GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
129 #define DPAA_SGT_SIZE 256
130
131 /* Values for the L3R field of the FM Parse Results
132  */
133 /* L3 Type field: First IP Present IPv4 */
134 #define FM_L3_PARSE_RESULT_IPV4 0x8000
135 /* L3 Type field: First IP Present IPv6 */
136 #define FM_L3_PARSE_RESULT_IPV6 0x4000
137 /* Values for the L4R field of the FM Parse Results */
138 /* L4 Type field: UDP */
139 #define FM_L4_PARSE_RESULT_UDP  0x40
140 /* L4 Type field: TCP */
141 #define FM_L4_PARSE_RESULT_TCP  0x20
142
143 /* FD status field indicating whether the FM Parser has attempted to validate
144  * the L4 csum of the frame.
145  * Note that having this bit set doesn't necessarily imply that the checksum
146  * is valid. One would have to check the parse results to find that out.
147  */
148 #define FM_FD_STAT_L4CV         0x00000004
149
150 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
151 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
152
153 #define FSL_DPAA_BPID_INV               0xff
154 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
155 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
156
157 #define DPAA_TX_PRIV_DATA_SIZE  16
158 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
159 #define DPAA_TIME_STAMP_SIZE 8
160 #define DPAA_HASH_RESULTS_SIZE 8
161 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
162                                         dpaa_rx_extra_headroom)
163
164 #define DPAA_ETH_PCD_RXQ_NUM    128
165
166 #define DPAA_ENQUEUE_RETRIES    100000
167
168 enum port_type {RX, TX};
169
170 struct fm_port_fqs {
171         struct dpaa_fq *tx_defq;
172         struct dpaa_fq *tx_errq;
173         struct dpaa_fq *rx_defq;
174         struct dpaa_fq *rx_errq;
175         struct dpaa_fq *rx_pcdq;
176 };
177
178 /* All the dpa bps in use at any moment */
179 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
180
181 /* The raw buffer size must be cacheline aligned */
182 #define DPAA_BP_RAW_SIZE 4096
183 /* When using more than one buffer pool, the raw sizes are as follows:
184  * 1 bp: 4KB
185  * 2 bp: 2KB, 4KB
186  * 3 bp: 1KB, 2KB, 4KB
187  * 4 bp: 1KB, 2KB, 4KB, 8KB
188  */
189 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
190 {
191         size_t res = DPAA_BP_RAW_SIZE / 4;
192         u8 i;
193
194         for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
195                 res *= 2;
196         return res;
197 }
198
199 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
200  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
201  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
202  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
203  * alignment.
204  */
205 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
206
207 static int dpaa_max_frm;
208
209 static int dpaa_rx_extra_headroom;
210
211 #define dpaa_get_max_mtu()      \
212         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
213
214 static int dpaa_netdev_init(struct net_device *net_dev,
215                             const struct net_device_ops *dpaa_ops,
216                             u16 tx_timeout)
217 {
218         struct dpaa_priv *priv = netdev_priv(net_dev);
219         struct device *dev = net_dev->dev.parent;
220         struct dpaa_percpu_priv *percpu_priv;
221         const u8 *mac_addr;
222         int i, err;
223
224         /* Although we access another CPU's private data here
225          * we do it at initialization so it is safe
226          */
227         for_each_possible_cpu(i) {
228                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
229                 percpu_priv->net_dev = net_dev;
230         }
231
232         net_dev->netdev_ops = dpaa_ops;
233         mac_addr = priv->mac_dev->addr;
234
235         net_dev->mem_start = priv->mac_dev->res->start;
236         net_dev->mem_end = priv->mac_dev->res->end;
237
238         net_dev->min_mtu = ETH_MIN_MTU;
239         net_dev->max_mtu = dpaa_get_max_mtu();
240
241         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
242                                  NETIF_F_LLTX | NETIF_F_RXHASH);
243
244         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
245         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
246          * For conformity, we'll still declare GSO explicitly.
247          */
248         net_dev->features |= NETIF_F_GSO;
249         net_dev->features |= NETIF_F_RXCSUM;
250
251         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
252         /* we do not want shared skbs on TX */
253         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
254
255         net_dev->features |= net_dev->hw_features;
256         net_dev->vlan_features = net_dev->features;
257
258         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
259         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
260
261         net_dev->ethtool_ops = &dpaa_ethtool_ops;
262
263         net_dev->needed_headroom = priv->tx_headroom;
264         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
265
266         /* start without the RUNNING flag, phylib controls it later */
267         netif_carrier_off(net_dev);
268
269         err = register_netdev(net_dev);
270         if (err < 0) {
271                 dev_err(dev, "register_netdev() = %d\n", err);
272                 return err;
273         }
274
275         return 0;
276 }
277
278 static int dpaa_stop(struct net_device *net_dev)
279 {
280         struct mac_device *mac_dev;
281         struct dpaa_priv *priv;
282         int i, err, error;
283
284         priv = netdev_priv(net_dev);
285         mac_dev = priv->mac_dev;
286
287         netif_tx_stop_all_queues(net_dev);
288         /* Allow the Fman (Tx) port to process in-flight frames before we
289          * try switching it off.
