)(iph + 1);
912                 } else {
913                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
914
915                         if (iph->nexthdr == IPPROTO_UDP)
916                                 uh = (struct udphdr *)(iph + 1);
917                 }
918                 if (uh) {
919                         if (uh->check)
920                                 skb_shinfo(skb)->gso_type |=
921                                         SKB_GSO_UDP_TUNNEL_CSUM;
922                         else
923                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
924                 }
925         }
926 #endif
927         return skb;
928 }
929
930 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
931                                            struct bnxt_napi *bnapi,
932                                            u32 *raw_cons,
933                                            struct rx_tpa_end_cmp *tpa_end,
934                                            struct rx_tpa_end_cmp_ext *tpa_end1,
935                                            bool *agg_event)
936 {
937         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
938         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
939         u8 agg_id = TPA_END_AGG_ID(tpa_end);
940         u8 *data, agg_bufs;
941         u16 cp_cons = RING_CMP(*raw_cons);
942         unsigned int len;
943         struct bnxt_tpa_info *tpa_info;
944         dma_addr_t mapping;
945         struct sk_buff *skb;
946
947         tpa_info = &rxr->rx_tpa[agg_id];
948         data = tpa_info->data;
949         prefetch(data);
950         len = tpa_info->len;
951         mapping = tpa_info->mapping;
952
953         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
954                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
955
956         if (agg_bufs) {
957                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
958                         return ERR_PTR(-EBUSY);
959
960                 *agg_event = true;
961                 cp_cons = NEXT_CMP(cp_cons);
962         }
963
964         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
965                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
966                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
967                             agg_bufs, (int)MAX_SKB_FRAGS);
968                 return NULL;
969         }
970
971         if (len <= bp->rx_copy_thresh) {
972                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
973                 if (!skb) {
974                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
975                         return NULL;
976                 }
977         } else {
978                 u8 *new_data;
979                 dma_addr_t new_mapping;
980
981                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
982                 if (!new_data) {
983                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
984                         return NULL;
985                 }
986
987                 tpa_info->data = new_data;
988                 tpa_info->mapping = new_mapping;
989
990                 skb = build_skb(data, 0);
991                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
992                                  PCI_DMA_FROMDEVICE);
993
994                 if (!skb) {
995                         kfree(data);
996                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
997                         return NULL;
998                 }
999                 skb_reserve(skb, BNXT_RX_OFFSET);
1000                 skb_put(skb, len);
1001         }
1002
1003         if (agg_bufs) {
1004                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1005                 if (!skb) {
1006                         /* Page reuse already handled by bnxt_rx_pages(). */
1007                         return NULL;
1008                 }
1009         }
1010         skb->protocol = eth_type_trans(skb, bp->dev);
1011
1012         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1013                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1014
1015         if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1016                 netdev_features_t features = skb->dev->features;
1017                 u16 vlan_proto = tpa_info->metadata >>
1018                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1019
1020                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1021                      vlan_proto == ETH_P_8021Q) ||
1022                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1023                      vlan_proto == ETH_P_8021AD)) {
1024                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1025                                                tpa_info->metadata &
1026                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1027                 }
1028         }
1029
1030         skb_checksum_none_assert(skb);
1031         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1032                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1033                 skb->csum_level =
1034                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1035         }
1036
1037         if (TPA_END_GRO(tpa_end))
1038                 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1039
1040         return skb;
1041 }
1042
1043 /* returns the following:
1044  * 1       - 1 packet successfully received
1045  * 0       - successful TPA_START, packet not completed yet
1046  * -EBUSY  - completion ring does not have all the agg buffers yet
1047  * -ENOMEM - packet aborted due to out of memory
1048  * -EIO    - packet aborted due to hw error indicated in BD
1049  */
1050 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1051                        bool *agg_event)
1052 {
1053         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1054         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1055         struct net_device *dev = bp->dev;
1056         struct rx_cmp *rxcmp;
1057         struct rx_cmp_ext *rxcmp1;
1058         u32 tmp_raw_cons = *raw_cons;
1059         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1060         struct bnxt_sw_rx_bd *rx_buf;
1061         unsigned int len;
1062         u8 *data, agg_bufs, cmp_type;
1063         dma_addr_t dma_addr;
1064         struct sk_buff *skb;
1065         int rc = 0;
1066
1067         rxcmp = (struct rx_cmp *)
1068                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1069
1070         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1071         cp_cons = RING_CMP(tmp_raw_cons);
1072         rxcmp1 = (struct rx_cmp_ext *)
1073                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1074
1075         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1076                 return -EBUSY;
1077
1078         cmp_type = RX_CMP_TYPE(rxcmp);
1079
1080         prod = rxr->rx_prod;
1081
1082         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1083                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1084                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1085
1086                 goto next_rx_no_prod;
1087
1088         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1089                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1090                                    (struct rx_tpa_end_cmp *)rxcmp,
1091                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1092                                    agg_event);
1093
1094                 if (unlikely(IS_ERR(skb)))
1095                         return -EBUSY;
1096
1097                 rc = -ENOMEM;
1098                 if (likely(skb)) {
1099                         skb_record_rx_queue(skb, bnapi->index);
1100                         skb_mark_napi_id(skb, &bnapi->napi);
1101                         if (bnxt_busy_polling(bnapi))
1102                                 netif_receive_skb(skb);
1103                         else
1104                                 napi_gro_receive(&bnapi->napi, skb);
1105                         rc = 1;
1106                 }
1107                 goto next_rx_no_prod;
1108         }
1109
1110         cons = rxcmp->rx_cmp_opaque;
1111         rx_buf = &rxr->rx_buf_ring[cons];
1112         data = rx_buf->data;
1113         prefetch(data);
1114
1115         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1116                                 RX_CMP_AGG_BUFS_SHIFT;
1117
1118         if (agg_bufs) {
1119                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1120                         return -EBUSY;
1121
1122                 cp_cons = NEXT_CMP(cp_cons);
1123                 *agg_event = true;
1124         }
1125
1126         rx_buf->data = NULL;
1127         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1128                 bnxt_reuse_rx_data(rxr, cons, data);
1129                 if (agg_bufs)
1130                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1131
1132                 rc = -EIO;
1133                 goto next_rx;
1134         }
1135
1136         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1137         dma_addr = dma_unmap_addr(rx_buf, mapping);
1138
1139         if (len <= bp->rx_copy_thresh) {
1140                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1141                 bnxt_reuse_rx_data(rxr, cons, data);
1142                 if (!skb) {
1143                         if (agg_bufs)
1144                                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1145                         rc = -ENOMEM;
1146                         goto next_rx;
1147                 }
1148         } else {
1149                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1150                 if (!skb) {
1151                         rc = -ENOMEM;
1152                         goto next_rx;
1153                 }
1154         }
1155
1156         if (agg_bufs) {
1157                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1158                 if (!skb) {
1159                         rc = -ENOMEM;
1160                         goto next_rx;
1161                 }
1162         }
1163
1164         if (RX_CMP_HASH_VALID(rxcmp)) {
1165                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1166                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1167
1168                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1169                 if (hash_type != 1 && hash_type != 3)
1170                         type = PKT_HASH_TYPE_L3;
1171                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1172         }
1173
1174         skb->protocol = eth_type_trans(skb, dev);
1175
1176         if (rxcmp1->rx_cmp_flags2 &
1177             cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1178                 netdev_features_t features = skb->dev->features;
1179                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1180                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1181
1182                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1183                      vlan_proto == ETH_P_8021Q) ||
1184                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1185                      vlan_proto == ETH_P_8021AD))
1186                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1187                                                meta_data &
1188                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1189         }
1190
1191         skb_checksum_none_assert(skb);
1192         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1193                 if (dev->features & NETIF_F_RXCSUM) {
1194                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1195                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1196                 }
1197         } else {
1198                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS)
1199                         cpr->rx_l4_csum_errors++;
1200         }
1201
1202         skb_record_rx_queue(skb, bnapi->index);
1203         skb_mark_napi_id(skb, &bnapi->napi);
1204         if (bnxt_busy_polling(bnapi))
1205                 netif_receive_skb(skb);
1206         else
1207                 napi_gro_receive(&bnapi->napi, skb);
1208         rc = 1;
1209
1210 next_rx:
1211         rxr->rx_prod = NEXT_RX(prod);
1212
1213 next_rx_no_prod:
1214         *raw_cons = tmp_raw_cons;
1215
1216         return rc;
1217 }
1218
1219 static int bnxt_async_event_process(struct bnxt *bp,
1220                                     struct hwrm_async_event_cmpl *cmpl)
1221 {
1222         u16 event_id = le16_to_cpu(cmpl->event_id);
1223
1224         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1225         switch (event_id) {
1226         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1227                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1228                 schedule_work(&bp->sp_task);
1229                 break;
1230         default:
1231                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1232                            event_id);
1233                 break;
1234         }
1235         return 0;
1236 }
1237
1238 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1239 {
1240         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1241         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1242         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1243                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1244
1245         switch (cmpl_type) {
1246         case CMPL_BASE_TYPE_HWRM_DONE:
1247                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1248                 if (seq_id == bp->hwrm_intr_seq_id)
1249                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1250                 else
1251                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1252                 break;
1253
1254         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1255                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1256
1257                 if ((vf_id < bp->pf.first_vf_id) ||
1258                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1259                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1260                                    vf_id);
1261                         return -EINVAL;
1262                 }
1263
1264                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1265                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1266                 schedule_work(&bp->sp_task);
1267                 break;
1268
1269         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1270                 bnxt_async_event_process(bp,
1271                                          (struct hwrm_async_event_cmpl *)txcmp);
1272
1273         default:
1274                 break;
1275         }
1276
1277         return 0;
1278 }
1279
1280 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1281 {
1282         struct bnxt_napi *bnapi = dev_instance;
1283         struct bnxt *bp = bnapi->bp;
1284         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1285         u32 cons = RING_CMP(cpr->cp_raw_cons);
1286
1287         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1288         napi_schedule(&bnapi->napi);
1289         return IRQ_HANDLED;
1290 }
1291
1292 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1293 {
1294         u32 raw_cons = cpr->cp_raw_cons;
1295         u16 cons = RING_CMP(raw_cons);
1296         struct tx_cmp *txcmp;
1297
1298         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1299
1300         return TX_CMP_VALID(txcmp, raw_cons);
1301 }
1302
1303 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1304 {
1305         struct bnxt_napi *bnapi = dev_instance;
1306         struct bnxt *bp = bnapi->bp;
1307         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1308         u32 cons = RING_CMP(cpr->cp_raw_cons);
1309         u32 int_status;
1310
1311         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1312
1313         if (!bnxt_has_work(bp, cpr)) {
1314                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1315                 /* return if erroneous interrupt */
1316                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1317                         return IRQ_NONE;
1318         }
1319
1320         /* disable ring IRQ */
1321         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1322
1323         /* Return here if interrupt is shared and is disabled. */
1324         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1325                 return IRQ_HANDLED;
1326
1327         napi_schedule(&bnapi->napi);
1328         return IRQ_HANDLED;
1329 }
1330
1331 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1332 {
1333         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1334         u32 raw_cons = cpr->cp_raw_cons;
1335         u32 cons;
1336         int tx_pkts = 0;
1337         int rx_pkts = 0;
1338         bool rx_event = false;
1339         bool agg_event = false;
1340         struct tx_cmp *txcmp;
1341
1342         while (1) {
1343                 int rc;
1344
1345                 cons = RING_CMP(raw_cons);
1346                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1347
1348                 if (!TX_CMP_VALID(txcmp, raw_cons))
1349                         break;
1350
1351                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1352                         tx_pkts++;
1353                         /* return full budget so NAPI will complete. */
1354                         if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1355                                 rx_pkts = budget;
1356                                 raw_cons = NEXT_RAW_CMP(raw_cons);
1357                                 break;
1358                         }
1359                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1360                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1361                         if (likely(rc >= 0))
1362                                 rx_pkts += rc;
1363                         else if (rc == -EBUSY)  /* partial completion */
1364                                 break;
1365                         rx_event = true;
1366                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1367                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1368                                     (TX_CMP_TYPE(txcmp) ==
1369                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1370                                     (TX_CMP_TYPE(txcmp) ==
1371                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1372                         bnxt_hwrm_handler(bp, txcmp);
1373                 }
1374                 raw_cons = NEXT_RAW_CMP(raw_cons);
1375
1376                 if (rx_pkts && rx_pkts == budget)
1377                         break;
1378         }
1379
1380         cpr->cp_raw_cons = raw_cons;
1381         /* ACK completion ring before freeing tx ring and producing new
1382          * buffers in rx/agg rings to prevent overflowing the completion
1383          * ring.
