GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
317                      FW_PORT_CAP32_ANEG)
318
319 /**
320  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
321  *      @caps16: a 16-bit Port Capabilities value
322  *
323  *      Returns the equivalent 32-bit Port Capabilities value.
324  */
325 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
326 {
327         fw_port_cap32_t caps32 = 0;
328
329         #define CAP16_TO_CAP32(__cap) \
330                 do { \
331                         if (caps16 & FW_PORT_CAP_##__cap) \
332                                 caps32 |= FW_PORT_CAP32_##__cap; \
333                 } while (0)
334
335         CAP16_TO_CAP32(SPEED_100M);
336         CAP16_TO_CAP32(SPEED_1G);
337         CAP16_TO_CAP32(SPEED_25G);
338         CAP16_TO_CAP32(SPEED_10G);
339         CAP16_TO_CAP32(SPEED_40G);
340         CAP16_TO_CAP32(SPEED_100G);
341         CAP16_TO_CAP32(FC_RX);
342         CAP16_TO_CAP32(FC_TX);
343         CAP16_TO_CAP32(ANEG);
344         CAP16_TO_CAP32(MDIX);
345         CAP16_TO_CAP32(MDIAUTO);
346         CAP16_TO_CAP32(FEC_RS);
347         CAP16_TO_CAP32(FEC_BASER_RS);
348         CAP16_TO_CAP32(802_3_PAUSE);
349         CAP16_TO_CAP32(802_3_ASM_DIR);
350
351         #undef CAP16_TO_CAP32
352
353         return caps32;
354 }
355
356 /* Translate Firmware Pause specification to Common Code */
357 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
358 {
359         enum cc_pause cc_pause = 0;
360
361         if (fw_pause & FW_PORT_CAP32_FC_RX)
362                 cc_pause |= PAUSE_RX;
363         if (fw_pause & FW_PORT_CAP32_FC_TX)
364                 cc_pause |= PAUSE_TX;
365
366         return cc_pause;
367 }
368
369 /* Translate Firmware Forward Error Correction specification to Common Code */
370 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
371 {
372         enum cc_fec cc_fec = 0;
373
374         if (fw_fec & FW_PORT_CAP32_FEC_RS)
375                 cc_fec |= FEC_RS;
376         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
377                 cc_fec |= FEC_BASER_RS;
378
379         return cc_fec;
380 }
381
382 /**
383  * Return the highest speed set in the port capabilities, in Mb/s.
384  */
385 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
386 {
387         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
388                 do { \
389                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
390                                 return __speed; \
391                 } while (0)
392
393         TEST_SPEED_RETURN(400G, 400000);
394         TEST_SPEED_RETURN(200G, 200000);
395         TEST_SPEED_RETURN(100G, 100000);
396         TEST_SPEED_RETURN(50G,   50000);
397         TEST_SPEED_RETURN(40G,   40000);
398         TEST_SPEED_RETURN(25G,   25000);
399         TEST_SPEED_RETURN(10G,   10000);
400         TEST_SPEED_RETURN(1G,     1000);
401         TEST_SPEED_RETURN(100M,    100);
402
403         #undef TEST_SPEED_RETURN
404
405         return 0;
406 }
407
408 /*
409  *      init_link_config - initialize a link's SW state
410  *      @lc: structure holding the link state
411  *      @pcaps: link Port Capabilities
412  *      @acaps: link current Advertised Port Capabilities
413  *
414  *      Initializes the SW state maintained for each link, including the link's
415  *      capabilities and default speed/flow-control/autonegotiation settings.
416  */
417 static void init_link_config(struct link_config *lc,
418                              fw_port_cap32_t pcaps,
419                              fw_port_cap32_t acaps)
420 {
421         lc->pcaps = pcaps;
422         lc->lpacaps = 0;
423         lc->speed_caps = 0;
424         lc->speed = 0;
425         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
426
427         /* For Forward Error Control, we default to whatever the Firmware
428          * tells us the Link is currently advertising.
429          */
430         lc->auto_fec = fwcap_to_cc_fec(acaps);
431         lc->requested_fec = FEC_AUTO;
432         lc->fec = lc->auto_fec;
433
434         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
435                 lc->acaps = acaps & ADVERT_MASK;
436                 lc->autoneg = AUTONEG_ENABLE;
437                 lc->requested_fc |= PAUSE_AUTONEG;
438         } else {
439                 lc->acaps = 0;
440                 lc->autoneg = AUTONEG_DISABLE;
441         }
442 }
443
444 /**
445  *      t4vf_port_init - initialize port hardware/software state
446  *      @adapter: the adapter
447  *      @pidx: the adapter port index
448  */
449 int t4vf_port_init(struct adapter *adapter, int pidx)
450 {
451         struct port_info *pi = adap2pinfo(adapter, pidx);
452         unsigned int fw_caps = adapter->params.fw_caps_support;
453         struct fw_vi_cmd vi_cmd, vi_rpl;
454         struct fw_port_cmd port_cmd, port_rpl;
455         enum fw_port_type port_type;
456         int mdio_addr;
457         fw_port_cap32_t pcaps, acaps;
458         int ret;
459
460         /* If we haven't yet determined whether we're talking to Firmware
461          * which knows the new 32-bit Port Capabilities, it's time to find
462          * out now.  This will also tell new Firmware to send us Port Status
463          * Updates using the new 32-bit Port Capabilities version of the
464          * Port Information message.
465          */
466         if (fw_caps == FW_CAPS_UNKNOWN) {
467                 u32 param, val;
468
469                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
470                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
471                 val = 1;
472                 ret = t4vf_set_params(adapter, 1, &param, &val);
473                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
474                 adapter->params.fw_caps_support = fw_caps;
475         }
476
477         /*
478          * Execute a VI Read command to get our Virtual Interface information
479          * like MAC address, etc.
480          */
481         memset(&vi_cmd, 0, sizeof(vi_cmd));
482         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
483                                        FW_CMD_REQUEST_F |
484                                        FW_CMD_READ_F);
485         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
486         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
487         ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
488         if (ret != FW_SUCCESS)
489                 return ret;
490
491         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
492         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
493         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
494
495         /*
496          * If we don't have read access to our port information, we're done
497          * now.  Otherwise, execute a PORT Read command to get it ...
498          */
499         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
500                 return 0;
501
502         memset(&port_cmd, 0, sizeof(port_cmd));
503         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
504                                             FW_CMD_REQUEST_F |
505                                             FW_CMD_READ_F |
506                                             FW_PORT_CMD_PORTID_V(pi->port_id));
507         port_cmd.action_to_len16 = cpu_to_be32(
508                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
509                                      ? FW_PORT_ACTION_GET_PORT_INFO
510                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
511                 FW_LEN16(port_cmd));
512         ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
513         if (ret != FW_SUCCESS)
514                 return ret;
515
516         /* Extract the various fields from the Port Information message. */
517         if (fw_caps == FW_CAPS16) {
518                 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
519
520                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
521                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
522                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
523                              : -1);
524                 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
525                 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
526         } else {
527                 u32 lstatus32 =
528                            be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
529
530                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
531                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
532                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
533                              : -1);
534                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
535                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
536         }
537
538         pi->port_type = port_type;
539         pi->mdio_addr = mdio_addr;
540         pi->mod_type = FW_PORT_MOD_TYPE_NA;
541
542         init_link_config(&pi->link_cfg, pcaps, acaps);
543         return 0;
544 }
545
546 /**
547  *      t4vf_fw_reset - issue a reset to FW
548  *      @adapter: the adapter
549  *
550  *      Issues a reset command to FW.  For a Physical Function this would
551  *      result in the Firmware resetting all of its state.  For a Virtual
552  *      Function this just resets the state associated with the VF.