290          */
291         usleep_range(5000, 10000);
292
293         err = mac_dev->stop(mac_dev);
294         if (err < 0)
295                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
296                           err);
297
298         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
299                 error = fman_port_disable(mac_dev->port[i]);
300                 if (error)
301                         err = error;
302         }
303
304         if (net_dev->phydev)
305                 phy_disconnect(net_dev->phydev);
306         net_dev->phydev = NULL;
307
308         return err;
309 }
310
311 static void dpaa_tx_timeout(struct net_device *net_dev)
312 {
313         struct dpaa_percpu_priv *percpu_priv;
314         const struct dpaa_priv  *priv;
315
316         priv = netdev_priv(net_dev);
317         percpu_priv = this_cpu_ptr(priv->percpu_priv);
318
319         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
320                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
321
322         percpu_priv->stats.tx_errors++;
323 }
324
325 /* Calculates the statistics for the given device by adding the statistics
326  * collected by each CPU.
327  */
328 static void dpaa_get_stats64(struct net_device *net_dev,
329                              struct rtnl_link_stats64 *s)
330 {
331         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
332         struct dpaa_priv *priv = netdev_priv(net_dev);
333         struct dpaa_percpu_priv *percpu_priv;
334         u64 *netstats = (u64 *)s;
335         u64 *cpustats;
336         int i, j;
337
338         for_each_possible_cpu(i) {
339                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
340
341                 cpustats = (u64 *)&percpu_priv->stats;
342
343                 /* add stats from all CPUs */
344                 for (j = 0; j < numstats; j++)
345                         netstats[j] += cpustats[j];
346         }
347 }
348
349 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
350                          void *type_data)
351 {
352         struct dpaa_priv *priv = netdev_priv(net_dev);
353         struct tc_mqprio_qopt *mqprio = type_data;
354         u8 num_tc;
355         int i;
356
357         if (type != TC_SETUP_QDISC_MQPRIO)
358                 return -EOPNOTSUPP;
359
360         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
361         num_tc = mqprio->num_tc;
362
363         if (num_tc == priv->num_tc)
364                 return 0;
365
366         if (!num_tc) {
367                 netdev_reset_tc(net_dev);
368                 goto out;
369         }
370
371         if (num_tc > DPAA_TC_NUM) {
372                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
373                            DPAA_TC_NUM);
374                 return -EINVAL;
375         }
376
377         netdev_set_num_tc(net_dev, num_tc);
378
379         for (i = 0; i < num_tc; i++)
380                 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
381                                     i * DPAA_TC_TXQ_NUM);
382
383 out:
384         priv->num_tc = num_tc ? : 1;
385         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
386         return 0;
387 }
388
389 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
390 {
391         struct dpaa_eth_data *eth_data;
392         struct device *dpaa_dev;
393         struct mac_device *mac_dev;
394
395         dpaa_dev = &pdev->dev;
396         eth_data = dpaa_dev->platform_data;
397         if (!eth_data) {
398                 dev_err(dpaa_dev, "eth_data missing\n");
399                 return ERR_PTR(-ENODEV);
400         }
401         mac_dev = eth_data->mac_dev;
402         if (!mac_dev) {
403                 dev_err(dpaa_dev, "mac_dev missing\n");
404                 return ERR_PTR(-EINVAL);
405         }
406
407         return mac_dev;
408 }
409
410 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
411 {
412         const struct dpaa_priv *priv;
413         struct mac_device *mac_dev;
414         struct sockaddr old_addr;
415         int err;
416
417         priv = netdev_priv(net_dev);
418
419         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
420
421         err = eth_mac_addr(net_dev, addr);
422         if (err < 0) {
423                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
424                 return err;
425         }
426
427         mac_dev = priv->mac_dev;
428
429         err = mac_dev->change_addr(mac_dev->fman_mac,
430                                    (enet_addr_t *)net_dev->dev_addr);
431         if (err < 0) {
432                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
433                           err);
434                 /* reverting to previous address */
435                 eth_mac_addr(net_dev, &old_addr);
436
437                 return err;
438         }
439
440         return 0;
441 }
442
443 static void dpaa_set_rx_mode(struct net_device *net_dev)
444 {
445         const struct dpaa_priv  *priv;
446         int err;
447
448         priv = netdev_priv(net_dev);
449
450         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
451                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
452                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
453                                                  priv->mac_dev->promisc);
454                 if (err < 0)
455                         netif_err(priv, drv, net_dev,
456                                   "mac_dev->set_promisc() = %d\n",
457                                   err);
458         }
459
460         if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
461                 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
462                 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
463                                                   priv->mac_dev->allmulti);
464                 if (err < 0)
465                         netif_err(priv, drv, net_dev,
466                                   "mac_dev->set_allmulti() = %d\n",
467                                   err);
468         }
469
470         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471         if (err < 0)
472                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473                           err);
474 }
475
476 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477 {
478         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479                 return NULL;