1384          */
1385         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1386
1387         if (tx_pkts)
1388                 bnxt_tx_int(bp, bnapi, tx_pkts);
1389
1390         if (rx_event) {
1391                 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1392
1393                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1394                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1395                 if (agg_event) {
1396                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1397                                rxr->rx_agg_doorbell);
1398                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1399                                rxr->rx_agg_doorbell);
1400                 }
1401         }
1402         return rx_pkts;
1403 }
1404
1405 static int bnxt_poll(struct napi_struct *napi, int budget)
1406 {
1407         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1408         struct bnxt *bp = bnapi->bp;
1409         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1410         int work_done = 0;
1411
1412         if (!bnxt_lock_napi(bnapi))
1413                 return budget;
1414
1415         while (1) {
1416                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1417
1418                 if (work_done >= budget) {
1419                         if (!budget)
1420                                 BNXT_CP_DB_REARM(cpr->cp_doorbell,
1421                                                  cpr->cp_raw_cons);
1422                         break;
1423                 }
1424
1425                 if (!bnxt_has_work(bp, cpr)) {
1426                         napi_complete(napi);
1427                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1428                         break;
1429                 }
1430         }
1431         mmiowb();
1432         bnxt_unlock_napi(bnapi);
1433         return work_done;
1434 }
1435
1436 #ifdef CONFIG_NET_RX_BUSY_POLL
1437 static int bnxt_busy_poll(struct napi_struct *napi)
1438 {
1439         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1440         struct bnxt *bp = bnapi->bp;
1441         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1442         int rx_work, budget = 4;
1443
1444         if (atomic_read(&bp->intr_sem) != 0)
1445                 return LL_FLUSH_FAILED;
1446
1447         if (!bnxt_lock_poll(bnapi))
1448                 return LL_FLUSH_BUSY;
1449
1450         rx_work = bnxt_poll_work(bp, bnapi, budget);
1451
1452         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1453
1454         bnxt_unlock_poll(bnapi);
1455         return rx_work;
1456 }
1457 #endif
1458
1459 static void bnxt_free_tx_skbs(struct bnxt *bp)
1460 {
1461         int i, max_idx;
1462         struct pci_dev *pdev = bp->pdev;
1463
1464         if (!bp->bnapi)
1465                 return;
1466
1467         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1468         for (i = 0; i < bp->tx_nr_rings; i++) {
1469                 struct bnxt_napi *bnapi = bp->bnapi[i];
1470                 struct bnxt_tx_ring_info *txr;
1471                 int j;
1472
1473                 if (!bnapi)
1474                         continue;
1475
1476                 txr = &bnapi->tx_ring;
1477                 for (j = 0; j < max_idx;) {
1478                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1479                         struct sk_buff *skb = tx_buf->skb;
1480                         int k, last;
1481
1482                         if (!skb) {
1483                                 j++;
1484                                 continue;
1485                         }
1486
1487                         tx_buf->skb = NULL;
1488
1489                         if (tx_buf->is_push) {
1490                                 dev_kfree_skb(skb);
1491                                 j += 2;
1492                                 continue;
1493                         }
1494
1495                         dma_unmap_single(&pdev->dev,
1496                                          dma_unmap_addr(tx_buf, mapping),
1497                                          skb_headlen(skb),
1498                                          PCI_DMA_TODEVICE);
1499
1500                         last = tx_buf->nr_frags;
1501                         j += 2;
1502                         for (k = 0; k < last; k++, j = NEXT_TX(j)) {
1503                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1504
1505                                 tx_buf = &txr->tx_buf_ring[j];
1506                                 dma_unmap_page(
1507                                         &pdev->dev,
1508                                         dma_unmap_addr(tx_buf, mapping),
1509                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1510                         }
1511                         dev_kfree_skb(skb);
1512                 }
1513                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1514         }
1515 }
1516
1517 static void bnxt_free_rx_skbs(struct bnxt *bp)
1518 {
1519         int i, max_idx, max_agg_idx;
1520         struct pci_dev *pdev = bp->pdev;
1521
1522         if (!bp->bnapi)
1523                 return;
1524
1525         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1526         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1527         for (i = 0; i < bp->rx_nr_rings; i++) {
1528                 struct bnxt_napi *bnapi = bp->bnapi[i];
1529                 struct bnxt_rx_ring_info *rxr;
1530                 int j;
1531
1532                 if (!bnapi)
1533                         continue;
1534
1535                 rxr = &bnapi->rx_ring;
1536
1537                 if (rxr->rx_tpa) {
1538                         for (j = 0; j < MAX_TPA; j++) {
1539                                 struct bnxt_tpa_info *tpa_info =
1540                                                         &rxr->rx_tpa[j];
1541                                 u8 *data = tpa_info->data;
1542
1543                                 if (!data)
1544                                         continue;
1545
1546                                 dma_unmap_single(
1547                                         &pdev->dev,
1548                                         dma_unmap_addr(tpa_info, mapping),
1549                                         bp->rx_buf_use_size,
1550                                         PCI_DMA_FROMDEVICE);
1551
1552                                 tpa_info->data = NULL;
1553
1554                                 kfree(data);
1555                         }
1556                 }
1557
1558                 for (j = 0; j < max_idx; j++) {
1559                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1560                         u8 *data = rx_buf->data;
1561
1562                         if (!data)
1563                                 continue;
1564
1565                         dma_unmap_single(&pdev->dev,
1566                                          dma_unmap_addr(rx_buf, mapping),
1567                                          bp->rx_buf_use_size,
1568                                          PCI_DMA_FROMDEVICE);
1569
1570                         rx_buf->data = NULL;
1571
1572                         kfree(data);
1573                 }
1574
1575                 for (j = 0; j < max_agg_idx; j++) {
1576                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1577                                 &rxr->rx_agg_ring[j];
1578                         struct page *page = rx_agg_buf->page;
1579
1580                         if (!page)
1581                                 continue;
1582
1583                         dma_unmap_page(&pdev->dev,
1584                                        dma_unmap_addr(rx_agg_buf, mapping),
1585                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1586
1587                         rx_agg_buf->page = NULL;
1588                         __clear_bit(j, rxr->rx_agg_bmap);
1589
1590                         __free_page(page);
1591                 }
1592         }
1593 }
1594
1595 static void bnxt_free_skbs(struct bnxt *bp)
1596 {
1597         bnxt_free_tx_skbs(bp);
1598         bnxt_free_rx_skbs(bp);
1599 }
1600
1601 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1602 {
1603         struct pci_dev *pdev = bp->pdev;
1604         int i;
1605
1606         for (i = 0; i < ring->nr_pages; i++) {
1607                 if (!ring->pg_arr[i])
1608                         continue;
1609
1610                 dma_free_coherent(&pdev->dev, ring->page_size,
1611                                   ring->pg_arr[i], ring->dma_arr[i]);
1612
1613                 ring->pg_arr[i] = NULL;
1614         }
1615         if (ring->pg_tbl) {
1616                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1617                                   ring->pg_tbl, ring->pg_tbl_map);
1618                 ring->pg_tbl = NULL;
1619         }
1620         if (ring->vmem_size && *ring->vmem) {
1621                 vfree(*ring->vmem);
1622                 *ring->vmem = NULL;
1623         }
1624 }
1625
1626 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1627 {
1628         int i;
1629         struct pci_dev *pdev = bp->pdev;
1630
1631         if (ring->nr_pages > 1) {
1632                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1633                                                   ring->nr_pages * 8,
1634                                                   &ring->pg_tbl_map,
1635                                                   GFP_KERNEL);
1636                 if (!ring->pg_tbl)
1637                         return -ENOMEM;
1638         }
1639
1640         for (i = 0; i < ring->nr_pages; i++) {
1641                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1642                                                      ring->page_size,
1643                                                      &ring->dma_arr[i],
1644                                                      GFP_KERNEL);
1645                 if (!ring->pg_arr[i])
1646                         return -ENOMEM;
1647
1648                 if (ring->nr_pages > 1)
1649                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1650         }
1651
1652         if (ring->vmem_size) {
1653                 *ring->vmem = vzalloc(ring->vmem_size);
1654                 if (!(*ring->vmem))
1655                         return -ENOMEM;
1656         }
1657         return 0;
1658 }
1659
1660 static void bnxt_free_rx_rings(struct bnxt *bp)
1661 {
1662         int i;
1663
1664         if (!bp->bnapi)
1665                 return;
1666
1667         for (i = 0; i < bp->rx_nr_rings; i++) {
1668                 struct bnxt_napi *bnapi = bp->bnapi[i];
1669                 struct bnxt_rx_ring_info *rxr;
1670                 struct bnxt_ring_struct *ring;
1671
1672                 if (!bnapi)
1673                         continue;
1674
1675                 rxr = &bnapi->rx_ring;
1676
1677                 kfree(rxr->rx_tpa);
1678                 rxr->rx_tpa = NULL;
1679
1680                 kfree(rxr->rx_agg_bmap);
1681                 rxr->rx_agg_bmap = NULL;
1682
1683                 ring = &rxr->rx_ring_struct;
1684                 bnxt_free_ring(bp, ring);
1685
1686                 ring = &rxr->rx_agg_ring_struct;
1687                 bnxt_free_ring(bp, ring);
1688         }
1689 }
1690
1691 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1692 {
1693         int i, rc, agg_rings = 0, tpa_rings = 0;
1694
1695         if (bp->flags & BNXT_FLAG_AGG_RINGS)
1696                 agg_rings = 1;
1697
1698         if (bp->flags & BNXT_FLAG_TPA)
1699                 tpa_rings = 1;
1700
1701         for (i = 0; i < bp->rx_nr_rings; i++) {
1702                 struct bnxt_napi *bnapi = bp->bnapi[i];
1703                 struct bnxt_rx_ring_info *rxr;
1704                 struct bnxt_ring_struct *ring;
1705
1706                 if (!bnapi)
1707                         continue;
1708
1709                 rxr = &bnapi->rx_ring;
1710                 ring = &rxr->rx_ring_struct;
1711
1712                 rc = bnxt_alloc_ring(bp, ring);
1713                 if (rc)
1714                         return rc;
1715
1716                 if (agg_rings) {
1717                         u16 mem_size;
1718
1719                         ring = &rxr->rx_agg_ring_struct;
1720                         rc = bnxt_alloc_ring(bp, ring);
1721                         if (rc)
1722                                 return rc;
1723
1724                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1725                         mem_size = rxr->rx_agg_bmap_size / 8;
1726                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1727                         if (!rxr->rx_agg_bmap)
1728                                 return -ENOMEM;
1729
1730                         if (tpa_rings) {
1731                                 rxr->rx_tpa = kcalloc(MAX_TPA,
1732                                                 sizeof(struct bnxt_tpa_info),
1733                                                 GFP_KERNEL);
1734                                 if (!rxr->rx_tpa)
1735                                         return -ENOMEM;
1736                         }
1737                 }
1738         }
1739         return 0;
1740 }
1741
1742 static void bnxt_free_tx_rings(struct bnxt *bp)
1743 {
1744         int i;
1745         struct pci_dev *pdev = bp->pdev;
1746
1747         if (!bp->bnapi)
1748                 return;
1749
1750         for (i = 0; i < bp->tx_nr_rings; i++) {
1751                 struct bnxt_napi *bnapi = bp->bnapi[i];
1752                 struct bnxt_tx_ring_info *txr;
1753                 struct bnxt_ring_struct *ring;
1754
1755                 if (!bnapi)
1756                         continue;
1757
1758                 txr = &bnapi->tx_ring;
1759
1760                 if (txr->tx_push) {
1761                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
1762                                           txr->tx_push, txr->tx_push_mapping);
1763                         txr->tx_push = NULL;
1764                 }
1765
1766                 ring = &txr->tx_ring_struct;
1767
1768                 bnxt_free_ring(bp, ring);
1769         }
1770 }
1771
1772 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1773 {
1774         int i, j, rc;
1775         struct pci_dev *pdev = bp->pdev;
1776
1777         bp->tx_push_size = 0;
1778         if (bp->tx_push_thresh) {
1779                 int push_size;
1780
1781                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1782                                         bp->tx_push_thresh);
1783
1784                 if (push_size > 128) {
1785                         push_size = 0;
1786                         bp->tx_push_thresh = 0;
1787                 }
1788
1789                 bp->tx_push_size = push_size;
1790         }
1791
1792         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1793                 struct bnxt_napi *bnapi = bp->bnapi[i];
1794                 struct bnxt_tx_ring_info *txr;
1795                 struct bnxt_ring_struct *ring;
1796
1797                 if (!bnapi)
1798                         continue;
1799
1800                 txr = &bnapi->tx_ring;
1801                 ring = &txr->tx_ring_struct;
1802
1803                 rc = bnxt_alloc_ring(bp, ring);
1804                 if (rc)
1805                         return rc;
1806
1807                 if (bp->tx_push_size) {
1808                         struct tx_bd *txbd;
1809                         dma_addr_t mapping;
1810
1811                         /* One pre-allocated DMA buffer to backup
1812                          * TX push operation
1813                          */
1814                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
1815                                                 bp->tx_push_size,
1816                                                 &txr->tx_push_mapping,
1817                                                 GFP_KERNEL);
1818
1819                         if (!txr->tx_push)
1820                                 return -ENOMEM;
1821
1822                         txbd = &txr->tx_push->txbd1;
1823
1824                         mapping = txr->tx_push_mapping +
1825                                 sizeof(struct tx_push_bd);
1826                         txbd->tx_bd_haddr = cpu_to_le64(mapping);
1827
1828                         memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1829                 }
1830                 ring->queue_id = bp->q_info[j].queue_id;
1831                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1832                         j++;
1833         }
1834         return 0;
1835 }
1836
1837 static void bnxt_free_cp_rings(struct bnxt *bp)
1838 {
1839         int i;
1840
1841         if (!bp->bnapi)
1842                 return;
1843
1844         for (i = 0; i < bp->cp_nr_rings; i++) {
1845                 struct bnxt_napi *bnapi = bp->bnapi[i];
1846                 struct bnxt_cp_ring_info *cpr;
1847                 struct bnxt_ring_struct *ring;
1848
1849                 if (!bnapi)
1850                         continue;
1851
1852                 cpr = &bnapi->cp_ring;
1853                 ring = &cpr->cp_ring_struct;
1854
1855                 bnxt_free_ring(bp, ring);
1856         }
1857 }
1858
1859 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1860 {
1861         int i, rc;
1862
1863         for (i = 0; i < bp->cp_nr_rings; i++) {
1864                 struct bnxt_napi *bnapi = bp->bnapi[i];
1865                 struct bnxt_cp_ring_info *cpr;
1866                 struct bnxt_ring_struct *ring;
1867
1868                 if (!bnapi)
1869                         continue;
1870
1871                 cpr = &bnapi->cp_ring;
1872                 ring = &cpr->cp_ring_struct;
1873
1874                 rc = bnxt_alloc_ring(bp, ring);
1875                 if (rc)
1876                         return rc;
1877         }
1878         return 0;
1879 }
1880
1881 static void bnxt_init_ring_struct(struct bnxt *bp)
1882 {
1883         int i;
1884
1885         for (i = 0; i < bp->cp_nr_rings; i++) {
1886                 struct bnxt_napi *bnapi = bp->bnapi[i];
1887                 struct bnxt_cp_ring_info *cpr;
1888                 struct bnxt_rx_ring_info *rxr;
1889                 struct bnxt_tx_ring_info *txr;
1890                 struct bnxt_ring_struct *ring;
1891
1892                 if (!bnapi)
1893                         continue;
1894
1895                 cpr = &bnapi->cp_ring;
1896                 ring = &cpr->cp_ring_struct;
1897                 ring->nr_pages = bp->cp_nr_pages;
1898                 ring->page_size = HW_CMPD_RING_SIZE;
1899                 ring->pg_arr = (void **)cpr->cp_desc_ring;
1900                 ring->dma_arr = cpr->cp_desc_mapping;
1901                 ring->vmem_size = 0;
1902
1903                 rxr = &bnapi->rx_ring;
1904                 ring = &rxr->rx_ring_struct;
1905                 ring->nr_pages = bp->rx_nr_pages;
1906                 ring->page_size = HW_RXBD_RING_SIZE;
1907                 ring->pg_arr = (void **)rxr->rx_desc_ring;
1908                 ring->dma_arr = rxr->rx_desc_mapping;
1909                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1910                 ring->vmem = (void **)&rxr->rx_buf_ring;
1911
1912                 ring = &rxr->rx_agg_ring_struct;
1913                 ring->nr_pages = bp->rx_agg_nr_pages;
1914                 ring->page_size = HW_RXBD_RING_SIZE;
1915                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1916                 ring->dma_arr = rxr->rx_agg_desc_mapping;
1917                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1918                 ring->vmem = (void **)&rxr->rx_agg_ring;
1919
1920                 txr = &bnapi->tx_ring;
1921                 ring = &txr->tx_ring_struct;
1922                 ring->nr_pages = bp->tx_nr_pages;
1923                 ring->page_size = HW_RXBD_RING_SIZE;
1924                 ring->pg_arr = (void **)txr->tx_desc_ring;
1925                 ring->dma_arr = txr->tx_desc_mapping;
1926                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1927                 ring->vmem = (void **)&txr->tx_buf_ring;
1928         }
1929 }
1930
1931 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1932 {
1933         int i;
1934         u32 prod;
1935         struct rx_bd **rx_buf_ring;
1936
1937         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1938         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1939                 int j;
1940                 struct rx_bd *rxbd;
1941
1942                 rxbd = rx_buf_ring[i];
1943                 if (!rxbd)
1944                         continue;
1945
1946                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1947                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1948                         rxbd->rx_bd_opaque = prod;
1949                 }
1950         }
1951 }
1952
1953 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1954 {
1955         struct net_device *dev = bp->dev;
1956         struct bnxt_napi *bnapi = bp->bnapi[ring_nr];
1957         struct bnxt_rx_ring_info *rxr;
1958         struct bnxt_ring_struct *ring;
1959         u32 prod, type;
1960         int i;
1961
1962         if (!bnapi)
1963                 return -EINVAL;
1964
1965         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1966                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1967
1968         if (NET_IP_ALIGN == 2)
1969                 type |= RX_BD_FLAGS_SOP;
1970
1971         rxr = &bnapi->rx_ring;
1972         ring = &rxr->rx_ring_struct;
1973         bnxt_init_rxbd_pages(ring, type);
1974
1975         prod = rxr->rx_prod;
1976         for (i = 0; i < bp->rx_ring_size; i++) {
1977                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1978                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1979                                     ring_nr, i, bp->rx_ring_size);
1980                         break;
1981                 }
1982                 prod = NEXT_RX(prod);
1983         }
1984         rxr->rx_prod = prod;
1985         ring->fw_ring_id = INVALID_HW_RING_ID;
1986
1987         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1988                 return 0;
1989
1990         ring = &rxr->rx_agg_ring_struct;
1991
1992         type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1993                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1994
1995         bnxt_init_rxbd_pages(ring, type);
1996
1997         prod = rxr->rx_agg_prod;
1998         for (i = 0; i < bp->rx_agg_ring_size; i++) {
1999                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2000                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2001                                     ring_nr, i, bp->rx_ring_size);
2002                         break;
2003                 }
2004                 prod = NEXT_RX_AGG(prod);
2005         }
2006         rxr->rx_agg_prod = prod;
2007         ring->fw_ring_id = INVALID_HW_RING_ID;
2008
2009         if (bp->flags & BNXT_FLAG_TPA) {
2010                 if (rxr->rx_tpa) {
2011                         u8 *data;
2012                         dma_addr_t mapping;
2013
2014                         for (i = 0; i < MAX_TPA; i++) {
2015                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2016                                                             GFP_KERNEL);
2017                                 if (!data)
2018                                         return -ENOMEM;
2019
2020                                 rxr->rx_tpa[i].data = data;
2021                                 rxr->rx_tpa[i].mapping = mapping;
2022                         }
2023                 } else {
2024                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2025                         return -ENOMEM;
2026                 }
2027         }
2028
2029         return 0;
2030 }
2031
2032 static void bnxt_init_cp_rings(struct bnxt *bp)
2033 {
2034         int i;
2035
2036         for (i = 0; i < bp->cp_nr_rings; i++) {
2037                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2038                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2039
2040                 ring->fw_ring_id = INVALID_HW_RING_ID;
2041         }
2042 }
2043
2044 static int bnxt_init_rx_rings(struct bnxt *bp)
2045 {
2046         int i, rc = 0;
2047
2048         for (i = 0; i < bp->rx_nr_rings; i++) {
2049                 rc = bnxt_init_one_rx_ring(bp, i);
2050                 if (rc)
2051                         break;
2052         }
2053
2054         return rc;
2055 }
2056
2057 static int bnxt_init_tx_rings(struct bnxt *bp)
2058 {
2059         u16 i;
2060
2061         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2062                                    MAX_SKB_FRAGS + 1);
2063
2064         for (i = 0; i < bp->tx_nr_rings; i++) {
2065                 struct bnxt_napi *bnapi = bp->bnapi[i];
2066                 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
2067                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2068
2069                 ring->fw_ring_id = INVALID_HW_RING_ID;
2070         }
2071
2072         return 0;
2073 }
2074
2075 static void bnxt_free_ring_grps(struct bnxt *bp)
2076 {
2077         kfree(bp->grp_info);
2078         bp->grp_info = NULL;
2079 }
2080
2081 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2082 {
2083         int i;
2084
2085         if (irq_re_init) {
2086                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2087                                        sizeof(struct bnxt_ring_grp_info),
2088                                        GFP_KERNEL);
2089                 if (!bp->grp_info)
2090                         return -ENOMEM;
2091         }
2092         for (i = 0; i < bp->cp_nr_rings; i++) {
2093                 if (irq_re_init)
2094                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2095                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2096                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2097                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2098                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2099         }
2100         return 0;
2101 }
2102
2103 static void bnxt_free_vnics(struct bnxt *bp)
2104 {
2105         kfree(bp->vnic_info);
2106         bp->vnic_info = NULL;
2107         bp->nr_vnics = 0;
2108 }
2109
2110 static int bnxt_alloc_vnics(struct bnxt *bp)
2111 {
2112         int num_vnics = 1;
2113
2114 #ifdef CONFIG_RFS_ACCEL
2115         if (bp->flags & BNXT_FLAG_RFS)
2116                 num_vnics += bp->rx_nr_rings;
2117 #endif
2118
2119         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2120                                 GFP_KERNEL);
2121         if (!bp->vnic_info)
2122                 return -ENOMEM;
2123
2124         bp->nr_vnics = num_vnics;
2125         return 0;
2126 }
2127
2128 static void bnxt_init_vnics(struct bnxt *bp)
2129 {
2130         int i;
2131
2132         for (i = 0; i < bp->nr_vnics; i++) {
2133                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2134
2135                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2136                 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2137                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2138
2139                 if (bp->vnic_info[i].rss_hash_key) {
2140                         if (i == 0)
2141                                 prandom_bytes(vnic->rss_hash_key,
2142                                               HW_HASH_KEY_SIZE);
2143                         else
2144                                 memcpy(vnic->rss_hash_key,
2145                                        bp->vnic_info[0].rss_hash_key,
2146                                        HW_HASH_KEY_SIZE);
2147                 }
2148         }
2149 }
2150
2151 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2152 {
2153         int pages;
2154
2155         pages = ring_size / desc_per_pg;
2156
2157         if (!pages)
2158                 return 1;
2159
2160         pages++;
2161
2162         while (pages & (pages - 1))
2163                 pages++;
2164
2165         return pages;
2166 }
2167
2168 static void bnxt_set_tpa_flags(struct bnxt *bp)
2169 {
2170         bp->flags &= ~BNXT_FLAG_TPA;
2171         if (bp->dev->features & NETIF_F_LRO)
2172                 bp->flags |= BNXT_FLAG_LRO;
2173         if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2174                 bp->flags |= BNXT_FLAG_GRO;
2175 }
2176
2177 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2178  * be set on entry.