553  */
554 int t4vf_fw_reset(struct adapter *adapter)
555 {
556         struct fw_reset_cmd cmd;
557
558         memset(&cmd, 0, sizeof(cmd));
559         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
560                                       FW_CMD_WRITE_F);
561         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
562         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
563 }
564
565 /**
566  *      t4vf_query_params - query FW or device parameters
567  *      @adapter: the adapter
568  *      @nparams: the number of parameters
569  *      @params: the parameter names
570  *      @vals: the parameter values
571  *
572  *      Reads the values of firmware or device parameters.  Up to 7 parameters
573  *      can be queried at once.
574  */
575 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
576                              const u32 *params, u32 *vals)
577 {
578         int i, ret;
579         struct fw_params_cmd cmd, rpl;
580         struct fw_params_param *p;
581         size_t len16;
582
583         if (nparams > 7)
584                 return -EINVAL;
585
586         memset(&cmd, 0, sizeof(cmd));
587         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
588                                     FW_CMD_REQUEST_F |
589                                     FW_CMD_READ_F);
590         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
591                                       param[nparams].mnem), 16);
592         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
593         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
594                 p->mnem = htonl(*params++);
595
596         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
597         if (ret == 0)
598                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
599                         *vals++ = be32_to_cpu(p->val);
600         return ret;
601 }
602
603 /**
604  *      t4vf_set_params - sets FW or device parameters
605  *      @adapter: the adapter
606  *      @nparams: the number of parameters
607  *      @params: the parameter names
608  *      @vals: the parameter values
609  *
610  *      Sets the values of firmware or device parameters.  Up to 7 parameters
611  *      can be specified at once.
612  */
613 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
614                     const u32 *params, const u32 *vals)
615 {
616         int i;
617         struct fw_params_cmd cmd;
618         struct fw_params_param *p;
619         size_t len16;
620
621         if (nparams > 7)
622                 return -EINVAL;
623
624         memset(&cmd, 0, sizeof(cmd));
625         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
626                                     FW_CMD_REQUEST_F |
627                                     FW_CMD_WRITE_F);
628         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
629                                       param[nparams]), 16);
630         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
631         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
632                 p->mnem = cpu_to_be32(*params++);
633                 p->val = cpu_to_be32(*vals++);
634         }
635
636         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
637 }
638
639 /**
640  *      t4vf_fl_pkt_align - return the fl packet alignment
641  *      @adapter: the adapter
642  *
643  *      T4 has a single field to specify the packing and padding boundary.
644  *      T5 onwards has separate fields for this and hence the alignment for
645  *      next packet offset is maximum of these two.  And T6 changes the
646  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
647  *      if we put this in low-level Common Code ...
648  *
649  */
650 int t4vf_fl_pkt_align(struct adapter *adapter)
651 {
652         u32 sge_control, sge_control2;
653         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
654
655         sge_control = adapter->params.sge.sge_control;
656
657         /* T4 uses a single control field to specify both the PCIe Padding and
658          * Packing Boundary.  T5 introduced the ability to specify these
659          * separately.  The actual Ingress Packet Data alignment boundary
660          * within Packed Buffer Mode is the maximum of these two
661          * specifications.  (Note that it makes no real practical sense to
662          * have the Pading Boudary be larger than the Packing Boundary but you
663          * could set the chip up that way and, in fact, legacy T4 code would
664          * end doing this because it would initialize the Padding Boundary and
665          * leave the Packing Boundary initialized to 0 (16 bytes).)
666          * Padding Boundary values in T6 starts from 8B,
667          * where as it is 32B for T4 and T5.
668          */
669         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
670                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
671         else
672                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
673
674         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
675
676         fl_align = ingpadboundary;
677         if (!is_t4(adapter->params.chip)) {
678                 /* T5 has a different interpretation of one of the PCIe Packing
679                  * Boundary values.
680                  */
681                 sge_control2 = adapter->params.sge.sge_control2;
682                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
683                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
684                         ingpackboundary = 16;
685                 else
686                         ingpackboundary = 1 << (ingpackboundary +
687                                                 INGPACKBOUNDARY_SHIFT_X);
688
689                 fl_align = max(ingpadboundary, ingpackboundary);
690         }
691         return fl_align;
692 }
693
694 /**
695  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
696  *      @adapter: the adapter
697  *      @qid: the Queue ID
698  *      @qtype: the Ingress or Egress type for @qid
699  *      @pbar2_qoffset: BAR2 Queue Offset
700  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
701  *
702  *      Returns the BAR2 SGE Queue Registers information associated with the
703  *      indicated Absolute Queue ID.  These are passed back in return value
704  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
705  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
706  *
707  *      This may return an error which indicates that BAR2 SGE Queue
708  *      registers aren't available.  If an error is not returned, then the
709  *      following values are returned:
710  *
711  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
712  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
713  *
714  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
715  *      require the "Inferred Queue ID" ability may be used.  E.g. the
716  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
717  *      then these "Inferred Queue ID" register may not be used.
718  */
719 int t4vf_bar2_sge_qregs(struct adapter *adapter,
720                         unsigned int qid,
721                         enum t4_bar2_qtype qtype,
722                         u64 *pbar2_qoffset,
723                         unsigned int *pbar2_qid)
724 {
725         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
726         u64 bar2_page_offset, bar2_qoffset;
727         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
728
729         /* T4 doesn't support BAR2 SGE Queue registers.
730          */
731         if (is_t4(adapter->params.chip))
732                 return -EINVAL;
733
734         /* Get our SGE Page Size parameters.
735          */
736         page_shift = adapter->params.sge.sge_vf_hps + 10;
737         page_size = 1 << page_shift;
738
739         /* Get the right Queues per Page parameters for our Queue.
740          */
741         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
742                      ? adapter->params.sge.sge_vf_eq_qpp
743                      : adapter->params.sge.sge_vf_iq_qpp);
744         qpp_mask = (1 << qpp_shift) - 1;
745
746         /* Calculate the basics of the BAR2 SGE Queue register area:
747          *  o The BAR2 page the Queue registers will be in.
748          *  o The BAR2 Queue ID.
749          *  o The BAR2 Queue ID Offset into the BAR2 page.
750          */
751         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
752         bar2_qid = qid & qpp_mask;
753         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
754
755         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
756          * hardware will infer the Absolute Queue ID simply from the writes to
757          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
758          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
759          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
760          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
761          * from the BAR2 Page and BAR2 Queue ID.
762          *
763          * One important censequence of this is that some BAR2 SGE registers
764          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
765          * there.  But other registers synthesize the SGE Queue ID purely
766          * from the writes to the registers -- the Write Combined Doorbell
767          * Buffer is a good example.  These BAR2 SGE Registers are only
768          * available for those BAR2 SGE Register areas where the SGE Absolute
769          * Queue ID can be inferred from simple writes.
770          */
771         bar2_qoffset = bar2_page_offset;
772         bar2_qinferred = (bar2_qid_offset < page_size);
773         if (bar2_qinferred) {
774                 bar2_qoffset += bar2_qid_offset;
775                 bar2_qid = 0;
776         }
777
778         *pbar2_qoffset = bar2_qoffset;
779         *pbar2_qid = bar2_qid;
780         return 0;
781 }
782
783 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
784 {
785         u32 whoami;
786
787         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
788         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
789                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
790 }
791
792 /**
793  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
794  *      @adapter: the adapter
795  *
796  *      Retrieves various core SGE parameters in the form of hardware SGE
797  *      register values.  The caller is responsible for decoding these as
798  *      needed.  The SGE parameters are stored in @adapter->params.sge.
799  */
800 int t4vf_get_sge_params(struct adapter *adapter)
801 {
802         struct sge_params *sge_params = &adapter->params.sge;
803         u32 params[7], vals[7];
804         int v;
805
806         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
807                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
808         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
809                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
810         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
811                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
812         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
813                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
814         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
815                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
816         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
817                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
818         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
819                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
820         v = t4vf_query_params(adapter, 7, params, vals);
821         if (v)
822                 return v;
823         sge_params->sge_control = vals[0];
824         sge_params->sge_host_page_size = vals[1];
825         sge_params->sge_fl_buffer_size[0] = vals[2];
826         sge_params->sge_fl_buffer_size[1] = vals[3];
827         sge_params->sge_timer_value_0_and_1 = vals[4];
828         sge_params->sge_timer_value_2_and_3 = vals[5];
829         sge_params->sge_timer_value_4_and_5 = vals[6];
830
831         /* T4 uses a single control field to specify both the PCIe Padding and
832          * Packing Boundary.  T5 introduced the ability to specify these
833          * separately with the Padding Boundary in SGE_CONTROL and and Packing
834          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
835          * SGE_CONTROL in order to determine how ingress packet data will be
836          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
837          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
838          * failure grabbing it we throw an error since we can't figure out the
839          * right value.
840          */
841         if (!is_t4(adapter->params.chip)) {
842                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
843                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
844                 v = t4vf_query_params(adapter, 1, params, vals);
845                 if (v != FW_SUCCESS) {
846                         dev_err(adapter->pdev_dev,
847                                 "Unable to get SGE Control2; "
848                                 "probably old firmware.\n");
849                         return v;
850                 }
851                 sge_params->sge_control2 = vals[0];
852         }
853
854         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
856         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
858         v = t4vf_query_params(adapter, 2, params, vals);
859         if (v)
860                 return v;
861         sge_params->sge_ingress_rx_threshold = vals[0];
862         sge_params->sge_congestion_control = vals[1];
863
864         /* For T5 and later we want to use the new BAR2 Doorbells.
865          * Unfortunately, older firmware didn't allow the this register to be
866          * read.
867          */
868         if (!is_t4(adapter->params.chip)) {
869                 unsigned int pf, s_hps, s_qpp;
870
871                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
872                              FW_PARAMS_PARAM_XYZ_V(
873                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
874                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
875                              FW_PARAMS_PARAM_XYZ_V(
876                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
877                 v = t4vf_query_params(adapter, 2, params, vals);
878                 if (v != FW_SUCCESS) {
879                         dev_warn(adapter->pdev_dev,
880                                  "Unable to get VF SGE Queues/Page; "
881                                  "probably old firmware.\n");
882                         return v;
883                 }
884                 sge_params->sge_egress_queues_per_page = vals[0];
885                 sge_params->sge_ingress_queues_per_page = vals[1];
886
887                 /* We need the Queues/Page for our VF.  This is based on the
888                  * PF from which we're instantiated and is indexed in the
889                  * register we just read. Do it once here so other code in
890                  * the driver can just use it.
891                  */
892                 pf = t4vf_get_pf_from_vf(adapter);
893                 s_hps = (HOSTPAGESIZEPF0_S +
894                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
895                 sge_params->sge_vf_hps =
896                         ((sge_params->sge_host_page_size >> s_hps)
897                          & HOSTPAGESIZEPF0_M);
898
899                 s_qpp = (QUEUESPERPAGEPF0_S +
900                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
901                 sge_params->sge_vf_eq_qpp =
902                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
903                          & QUEUESPERPAGEPF0_M);
904                 sge_params->sge_vf_iq_qpp =
905                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
906                          & QUEUESPERPAGEPF0_M);
907         }
908
909         return 0;
910 }
911
912 /**
913  *      t4vf_get_vpd_params - retrieve device VPD paremeters
914  *      @adapter: the adapter
915  *
916  *      Retrives various device Vital Product Data parameters.  The parameters
917  *      are stored in @adapter->params.vpd.
918  */
919 int t4vf_get_vpd_params(struct adapter *adapter)
920 {
921         struct vpd_params *vpd_params = &adapter->params.vpd;
922         u32 params[7], vals[7];
923         int v;
924
925         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
926                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
927         v = t4vf_query_params(adapter, 1, params, vals);
928         if (v)
929                 return v;
930         vpd_params->cclk = vals[0];
931
932         return 0;
933 }
934
935 /**
936  *      t4vf_get_dev_params - retrieve device paremeters
937  *      @adapter: the adapter
938  *
939  *      Retrives various device parameters.  The parameters are stored in
940  *      @adapter->params.dev.
941  */
942 int t4vf_get_dev_params(struct adapter *adapter)
943 {
944         struct dev_params *dev_params = &adapter->params.dev;
945         u32 params[7], vals[7];
946         int v;
947
948         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
949                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
950         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
951                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
952         v = t4vf_query_params(adapter, 2, params, vals);
953         if (v)
954                 return v;
955         dev_params->fwrev = vals[0];
956         dev_params->tprev = vals[1];
957
958         return 0;
959 }
960
961 /**
962  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
963  *      @adapter: the adapter
964  *
965  *      Retrieves global RSS mode and parameters with which we have to live
966  *      and stores them in the @adapter's RSS parameters.
967  */
968 int t4vf_get_rss_glb_config(struct adapter *adapter)
969 {
970         struct rss_params *rss = &adapter->params.rss;
971         struct fw_rss_glb_config_cmd cmd, rpl;
972         int v;
973
974         /*
975          * Execute an RSS Global Configuration read command to retrieve
976          * our RSS configuration.