2179  */
2180 void bnxt_set_ring_params(struct bnxt *bp)
2181 {
2182         u32 ring_size, rx_size, rx_space;
2183         u32 agg_factor = 0, agg_ring_size = 0;
2184
2185         /* 8 for CRC and VLAN */
2186         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2187
2188         rx_space = rx_size + NET_SKB_PAD +
2189                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2190
2191         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2192         ring_size = bp->rx_ring_size;
2193         bp->rx_agg_ring_size = 0;
2194         bp->rx_agg_nr_pages = 0;
2195
2196         if (bp->flags & BNXT_FLAG_TPA)
2197                 agg_factor = 4;
2198
2199         bp->flags &= ~BNXT_FLAG_JUMBO;
2200         if (rx_space > PAGE_SIZE) {
2201                 u32 jumbo_factor;
2202
2203                 bp->flags |= BNXT_FLAG_JUMBO;
2204                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2205                 if (jumbo_factor > agg_factor)
2206                         agg_factor = jumbo_factor;
2207         }
2208         agg_ring_size = ring_size * agg_factor;
2209
2210         if (agg_ring_size) {
2211                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2212                                                         RX_DESC_CNT);
2213                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2214                         u32 tmp = agg_ring_size;
2215
2216                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2217                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2218                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2219                                     tmp, agg_ring_size);
2220                 }
2221                 bp->rx_agg_ring_size = agg_ring_size;
2222                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2223                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2224                 rx_space = rx_size + NET_SKB_PAD +
2225                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2226         }
2227
2228         bp->rx_buf_use_size = rx_size;
2229         bp->rx_buf_size = rx_space;
2230
2231         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2232         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2233
2234         ring_size = bp->tx_ring_size;
2235         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2236         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2237
2238         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2239         bp->cp_ring_size = ring_size;
2240
2241         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2242         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2243                 bp->cp_nr_pages = MAX_CP_PAGES;
2244                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2245                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2246                             ring_size, bp->cp_ring_size);
2247         }
2248         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2249         bp->cp_ring_mask = bp->cp_bit - 1;
2250 }
2251
2252 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2253 {
2254         int i;
2255         struct bnxt_vnic_info *vnic;
2256         struct pci_dev *pdev = bp->pdev;
2257
2258         if (!bp->vnic_info)
2259                 return;
2260
2261         for (i = 0; i < bp->nr_vnics; i++) {
2262                 vnic = &bp->vnic_info[i];
2263
2264                 kfree(vnic->fw_grp_ids);
2265                 vnic->fw_grp_ids = NULL;
2266
2267                 kfree(vnic->uc_list);
2268                 vnic->uc_list = NULL;
2269
2270                 if (vnic->mc_list) {
2271                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2272                                           vnic->mc_list, vnic->mc_list_mapping);
2273                         vnic->mc_list = NULL;
2274                 }
2275
2276                 if (vnic->rss_table) {
2277                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2278                                           vnic->rss_table,
2279                                           vnic->rss_table_dma_addr);
2280                         vnic->rss_table = NULL;
2281                 }
2282
2283                 vnic->rss_hash_key = NULL;
2284                 vnic->flags = 0;
2285         }
2286 }
2287
2288 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2289 {
2290         int i, rc = 0, size;
2291         struct bnxt_vnic_info *vnic;
2292         struct pci_dev *pdev = bp->pdev;
2293         int max_rings;
2294
2295         for (i = 0; i < bp->nr_vnics; i++) {
2296                 vnic = &bp->vnic_info[i];
2297
2298                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2299                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2300
2301                         if (mem_size > 0) {
2302                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2303                                 if (!vnic->uc_list) {
2304                                         rc = -ENOMEM;
2305                                         goto out;
2306                                 }
2307                         }
2308                 }
2309
2310                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2311                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2312                         vnic->mc_list =
2313                                 dma_alloc_coherent(&pdev->dev,
2314                                                    vnic->mc_list_size,
2315                                                    &vnic->mc_list_mapping,
2316                                                    GFP_KERNEL);
2317                         if (!vnic->mc_list) {
2318                                 rc = -ENOMEM;
2319                                 goto out;
2320                         }
2321                 }
2322
2323                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2324                         max_rings = bp->rx_nr_rings;
2325                 else
2326                         max_rings = 1;
2327
2328                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2329                 if (!vnic->fw_grp_ids) {
2330                         rc = -ENOMEM;
2331                         goto out;
2332                 }
2333
2334                 /* Allocate rss table and hash key */
2335                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2336                                                      &vnic->rss_table_dma_addr,
2337                                                      GFP_KERNEL);
2338                 if (!vnic->rss_table) {
2339                         rc = -ENOMEM;
2340                         goto out;
2341                 }
2342
2343                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2344
2345                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2346                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2347         }
2348         return 0;
2349
2350 out:
2351         return rc;
2352 }
2353
2354 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2355 {
2356         struct pci_dev *pdev = bp->pdev;
2357
2358         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2359                           bp->hwrm_cmd_resp_dma_addr);
2360
2361         bp->hwrm_cmd_resp_addr = NULL;
2362         if (bp->hwrm_dbg_resp_addr) {
2363                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2364                                   bp->hwrm_dbg_resp_addr,
2365                                   bp->hwrm_dbg_resp_dma_addr);
2366
2367                 bp->hwrm_dbg_resp_addr = NULL;
2368         }
2369 }
2370
2371 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2372 {
2373         struct pci_dev *pdev = bp->pdev;
2374
2375         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2376                                                    &bp->hwrm_cmd_resp_dma_addr,
2377                                                    GFP_KERNEL);
2378         if (!bp->hwrm_cmd_resp_addr)
2379                 return -ENOMEM;
2380         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2381                                                     HWRM_DBG_REG_BUF_SIZE,
2382                                                     &bp->hwrm_dbg_resp_dma_addr,
2383                                                     GFP_KERNEL);
2384         if (!bp->hwrm_dbg_resp_addr)
2385                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2386
2387         return 0;
2388 }
2389
2390 static void bnxt_free_stats(struct bnxt *bp)
2391 {
2392         u32 size, i;
2393         struct pci_dev *pdev = bp->pdev;
2394
2395         if (!bp->bnapi)
2396                 return;
2397
2398         size = sizeof(struct ctx_hw_stats);
2399
2400         for (i = 0; i < bp->cp_nr_rings; i++) {
2401                 struct bnxt_napi *bnapi = bp->bnapi[i];
2402                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2403
2404                 if (cpr->hw_stats) {
2405                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2406                                           cpr->hw_stats_map);
2407                         cpr->hw_stats = NULL;
2408                 }
2409         }
2410 }
2411
2412 static int bnxt_alloc_stats(struct bnxt *bp)
2413 {
2414         u32 size, i;
2415         struct pci_dev *pdev = bp->pdev;
2416
2417         size = sizeof(struct ctx_hw_stats);
2418
2419         for (i = 0; i < bp->cp_nr_rings; i++) {
2420                 struct bnxt_napi *bnapi = bp->bnapi[i];
2421                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2422
2423                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2424                                                    &cpr->hw_stats_map,
2425                                                    GFP_KERNEL);
2426                 if (!cpr->hw_stats)
2427                         return -ENOMEM;
2428
2429                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2430         }
2431         return 0;
2432 }
2433
2434 static void bnxt_clear_ring_indices(struct bnxt *bp)
2435 {
2436         int i;
2437
2438         if (!bp->bnapi)
2439                 return;
2440
2441         for (i = 0; i < bp->cp_nr_rings; i++) {
2442                 struct bnxt_napi *bnapi = bp->bnapi[i];
2443                 struct bnxt_cp_ring_info *cpr;
2444                 struct bnxt_rx_ring_info *rxr;
2445                 struct bnxt_tx_ring_info *txr;
2446
2447                 if (!bnapi)
2448                         continue;
2449
2450                 cpr = &bnapi->cp_ring;
2451                 cpr->cp_raw_cons = 0;
2452
2453                 txr = &bnapi->tx_ring;
2454                 txr->tx_prod = 0;
2455                 txr->tx_cons = 0;
2456
2457                 rxr = &bnapi->rx_ring;
2458                 rxr->rx_prod = 0;
2459                 rxr->rx_agg_prod = 0;
2460                 rxr->rx_sw_agg_prod = 0;
2461         }
2462 }
2463
2464 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2465 {
2466 #ifdef CONFIG_RFS_ACCEL
2467         int i;
2468
2469         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2470          * safe to delete the hash table.
2471          */
2472         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2473                 struct hlist_head *head;
2474                 struct hlist_node *tmp;
2475                 struct bnxt_ntuple_filter *fltr;
2476
2477                 head = &bp->ntp_fltr_hash_tbl[i];
2478                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2479                         hlist_del(&fltr->hash);
2480                         kfree(fltr);
2481                 }
2482         }
2483         if (irq_reinit) {
2484                 kfree(bp->ntp_fltr_bmap);
2485                 bp->ntp_fltr_bmap = NULL;
2486         }
2487         bp->ntp_fltr_count = 0;
2488 #endif
2489 }
2490
2491 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2492 {
2493 #ifdef CONFIG_RFS_ACCEL
2494         int i, rc = 0;
2495
2496         if (!(bp->flags & BNXT_FLAG_RFS))
2497                 return 0;
2498
2499         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2500                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2501
2502         bp->ntp_fltr_count = 0;
2503         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2504                                     sizeof(long),
2505                                     GFP_KERNEL);
2506
2507         if (!bp->ntp_fltr_bmap)
2508                 rc = -ENOMEM;
2509
2510         return rc;
2511 #else
2512         return 0;
2513 #endif
2514 }
2515
2516 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2517 {
2518         bnxt_free_vnic_attributes(bp);
2519         bnxt_free_tx_rings(bp);
2520         bnxt_free_rx_rings(bp);
2521         bnxt_free_cp_rings(bp);
2522         bnxt_free_ntp_fltrs(bp, irq_re_init);
2523         if (irq_re_init) {
2524                 bnxt_free_stats(bp);
2525                 bnxt_free_ring_grps(bp);
2526                 bnxt_free_vnics(bp);
2527                 kfree(bp->bnapi);
2528                 bp->bnapi = NULL;
2529         } else {
2530                 bnxt_clear_ring_indices(bp);
2531         }
2532 }
2533
2534 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2535 {
2536         int i, rc, size, arr_size;
2537         void *bnapi;
2538
2539         if (irq_re_init) {
2540                 /* Allocate bnapi mem pointer array and mem block for
2541                  * all queues
2542                  */
2543                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2544                                 bp->cp_nr_rings);
2545                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2546                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2547                 if (!bnapi)
2548                         return -ENOMEM;
2549
2550                 bp->bnapi = bnapi;
2551                 bnapi += arr_size;
2552                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2553                         bp->bnapi[i] = bnapi;
2554                         bp->bnapi[i]->index = i;
2555                         bp->bnapi[i]->bp = bp;
2556                 }
2557
2558                 rc = bnxt_alloc_stats(bp);
2559                 if (rc)
2560                         goto alloc_mem_err;
2561
2562                 rc = bnxt_alloc_ntp_fltrs(bp);
2563                 if (rc)
2564                         goto alloc_mem_err;
2565
2566                 rc = bnxt_alloc_vnics(bp);
2567                 if (rc)
2568                         goto alloc_mem_err;
2569         }
2570
2571         bnxt_init_ring_struct(bp);
2572
2573         rc = bnxt_alloc_rx_rings(bp);
2574         if (rc)
2575                 goto alloc_mem_err;
2576
2577         rc = bnxt_alloc_tx_rings(bp);
2578         if (rc)
2579                 goto alloc_mem_err;
2580
2581         rc = bnxt_alloc_cp_rings(bp);
2582         if (rc)
2583                 goto alloc_mem_err;
2584
2585         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2586                                   BNXT_VNIC_UCAST_FLAG;
2587         rc = bnxt_alloc_vnic_attributes(bp);
2588         if (rc)
2589                 goto alloc_mem_err;
2590         return 0;
2591
2592 alloc_mem_err:
2593         bnxt_free_mem(bp, true);
2594         return rc;
2595 }
2596
2597 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2598                             u16 cmpl_ring, u16 target_id)
2599 {
2600         struct hwrm_cmd_req_hdr *req = request;
2601
2602         req->cmpl_ring_req_type =
2603                 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2604         req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2605         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2606 }
2607
2608 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2609 {
2610         int i, intr_process, rc;
2611         struct hwrm_cmd_req_hdr *req = msg;
2612         u32 *data = msg;
2613         __le32 *resp_len, *valid;
2614         u16 cp_ring_id, len = 0;
2615         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2616
2617         req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2618         memset(resp, 0, PAGE_SIZE);
2619         cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2620                       HWRM_CMPL_RING_MASK) >>
2621                      HWRM_CMPL_RING_SFT;
2622         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2623
2624         /* Write request msg to hwrm channel */
2625         __iowrite32_copy(bp->bar0, data, msg_len / 4);
2626
2627         /* currently supports only one outstanding message */
2628         if (intr_process)
2629                 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2630                                        HWRM_SEQ_ID_MASK;
2631
2632         /* Ring channel doorbell */
2633         writel(1, bp->bar0 + 0x100);
2634
2635         i = 0;
2636         if (intr_process) {
2637                 /* Wait until hwrm response cmpl interrupt is processed */
2638                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2639                        i++ < timeout) {
2640                         usleep_range(600, 800);
2641                 }
2642
2643                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2644                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2645                                    req->cmpl_ring_req_type);
2646                         return -1;
2647                 }
2648         } else {
2649                 /* Check if response len is updated */
2650                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2651                 for (i = 0; i < timeout; i++) {
2652                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2653                               HWRM_RESP_LEN_SFT;
2654                         if (len)
2655                                 break;
2656                         usleep_range(600, 800);
2657                 }
2658
2659                 if (i >= timeout) {
2660                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2661                                    timeout, req->cmpl_ring_req_type,
2662                                    req->target_id_seq_id, *resp_len);
2663                         return -1;
2664                 }
2665
2666                 /* Last word of resp contains valid bit */
2667                 valid = bp->hwrm_cmd_resp_addr + len - 4;
2668                 for (i = 0; i < timeout; i++) {
2669                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2670                                 break;
2671                         usleep_range(600, 800);
2672                 }
2673
2674                 if (i >= timeout) {
2675                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2676                                    timeout, req->cmpl_ring_req_type,
2677                                    req->target_id_seq_id, len, *valid);
2678                         return -1;
2679                 }
2680         }
2681
2682         rc = le16_to_cpu(resp->error_code);
2683         if (rc) {
2684                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2685                            le16_to_cpu(resp->req_type),
2686                            le16_to_cpu(resp->seq_id), rc);
2687                 return rc;
2688         }
2689         return 0;
2690 }
2691
2692 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2693 {
2694         int rc;
2695
2696         mutex_lock(&bp->hwrm_cmd_lock);
2697         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2698         mutex_unlock(&bp->hwrm_cmd_lock);
2699         return rc;
2700 }
2701
2702 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2703 {
2704         struct hwrm_func_drv_rgtr_input req = {0};
2705         int i;
2706
2707         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2708
2709         req.enables =
2710                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2711                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
2712                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2713
2714         /* TODO: current async event fwd bits are not defined and the firmware
2715          * only checks if it is non-zero to enable async event forwarding
2716          */
2717         req.async_event_fwd[0] |= cpu_to_le32(1);
2718         req.os_type = cpu_to_le16(1);
2719         req.ver_maj = DRV_VER_MAJ;
2720         req.ver_min = DRV_VER_MIN;
2721         req.ver_upd = DRV_VER_UPD;
2722
2723         if (BNXT_PF(bp)) {
2724                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2725                 u32 *data = (u32 *)vf_req_snif_bmap;
2726
2727                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2728                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2729                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2730
2731                 for (i = 0; i < 8; i++)
2732                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2733
2734                 req.enables |=
2735                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2736         }
2737
2738         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2739 }
2740
2741 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2742 {
2743         u32 rc = 0;
2744         struct hwrm_tunnel_dst_port_free_input req = {0};
2745
2746         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2747         req.tunnel_type = tunnel_type;
2748
2749         switch (tunnel_type) {
2750         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2751                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2752                 break;
2753         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2754                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2755                 break;
2756         default:
2757                 break;
2758         }
2759
2760         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2761         if (rc)
2762                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2763                            rc);
2764         return rc;
2765 }
2766
2767 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2768                                            u8 tunnel_type)
2769 {
2770         u32 rc = 0;
2771         struct hwrm_tunnel_dst_port_alloc_input req = {0};
2772         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2773
2774         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2775
2776         req.tunnel_type = tunnel_type;
2777         req.tunnel_dst_port_val = port;
2778
2779         mutex_lock(&bp->hwrm_cmd_lock);
2780         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2781         if (rc) {
2782                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2783                            rc);
2784                 goto err_out;
2785         }
2786
2787         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2788                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2789
2790         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2791                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2792 err_out:
2793         mutex_unlock(&bp->hwrm_cmd_lock);
2794         return rc;
2795 }
2796
2797 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2798 {
2799         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2800         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2801
2802         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2803         req.dflt_vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2804
2805         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2806         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2807         req.mask = cpu_to_le32(vnic->rx_mask);
2808         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2809 }
2810
2811 #ifdef CONFIG_RFS_ACCEL
2812 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2813                                             struct bnxt_ntuple_filter *fltr)
2814 {
2815         struct hwrm_cfa_ntuple_filter_free_input req = {0};
2816
2817         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2818         req.ntuple_filter_id = fltr->filter_id;
2819         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2820 }
2821
2822 #define BNXT_NTP_FLTR_FLAGS                                     \
2823         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
2824          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
2825          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
2826          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
2827          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
2828          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
2829          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
2830          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
2831          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
2832          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
2833          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
2834          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
2835          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
2836          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID)
2837
2838 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2839                                              struct bnxt_ntuple_filter *fltr)
2840 {
2841         int rc = 0;
2842         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2843         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2844                 bp->hwrm_cmd_resp_addr;
2845         struct flow_keys *keys = &fltr->fkeys;
2846         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2847
2848         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2849         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2850
2851         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2852
2853         req.ethertype = htons(ETH_P_IP);
2854         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2855         req.ipaddr_type = 4;
2856         req.ip_protocol = keys->basic.ip_proto;
2857
2858         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2859         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2860         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2861         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2862
2863         req.src_port = keys->ports.src;
2864         req.src_port_mask = cpu_to_be16(0xffff);
2865         req.dst_port = keys->ports.dst;
2866         req.dst_port_mask = cpu_to_be16(0xffff);
2867
2868         req.dst_vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2869         mutex_lock(&bp->hwrm_cmd_lock);
2870         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2871         if (!rc)
2872                 fltr->filter_id = resp->ntuple_filter_id;
2873         mutex_unlock(&bp->hwrm_cmd_lock);
2874         return rc;
2875 }
2876 #endif
2877
2878 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2879                                      u8 *mac_addr)
2880 {
2881         u32 rc = 0;
2882         struct hwrm_cfa_l2_filter_alloc_input req = {0};
2883         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2884
2885         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2886         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2887                                 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2888         req.dst_vnic_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2889         req.enables =
2890                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2891                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID |
2892                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2893         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2894         req.l2_addr_mask[0] = 0xff;
2895         req.l2_addr_mask[1] = 0xff;
2896         req.l2_addr_mask[2] = 0xff;
2897         req.l2_addr_mask[3] = 0xff;
2898         req.l2_addr_mask[4] = 0xff;
2899         req.l2_addr_mask[5] = 0xff;
2900
2901         mutex_lock(&bp->hwrm_cmd_lock);
2902         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2903         if (!rc)