977          */
978         memset(&cmd, 0, sizeof(cmd));
979         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
980                                       FW_CMD_REQUEST_F |
981                                       FW_CMD_READ_F);
982         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
983         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
984         if (v)
985                 return v;
986
987         /*
988          * Transate the big-endian RSS Global Configuration into our
989          * cpu-endian format based on the RSS mode.  We also do first level
990          * filtering at this point to weed out modes which don't support
991          * VF Drivers ...
992          */
993         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
994                         be32_to_cpu(rpl.u.manual.mode_pkd));
995         switch (rss->mode) {
996         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
997                 u32 word = be32_to_cpu(
998                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
999
1000                 rss->u.basicvirtual.synmapen =
1001                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1002                 rss->u.basicvirtual.syn4tupenipv6 =
1003                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1004                 rss->u.basicvirtual.syn2tupenipv6 =
1005                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1006                 rss->u.basicvirtual.syn4tupenipv4 =
1007                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1008                 rss->u.basicvirtual.syn2tupenipv4 =
1009                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1010
1011                 rss->u.basicvirtual.ofdmapen =
1012                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1013
1014                 rss->u.basicvirtual.tnlmapen =
1015                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1016                 rss->u.basicvirtual.tnlalllookup =
1017                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1018
1019                 rss->u.basicvirtual.hashtoeplitz =
1020                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1021
1022                 /* we need at least Tunnel Map Enable to be set */
1023                 if (!rss->u.basicvirtual.tnlmapen)
1024                         return -EINVAL;
1025                 break;
1026         }
1027
1028         default:
1029                 /* all unknown/unsupported RSS modes result in an error */
1030                 return -EINVAL;
1031         }
1032
1033         return 0;
1034 }
1035
1036 /**
1037  *      t4vf_get_vfres - retrieve VF resource limits
1038  *      @adapter: the adapter
1039  *
1040  *      Retrieves configured resource limits and capabilities for a virtual
1041  *      function.  The results are stored in @adapter->vfres.
1042  */
1043 int t4vf_get_vfres(struct adapter *adapter)
1044 {
1045         struct vf_resources *vfres = &adapter->params.vfres;
1046         struct fw_pfvf_cmd cmd, rpl;
1047         int v;
1048         u32 word;
1049
1050         /*
1051          * Execute PFVF Read command to get VF resource limits; bail out early
1052          * with error on command failure.
1053          */
1054         memset(&cmd, 0, sizeof(cmd));
1055         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1056                                     FW_CMD_REQUEST_F |
1057                                     FW_CMD_READ_F);
1058         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1059         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1060         if (v)
1061                 return v;
1062
1063         /*
1064          * Extract VF resource limits and return success.
1065          */
1066         word = be32_to_cpu(rpl.niqflint_niq);
1067         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1068         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1069
1070         word = be32_to_cpu(rpl.type_to_neq);
1071         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1072         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1073
1074         word = be32_to_cpu(rpl.tc_to_nexactf);
1075         vfres->tc = FW_PFVF_CMD_TC_G(word);
1076         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1077         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1078
1079         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1080         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1081         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1082         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1083
1084         return 0;
1085 }
1086
1087 /**
1088  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1089  *      @adapter: the adapter
1090  *      @viid: Virtual Interface ID
1091  *      @config: pointer to host-native VI RSS Configuration buffer
1092  *
1093  *      Reads the Virtual Interface's RSS configuration information and
1094  *      translates it into CPU-native format.
1095  */
1096 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1097                             union rss_vi_config *config)
1098 {
1099         struct fw_rss_vi_config_cmd cmd, rpl;
1100         int v;
1101
1102         memset(&cmd, 0, sizeof(cmd));
1103         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1104                                      FW_CMD_REQUEST_F |
1105                                      FW_CMD_READ_F |
1106                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1107         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1108         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1109         if (v)
1110                 return v;
1111
1112         switch (adapter->params.rss.mode) {
1113         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1114                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1115
1116                 config->basicvirtual.ip6fourtupen =
1117                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1118                 config->basicvirtual.ip6twotupen =
1119                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1120                 config->basicvirtual.ip4fourtupen =
1121                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1122                 config->basicvirtual.ip4twotupen =
1123                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1124                 config->basicvirtual.udpen =
1125                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1126                 config->basicvirtual.defaultq =
1127                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1128                 break;
1129         }
1130
1131         default:
1132                 return -EINVAL;
1133         }
1134
1135         return 0;
1136 }
1137
1138 /**
1139  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1140  *      @adapter: the adapter
1141  *      @viid: Virtual Interface ID
1142  *      @config: pointer to host-native VI RSS Configuration buffer
1143  *
1144  *      Write the Virtual Interface's RSS configuration information
1145  *      (translating it into firmware-native format before writing).
1146  */
1147 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1148                              union rss_vi_config *config)
1149 {
1150         struct fw_rss_vi_config_cmd cmd, rpl;
1151
1152         memset(&cmd, 0, sizeof(cmd));
1153         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1154                                      FW_CMD_REQUEST_F |
1155                                      FW_CMD_WRITE_F |
1156                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1157         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1158         switch (adapter->params.rss.mode) {
1159         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1160                 u32 word = 0;
1161
1162                 if (config->basicvirtual.ip6fourtupen)
1163                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1164                 if (config->basicvirtual.ip6twotupen)
1165                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1166                 if (config->basicvirtual.ip4fourtupen)
1167                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1168                 if (config->basicvirtual.ip4twotupen)
1169                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1170                 if (config->basicvirtual.udpen)
1171                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1172                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1173                                 config->basicvirtual.defaultq);
1174                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1175                 break;
1176         }
1177
1178         default:
1179                 return -EINVAL;
1180         }
1181
1182         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1183 }
1184
1185 /**
1186  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1187  *      @adapter: the adapter
1188  *      @viid: Virtual Interface of RSS Table Slice
1189  *      @start: starting entry in the table to write
1190  *      @n: how many table entries to write
1191  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1192  *      @nrspq: number of values in @rspq
1193  *
1194  *      Programs the selected part of the VI's RSS mapping table with the
1195  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1196  *      until the full table range is populated.
1197  *
1198  *      The caller must ensure the values in @rspq are in the range 0..1023.
1199  */
1200 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1201                           int start, int n, const u16 *rspq, int nrspq)
1202 {
1203         const u16 *rsp = rspq;
1204         const u16 *rsp_end = rspq+nrspq;
1205         struct fw_rss_ind_tbl_cmd cmd;
1206
1207         /*
1208          * Initialize firmware command template to write the RSS table.
1209          */
1210         memset(&cmd, 0, sizeof(cmd));
1211         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1212                                      FW_CMD_REQUEST_F |
1213                                      FW_CMD_WRITE_F |
1214                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1215         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1216
1217         /*
1218          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1219          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1220          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1221          * reserved.
1222          */
1223         while (n > 0) {
1224                 __be32 *qp = &cmd.iq0_to_iq2;
1225                 int nq = min(n, 32);
1226                 int ret;
1227
1228                 /*
1229                  * Set up the firmware RSS command header to send the next
1230                  * "nq" Ingress Queue IDs to the firmware.
1231                  */
1232                 cmd.niqid = cpu_to_be16(nq);
1233                 cmd.startidx = cpu_to_be16(start);
1234
1235                 /*
1236                  * "nq" more done for the start of the next loop.
1237                  */
1238                 start += nq;
1239                 n -= nq;
1240
1241                 /*
1242                  * While there are still Ingress Queue IDs to stuff into the
1243                  * current firmware RSS command, retrieve them from the
1244                  * Ingress Queue ID array and insert them into the command.
1245                  */
1246                 while (nq > 0) {
1247                         /*
1248                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1249                          * around the Ingress Queue ID array if necessary) and
1250                          * insert them into the firmware RSS command at the
1251                          * current 3-tuple position within the commad.
1252                          */
1253                         u16 qbuf[3];
1254                         u16 *qbp = qbuf;
1255                         int nqbuf = min(3, nq);
1256
1257                         nq -= nqbuf;
1258                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1259                         while (nqbuf) {
1260                                 nqbuf--;
1261                                 *qbp++ = *rsp++;
1262                                 if (rsp >= rsp_end)
1263                                         rsp = rspq;
1264                         }
1265                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1266                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1267                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1268                 }
1269
1270                 /*
1271                  * Send this portion of the RRS table update to the firmware;
1272                  * bail out on any errors.
1273                  */
1274                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1275                 if (ret)
1276                         return ret;
1277         }
1278         return 0;
1279 }
1280
1281 /**
1282  *      t4vf_alloc_vi - allocate a virtual interface on a port
1283  *      @adapter: the adapter
1284  *      @port_id: physical port associated with the VI
1285  *
1286  *      Allocate a new Virtual Interface and bind it to the indicated
1287  *      physical port.  Return the new Virtual Interface Identifier on
1288  *      success, or a [negative] error number on failure.
1289  */
1290 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1291 {
1292         struct fw_vi_cmd cmd, rpl;
1293         int v;
1294
1295         /*
1296          * Execute a VI command to allocate Virtual Interface and return its
1297          * VIID.
1298          */
1299         memset(&cmd, 0, sizeof(cmd));
1300         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1301                                     FW_CMD_REQUEST_F |
1302                                     FW_CMD_WRITE_F |
1303                                     FW_CMD_EXEC_F);
1304         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1305                                          FW_VI_CMD_ALLOC_F);
1306         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1307         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1308         if (v)
1309                 return v;
1310
1311         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1312 }
1313
1314 /**
1315  *      t4vf_free_vi -- free a virtual interface
1316  *      @adapter: the adapter
1317  *      @viid: the virtual interface identifier
1318  *
1319  *      Free a previously allocated Virtual Interface.  Return an error on
1320  *      failure.
1321  */
1322 int t4vf_free_vi(struct adapter *adapter, int viid)
1323 {
1324         struct fw_vi_cmd cmd;
1325
1326         /*
1327          * Execute a VI command to free the Virtual Interface.
1328          */
1329         memset(&cmd, 0, sizeof(cmd));
1330         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1331                                     FW_CMD_REQUEST_F |
1332                                     FW_CMD_EXEC_F);
1333         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1334                                          FW_VI_CMD_FREE_F);
1335         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1336         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1337 }
1338
1339 /**
1340  *      t4vf_enable_vi - enable/disable a virtual interface
1341  *      @adapter: the adapter
1342  *      @viid: the Virtual Interface ID
1343  *      @rx_en: 1=enable Rx, 0=disable Rx
1344  *      @tx_en: 1=enable Tx, 0=disable Tx
1345  *
1346  *      Enables/disables a virtual interface.
1347  */
1348 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1349                    bool rx_en, bool tx_en)
1350 {
1351         struct fw_vi_enable_cmd cmd;
1352
1353         memset(&cmd, 0, sizeof(cmd));
1354         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1355                                      FW_CMD_REQUEST_F |
1356                                      FW_CMD_EXEC_F |
1357                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1358         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1359                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1360                                        FW_LEN16(cmd));
1361         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1362 }
1363
1364 /**
1365  *      t4vf_identify_port - identify a VI's port by blinking its LED
1366  *      @adapter: the adapter
1367  *      @viid: the Virtual Interface ID
1368  *      @nblinks: how many times to blink LED at 2.5 Hz
1369  *
1370  *      Identifies a VI's port by blinking its LED.
1371  */
1372 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1373                        unsigned int nblinks)
1374 {
1375         struct fw_vi_enable_cmd cmd;
1376
1377         memset(&cmd, 0, sizeof(cmd));
1378         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1379                                      FW_CMD_REQUEST_F |
1380                                      FW_CMD_EXEC_F |
1381                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1382         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1383                                        FW_LEN16(cmd));
1384         cmd.blinkdur = cpu_to_be16(nblinks);
1385         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1386 }
1387
1388 /**
1389  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1390  *      @adapter: the adapter
1391  *      @viid: the VI id
1392  *      @mtu: the new MTU or -1 for no change
1393  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1394  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1395  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1396  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1397  *              -1 no change
1398  *
1399  *      Sets Rx properties of a virtual interface.
1400  */
1401 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1402                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1403                     bool sleep_ok)
1404 {
1405         struct fw_vi_rxmode_cmd cmd;
1406
1407         /* convert to FW values */
1408         if (mtu < 0)
1409                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1410         if (promisc < 0)
1411                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1412         if (all_multi < 0)
1413                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1414         if (bcast < 0)
1415                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1416         if (vlanex < 0)
1417                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1418
1419         memset(&cmd, 0, sizeof(cmd));
1420         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1421                                      FW_CMD_REQUEST_F |
1422                                      FW_CMD_WRITE_F |
1423                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1424         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1425         cmd.mtu_to_vlanexen =
1426                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1427                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1428                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1429                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1430                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1431         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1432 }
1433
1434 /**
1435  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1436  *      @adapter: the adapter
1437  *      @viid: the Virtual Interface Identifier
1438  *      @free: if true any existing filters for this VI id are first removed
1439  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1440  *      @addr: the MAC address(es)
1441  *      @idx: where to store the index of each allocated filter
1442  *      @hash: pointer to hash address filter bitmap
1443  *      @sleep_ok: call is allowed to sleep
1444  *
1445  *      Allocates an exact-match filter for each of the supplied addresses and
1446  *      sets it to the corresponding address.  If @idx is not %NULL it should
1447  *      have at least @naddr entries, each of which will be set to the index of
1448  *      the filter allocated for the corresponding MAC address.  If a filter
1449  *      could not be allocated for an address its index is set to 0xffff.
1450  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1451  *      are hashed and update the hash filter bitmap pointed at by @hash.
1452  *
1453  *      Returns a negative error number or the number of filters allocated.