2904                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2905                                                         resp->l2_filter_id;
2906         mutex_unlock(&bp->hwrm_cmd_lock);
2907         return rc;
2908 }
2909
2910 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2911 {
2912         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2913         int rc = 0;
2914
2915         /* Any associated ntuple filters will also be cleared by firmware. */
2916         mutex_lock(&bp->hwrm_cmd_lock);
2917         for (i = 0; i < num_of_vnics; i++) {
2918                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2919
2920                 for (j = 0; j < vnic->uc_filter_count; j++) {
2921                         struct hwrm_cfa_l2_filter_free_input req = {0};
2922
2923                         bnxt_hwrm_cmd_hdr_init(bp, &req,
2924                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
2925
2926                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
2927
2928                         rc = _hwrm_send_message(bp, &req, sizeof(req),
2929                                                 HWRM_CMD_TIMEOUT);
2930                 }
2931                 vnic->uc_filter_count = 0;
2932         }
2933         mutex_unlock(&bp->hwrm_cmd_lock);
2934
2935         return rc;
2936 }
2937
2938 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2939 {
2940         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2941         struct hwrm_vnic_tpa_cfg_input req = {0};
2942
2943         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
2944                 return 0;
2945
2946         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2947
2948         if (tpa_flags) {
2949                 u16 mss = bp->dev->mtu - 40;
2950                 u32 nsegs, n, segs = 0, flags;
2951
2952                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2953                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2954                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2955                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2956                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2957                 if (tpa_flags & BNXT_FLAG_GRO)
2958                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2959
2960                 req.flags = cpu_to_le32(flags);
2961
2962                 req.enables =
2963                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2964                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS);
2965
2966                 /* Number of segs are log2 units, and first packet is not
2967                  * included as part of this units.
2968                  */
2969                 if (mss <= PAGE_SIZE) {
2970                         n = PAGE_SIZE / mss;
2971                         nsegs = (MAX_SKB_FRAGS - 1) * n;
2972                 } else {
2973                         n = mss / PAGE_SIZE;
2974                         if (mss & (PAGE_SIZE - 1))
2975                                 n++;
2976                         nsegs = (MAX_SKB_FRAGS - n) / n;
2977                 }
2978
2979                 segs = ilog2(nsegs);
2980                 req.max_agg_segs = cpu_to_le16(segs);
2981                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2982         }
2983         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2984
2985         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2986 }
2987
2988 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2989 {
2990         u32 i, j, max_rings;
2991         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2992         struct hwrm_vnic_rss_cfg_input req = {0};
2993
2994         if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2995                 return 0;
2996
2997         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
2998         if (set_rss) {
2999                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3000                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3001                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3002                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3003
3004                 req.hash_type = cpu_to_le32(vnic->hash_type);
3005
3006                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3007                         max_rings = bp->rx_nr_rings;
3008                 else
3009                         max_rings = 1;
3010
3011                 /* Fill the RSS indirection table with ring group ids */
3012                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3013                         if (j == max_rings)
3014                                 j = 0;
3015                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3016                 }
3017
3018                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3019                 req.hash_key_tbl_addr =
3020                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3021         }
3022         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3023         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3024 }
3025
3026 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3027 {
3028         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3029         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3030
3031         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3032         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3033                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3034                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3035         req.enables =
3036                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3037                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3038         /* thresholds not implemented in firmware yet */
3039         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3040         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3041         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3042         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3043 }
3044
3045 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3046 {
3047         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3048
3049         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3050         req.rss_cos_lb_ctx_id =
3051                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3052
3053         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3054         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3055 }
3056
3057 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3058 {
3059         int i;
3060
3061         for (i = 0; i < bp->nr_vnics; i++) {
3062                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3063
3064                 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3065                         bnxt_hwrm_vnic_ctx_free_one(bp, i);
3066         }
3067         bp->rsscos_nr_ctxs = 0;
3068 }
3069
3070 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3071 {
3072         int rc;
3073         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3074         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3075                                                 bp->hwrm_cmd_resp_addr;
3076
3077         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3078                                -1);
3079
3080         mutex_lock(&bp->hwrm_cmd_lock);
3081         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3082         if (!rc)
3083                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3084                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3085         mutex_unlock(&bp->hwrm_cmd_lock);
3086
3087         return rc;
3088 }
3089
3090 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3091 {
3092         int grp_idx = 0;
3093         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3094         struct hwrm_vnic_cfg_input req = {0};
3095
3096         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3097         /* Only RSS support for now TBD: COS & LB */
3098         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3099                                   VNIC_CFG_REQ_ENABLES_RSS_RULE);
3100         req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3101         req.cos_rule = cpu_to_le16(0xffff);
3102         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3103                 grp_idx = 0;
3104         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3105                 grp_idx = vnic_id - 1;
3106
3107         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3108         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3109
3110         req.lb_rule = cpu_to_le16(0xffff);
3111         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3112                               VLAN_HLEN);
3113
3114         if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3115                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3116
3117         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3118 }
3119
3120 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3121 {
3122         u32 rc = 0;
3123
3124         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3125                 struct hwrm_vnic_free_input req = {0};
3126
3127                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3128                 req.vnic_id =
3129                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3130
3131                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3132                 if (rc)
3133                         return rc;
3134                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3135         }
3136         return rc;
3137 }
3138
3139 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3140 {
3141         u16 i;
3142
3143         for (i = 0; i < bp->nr_vnics; i++)
3144                 bnxt_hwrm_vnic_free_one(bp, i);
3145 }
3146
3147 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, u16 start_grp_id,
3148                                 u16 end_grp_id)
3149 {
3150         u32 rc = 0, i, j;
3151         struct hwrm_vnic_alloc_input req = {0};
3152         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3153
3154         /* map ring groups to this vnic */
3155         for (i = start_grp_id, j = 0; i < end_grp_id; i++, j++) {
3156                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) {
3157                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3158                                    j, (end_grp_id - start_grp_id));
3159                         break;
3160                 }
3161                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3162                                         bp->grp_info[i].fw_grp_id;
3163         }
3164
3165         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3166         if (vnic_id == 0)
3167                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3168
3169         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3170
3171         mutex_lock(&bp->hwrm_cmd_lock);
3172         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3173         if (!rc)
3174                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3175         mutex_unlock(&bp->hwrm_cmd_lock);
3176         return rc;
3177 }
3178
3179 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3180 {
3181         u16 i;
3182         u32 rc = 0;
3183
3184         mutex_lock(&bp->hwrm_cmd_lock);
3185         for (i = 0; i < bp->rx_nr_rings; i++) {
3186                 struct hwrm_ring_grp_alloc_input req = {0};
3187                 struct hwrm_ring_grp_alloc_output *resp =
3188                                         bp->hwrm_cmd_resp_addr;
3189
3190                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3191
3192                 req.cr = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3193                 req.rr = cpu_to_le16(bp->grp_info[i].rx_fw_ring_id);
3194                 req.ar = cpu_to_le16(bp->grp_info[i].agg_fw_ring_id);
3195                 req.sc = cpu_to_le16(bp->grp_info[i].fw_stats_ctx);
3196
3197                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3198                                         HWRM_CMD_TIMEOUT);
3199                 if (rc)
3200                         break;
3201
3202                 bp->grp_info[i].fw_grp_id = le32_to_cpu(resp->ring_group_id);
3203         }
3204         mutex_unlock(&bp->hwrm_cmd_lock);
3205         return rc;
3206 }
3207
3208 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3209 {
3210         u16 i;
3211         u32 rc = 0;
3212         struct hwrm_ring_grp_free_input req = {0};
3213
3214         if (!bp->grp_info)
3215                 return 0;
3216
3217         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3218
3219         mutex_lock(&bp->hwrm_cmd_lock);
3220         for (i = 0; i < bp->cp_nr_rings; i++) {
3221                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3222                         continue;
3223                 req.ring_group_id =
3224                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3225
3226                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3227                                         HWRM_CMD_TIMEOUT);
3228                 if (rc)
3229                         break;
3230                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3231         }
3232         mutex_unlock(&bp->hwrm_cmd_lock);
3233         return rc;
3234 }
3235
3236 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3237                                     struct bnxt_ring_struct *ring,
3238                                     u32 ring_type, u32 map_index,
3239                                     u32 stats_ctx_id)
3240 {
3241         int rc = 0, err = 0;
3242         struct hwrm_ring_alloc_input req = {0};
3243         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3244         u16 ring_id;
3245
3246         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3247
3248         req.enables = 0;
3249         if (ring->nr_pages > 1) {
3250                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3251                 /* Page size is in log2 units */
3252                 req.page_size = BNXT_PAGE_SHIFT;
3253                 req.page_tbl_depth = 1;
3254         } else {
3255                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3256         }
3257         req.fbo = 0;
3258         /* Association of ring index with doorbell index and MSIX number */
3259         req.logical_id = cpu_to_le16(map_index);
3260
3261         switch (ring_type) {
3262         case HWRM_RING_ALLOC_TX:
3263                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3264                 /* Association of transmit ring with completion ring */
3265                 req.cmpl_ring_id =
3266                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3267                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3268                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3269                 req.queue_id = cpu_to_le16(ring->queue_id);
3270                 break;
3271         case HWRM_RING_ALLOC_RX:
3272                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3273                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3274                 break;
3275         case HWRM_RING_ALLOC_AGG:
3276                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3277                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3278                 break;
3279         case HWRM_RING_ALLOC_CMPL:
3280                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3281                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3282                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3283                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3284                 break;
3285         default:
3286                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3287                            ring_type);
3288                 return -1;
3289         }
3290
3291         mutex_lock(&bp->hwrm_cmd_lock);
3292         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3293         err = le16_to_cpu(resp->error_code);
3294         ring_id = le16_to_cpu(resp->ring_id);
3295         mutex_unlock(&bp->hwrm_cmd_lock);
3296
3297         if (rc || err) {
3298                 switch (ring_type) {
3299                 case RING_FREE_REQ_RING_TYPE_CMPL:
3300                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3301                                    rc, err);
3302                         return -1;
3303
3304                 case RING_FREE_REQ_RING_TYPE_RX:
3305                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3306                                    rc, err);
3307                         return -1;
3308
3309                 case RING_FREE_REQ_RING_TYPE_TX:
3310                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3311                                    rc, err);
3312                         return -1;
3313
3314                 default:
3315                         netdev_err(bp->dev, "Invalid ring\n");
3316                         return -1;
3317                 }
3318         }
3319         ring->fw_ring_id = ring_id;
3320         return rc;
3321 }
3322
3323 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3324 {
3325         int i, rc = 0;
3326
3327         if (bp->cp_nr_rings) {
3328                 for (i = 0; i < bp->cp_nr_rings; i++) {
3329                         struct bnxt_napi *bnapi = bp->bnapi[i];
3330                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3331                         struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3332
3333                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3334                                                       HWRM_RING_ALLOC_CMPL, i,
3335                                                       INVALID_STATS_CTX_ID);
3336                         if (rc)
3337                                 goto err_out;
3338                         cpr->cp_doorbell = bp->bar1 + i * 0x80;
3339                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3340                         bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3341                 }
3342         }
3343
3344         if (bp->tx_nr_rings) {
3345                 for (i = 0; i < bp->tx_nr_rings; i++) {
3346                         struct bnxt_napi *bnapi = bp->bnapi[i];
3347                         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3348                         struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3349                         u16 fw_stats_ctx = bp->grp_info[i].fw_stats_ctx;
3350
3351                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3352                                                       HWRM_RING_ALLOC_TX, i,
3353                                                       fw_stats_ctx);
3354                         if (rc)
3355                                 goto err_out;
3356                         txr->tx_doorbell = bp->bar1 + i * 0x80;
3357                 }
3358         }
3359
3360         if (bp->rx_nr_rings) {
3361                 for (i = 0; i < bp->rx_nr_rings; i++) {
3362                         struct bnxt_napi *bnapi = bp->bnapi[i];
3363                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3364                         struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3365
3366                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3367                                                       HWRM_RING_ALLOC_RX, i,
3368                                                       INVALID_STATS_CTX_ID);
3369                         if (rc)
3370                                 goto err_out;
3371                         rxr->rx_doorbell = bp->bar1 + i * 0x80;
3372                         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3373                         bp->grp_info[i].rx_fw_ring_id = ring->fw_ring_id;
3374                 }
3375         }
3376
3377         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3378                 for (i = 0; i < bp->rx_nr_rings; i++) {
3379                         struct bnxt_napi *bnapi = bp->bnapi[i];
3380                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3381                         struct bnxt_ring_struct *ring =
3382                                                 &rxr->rx_agg_ring_struct;
3383
3384                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3385                                                       HWRM_RING_ALLOC_AGG,
3386                                                       bp->rx_nr_rings + i,
3387                                                       INVALID_STATS_CTX_ID);
3388                         if (rc)
3389                                 goto err_out;
3390
3391                         rxr->rx_agg_doorbell =
3392                                 bp->bar1 + (bp->rx_nr_rings + i) * 0x80;
3393                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3394                                rxr->rx_agg_doorbell);
3395                         bp->grp_info[i].agg_fw_ring_id = ring->fw_ring_id;
3396                 }
3397         }
3398 err_out:
3399         return rc;
3400 }
3401
3402 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3403                                    struct bnxt_ring_struct *ring,
3404                                    u32 ring_type, int cmpl_ring_id)
3405 {
3406         int rc;
3407         struct hwrm_ring_free_input req = {0};
3408         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3409         u16 error_code;
3410
3411         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1);
3412         req.ring_type = ring_type;
3413         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3414
3415         mutex_lock(&bp->hwrm_cmd_lock);
3416         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3417         error_code = le16_to_cpu(resp->error_code);
3418         mutex_unlock(&bp->hwrm_cmd_lock);
3419
3420         if (rc || error_code) {
3421                 switch (ring_type) {
3422                 case RING_FREE_REQ_RING_TYPE_CMPL:
3423                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3424                                    rc);
3425                         return rc;
3426                 case RING_FREE_REQ_RING_TYPE_RX:
3427                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3428                                    rc);
3429                         return rc;
3430                 case RING_FREE_REQ_RING_TYPE_TX:
3431                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3432                                    rc);
3433                         return rc;
3434                 default:
3435                         netdev_err(bp->dev, "Invalid ring\n");
3436                         return -1;
3437                 }
3438         }
3439         return 0;
3440 }
3441
3442 static int bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3443 {
3444         int i, rc = 0;
3445
3446         if (!bp->bnapi)
3447                 return 0;
3448
3449         if (bp->tx_nr_rings) {
3450                 for (i = 0; i < bp->tx_nr_rings; i++) {
3451                         struct bnxt_napi *bnapi = bp->bnapi[i];
3452                         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3453                         struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3454                         u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3455
3456                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3457                                 hwrm_ring_free_send_msg(
3458                                         bp, ring,
3459                                         RING_FREE_REQ_RING_TYPE_TX,
3460                                         close_path ? cmpl_ring_id :
3461                                         INVALID_HW_RING_ID);
3462                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3463                         }
3464                 }
3465         }
3466
3467         if (bp->rx_nr_rings) {
3468                 for (i = 0; i < bp->rx_nr_rings; i++) {
3469                         struct bnxt_napi *bnapi = bp->bnapi[i];
3470                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3471                         struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3472                         u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3473
3474                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3475                                 hwrm_ring_free_send_msg(
3476                                         bp, ring,
3477                                         RING_FREE_REQ_RING_TYPE_RX,
3478                                         close_path ? cmpl_ring_id :
3479                                         INVALID_HW_RING_ID);
3480                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3481                                 bp->grp_info[i].rx_fw_ring_id =
3482                                         INVALID_HW_RING_ID;
3483                         }
3484                 }
3485         }
3486
3487         if (bp->rx_agg_nr_pages) {
3488                 for (i = 0; i < bp->rx_nr_rings; i++) {
3489                         struct bnxt_napi *bnapi = bp->bnapi[i];
3490                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3491                         struct bnxt_ring_struct *ring =
3492                                                 &rxr->rx_agg_ring_struct;
3493                         u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3494
3495                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3496                                 hwrm_ring_free_send_msg(
3497                                         bp, ring,
3498                                         RING_FREE_REQ_RING_TYPE_RX,
3499                                         close_path ? cmpl_ring_id :
3500                                         INVALID_HW_RING_ID);
3501                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3502                                 bp->grp_info[i].agg_fw_ring_id =
3503                                         INVALID_HW_RING_ID;
3504                         }
3505                 }
3506         }
3507
3508         if (bp->cp_nr_rings) {
3509                 for (i = 0; i < bp->cp_nr_rings; i++) {
3510                         struct bnxt_napi *bnapi = bp->bnapi[i];
3511                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3512                         struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3513
3514                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3515                                 hwrm_ring_free_send_msg(
3516                                         bp, ring,
3517                                         RING_FREE_REQ_RING_TYPE_CMPL,
3518                                         INVALID_HW_RING_ID);
3519                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3520                                 bp->grp_info[i].cp_fw_ring_id =
3521                                                         INVALID_HW_RING_ID;
3522                         }
3523                 }
3524         }
3525
3526         return rc;
3527 }
3528
3529 int bnxt_hwrm_set_coal(struct bnxt *bp)
3530 {
3531         int i, rc = 0;
3532         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3533         u16 max_buf, max_buf_irq;
3534         u16 buf_tmr, buf_tmr_irq;
3535         u32 flags;
3536
3537         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3538                                -1, -1);
3539
3540         /* Each rx completion (2 records) should be DMAed immediately */
3541         max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3542         /* max_buf must not be zero */
3543         max_buf = clamp_t(u16, max_buf, 1, 63);
3544         max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3545         buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3546         buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3547
3548         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3549
3550         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
3551          * if coal_ticks is less than 25 us.