1454  */
1455 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1456                         unsigned int naddr, const u8 **addr, u16 *idx,
1457                         u64 *hash, bool sleep_ok)
1458 {
1459         int offset, ret = 0;
1460         unsigned nfilters = 0;
1461         unsigned int rem = naddr;
1462         struct fw_vi_mac_cmd cmd, rpl;
1463         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1464
1465         if (naddr > max_naddr)
1466                 return -EINVAL;
1467
1468         for (offset = 0; offset < naddr; /**/) {
1469                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1470                                          ? rem
1471                                          : ARRAY_SIZE(cmd.u.exact));
1472                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1473                                                      u.exact[fw_naddr]), 16);
1474                 struct fw_vi_mac_exact *p;
1475                 int i;
1476
1477                 memset(&cmd, 0, sizeof(cmd));
1478                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1479                                              FW_CMD_REQUEST_F |
1480                                              FW_CMD_WRITE_F |
1481                                              (free ? FW_CMD_EXEC_F : 0) |
1482                                              FW_VI_MAC_CMD_VIID_V(viid));
1483                 cmd.freemacs_to_len16 =
1484                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1485                                     FW_CMD_LEN16_V(len16));
1486
1487                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1488                         p->valid_to_idx = cpu_to_be16(
1489                                 FW_VI_MAC_CMD_VALID_F |
1490                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1491                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1492                 }
1493
1494
1495                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1496                                         sleep_ok);
1497                 if (ret && ret != -ENOMEM)
1498                         break;
1499
1500                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1501                         u16 index = FW_VI_MAC_CMD_IDX_G(
1502                                 be16_to_cpu(p->valid_to_idx));
1503
1504                         if (idx)
1505                                 idx[offset+i] =
1506                                         (index >= max_naddr
1507                                          ? 0xffff
1508                                          : index);
1509                         if (index < max_naddr)
1510                                 nfilters++;
1511                         else if (hash)
1512                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1513                 }
1514
1515                 free = false;
1516                 offset += fw_naddr;
1517                 rem -= fw_naddr;
1518         }
1519
1520         /*
1521          * If there were no errors or we merely ran out of room in our MAC
1522          * address arena, return the number of filters actually written.
1523          */
1524         if (ret == 0 || ret == -ENOMEM)
1525                 ret = nfilters;
1526         return ret;
1527 }
1528
1529 /**
1530  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1531  *      @adapter: the adapter
1532  *      @viid: the VI id
1533  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1534  *      @addr: the MAC address(es)
1535  *      @sleep_ok: call is allowed to sleep
1536  *
1537  *      Frees the exact-match filter for each of the supplied addresses
1538  *
1539  *      Returns a negative error number or the number of filters freed.
1540  */
1541 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1542                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1543 {
1544         int offset, ret = 0;
1545         struct fw_vi_mac_cmd cmd;
1546         unsigned int nfilters = 0;
1547         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1548         unsigned int rem = naddr;
1549
1550         if (naddr > max_naddr)
1551                 return -EINVAL;
1552
1553         for (offset = 0; offset < (int)naddr ; /**/) {
1554                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1555                                          rem : ARRAY_SIZE(cmd.u.exact));
1556                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1557                                                      u.exact[fw_naddr]), 16);
1558                 struct fw_vi_mac_exact *p;
1559                 int i;
1560
1561                 memset(&cmd, 0, sizeof(cmd));
1562                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1563                                      FW_CMD_REQUEST_F |
1564                                      FW_CMD_WRITE_F |
1565                                      FW_CMD_EXEC_V(0) |
1566                                      FW_VI_MAC_CMD_VIID_V(viid));
1567                 cmd.freemacs_to_len16 =
1568                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1569                                             FW_CMD_LEN16_V(len16));
1570
1571                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1572                         p->valid_to_idx = cpu_to_be16(
1573                                 FW_VI_MAC_CMD_VALID_F |
1574                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1575                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1576                 }
1577
1578                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1579                                         sleep_ok);
1580                 if (ret)
1581                         break;
1582
1583                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1584                         u16 index = FW_VI_MAC_CMD_IDX_G(
1585                                                 be16_to_cpu(p->valid_to_idx));
1586
1587                         if (index < max_naddr)
1588                                 nfilters++;
1589                 }
1590
1591                 offset += fw_naddr;
1592                 rem -= fw_naddr;
1593         }
1594
1595         if (ret == 0)
1596                 ret = nfilters;
1597         return ret;
1598 }
1599
1600 /**
1601  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1602  *      @adapter: the adapter
1603  *      @viid: the Virtual Interface ID
1604  *      @idx: index of existing filter for old value of MAC address, or -1
1605  *      @addr: the new MAC address value
1606  *      @persist: if idx < 0, the new MAC allocation should be persistent
1607  *
1608  *      Modifies an exact-match filter and sets it to the new MAC address.
1609  *      Note that in general it is not possible to modify the value of a given
1610  *      filter so the generic way to modify an address filter is to free the
1611  *      one being used by the old address value and allocate a new filter for
1612  *      the new address value.  @idx can be -1 if the address is a new
1613  *      addition.
1614  *
1615  *      Returns a negative error number or the index of the filter with the new
1616  *      MAC value.
1617  */
1618 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1619                     int idx, const u8 *addr, bool persist)
1620 {
1621         int ret;
1622         struct fw_vi_mac_cmd cmd, rpl;
1623         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1624         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1625                                              u.exact[1]), 16);
1626         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1627
1628         /*
1629          * If this is a new allocation, determine whether it should be
1630          * persistent (across a "freemacs" operation) or not.
1631          */
1632         if (idx < 0)
1633                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1634
1635         memset(&cmd, 0, sizeof(cmd));
1636         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1637                                      FW_CMD_REQUEST_F |
1638                                      FW_CMD_WRITE_F |
1639                                      FW_VI_MAC_CMD_VIID_V(viid));
1640         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1641         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1642                                       FW_VI_MAC_CMD_IDX_V(idx));
1643         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1644
1645         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1646         if (ret == 0) {
1647                 p = &rpl.u.exact[0];
1648                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1649                 if (ret >= max_mac_addr)
1650                         ret = -ENOMEM;
1651         }
1652         return ret;
1653 }
1654
1655 /**
1656  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1657  *      @adapter: the adapter
1658  *      @viid: the Virtual Interface Identifier
1659  *      @ucast: whether the hash filter should also match unicast addresses
1660  *      @vec: the value to be written to the hash filter
1661  *      @sleep_ok: call is allowed to sleep
1662  *
1663  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1664  */
1665 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1666                        bool ucast, u64 vec, bool sleep_ok)
1667 {
1668         struct fw_vi_mac_cmd cmd;
1669         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1670                                              u.exact[0]), 16);
1671
1672         memset(&cmd, 0, sizeof(cmd));
1673         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1674                                      FW_CMD_REQUEST_F |
1675                                      FW_CMD_WRITE_F |
1676                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1677         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1678                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1679                                             FW_CMD_LEN16_V(len16));
1680         cmd.u.hash.hashvec = cpu_to_be64(vec);
1681         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1682 }
1683
1684 /**
1685  *      t4vf_get_port_stats - collect "port" statistics
1686  *      @adapter: the adapter
1687  *      @pidx: the port index
1688  *      @s: the stats structure to fill
1689  *
1690  *      Collect statistics for the "port"'s Virtual Interface.
1691  */
1692 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1693                         struct t4vf_port_stats *s)
1694 {
1695         struct port_info *pi = adap2pinfo(adapter, pidx);
1696         struct fw_vi_stats_vf fwstats;
1697         unsigned int rem = VI_VF_NUM_STATS;
1698         __be64 *fwsp = (__be64 *)&fwstats;
1699
1700         /*
1701          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1702          * commands.  We could use a Work Request and get all of them at once
1703          * but that's an asynchronous interface which is awkward to use.
1704          */
1705         while (rem) {
1706                 unsigned int ix = VI_VF_NUM_STATS - rem;
1707                 unsigned int nstats = min(6U, rem);
1708                 struct fw_vi_stats_cmd cmd, rpl;
1709                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1710                               sizeof(struct fw_vi_stats_ctl));
1711                 size_t len16 = DIV_ROUND_UP(len, 16);
1712                 int ret;
1713
1714                 memset(&cmd, 0, sizeof(cmd));
1715                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1716                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1717                                              FW_CMD_REQUEST_F |
1718                                              FW_CMD_READ_F);
1719                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1720                 cmd.u.ctl.nstats_ix =
1721                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1722                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1723                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1724                 if (ret)
1725                         return ret;
1726
1727                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1728
1729                 rem -= nstats;
1730                 fwsp += nstats;
1731         }
1732
1733         /*
1734          * Translate firmware statistics into host native statistics.
1735          */
1736         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1737         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1738         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1739         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1740         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1741         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1742         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1743         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1744         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1745
1746         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1747         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1748         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1749         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1750         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1751         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1752
1753         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1754
1755         return 0;
1756 }
1757
1758 /**
1759  *      t4vf_iq_free - free an ingress queue and its free lists
1760  *      @adapter: the adapter
1761  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1762  *      @iqid: ingress queue ID
1763  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1764  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1765  *
1766  *      Frees an ingress queue and its associated free lists, if any.
1767  */
1768 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1769                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1770 {
1771         struct fw_iq_cmd cmd;
1772
1773         memset(&cmd, 0, sizeof(cmd));
1774         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1775                                     FW_CMD_REQUEST_F |
1776                                     FW_CMD_EXEC_F);
1777         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1778                                          FW_LEN16(cmd));
1779         cmd.type_to_iqandstindex =
1780                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1781
1782         cmd.iqid = cpu_to_be16(iqid);
1783         cmd.fl0id = cpu_to_be16(fl0id);
1784         cmd.fl1id = cpu_to_be16(fl1id);
1785         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1786 }
1787
1788 /**
1789  *      t4vf_eth_eq_free - free an Ethernet egress queue
1790  *      @adapter: the adapter
1791  *      @eqid: egress queue ID
1792  *
1793  *      Frees an Ethernet egress queue.
1794  */
1795 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1796 {
1797         struct fw_eq_eth_cmd cmd;
1798
1799         memset(&cmd, 0, sizeof(cmd));
1800         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1801                                     FW_CMD_REQUEST_F |
1802                                     FW_CMD_EXEC_F);
1803         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1804                                          FW_LEN16(cmd));
1805         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1806         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1807 }
1808
1809 /**
1810  *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1811  *      @link_down_rc: Link Down Reason Code
1812  *
1813  *      Returns a string representation of the Link Down Reason Code.
1814  */
1815 const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1816 {
1817         static const char * const reason[] = {
1818                 "Link Down",
1819                 "Remote Fault",
1820                 "Auto-negotiation Failure",
1821                 "Reserved",
1822                 "Insufficient Airflow",
1823                 "Unable To Determine Reason",
1824                 "No RX Signal Detected",
1825                 "Reserved",
1826         };
1827
1828         if (link_down_rc >= ARRAY_SIZE(reason))
1829                 return "Bad Reason Code";
1830
1831         return reason[link_down_rc];
1832 }
1833
1834 /**
1835  *      t4vf_handle_get_port_info - process a FW reply message
1836  *      @pi: the port info
1837  *      @rpl: start of the FW message
1838  *
1839  *      Processes a GET_PORT_INFO FW reply message.
1840  */
1841 void t4vf_handle_get_port_info(struct port_info *pi,
1842                                const struct fw_port_cmd *cmd)
1843 {
1844         int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1845         struct adapter *adapter = pi->adapter;
1846         struct link_config *lc = &pi->link_cfg;
1847         int link_ok, linkdnrc;
1848         enum fw_port_type port_type;
1849         enum fw_port_module_type mod_type;
1850         unsigned int speed, fc, fec;
1851         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1852
1853         /* Extract the various fields from the Port Information message. */
1854         switch (action) {
1855         case FW_PORT_ACTION_GET_PORT_INFO: {
1856                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1857
1858                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1859                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1860                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1861                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1862                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1863                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1864                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1865
1866                 /* Unfortunately the format of the Link Status in the old
1867                  * 16-bit Port Information message isn't the same as the
1868                  * 16-bit Port Capabilities bitfield used everywhere else ...
1869                  */
1870                 linkattr = 0;
1871                 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1872                         linkattr |= FW_PORT_CAP32_FC_RX;
1873                 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1874                         linkattr |= FW_PORT_CAP32_FC_TX;
1875                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1876                         linkattr |= FW_PORT_CAP32_SPEED_100M;
1877                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1878                         linkattr |= FW_PORT_CAP32_SPEED_1G;
1879                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1880                         linkattr |= FW_PORT_CAP32_SPEED_10G;
1881                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1882                         linkattr |= FW_PORT_CAP32_SPEED_25G;
1883                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1884                         linkattr |= FW_PORT_CAP32_SPEED_40G;
1885                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1886                         linkattr |= FW_PORT_CAP32_SPEED_100G;
1887
1888                 break;
1889         }
1890
1891         case FW_PORT_ACTION_GET_PORT_INFO32: {
1892                 u32 lstatus32;
1893
1894                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1895                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1896                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1897                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1898                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1899                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1900                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1901                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1902                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1903                 break;
1904         }
1905
1906         default:
1907                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1908                         be32_to_cpu(cmd->action_to_len16));
1909                 return;
1910         }
1911
1912         fec = fwcap_to_cc_fec(acaps);
1913         fc = fwcap_to_cc_pause(linkattr);
1914         speed = fwcap_to_speed(linkattr);
1915
1916         if (mod_type != pi->mod_type) {
1917                 /* When a new Transceiver Module is inserted, the Firmware
1918                  * will examine any Forward Error Correction parameters
1919                  * present in the Transceiver Module i2c EPROM and determine
1920                  * the supported and recommended FEC settings from those
1921                  * based on IEEE 802.3 standards.  We always record the
1922                  * IEEE 802.3 recommended "automatic" settings.