3552          */
3553         if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3554                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3555
3556         req.flags = cpu_to_le16(flags);
3557         req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3558         req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3559         req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3560         req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3561         req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3562         req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3563         req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3564
3565         mutex_lock(&bp->hwrm_cmd_lock);
3566         for (i = 0; i < bp->cp_nr_rings; i++) {
3567                 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3568
3569                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3570                                         HWRM_CMD_TIMEOUT);
3571                 if (rc)
3572                         break;
3573         }
3574         mutex_unlock(&bp->hwrm_cmd_lock);
3575         return rc;
3576 }
3577
3578 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3579 {
3580         int rc = 0, i;
3581         struct hwrm_stat_ctx_free_input req = {0};
3582
3583         if (!bp->bnapi)
3584                 return 0;
3585
3586         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3587
3588         mutex_lock(&bp->hwrm_cmd_lock);
3589         for (i = 0; i < bp->cp_nr_rings; i++) {
3590                 struct bnxt_napi *bnapi = bp->bnapi[i];
3591                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3592
3593                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3594                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3595
3596                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3597                                                 HWRM_CMD_TIMEOUT);
3598                         if (rc)
3599                                 break;
3600
3601                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3602                 }
3603         }
3604         mutex_unlock(&bp->hwrm_cmd_lock);
3605         return rc;
3606 }
3607
3608 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3609 {
3610         int rc = 0, i;
3611         struct hwrm_stat_ctx_alloc_input req = {0};
3612         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3613
3614         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3615
3616         req.update_period_ms = cpu_to_le32(1000);
3617
3618         mutex_lock(&bp->hwrm_cmd_lock);
3619         for (i = 0; i < bp->cp_nr_rings; i++) {
3620                 struct bnxt_napi *bnapi = bp->bnapi[i];
3621                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3622
3623                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3624
3625                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3626                                         HWRM_CMD_TIMEOUT);
3627                 if (rc)
3628                         break;
3629
3630                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3631
3632                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3633         }
3634         mutex_unlock(&bp->hwrm_cmd_lock);
3635         return 0;
3636 }
3637
3638 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3639 {
3640         int rc = 0;
3641         struct hwrm_func_qcaps_input req = {0};
3642         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3643
3644         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3645         req.fid = cpu_to_le16(0xffff);
3646
3647         mutex_lock(&bp->hwrm_cmd_lock);
3648         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3649         if (rc)
3650                 goto hwrm_func_qcaps_exit;
3651
3652         if (BNXT_PF(bp)) {
3653                 struct bnxt_pf_info *pf = &bp->pf;
3654
3655                 pf->fw_fid = le16_to_cpu(resp->fid);
3656                 pf->port_id = le16_to_cpu(resp->port_id);
3657                 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3658                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3659                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3660                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3661                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3662                 pf->max_pf_tx_rings = pf->max_tx_rings;
3663                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3664                 pf->max_pf_rx_rings = pf->max_rx_rings;
3665                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3666                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3667                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3668                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3669                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3670                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3671                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3672                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3673                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3674                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3675                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3676         } else {
3677 #ifdef CONFIG_BNXT_SRIOV
3678                 struct bnxt_vf_info *vf = &bp->vf;
3679
3680                 vf->fw_fid = le16_to_cpu(resp->fid);
3681                 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3682                 if (is_valid_ether_addr(vf->mac_addr))
3683                         /* overwrite netdev dev_adr with admin VF MAC */
3684                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3685                 else
3686                         random_ether_addr(bp->dev->dev_addr);
3687
3688                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3689                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3690                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3691                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3692                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3693                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3694                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3695 #endif
3696         }
3697
3698         bp->tx_push_thresh = 0;
3699         if (resp->flags &
3700             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3701                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3702
3703 hwrm_func_qcaps_exit:
3704         mutex_unlock(&bp->hwrm_cmd_lock);
3705         return rc;
3706 }
3707
3708 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3709 {
3710         struct hwrm_func_reset_input req = {0};
3711
3712         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3713         req.enables = 0;
3714
3715         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3716 }
3717
3718 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3719 {
3720         int rc = 0;
3721         struct hwrm_queue_qportcfg_input req = {0};
3722         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3723         u8 i, *qptr;
3724
3725         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3726
3727         mutex_lock(&bp->hwrm_cmd_lock);
3728         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3729         if (rc)
3730                 goto qportcfg_exit;
3731
3732         if (!resp->max_configurable_queues) {
3733                 rc = -EINVAL;
3734                 goto qportcfg_exit;
3735         }
3736         bp->max_tc = resp->max_configurable_queues;
3737         if (bp->max_tc > BNXT_MAX_QUEUE)
3738                 bp->max_tc = BNXT_MAX_QUEUE;
3739
3740         qptr = &resp->queue_id0;
3741         for (i = 0; i < bp->max_tc; i++) {
3742                 bp->q_info[i].queue_id = *qptr++;
3743                 bp->q_info[i].queue_profile = *qptr++;
3744         }
3745
3746 qportcfg_exit:
3747         mutex_unlock(&bp->hwrm_cmd_lock);
3748         return rc;
3749 }
3750
3751 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3752 {
3753         int rc;
3754         struct hwrm_ver_get_input req = {0};
3755         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3756
3757         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3758         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3759         req.hwrm_intf_min = HWRM_VERSION_MINOR;
3760         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3761         mutex_lock(&bp->hwrm_cmd_lock);
3762         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3763         if (rc)
3764                 goto hwrm_ver_get_exit;
3765
3766         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3767
3768         if (req.hwrm_intf_maj != resp->hwrm_intf_maj ||
3769             req.hwrm_intf_min != resp->hwrm_intf_min ||
3770             req.hwrm_intf_upd != resp->hwrm_intf_upd) {
3771                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d does not match driver interface %d.%d.%d.\n",
3772                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
3773                             resp->hwrm_intf_upd, req.hwrm_intf_maj,
3774                             req.hwrm_intf_min, req.hwrm_intf_upd);
3775                 netdev_warn(bp->dev, "Please update driver or firmware with matching interface versions.\n");
3776         }
3777         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3778                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3779                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3780
3781 hwrm_ver_get_exit:
3782         mutex_unlock(&bp->hwrm_cmd_lock);
3783         return rc;
3784 }
3785
3786 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3787 {
3788         if (bp->vxlan_port_cnt) {
3789                 bnxt_hwrm_tunnel_dst_port_free(
3790                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3791         }
3792         bp->vxlan_port_cnt = 0;
3793         if (bp->nge_port_cnt) {
3794                 bnxt_hwrm_tunnel_dst_port_free(
3795                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3796         }
3797         bp->nge_port_cnt = 0;
3798 }
3799
3800 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3801 {
3802         int rc, i;
3803         u32 tpa_flags = 0;
3804
3805         if (set_tpa)
3806                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3807         for (i = 0; i < bp->nr_vnics; i++) {
3808                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3809                 if (rc) {
3810                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3811                                    rc, i);
3812                         return rc;
3813                 }
3814         }
3815         return 0;
3816 }
3817
3818 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3819 {
3820         int i;
3821
3822         for (i = 0; i < bp->nr_vnics; i++)
3823                 bnxt_hwrm_vnic_set_rss(bp, i, false);
3824 }
3825
3826 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3827                                     bool irq_re_init)
3828 {
3829         if (bp->vnic_info) {
3830                 bnxt_hwrm_clear_vnic_filter(bp);
3831                 /* clear all RSS setting before free vnic ctx */
3832                 bnxt_hwrm_clear_vnic_rss(bp);
3833                 bnxt_hwrm_vnic_ctx_free(bp);
3834                 /* before free the vnic, undo the vnic tpa settings */
3835                 if (bp->flags & BNXT_FLAG_TPA)
3836                         bnxt_set_tpa(bp, false);
3837                 bnxt_hwrm_vnic_free(bp);
3838         }
3839         bnxt_hwrm_ring_free(bp, close_path);
3840         bnxt_hwrm_ring_grp_free(bp);
3841         if (irq_re_init) {
3842                 bnxt_hwrm_stat_ctx_free(bp);
3843                 bnxt_hwrm_free_tunnel_ports(bp);
3844         }
3845 }
3846
3847 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3848 {
3849         int rc;
3850
3851         /* allocate context for vnic */
3852         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3853         if (rc) {
3854                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3855                            vnic_id, rc);
3856                 goto vnic_setup_err;
3857         }
3858         bp->rsscos_nr_ctxs++;
3859
3860         /* configure default vnic, ring grp */
3861         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3862         if (rc) {
3863                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3864                            vnic_id, rc);
3865                 goto vnic_setup_err;
3866         }
3867
3868         /* Enable RSS hashing on vnic */
3869         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3870         if (rc) {
3871                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3872                            vnic_id, rc);
3873                 goto vnic_setup_err;
3874         }
3875
3876         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3877                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3878                 if (rc) {
3879                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3880                                    vnic_id, rc);
3881                 }
3882         }
3883
3884 vnic_setup_err:
3885         return rc;
3886 }
3887
3888 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3889 {
3890 #ifdef CONFIG_RFS_ACCEL
3891         int i, rc = 0;
3892
3893         for (i = 0; i < bp->rx_nr_rings; i++) {
3894                 u16 vnic_id = i + 1;
3895                 u16 ring_id = i;
3896
3897                 if (vnic_id >= bp->nr_vnics)
3898                         break;
3899
3900                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3901                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, ring_id + 1);
3902                 if (rc) {
3903                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3904                                    vnic_id, rc);
3905                         break;
3906                 }
3907                 rc = bnxt_setup_vnic(bp, vnic_id);
3908                 if (rc)
3909                         break;
3910         }
3911         return rc;
3912 #else
3913         return 0;
3914 #endif
3915 }
3916
3917 static int bnxt_cfg_rx_mode(struct bnxt *);
3918
3919 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3920 {
3921         int rc = 0;
3922
3923         if (irq_re_init) {
3924                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3925                 if (rc) {
3926                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3927                                    rc);
3928                         goto err_out;
3929                 }
3930         }
3931
3932         rc = bnxt_hwrm_ring_alloc(bp);
3933         if (rc) {
3934                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3935                 goto err_out;
3936         }
3937
3938         rc = bnxt_hwrm_ring_grp_alloc(bp);
3939         if (rc) {
3940                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3941                 goto err_out;
3942         }
3943
3944         /* default vnic 0 */
3945         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3946         if (rc) {
3947                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3948                 goto err_out;
3949         }
3950
3951         rc = bnxt_setup_vnic(bp, 0);
3952         if (rc)
3953                 goto err_out;
3954
3955         if (bp->flags & BNXT_FLAG_RFS) {
3956                 rc = bnxt_alloc_rfs_vnics(bp);
3957                 if (rc)
3958                         goto err_out;
3959         }
3960
3961         if (bp->flags & BNXT_FLAG_TPA) {
3962                 rc = bnxt_set_tpa(bp, true);
3963                 if (rc)
3964                         goto err_out;
3965         }
3966
3967         if (BNXT_VF(bp))
3968                 bnxt_update_vf_mac(bp);
3969
3970         /* Filter for default vnic 0 */
3971         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3972         if (rc) {
3973                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3974                 goto err_out;
3975         }
3976         bp->vnic_info[0].uc_filter_count = 1;
3977
3978         bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_UNICAST |
3979                                    CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3980
3981         if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3982                 bp->vnic_info[0].rx_mask |=
3983                                 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3984
3985         rc = bnxt_cfg_rx_mode(bp);
3986         if (rc)
3987                 goto err_out;
3988
3989         rc = bnxt_hwrm_set_coal(bp);
3990         if (rc)
3991                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3992                             rc);
3993
3994         return 0;
3995
3996 err_out:
3997         bnxt_hwrm_resource_free(bp, 0, true);
3998
3999         return rc;
4000 }
4001
4002 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4003 {
4004         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4005         return 0;
4006 }
4007
4008 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4009 {
4010         bnxt_init_cp_rings(bp);
4011         bnxt_init_rx_rings(bp);
4012         bnxt_init_tx_rings(bp);
4013         bnxt_init_ring_grps(bp, irq_re_init);
4014         bnxt_init_vnics(bp);
4015
4016         return bnxt_init_chip(bp, irq_re_init);
4017 }
4018
4019 static void bnxt_disable_int(struct bnxt *bp)
4020 {
4021         int i;
4022
4023         if (!bp->bnapi)
4024                 return;
4025
4026         for (i = 0; i < bp->cp_nr_rings; i++) {
4027                 struct bnxt_napi *bnapi = bp->bnapi[i];
4028                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4029
4030                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4031         }
4032 }
4033
4034 static void bnxt_enable_int(struct bnxt *bp)
4035 {
4036         int i;
4037
4038         atomic_set(&bp->intr_sem, 0);
4039         for (i = 0; i < bp->cp_nr_rings; i++) {
4040                 struct bnxt_napi *bnapi = bp->bnapi[i];
4041                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4042
4043                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4044         }
4045 }
4046
4047 static int bnxt_set_real_num_queues(struct bnxt *bp)
4048 {
4049         int rc;
4050         struct net_device *dev = bp->dev;
4051
4052         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4053         if (rc)
4054                 return rc;
4055
4056         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4057         if (rc)
4058                 return rc;
4059
4060 #ifdef CONFIG_RFS_ACCEL
4061         if (bp->rx_nr_rings)
4062                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4063         if (!dev->rx_cpu_rmap)
4064                 rc = -ENOMEM;
4065 #endif
4066
4067         return rc;
4068 }
4069
4070 static int bnxt_setup_msix(struct bnxt *bp)
4071 {
4072         struct msix_entry *msix_ent;
4073         struct net_device *dev = bp->dev;
4074         int i, total_vecs, rc = 0;
4075         const int len = sizeof(bp->irq_tbl[0].name);
4076
4077         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4078         total_vecs = bp->cp_nr_rings;
4079
4080         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4081         if (!msix_ent)
4082                 return -ENOMEM;
4083
4084         for (i = 0; i < total_vecs; i++) {
4085                 msix_ent[i].entry = i;
4086                 msix_ent[i].vector = 0;
4087         }
4088
4089         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, 1, total_vecs);
4090         if (total_vecs < 0) {
4091                 rc = -ENODEV;
4092                 goto msix_setup_exit;
4093         }
4094
4095         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4096         if (bp->irq_tbl) {
4097                 int tcs;
4098
4099                 /* Trim rings based upon num of vectors allocated */
4100                 bp->rx_nr_rings = min_t(int, total_vecs, bp->rx_nr_rings);
4101                 bp->tx_nr_rings = min_t(int, total_vecs, bp->tx_nr_rings);
4102                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4103                 tcs = netdev_get_num_tc(dev);
4104                 if (tcs > 1) {
4105                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4106                         if (bp->tx_nr_rings_per_tc == 0) {
4107                                 netdev_reset_tc(dev);
4108                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4109                         } else {
4110                                 int i, off, count;
4111
4112                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4113                                 for (i = 0; i < tcs; i++) {
4114                                         count = bp->tx_nr_rings_per_tc;
4115                                         off = i * count;
4116                                         netdev_set_tc_queue(dev, i, count, off);
4117                                 }
4118                         }
4119                 }
4120                 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
4121
4122                 for (i = 0; i < bp->cp_nr_rings; i++) {
4123                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4124                         snprintf(bp->irq_tbl[i].name, len,
4125                                  "%s-%s-%d", dev->name, "TxRx", i);
4126                         bp->irq_tbl[i].handler = bnxt_msix;
4127                 }
4128                 rc = bnxt_set_real_num_queues(bp);
4129                 if (rc)
4130                         goto msix_setup_exit;
4131         } else {
4132                 rc = -ENOMEM;
4133                 goto msix_setup_exit;
4134         }
4135         bp->flags |= BNXT_FLAG_USING_MSIX;
4136         kfree(msix_ent);
4137         return 0;
4138
4139 msix_setup_exit:
4140         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4141         pci_disable_msix(bp->pdev);
4142         kfree(msix_ent);
4143         return rc;
4144 }
4145
4146 static int bnxt_setup_inta(struct bnxt *bp)
4147 {
4148         int rc;
4149         const int len = sizeof(bp->irq_tbl[0].name);
4150
4151         if (netdev_get_num_tc(bp->dev))
4152                 netdev_reset_tc(bp->dev);
4153
4154         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4155         if (!bp->irq_tbl) {
4156                 rc = -ENOMEM;
4157                 return rc;
4158         }
4159         bp->rx_nr_rings = 1;
4160         bp->tx_nr_rings = 1;
4161         bp->cp_nr_rings = 1;
4162         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4163         bp->irq_tbl[0].vector = bp->pdev->irq;
4164         snprintf(bp->irq_tbl[0].name, len,
4165                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4166         bp->irq_tbl[0].handler = bnxt_inta;
4167         rc = bnxt_set_real_num_queues(bp);
4168         return rc;
4169 }
4170
4171 static int bnxt_setup_int_mode(struct bnxt *bp)
4172 {
4173         int rc = 0;
4174
4175         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4176                 rc = bnxt_setup_msix(bp);
4177
4178         if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4179                 /* fallback to INTA */
4180                 rc = bnxt_setup_inta(bp);
4181         }
4182         return rc;
4183 }
4184
4185 static void bnxt_free_irq(struct bnxt *bp)
4186 {
4187         struct bnxt_irq *irq;
4188         int i;
4189
4190 #ifdef CONFIG_RFS_ACCEL
4191         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4192         bp->dev->rx_cpu_rmap = NULL;
4193 #endif
4194         if (!bp->irq_tbl)
4195                 return;
4196
4197         for (i = 0; i < bp->cp_nr_rings; i++) {
4198                 irq = &bp->irq_tbl[i];
4199                 if (irq->requested)
4200                         free_irq(irq->vector, bp->bnapi[i]);
4201                 irq->requested = 0;
4202         }
4203         if (bp->flags & BNXT_FLAG_USING_MSIX)
4204                 pci_disable_msix(bp->pdev);
4205         kfree(bp->irq_tbl);
4206         bp->irq_tbl = NULL;
4207 }
4208
4209 static int bnxt_request_irq(struct bnxt *bp)
4210 {
4211         int i, rc = 0;
4212         unsigned long flags = 0;
4213 #ifdef CONFIG_RFS_ACCEL
4214         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4215 #endif
4216
4217         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4218                 flags = IRQF_SHARED;
4219
4220         for (i = 0; i < bp->cp_nr_rings; i++) {
4221                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4222 #ifdef CONFIG_RFS_ACCEL
4223                 if (rmap && (i < bp->rx_nr_rings)) {
4224                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4225                         if (rc)
4226                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4227                                             i);
4228                 }
4229 #endif
4230                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4231                                  bp->bnapi[i]);
4232                 if (rc)
4233                         break;
4234
4235                 irq->requested = 1;
4236         }
4237         return rc;
4238 }
4239
4240 static void bnxt_del_napi(struct bnxt *bp)
4241 {
4242         int i;
4243
4244         if (!bp->bnapi)
4245                 return;
4246
4247         for (i = 0; i < bp->cp_nr_rings; i++) {
4248                 struct bnxt_napi *bnapi = bp->bnapi[i];
4249
4250                 napi_hash_del(&bnapi->napi);
4251                 netif_napi_del(&bnapi->napi);
4252         }
4253         /* We called napi_hash_del() before netif_napi_del(), we need
4254          * to respect an RCU grace period before freeing napi structures.
4255          */
4256         synchronize_net();
4257 }
4258
4259 static void bnxt_init_napi(struct bnxt *bp)
4260 {
4261         int i;
4262         struct bnxt_napi *bnapi;
4263
4264         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4265                 for (i = 0; i < bp->cp_nr_rings; i++) {
4266                         bnapi = bp->bnapi[i];
4267                         netif_napi_add(bp->dev, &bnapi->napi,
4268                                        bnxt_poll, 64);
4269                         napi_hash_add(&bnapi->napi);
4270                 }
4271         } else {
4272                 bnapi = bp->bnapi[0];
4273                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4274                 napi_hash_add(&bnapi->napi);
4275         }
4276 }
4277
4278 static void bnxt_disable_napi(struct bnxt *bp)
4279 {
4280         int i;
4281
4282         if (!bp->bnapi)
4283                 return;
4284
4285         for (i = 0; i < bp->cp_nr_rings; i++) {
4286                 napi_disable(&bp->bnapi[i]->napi);
4287                 bnxt_disable_poll(bp->bnapi[i]);
4288         }
4289 }
4290
4291 static void bnxt_enable_napi(struct bnxt *bp)
4292 {
4293         int i;
4294
4295         for (i = 0; i < bp->cp_nr_rings; i++) {
4296                 bnxt_enable_poll(bp->bnapi[i]);
4297                 napi_enable(&bp->bnapi[i]->napi);
4298         }
4299 }
4300
4301 static void bnxt_tx_disable(struct bnxt *bp)
4302 {
4303         int i;
4304         struct bnxt_napi *bnapi;
4305         struct bnxt_tx_ring_info *txr;
4306         struct netdev_queue *txq;
4307
4308         if (bp->bnapi) {
4309                 for (i = 0; i < bp->tx_nr_rings; i++) {
4310                         bnapi = bp->bnapi[i];
4311                         txr = &bnapi->tx_ring;
4312                         txq = netdev_get_tx_queue(bp->dev, i);
4313                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4314                 }
4315         }
4316         /* Drop carrier first to prevent TX timeout */
4317         netif_carrier_off(bp->dev);
4318         /* Stop all TX queues */
4319         netif_tx_disable(bp->dev);
4320 }
4321
4322 static void bnxt_tx_enable(struct bnxt *bp)
4323 {
4324         int i;
4325         struct bnxt_napi *bnapi;
4326         struct bnxt_tx_ring_info *txr;
4327         struct netdev_queue *txq;
4328
4329         for (i = 0; i < bp->tx_nr_rings; i++) {
4330                 bnapi = bp->bnapi[i];
4331                 txr = &bnapi->tx_ring;
4332                 txq = netdev_get_tx_queue(bp->dev, i);
4333                 txr->dev_state = 0;
4334         }
4335         netif_tx_wake_all_queues(bp->dev);
4336         if (bp->link_info.link_up)
4337                 netif_carrier_on(bp->dev);
4338 }
4339
4340 static void bnxt_report_link(struct bnxt *bp)
4341 {
4342         if (bp->link_info.link_up) {
4343                 const char *duplex;
4344                 const char *flow_ctrl;
4345                 u16 speed;
4346
4347                 netif_carrier_on(bp->dev);
4348                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4349                         duplex = "full";
4350                 else
4351                         duplex = "half";
4352                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4353                         flow_ctrl = "ON - receive & transmit";
4354                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4355                         flow_ctrl = "ON - transmit";
4356                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4357                         flow_ctrl = "ON - receive";
4358                 else
4359                         flow_ctrl = "none";
4360                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4361                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4362                             speed, duplex, flow_ctrl);
4363         } else {
4364                 netif_carrier_off(bp->dev);
4365                 netdev_err(bp->dev, "NIC Link is Down\n");
4366         }
4367 }
4368
4369 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4370 {
4371         int rc = 0;
4372         struct bnxt_link_info *link_info = &bp->link_info;
4373         struct hwrm_port_phy_qcfg_input req = {0};
4374         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4375         u8 link_up = link_info->link_up;
4376
4377         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4378
4379         mutex_lock(&bp->hwrm_cmd_lock);
4380         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4381         if (rc) {
4382                 mutex_unlock(&bp->hwrm_cmd_lock);
4383                 return rc;
4384         }
4385
4386         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4387         link_info->phy_link_status = resp->link;
4388         link_info->duplex =  resp->duplex;
4389         link_info->pause = resp->pause;
4390         link_info->auto_mode = resp->auto_mode;
4391         link_info->auto_pause_setting = resp->auto_pause;
4392         link_info->force_pause_setting = resp->force_pause;
4393         link_info->duplex_setting = resp->duplex_setting;
4394         if (link_info->phy_link_status == BNXT_LINK_LINK)
4395                 link_info->link_speed = le16_to_cpu(resp->link_speed);
4396         else
4397                 link_info->link_speed = 0;
4398         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4399         link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4400         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4401         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4402         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4403         link_info->phy_ver[0] = resp->phy_maj;
4404         link_info->phy_ver[1] = resp->phy_min;
4405         link_info->phy_ver[2] = resp->phy_bld;
4406         link_info->media_type = resp->media_type;
4407         link_info->transceiver = resp->transceiver_type;
4408         link_info->phy_addr = resp->phy_addr;
4409
4410         /* TODO: need to add more logic to report VF link */
4411         if (chng_link_state) {
4412                 if (link_info->phy_link_status == BNXT_LINK_LINK)
4413                         link_info->link_up = 1;
4414                 else
4415                         link_info->link_up = 0;
4416                 if (link_up != link_info->link_up)
4417                         bnxt_report_link(bp);
4418         } else {
4419                 /* alwasy link down if not require to update link state */
4420                 link_info->link_up = 0;
4421         }
4422         mutex_unlock(&bp->hwrm_cmd_lock);
4423         return 0;
4424 }
4425
4426 static void
4427 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4428 {
4429         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4430                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4431                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4432                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4433                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4434                 req->enables |=
4435                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4436         } else {
4437                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4438                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4439                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4440                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4441                 req->enables |=
4442                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4443         }
4444 }
4445
4446 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4447                                       struct hwrm_port_phy_cfg_input *req)
4448 {
4449         u8 autoneg = bp->link_info.autoneg;
4450         u16 fw_link_speed = bp->link_info.req_link_speed;
4451         u32 advertising = bp->link_info.advertising;
4452
4453         if (autoneg & BNXT_AUTONEG_SPEED) {
4454                 req->auto_mode |=
4455                         PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4456
4457                 req->enables |= cpu_to_le32(
4458                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4459                 req->auto_link_speed_mask = cpu_to_le16(advertising);
4460
4461                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4462                 req->flags |=
4463                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4464         } else {
4465                 req->force_link_speed = cpu_to_le16(fw_link_speed);
4466                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4467         }
4468
4469         /* currently don't support half duplex */
4470         req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4471         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4472         /* tell chimp that the setting takes effect immediately */
4473         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4474 }
4475
4476 int bnxt_hwrm_set_pause(struct bnxt *bp)
4477 {
4478         struct hwrm_port_phy_cfg_input req = {0};
4479         int rc;
4480
4481         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4482         bnxt_hwrm_set_pause_common(bp, &req);
4483
4484         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4485             bp->link_info.force_link_chng)
4486                 bnxt_hwrm_set_link_common(bp, &req);
4487
4488         mutex_lock(&bp->hwrm_cmd_lock);
4489         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4490         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4491                 /* since changing of pause setting doesn't trigger any link
4492                  * change event, the driver needs to update the current pause
4493                  * result upon successfully return of the phy_cfg command
4494                  */
4495                 bp->link_info.pause =
4496                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4497                 bp->link_info.auto_pause_setting = 0;
4498                 if (!bp->link_info.force_link_chng)
4499                         bnxt_report_link(bp);
4500         }
4501         bp->link_info.force_link_chng = false;
4502         mutex_unlock(&bp->hwrm_cmd_lock);
4503         return rc;
4504 }
4505
4506 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4507 {
4508         struct hwrm_port_phy_cfg_input req = {0};
4509
4510         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4511         if (set_pause)
4512                 bnxt_hwrm_set_pause_common(bp, &req);
4513
4514         bnxt_hwrm_set_link_common(bp, &req);
4515         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4516 }
4517
4518 static int bnxt_update_phy_setting(struct bnxt *bp)
4519 {
4520         int rc;
4521         bool update_link = false;
4522         bool update_pause = false;
4523         struct bnxt_link_info *link_info = &bp->link_info;
4524
4525         rc = bnxt_update_link(bp, true);
4526         if (rc) {
4527                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4528                            rc);
4529                 return rc;
4530         }
4531         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4532             link_info->auto_pause_setting != link_info->req_flow_ctrl)
4533                 update_pause = true;
4534         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4535             link_info->force_pause_setting != link_info->req_flow_ctrl)
4536                 update_pause = true;
4537         if (link_info->req_duplex != link_info->duplex_setting)
4538                 update_link = true;
4539         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4540                 if (BNXT_AUTO_MODE(link_info->auto_mode))
4541                         update_link = true;
4542                 if (link_info->req_link_speed != link_info->force_link_speed)
4543                         update_link = true;
4544         } else {
4545                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4546                         update_link = true;
4547                 if (link_info->advertising != link_info->auto_link_speeds)
4548                         update_link = true;
4549                 if (link_info->req_link_speed != link_info->auto_link_speed)
4550                         update_link = true;
4551         }
4552
4553         if (update_link)
4554                 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4555         else if (update_pause)
4556                 rc = bnxt_hwrm_set_pause(bp);
4557         if (rc) {
4558                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4559                            rc);
4560                 return rc;
4561         }
4562
4563         return rc;
4564 }
4565
4566 /* Common routine to pre-map certain register block to different GRC window.
4567  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4568  * in PF and 3 windows in VF that can be customized to map in different
4569  * register blocks.