1923                  */
1924                 lc->auto_fec = fec;
1925
1926                 /* Some versions of the early T6 Firmware "cheated" when
1927                  * handling different Transceiver Modules by changing the
1928                  * underlaying Port Type reported to the Host Drivers.  As
1929                  * such we need to capture whatever Port Type the Firmware
1930                  * sends us and record it in case it's different from what we
1931                  * were told earlier.  Unfortunately, since Firmware is
1932                  * forever, we'll need to keep this code here forever, but in
1933                  * later T6 Firmware it should just be an assignment of the
1934                  * same value already recorded.
1935                  */
1936                 pi->port_type = port_type;
1937
1938                 pi->mod_type = mod_type;
1939                 t4vf_os_portmod_changed(adapter, pi->pidx);
1940         }
1941
1942         if (link_ok != lc->link_ok || speed != lc->speed ||
1943             fc != lc->fc || fec != lc->fec) {   /* something changed */
1944                 if (!link_ok && lc->link_ok) {
1945                         lc->link_down_rc = linkdnrc;
1946                         dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
1947                                  pi->port_id, t4vf_link_down_rc_str(linkdnrc));
1948                 }
1949                 lc->link_ok = link_ok;
1950                 lc->speed = speed;
1951                 lc->fc = fc;
1952                 lc->fec = fec;
1953
1954                 lc->pcaps = pcaps;
1955                 lc->lpacaps = lpacaps;
1956                 lc->acaps = acaps & ADVERT_MASK;
1957
1958                 if (lc->acaps & FW_PORT_CAP32_ANEG) {
1959                         lc->autoneg = AUTONEG_ENABLE;
1960                 } else {
1961                         /* When Autoneg is disabled, user needs to set
1962                          * single speed.
1963                          * Similar to cxgb4_ethtool.c: set_link_ksettings
1964                          */
1965                         lc->acaps = 0;
1966                         lc->speed_caps = fwcap_to_speed(acaps);
1967                         lc->autoneg = AUTONEG_DISABLE;
1968                 }
1969
1970                 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
1971         }
1972 }
1973
1974 /**
1975  *      t4vf_update_port_info - retrieve and update port information if changed
1976  *      @pi: the port_info
1977  *
1978  *      We issue a Get Port Information Command to the Firmware and, if
1979  *      successful, we check to see if anything is different from what we
1980  *      last recorded and update things accordingly.
1981  */
1982 int t4vf_update_port_info(struct port_info *pi)
1983 {
1984         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
1985         struct fw_port_cmd port_cmd;
1986         int ret;
1987
1988         memset(&port_cmd, 0, sizeof(port_cmd));
1989         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
1990                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
1991                                             FW_PORT_CMD_PORTID_V(pi->port_id));
1992         port_cmd.action_to_len16 = cpu_to_be32(
1993                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
1994                                      ? FW_PORT_ACTION_GET_PORT_INFO
1995                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
1996                 FW_LEN16(port_cmd));
1997         ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
1998                            &port_cmd);
1999         if (ret)
2000                 return ret;
2001         t4vf_handle_get_port_info(pi, &port_cmd);
2002         return 0;
2003 }
2004
2005 /**
2006  *      t4vf_handle_fw_rpl - process a firmware reply message
2007  *      @adapter: the adapter
2008  *      @rpl: start of the firmware message
2009  *
2010  *      Processes a firmware message, such as link state change messages.
2011  */
2012 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2013 {
2014         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2015         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2016
2017         switch (opcode) {
2018         case FW_PORT_CMD: {
2019                 /*
2020                  * Link/module state change message.
2021                  */
2022                 const struct fw_port_cmd *port_cmd =
2023                         (const struct fw_port_cmd *)rpl;
2024                 int action = FW_PORT_CMD_ACTION_G(
2025                         be32_to_cpu(port_cmd->action_to_len16));
2026                 int port_id, pidx;
2027
2028                 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2029                     action != FW_PORT_ACTION_GET_PORT_INFO32) {
2030                         dev_err(adapter->pdev_dev,
2031                                 "Unknown firmware PORT reply action %x\n",
2032                                 action);
2033                         break;
2034                 }
2035
2036                 port_id = FW_PORT_CMD_PORTID_G(
2037                         be32_to_cpu(port_cmd->op_to_portid));
2038                 for_each_port(adapter, pidx) {
2039                         struct port_info *pi = adap2pinfo(adapter, pidx);
2040
2041                         if (pi->port_id != port_id)
2042                                 continue;
2043                         t4vf_handle_get_port_info(pi, port_cmd);
2044                 }
2045                 break;
2046         }
2047
2048         default:
2049                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2050                         opcode);
2051         }
2052         return 0;
2053 }
2054
2055 /**
2056  */
2057 int t4vf_prep_adapter(struct adapter *adapter)
2058 {
2059         int err;
2060         unsigned int chipid;
2061
2062         /* Wait for the device to become ready before proceeding ...
2063          */
2064         err = t4vf_wait_dev_ready(adapter);
2065         if (err)
2066                 return err;
2067
2068         /* Default port and clock for debugging in case we can't reach
2069          * firmware.
2070          */
2071         adapter->params.nports = 1;
2072         adapter->params.vfres.pmask = 1;
2073         adapter->params.vpd.cclk = 50000;
2074
2075         adapter->params.chip = 0;
2076         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2077         case CHELSIO_T4:
2078                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2079                 adapter->params.arch.sge_fl_db = DBPRIO_F;
2080                 adapter->params.arch.mps_tcam_size =
2081                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
2082                 break;
2083
2084         case CHELSIO_T5:
2085                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2086                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2087                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2088                 adapter->params.arch.mps_tcam_size =
2089                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2090                 break;
2091
2092         case CHELSIO_T6:
2093                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2094                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2095                 adapter->params.arch.sge_fl_db = 0;
2096                 adapter->params.arch.mps_tcam_size =
2097                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2098                 break;
2099         }
2100
2101         return 0;
2102 }
2103
2104 /**
2105  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2106  *                            the VI of this VF.
2107  *      @adapter: The adapter
2108  *      @pf: The pf associated with vf
2109  *      @naddr: the number of ACL MAC addresses returned in addr
2110  *      @addr: Placeholder for MAC addresses
2111  *
2112  *      Find the MAC address to be set to the VF's VI. The requested MAC address
2113  *      is from the host OS via callback in the PF driver.
2114  */
2115 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2116                         unsigned int *naddr, u8 *addr)
2117 {
2118         struct fw_acl_mac_cmd cmd;
2119         int ret;
2120
2121         memset(&cmd, 0, sizeof(cmd));
2122         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2123                                     FW_CMD_REQUEST_F |
2124                                     FW_CMD_READ_F);
2125         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2126         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2127         if (ret)
2128                 return ret;
2129
2130         if (cmd.nmac < *naddr)
2131                 *naddr = cmd.nmac;
2132
2133         switch (pf) {
2134         case 3:
2135                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2136                 break;
2137         case 2:
2138                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2139                 break;
2140         case 1:
2141                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2142                 break;
2143         case 0:
2144                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2145                 break;
2146         }
2147
2148         return ret;
2149 }