4570  */
4571 static void bnxt_preset_reg_win(struct bnxt *bp)
4572 {
4573         if (BNXT_PF(bp)) {
4574                 /* CAG registers map to GRC window #4 */
4575                 writel(BNXT_CAG_REG_BASE,
4576                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4577         }
4578 }
4579
4580 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4581 {
4582         int rc = 0;
4583
4584         bnxt_preset_reg_win(bp);
4585         netif_carrier_off(bp->dev);
4586         if (irq_re_init) {
4587                 rc = bnxt_setup_int_mode(bp);
4588                 if (rc) {
4589                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4590                                    rc);
4591                         return rc;
4592                 }
4593         }
4594         if ((bp->flags & BNXT_FLAG_RFS) &&
4595             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4596                 /* disable RFS if falling back to INTA */
4597                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4598                 bp->flags &= ~BNXT_FLAG_RFS;
4599         }
4600
4601         rc = bnxt_alloc_mem(bp, irq_re_init);
4602         if (rc) {
4603                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4604                 goto open_err_free_mem;
4605         }
4606
4607         if (irq_re_init) {
4608                 bnxt_init_napi(bp);
4609                 rc = bnxt_request_irq(bp);
4610                 if (rc) {
4611                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4612                         goto open_err_irq;
4613                 }
4614         }
4615
4616         rc = bnxt_init_nic(bp, irq_re_init);
4617         if (rc) {
4618                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4619                 goto open_err_irq;
4620         }
4621
4622         bnxt_enable_napi(bp);
4623
4624         if (link_re_init) {
4625                 rc = bnxt_update_phy_setting(bp);
4626                 if (rc)
4627                         netdev_warn(bp->dev, "failed to update phy settings\n");
4628         }
4629
4630         if (irq_re_init) {
4631 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4632                 vxlan_get_rx_port(bp->dev);
4633 #endif
4634                 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4635                                 bp, htons(0x17c1),
4636                                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4637                         bp->nge_port_cnt = 1;
4638         }
4639
4640         set_bit(BNXT_STATE_OPEN, &bp->state);
4641         bnxt_enable_int(bp);
4642         /* Enable TX queues */
4643         bnxt_tx_enable(bp);
4644         mod_timer(&bp->timer, jiffies + bp->current_interval);
4645
4646         return 0;
4647
4648 open_err_irq:
4649         bnxt_del_napi(bp);
4650
4651 open_err_free_mem:
4652         bnxt_free_skbs(bp);
4653         bnxt_free_irq(bp);
4654         bnxt_free_mem(bp, true);
4655         return rc;
4656 }
4657
4658 /* rtnl_lock held */
4659 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4660 {
4661         int rc = 0;
4662
4663         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4664         if (rc) {
4665                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4666                 dev_close(bp->dev);
4667         }
4668         return rc;
4669 }
4670
4671 static int bnxt_open(struct net_device *dev)
4672 {
4673         struct bnxt *bp = netdev_priv(dev);
4674         int rc = 0;
4675
4676         rc = bnxt_hwrm_func_reset(bp);
4677         if (rc) {
4678                 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4679                            rc);
4680                 rc = -1;
4681                 return rc;
4682         }
4683         return __bnxt_open_nic(bp, true, true);
4684 }
4685
4686 static void bnxt_disable_int_sync(struct bnxt *bp)
4687 {
4688         int i;
4689
4690         atomic_inc(&bp->intr_sem);
4691         if (!netif_running(bp->dev))
4692                 return;
4693
4694         bnxt_disable_int(bp);
4695         for (i = 0; i < bp->cp_nr_rings; i++)
4696                 synchronize_irq(bp->irq_tbl[i].vector);
4697 }
4698
4699 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4700 {
4701         int rc = 0;
4702
4703 #ifdef CONFIG_BNXT_SRIOV
4704         if (bp->sriov_cfg) {
4705                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4706                                                       !bp->sriov_cfg,
4707                                                       BNXT_SRIOV_CFG_WAIT_TMO);
4708                 if (rc)
4709                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4710         }
4711 #endif
4712         /* Change device state to avoid TX queue wake up's */
4713         bnxt_tx_disable(bp);
4714
4715         clear_bit(BNXT_STATE_OPEN, &bp->state);
4716         smp_mb__after_atomic();
4717         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4718                 msleep(20);
4719
4720         /* Flush rings before disabling interrupts */
4721         bnxt_shutdown_nic(bp, irq_re_init);
4722
4723         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4724
4725         bnxt_disable_napi(bp);
4726         bnxt_disable_int_sync(bp);
4727         del_timer_sync(&bp->timer);
4728         bnxt_free_skbs(bp);
4729
4730         if (irq_re_init) {
4731                 bnxt_free_irq(bp);
4732                 bnxt_del_napi(bp);
4733         }
4734         bnxt_free_mem(bp, irq_re_init);
4735         return rc;
4736 }
4737
4738 static int bnxt_close(struct net_device *dev)
4739 {
4740         struct bnxt *bp = netdev_priv(dev);
4741
4742         bnxt_close_nic(bp, true, true);
4743         return 0;
4744 }
4745
4746 /* rtnl_lock held */
4747 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4748 {
4749         switch (cmd) {
4750         case SIOCGMIIPHY:
4751                 /* fallthru */
4752         case SIOCGMIIREG: {
4753                 if (!netif_running(dev))
4754                         return -EAGAIN;
4755
4756                 return 0;
4757         }
4758
4759         case SIOCSMIIREG:
4760                 if (!netif_running(dev))
4761                         return -EAGAIN;
4762
4763                 return 0;
4764
4765         default:
4766                 /* do nothing */
4767                 break;
4768         }
4769         return -EOPNOTSUPP;
4770 }
4771
4772 static struct rtnl_link_stats64 *
4773 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4774 {
4775         u32 i;
4776         struct bnxt *bp = netdev_priv(dev);
4777
4778         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4779
4780         if (!bp->bnapi)
4781                 return stats;
4782
4783         /* TODO check if we need to synchronize with bnxt_close path */
4784         for (i = 0; i < bp->cp_nr_rings; i++) {
4785                 struct bnxt_napi *bnapi = bp->bnapi[i];
4786                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4787                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4788
4789                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4790                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4791                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4792
4793                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4794                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4795                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4796
4797                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4798                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4799                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4800
4801                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4802                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4803                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4804
4805                 stats->rx_missed_errors +=
4806                         le64_to_cpu(hw_stats->rx_discard_pkts);
4807
4808                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4809
4810                 stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts);
4811
4812                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4813         }
4814
4815         return stats;
4816 }
4817
4818 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4819 {
4820         struct net_device *dev = bp->dev;
4821         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4822         struct netdev_hw_addr *ha;
4823         u8 *haddr;
4824         int mc_count = 0;
4825         bool update = false;
4826         int off = 0;
4827
4828         netdev_for_each_mc_addr(ha, dev) {
4829                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4830                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4831                         vnic->mc_list_count = 0;
4832                         return false;
4833                 }
4834                 haddr = ha->addr;
4835                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4836                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4837                         update = true;
4838                 }
4839                 off += ETH_ALEN;
4840                 mc_count++;
4841         }
4842         if (mc_count)
4843                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4844
4845         if (mc_count != vnic->mc_list_count) {
4846                 vnic->mc_list_count = mc_count;
4847                 update = true;
4848         }
4849         return update;
4850 }
4851
4852 static bool bnxt_uc_list_updated(struct bnxt *bp)
4853 {
4854         struct net_device *dev = bp->dev;
4855         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4856         struct netdev_hw_addr *ha;
4857         int off = 0;
4858
4859         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4860                 return true;
4861
4862         netdev_for_each_uc_addr(ha, dev) {
4863                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4864                         return true;
4865
4866                 off += ETH_ALEN;
4867         }
4868         return false;
4869 }
4870
4871 static void bnxt_set_rx_mode(struct net_device *dev)
4872 {
4873         struct bnxt *bp = netdev_priv(dev);
4874         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4875         u32 mask = vnic->rx_mask;
4876         bool mc_update = false;
4877         bool uc_update;
4878
4879         if (!netif_running(dev))
4880                 return;
4881
4882         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4883                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4884                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4885
4886         /* Only allow PF to be in promiscuous mode */
4887         if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4888                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4889
4890         uc_update = bnxt_uc_list_updated(bp);
4891
4892         if (dev->flags & IFF_ALLMULTI) {
4893                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4894                 vnic->mc_list_count = 0;
4895         } else {
4896                 mc_update = bnxt_mc_list_updated(bp, &mask);
4897         }
4898
4899         if (mask != vnic->rx_mask || uc_update || mc_update) {
4900                 vnic->rx_mask = mask;
4901
4902                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4903                 schedule_work(&bp->sp_task);
4904         }
4905 }
4906
4907 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4908 {
4909         struct net_device *dev = bp->dev;
4910         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4911         struct netdev_hw_addr *ha;
4912         int i, off = 0, rc;
4913         bool uc_update;
4914
4915         netif_addr_lock_bh(dev);
4916         uc_update = bnxt_uc_list_updated(bp);
4917         netif_addr_unlock_bh(dev);
4918
4919         if (!uc_update)
4920                 goto skip_uc;
4921
4922         mutex_lock(&bp->hwrm_cmd_lock);
4923         for (i = 1; i < vnic->uc_filter_count; i++) {
4924                 struct hwrm_cfa_l2_filter_free_input req = {0};
4925
4926                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4927                                        -1);
4928
4929                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4930
4931                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4932                                         HWRM_CMD_TIMEOUT);
4933         }
4934         mutex_unlock(&bp->hwrm_cmd_lock);
4935
4936         vnic->uc_filter_count = 1;
4937
4938         netif_addr_lock_bh(dev);
4939         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4940                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4941         } else {
4942                 netdev_for_each_uc_addr(ha, dev) {
4943                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4944                         off += ETH_ALEN;
4945                         vnic->uc_filter_count++;
4946                 }
4947         }
4948         netif_addr_unlock_bh(dev);
4949
4950         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4951                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4952                 if (rc) {
4953                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4954                                    rc);
4955                         vnic->uc_filter_count = i;
4956                         return rc;
4957                 }
4958         }
4959
4960 skip_uc:
4961         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4962         if (rc && vnic->mc_list_count) {
4963                 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
4964                             rc);
4965                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4966                 vnic->mc_list_count = 0;
4967                 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4968         }
4969         if (rc)
4970                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
4971                            rc);
4972
4973         return rc;
4974 }
4975
4976 static netdev_features_t bnxt_fix_features(struct net_device *dev,
4977                                            netdev_features_t features)
4978 {
4979         return features;
4980 }
4981
4982 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
4983 {
4984         struct bnxt *bp = netdev_priv(dev);
4985         u32 flags = bp->flags;
4986         u32 changes;
4987         int rc = 0;
4988         bool re_init = false;
4989         bool update_tpa = false;
4990
4991         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
4992         if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
4993                 flags |= BNXT_FLAG_GRO;
4994         if (features & NETIF_F_LRO)
4995                 flags |= BNXT_FLAG_LRO;
4996
4997         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4998                 flags |= BNXT_FLAG_STRIP_VLAN;
4999
5000         if (features & NETIF_F_NTUPLE)
5001                 flags |= BNXT_FLAG_RFS;
5002
5003         changes = flags ^ bp->flags;
5004         if (changes & BNXT_FLAG_TPA) {
5005                 update_tpa = true;
5006                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5007                     (flags & BNXT_FLAG_TPA) == 0)
5008                         re_init = true;
5009         }
5010
5011         if (changes & ~BNXT_FLAG_TPA)
5012                 re_init = true;
5013
5014         if (flags != bp->flags) {
5015                 u32 old_flags = bp->flags;
5016
5017                 bp->flags = flags;
5018
5019                 if (!netif_running(dev)) {
5020                         if (update_tpa)
5021                                 bnxt_set_ring_params(bp);
5022                         return rc;
5023                 }
5024
5025                 if (re_init) {
5026                         bnxt_close_nic(bp, false, false);
5027                         if (update_tpa)
5028                                 bnxt_set_ring_params(bp);
5029
5030                         return bnxt_open_nic(bp, false, false);
5031                 }
5032                 if (update_tpa) {
5033                         rc = bnxt_set_tpa(bp,
5034                                           (flags & BNXT_FLAG_TPA) ?
5035                                           true : false);
5036                         if (rc)
5037                                 bp->flags = old_flags;
5038                 }
5039         }
5040         return rc;
5041 }
5042
5043 static void bnxt_dbg_dump_states(struct bnxt *bp)
5044 {
5045         int i;
5046         struct bnxt_napi *bnapi;
5047         struct bnxt_tx_ring_info *txr;
5048         struct bnxt_rx_ring_info *rxr;
5049         struct bnxt_cp_ring_info *cpr;
5050
5051         for (i = 0; i < bp->cp_nr_rings; i++) {
5052                 bnapi = bp->bnapi[i];
5053                 txr = &bnapi->tx_ring;
5054                 rxr = &bnapi->rx_ring;
5055                 cpr = &bnapi->cp_ring;
5056                 if (netif_msg_drv(bp)) {
5057                         netdev_info(bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5058                                     i, txr->tx_ring_struct.fw_ring_id,
5059                                     txr->tx_prod, txr->tx_cons);
5060                         netdev_info(bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5061                                     i, rxr->rx_ring_struct.fw_ring_id,
5062                                     rxr->rx_prod,
5063                                     rxr->rx_agg_ring_struct.fw_ring_id,
5064                                     rxr->rx_agg_prod, rxr->rx_sw_agg_prod);
5065                         netdev_info(bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5066                                     i, cpr->cp_ring_struct.fw_ring_id,
5067                                     cpr->cp_raw_cons);
5068                 }
5069         }
5070 }
5071
5072 static void bnxt_reset_task(struct bnxt *bp)
5073 {
5074         bnxt_dbg_dump_states(bp);
5075         if (netif_running(bp->dev)) {
5076                 bnxt_close_nic(bp, false, false);
5077                 bnxt_open_nic(bp, false, false);
5078         }
5079 }
5080
5081 static void bnxt_tx_timeout(struct net_device *dev)
5082 {
5083         struct bnxt *bp = netdev_priv(dev);
5084
5085         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5086         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5087         schedule_work(&bp->sp_task);
5088 }
5089
5090 #ifdef CONFIG_NET_POLL_CONTROLLER
5091 static void bnxt_poll_controller(struct net_device *dev)
5092 {
5093         struct bnxt *bp = netdev_priv(dev);
5094         int i;
5095
5096         for (i = 0; i < bp->cp_nr_rings; i++) {
5097                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5098
5099                 disable_irq(irq->vector);
5100                 irq->handler(irq->vector, bp->bnapi[i]);
5101                 enable_irq(irq->vector);
5102         }
5103 }
5104 #endif
5105
5106 static void bnxt_timer(unsigned long data)
5107 {
5108         struct bnxt *bp = (struct bnxt *)data;
5109         struct net_device *dev = bp->dev;
5110
5111         if (!netif_running(dev))
5112                 return;
5113
5114         if (atomic_read(&bp->intr_sem) != 0)
5115                 goto bnxt_restart_timer;
5116
5117 bnxt_restart_timer:
5118         mod_timer(&bp->timer, jiffies + bp->current_interval);
5119 }
5120
5121 static void bnxt_cfg_ntp_filters(struct bnxt *);
5122
5123 static void bnxt_sp_task(struct work_struct *work)
5124 {
5125         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5126         int rc;
5127
5128         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5129         smp_mb__after_atomic();
5130         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5131                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5132                 return;
5133         }
5134
5135         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5136                 bnxt_cfg_rx_mode(bp);
5137
5138         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5139                 bnxt_cfg_ntp_filters(bp);
5140         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5141                 rc = bnxt_update_link(bp, true);
5142                 if (rc)
5143                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5144                                    rc);
5145         }
5146         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5147                 bnxt_hwrm_exec_fwd_req(bp);
5148         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5149                 bnxt_hwrm_tunnel_dst_port_alloc(
5150                         bp, bp->vxlan_port,
5151                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5152         }
5153         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5154                 bnxt_hwrm_tunnel_dst_port_free(
5155                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5156         }
5157         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5158                 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5159                  * for BNXT_STATE_IN_SP_TASK to clear.
5160                  */
5161                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5162                 rtnl_lock();
5163                 bnxt_reset_task(bp);
5164                 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5165                 rtnl_unlock();
5166         }
5167
5168         smp_mb__before_atomic();
5169         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5170 }
5171
5172 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5173 {
5174         int rc;
5175         struct bnxt *bp = netdev_priv(dev);
5176
5177         SET_NETDEV_DEV(dev, &pdev->dev);
5178
5179         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5180         rc = pci_enable_device(pdev);
5181         if (rc) {
5182                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5183                 goto init_err;
5184         }
5185
5186         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5187                 dev_err(&pdev->dev,
5188                         "Cannot find PCI device base address, aborting\n");
5189                 rc = -ENODEV;
5190                 goto init_err_disable;
5191         }
5192
5193         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5194         if (rc) {
5195                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5196                 goto init_err_disable;
5197         }
5198
5199         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5200             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5201                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5202                 rc = -EIO;
5203                 goto init_err_release;
5204         }
5205
5206         pci_set_master(pdev);
5207
5208         bp->dev = dev;
5209         bp->pdev = pdev;
5210
5211         bp->bar0 = pci_ioremap_bar(pdev, 0);
5212         if (!bp->bar0) {
5213                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5214                 rc = -ENOMEM;
5215                 goto init_err_release;
5216         }
5217
5218         bp->bar1 = pci_ioremap_bar(pdev, 2);
5219         if (!bp->bar1) {
5220                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5221                 rc = -ENOMEM;
5222                 goto init_err_release;
5223         }
5224
5225         bp->bar2 = pci_ioremap_bar(pdev, 4);
5226         if (!bp->bar2) {
5227                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5228                 rc = -ENOMEM;
5229                 goto init_err_release;
5230         }
5231
5232         INIT_WORK(&bp->sp_task, bnxt_sp_task);
5233
5234         spin_lock_init(&bp->ntp_fltr_lock);
5235
5236         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5237         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5238
5239         bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5240         bp->coal_bufs = 20;
5241         bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5242         bp->coal_bufs_irq = 2;
5243
5244         init_timer(&bp->timer);
5245         bp->timer.data = (unsigned long)bp;
5246         bp->timer.function = bnxt_timer;
5247         bp->current_interval = BNXT_TIMER_INTERVAL;
5248
5249         clear_bit(BNXT_STATE_OPEN, &bp->state);
5250
5251         return 0;
5252
5253 init_err_release:
5254         if (bp->bar2) {
5255                 pci_iounmap(pdev, bp->bar2);
5256                 bp->bar2 = NULL;
5257         }
5258
5259         if (bp->bar1) {
5260                 pci_iounmap(pdev, bp->bar1);
5261                 bp->bar1 = NULL;
5262         }
5263
5264         if (bp->bar0) {
5265                 pci_iounmap(pdev, bp->bar0);
5266                 bp->bar0 = NULL;
5267         }
5268
5269         pci_release_regions(pdev);
5270
5271 init_err_disable:
5272         pci_disable_device(pdev);
5273
5274 init_err:
5275         return rc;
5276 }
5277
5278 /* rtnl_lock held */
5279 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5280 {
5281         struct sockaddr *addr = p;
5282         struct bnxt *bp = netdev_priv(dev);
5283         int rc = 0;
5284
5285         if (!is_valid_ether_addr(addr->sa_data))
5286                 return -EADDRNOTAVAIL;
5287
5288 #ifdef CONFIG_BNXT_SRIOV
5289         if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5290                 return -EADDRNOTAVAIL;
5291 #endif
5292
5293         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5294                 return 0;
5295
5296         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5297         if (netif_running(dev)) {
5298                 bnxt_close_nic(bp, false, false);
5299                 rc = bnxt_open_nic(bp, false, false);
5300         }
5301
5302         return rc;
5303 }
5304
5305 /* rtnl_lock held */
5306 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5307 {
5308         struct bnxt *bp = netdev_priv(dev);
5309
5310         if (new_mtu < 60 || new_mtu > 9000)
5311                 return -EINVAL;
5312
5313         if (netif_running(dev))
5314                 bnxt_close_nic(bp, true, false);
5315
5316         dev->mtu = new_mtu;
5317         bnxt_set_ring_params(bp);
5318
5319         if (netif_running(dev))
5320                 return bnxt_open_nic(bp, true, false);
5321
5322         return 0;
5323 }
5324
5325 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5326 {
5327         struct bnxt *bp = netdev_priv(dev);
5328
5329         if (tc > bp->max_tc) {
5330                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5331                            tc, bp->max_tc);
5332                 return -EINVAL;
5333         }
5334
5335         if (netdev_get_num_tc(dev) == tc)
5336                 return 0;
5337
5338         if (tc) {
5339                 int max_rx_rings, max_tx_rings;
5340
5341                 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5342                 if (bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5343                         return -ENOMEM;
5344         }
5345
5346         /* Needs to close the device and do hw resource re-allocations */
5347         if (netif_running(bp->dev))
5348                 bnxt_close_nic(bp, true, false);
5349
5350         if (tc) {
5351                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5352                 netdev_set_num_tc(dev, tc);
5353         } else {
5354                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5355                 netdev_reset_tc(dev);
5356         }
5357         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5358         bp->num_stat_ctxs = bp->cp_nr_rings;
5359
5360         if (netif_running(bp->dev))
5361                 return bnxt_open_nic(bp, true, false);
5362
5363         return 0;
5364 }
5365
5366 #ifdef CONFIG_RFS_ACCEL
5367 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5368                             struct bnxt_ntuple_filter *f2)
5369 {
5370         struct flow_keys *keys1 = &f1->fkeys;
5371         struct flow_keys *keys2 = &f2->fkeys;
5372
5373         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5374             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5375             keys1->ports.ports == keys2->ports.ports &&
5376             keys1->basic.ip_proto == keys2->basic.ip_proto &&
5377             keys1->basic.n_proto == keys2->basic.n_proto &&
5378             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5379                 return true;
5380
5381         return false;
5382 }
5383
5384 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5385                               u16 rxq_index, u32 flow_id)
5386 {
5387         struct bnxt *bp = netdev_priv(dev);
5388         struct bnxt_ntuple_filter *fltr, *new_fltr;
5389         struct flow_keys *fkeys;
5390         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5391         int rc = 0, idx, bit_id;
5392         struct hlist_head *head;
5393
5394         if (skb->encapsulation)
5395                 return -EPROTONOSUPPORT;
5396
5397         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5398         if (!new_fltr)
5399                 return -ENOMEM;
5400
5401         fkeys = &new_fltr->fkeys;
5402         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5403                 rc = -EPROTONOSUPPORT;
5404                 goto err_free;
5405         }
5406
5407         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5408             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5409              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5410                 rc = -EPROTONOSUPPORT;
5411                 goto err_free;
5412         }
5413
5414         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5415
5416         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5417         head = &bp->ntp_fltr_hash_tbl[idx];
5418         rcu_read_lock();
5419         hlist_for_each_entry_rcu(fltr, head, hash) {
5420                 if (bnxt_fltr_match(fltr, new_fltr)) {
5421                         rcu_read_unlock();
5422                         rc = 0;
5423                         goto err_free;
5424                 }
5425         }
5426         rcu_read_unlock();
5427
5428         spin_lock_bh(&bp->ntp_fltr_lock);
5429         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5430                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
5431         if (bit_id < 0) {
5432                 spin_unlock_bh(&bp->ntp_fltr_lock);
5433                 rc = -ENOMEM;
5434                 goto err_free;
5435         }
5436
5437         new_fltr->sw_id = (u16)bit_id;
5438         new_fltr->flow_id = flow_id;
5439         new_fltr->rxq = rxq_index;
5440         hlist_add_head_rcu(&new_fltr->hash, head);
5441         bp->ntp_fltr_count++;
5442         spin_unlock_bh(&bp->ntp_fltr_lock);
5443
5444         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5445         schedule_work(&bp->sp_task);
5446
5447         return new_fltr->sw_id;
5448
5449 err_free:
5450         kfree(new_fltr);
5451         return rc;
5452 }
5453
5454 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5455 {
5456         int i;
5457
5458         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5459                 struct hlist_head *head;
5460                 struct hlist_node *tmp;
5461                 struct bnxt_ntuple_filter *fltr;
5462                 int rc;
5463
5464                 head = &bp->ntp_fltr_hash_tbl[i];
5465                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5466                         bool del = false;
5467
5468                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5469                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5470                                                         fltr->flow_id,
5471                                                         fltr->sw_id)) {
5472                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
5473                                                                          fltr);
5474                                         del = true;
5475                                 }
5476                         } else {
5477                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5478                                                                        fltr);
5479                                 if (rc)
5480                                         del = true;
5481                                 else
5482                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
5483                         }
5484
5485                         if (del) {
5486                                 spin_lock_bh(&bp->ntp_fltr_lock);
5487                                 hlist_del_rcu(&fltr->hash);
5488                                 bp->ntp_fltr_count--;
5489                                 spin_unlock_bh(&bp->ntp_fltr_lock);
5490                                 synchronize_rcu();
5491                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5492                                 kfree(fltr);
5493                         }
5494                 }
5495         }
5496 }
5497
5498 #else
5499
5500 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5501 {
5502 }
5503
5504 #endif /* CONFIG_RFS_ACCEL */
5505
5506 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5507                                 __be16 port)
5508 {
5509         struct bnxt *bp = netdev_priv(dev);
5510
5511         if (!netif_running(dev))
5512                 return;
5513
5514         if (sa_family != AF_INET6 && sa_family != AF_INET)
5515                 return;
5516
5517         if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5518                 return;
5519
5520         bp->vxlan_port_cnt++;
5521         if (bp->vxlan_port_cnt == 1) {
5522                 bp->vxlan_port = port;
5523                 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5524                 schedule_work(&bp->sp_task);
5525         }
5526 }
5527
5528 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5529                                 __be16 port)
5530 {
5531         struct bnxt *bp = netdev_priv(dev);
5532
5533         if (!netif_running(dev))
5534                 return;
5535
5536         if (sa_family != AF_INET6 && sa_family != AF_INET)
5537                 return;
5538
5539         if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5540                 bp->vxlan_port_cnt--;
5541
5542                 if (bp->vxlan_port_cnt == 0) {
5543                         set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5544                         schedule_work(&bp->sp_task);
5545                 }
5546         }
5547 }
5548
5549 static const struct net_device_ops bnxt_netdev_ops = {
5550         .ndo_open               = bnxt_open,
5551         .ndo_start_xmit         = bnxt_start_xmit,
5552         .ndo_stop               = bnxt_close,
5553         .ndo_get_stats64        = bnxt_get_stats64,
5554         .ndo_set_rx_mode        = bnxt_set_rx_mode,
5555         .ndo_do_ioctl           = bnxt_ioctl,
5556         .ndo_validate_addr      = eth_validate_addr,
5557         .ndo_set_mac_address    = bnxt_change_mac_addr,
5558         .ndo_change_mtu         = bnxt_change_mtu,
5559         .ndo_fix_features       = bnxt_fix_features,
5560         .ndo_set_features       = bnxt_set_features,
5561         .ndo_tx_timeout         = bnxt_tx_timeout,
5562 #ifdef CONFIG_BNXT_SRIOV
5563         .ndo_get_vf_config      = bnxt_get_vf_config,
5564         .ndo_set_vf_mac         = bnxt_set_vf_mac,
5565         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
5566         .ndo_set_vf_rate        = bnxt_set_vf_bw,
5567         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
5568         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
5569 #endif
5570 #ifdef CONFIG_NET_POLL_CONTROLLER
5571         .ndo_poll_controller    = bnxt_poll_controller,
5572 #endif
5573         .ndo_setup_tc           = bnxt_setup_tc,
5574 #ifdef CONFIG_RFS_ACCEL
5575         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
5576 #endif
5577         .ndo_add_vxlan_port     = bnxt_add_vxlan_port,
5578         .ndo_del_vxlan_port     = bnxt_del_vxlan_port,
5579 #ifdef CONFIG_NET_RX_BUSY_POLL
5580         .ndo_busy_poll          = bnxt_busy_poll,
5581 #endif
5582 };
5583
5584 static void bnxt_remove_one(struct pci_dev *pdev)
5585 {
5586         struct net_device *dev = pci_get_drvdata(pdev);
5587         struct bnxt *bp = netdev_priv(dev);
5588
5589         if (BNXT_PF(bp))
5590                 bnxt_sriov_disable(bp);
5591
5592         unregister_netdev(dev);
5593         cancel_work_sync(&bp->sp_task);
5594         bp->sp_event = 0;
5595
5596         bnxt_free_hwrm_resources(bp);
5597         pci_iounmap(pdev, bp->bar2);
5598         pci_iounmap(pdev, bp->bar1);
5599         pci_iounmap(pdev, bp->bar0);
5600         free_netdev(dev);
5601
5602         pci_release_regions(pdev);
5603         pci_disable_device(pdev);
5604 }
5605
5606 static int bnxt_probe_phy(struct bnxt *bp)
5607 {
5608         int rc = 0;
5609         struct bnxt_link_info *link_info = &bp->link_info;
5610         char phy_ver[PHY_VER_STR_LEN];
5611
5612         rc = bnxt_update_link(bp, false);
5613         if (rc) {
5614                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5615                            rc);
5616                 return rc;
5617         }
5618
5619         /*initialize the ethool setting copy with NVM settings */
5620         if (BNXT_AUTO_MODE(link_info->auto_mode))
5621                 link_info->autoneg |= BNXT_AUTONEG_SPEED;
5622
5623         if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5624                 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5625                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5626                 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5627         } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5628                 link_info->req_flow_ctrl = link_info->force_pause_setting;
5629         }
5630         link_info->req_duplex = link_info->duplex_setting;
5631         if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5632                 link_info->req_link_speed = link_info->auto_link_speed;
5633         else
5634                 link_info->req_link_speed = link_info->force_link_speed;
5635         link_info->advertising = link_info->auto_link_speeds;
5636         snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5637                  link_info->phy_ver[0],
5638                  link_info->phy_ver[1],
5639                  link_info->phy_ver[2]);
5640         strcat(bp->fw_ver_str, phy_ver);
5641         return rc;
5642 }
5643
5644 static int bnxt_get_max_irq(struct pci_dev *pdev)
5645 {
5646         u16 ctrl;
5647
5648         if (!pdev->msix_cap)
5649                 return 1;
5650
5651         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5652         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5653 }
5654
5655 void bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx)
5656 {
5657         int max_rings = 0;
5658
5659         if (BNXT_PF(bp)) {
5660                 *max_tx = bp->pf.max_pf_tx_rings;
5661                 *max_rx = bp->pf.max_pf_rx_rings;
5662                 max_rings = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5663                 max_rings = min_t(int, max_rings, bp->pf.max_stat_ctxs);
5664         } else {
5665 #ifdef CONFIG_BNXT_SRIOV
5666                 *max_tx = bp->vf.max_tx_rings;
5667                 *max_rx = bp->vf.max_rx_rings;
5668                 max_rings = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5669                 max_rings = min_t(int, max_rings, bp->vf.max_stat_ctxs);
5670 #endif
5671         }
5672         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5673                 *max_rx >>= 1;
5674
5675         *max_rx = min_t(int, *max_rx, max_rings);
5676         *max_tx = min_t(int, *max_tx, max_rings);
5677 }
5678
5679 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5680 {
5681         static int version_printed;
5682         struct net_device *dev;
5683         struct bnxt *bp;
5684         int rc, max_rx_rings, max_tx_rings, max_irqs, dflt_rings;
5685
5686         if (version_printed++ == 0)
5687                 pr_info("%s", version);
5688
5689         max_irqs = bnxt_get_max_irq(pdev);
5690         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5691         if (!dev)
5692                 return -ENOMEM;
5693
5694         bp = netdev_priv(dev);
5695
5696         if (bnxt_vf_pciid(ent->driver_data))
5697                 bp->flags |= BNXT_FLAG_VF;
5698
5699         if (pdev->msix_cap) {
5700                 bp->flags |= BNXT_FLAG_MSIX_CAP;
5701                 if (BNXT_PF(bp))
5702                         bp->flags |= BNXT_FLAG_RFS;
5703         }
5704
5705         rc = bnxt_init_board(pdev, dev);
5706         if (rc < 0)
5707                 goto init_err_free;
5708
5709         dev->netdev_ops = &bnxt_netdev_ops;
5710         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5711         dev->ethtool_ops = &bnxt_ethtool_ops;
5712
5713         pci_set_drvdata(pdev, dev);
5714
5715         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5716                            NETIF_F_TSO | NETIF_F_TSO6 |
5717                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5718                            NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5719                            NETIF_F_RXHASH |
5720                            NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5721
5722         if (bp->flags & BNXT_FLAG_RFS)
5723                 dev->hw_features |= NETIF_F_NTUPLE;
5724
5725         dev->hw_enc_features =
5726                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5727                         NETIF_F_TSO | NETIF_F_TSO6 |
5728                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5729                         NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5730         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5731         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5732                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5733         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5734         dev->priv_flags |= IFF_UNICAST_FLT;
5735
5736 #ifdef CONFIG_BNXT_SRIOV
5737         init_waitqueue_head(&bp->sriov_cfg_wait);
5738 #endif
5739         rc = bnxt_alloc_hwrm_resources(bp);
5740         if (rc)
5741                 goto init_err;
5742
5743         mutex_init(&bp->hwrm_cmd_lock);
5744         bnxt_hwrm_ver_get(bp);
5745
5746         rc = bnxt_hwrm_func_drv_rgtr(bp);
5747         if (rc)
5748                 goto init_err;
5749
5750         /* Get the MAX capabilities for this function */
5751         rc = bnxt_hwrm_func_qcaps(bp);
5752         if (rc) {
5753                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5754                            rc);
5755                 rc = -1;
5756                 goto init_err;
5757         }
5758
5759         rc = bnxt_hwrm_queue_qportcfg(bp);
5760         if (rc) {
5761                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5762                            rc);
5763                 rc = -1;
5764                 goto init_err;
5765         }
5766
5767         bnxt_set_tpa_flags(bp);
5768         bnxt_set_ring_params(bp);
5769         dflt_rings = netif_get_num_default_rss_queues();
5770         if (BNXT_PF(bp))
5771                 bp->pf.max_irqs = max_irqs;
5772 #if defined(CONFIG_BNXT_SRIOV)
5773         else
5774                 bp->vf.max_irqs = max_irqs;
5775 #endif
5776         bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5777         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5778         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5779         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5780         bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
5781         bp->num_stat_ctxs = bp->cp_nr_rings;
5782
5783         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5784                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5785
5786         rc = bnxt_probe_phy(bp);
5787         if (rc)
5788                 goto init_err;
5789
5790         rc = register_netdev(dev);
5791         if (rc)
5792                 goto init_err;
5793
5794         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5795                     board_info[ent->driver_data].name,
5796                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
5797
5798         return 0;
5799
5800 init_err:
5801         pci_iounmap(pdev, bp->bar0);
5802         pci_release_regions(pdev);
5803         pci_disable_device(pdev);
5804
5805 init_err_free:
5806         free_netdev(dev);
5807         return rc;
5808 }
5809
5810 static struct pci_driver bnxt_pci_driver = {
5811         .name           = DRV_MODULE_NAME,
5812         .id_table       = bnxt_pci_tbl,
5813         .probe          = bnxt_init_one,
5814         .remove         = bnxt_remove_one,
5815 #if defined(CONFIG_BNXT_SRIOV)
5816         .sriov_configure = bnxt_sriov_configure,
5817 #endif
5818 };
5819
5820 module_pci_driver(bnxt_pci_driver);