480
481         return dpaa_bp_array[bpid];
482 }
483
484 /* checks if this bpool is already allocated */
485 static bool dpaa_bpid2pool_use(int bpid)
486 {
487         if (dpaa_bpid2pool(bpid)) {
488                 atomic_inc(&dpaa_bp_array[bpid]->refs);
489                 return true;
490         }
491
492         return false;
493 }
494
495 /* called only once per bpid by dpaa_bp_alloc_pool() */
496 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497 {
498         dpaa_bp_array[bpid] = dpaa_bp;
499         atomic_set(&dpaa_bp->refs, 1);
500 }
501
502 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503 {
504         int err;
505
506         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508                        __func__);
509                 return -EINVAL;
510         }
511
512         /* If the pool is already specified, we only create one per bpid */
513         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514             dpaa_bpid2pool_use(dpaa_bp->bpid))
515                 return 0;
516
517         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518                 dpaa_bp->pool = bman_new_pool();
519                 if (!dpaa_bp->pool) {
520                         pr_err("%s: bman_new_pool() failed\n",
521                                __func__);
522                         return -ENODEV;
523                 }
524
525                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526         }
527
528         if (dpaa_bp->seed_cb) {
529                 err = dpaa_bp->seed_cb(dpaa_bp);
530                 if (err)
531                         goto pool_seed_failed;
532         }
533
534         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535
536         return 0;
537
538 pool_seed_failed:
539         pr_err("%s: pool seeding failed\n", __func__);
540         bman_free_pool(dpaa_bp->pool);
541
542         return err;
543 }
544
545 /* remove and free all the buffers from the given buffer pool */
546 static void dpaa_bp_drain(struct dpaa_bp *bp)
547 {
548         u8 num = 8;
549         int ret;
550
551         do {
552                 struct bm_buffer bmb[8];
553                 int i;
554
555                 ret = bman_acquire(bp->pool, bmb, num);
556                 if (ret < 0) {
557                         if (num == 8) {
558                                 /* we have less than 8 buffers left;
559                                  * drain them one by one
560                                  */
561                                 num = 1;
562                                 ret = 1;
563                                 continue;
564                         } else {
565                                 /* Pool is fully drained */
566                                 break;
567                         }
568                 }
569
570                 if (bp->free_buf_cb)
571                         for (i = 0; i < num; i++)
572                                 bp->free_buf_cb(bp, &bmb[i]);
573         } while (ret > 0);
574 }
575
576 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577 {
578         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579
580         /* the mapping between bpid and dpaa_bp is done very late in the
581          * allocation procedure; if something failed before the mapping, the bp
582          * was not configured, therefore we don't need the below instructions
583          */
584         if (!bp)
585                 return;
586
587         if (!atomic_dec_and_test(&bp->refs))
588                 return;
589
590         if (bp->free_buf_cb)
591                 dpaa_bp_drain(bp);
592
593         dpaa_bp_array[bp->bpid] = NULL;
594         bman_free_pool(bp->pool);
595 }
596
597 static void dpaa_bps_free(struct dpaa_priv *priv)
598 {
599         int i;
600
601         for (i = 0; i < DPAA_BPS_NUM; i++)
602                 dpaa_bp_free(priv->dpaa_bps[i]);
603 }
604
605 /* Use multiple WQs for FQ assignment:
606  *      - Tx Confirmation queues go to WQ1.
607  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608  *        to be scheduled, in case there are many more FQs in WQ6).
609  *      - Rx Default goes to WQ6.
610  *      - Tx queues go to different WQs depending on their priority. Equal
611  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612  *        WQ0 (highest priority).
613  * This ensures that Tx-confirmed buffers are timely released. In particular,
614  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615  * are greatly outnumbered by other FQs in the system, while
616  * dequeue scheduling is round-robin.
617  */
618 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
619 {
620         switch (fq->fq_type) {
621         case FQ_TYPE_TX_CONFIRM:
622         case FQ_TYPE_TX_CONF_MQ:
623                 fq->wq = 1;
624                 break;
625         case FQ_TYPE_RX_ERROR:
626         case FQ_TYPE_TX_ERROR:
627                 fq->wq = 5;
628                 break;
629         case FQ_TYPE_RX_DEFAULT:
630         case FQ_TYPE_RX_PCD:
631                 fq->wq = 6;
632                 break;
633         case FQ_TYPE_TX:
634                 switch (idx / DPAA_TC_TXQ_NUM) {
635                 case 0:
636                         /* Low priority (best effort) */
637                         fq->wq = 6;
638                         break;
639                 case 1:
640                         /* Medium priority */
641                         fq->wq = 2;
642                         break;
643                 case 2:
644                         /* High priority */
645                         fq->wq = 1;
646                         break;
647                 case 3:
648                         /* Very high priority */
649                         fq->wq = 0;
650                         break;
651                 default:
652                         WARN(1, "Too many TX FQs: more than %d!\n",
653                              DPAA_ETH_TXQ_NUM);
654                 }
655                 break;
656         default:
657                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
658                      fq->fq_type, fq->fqid);
659         }
660 }
661
662 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
663                                      u32 start, u32 count,
664                                      struct list_head *list,
665                                      enum dpaa_fq_type fq_type)
666 {
667         struct dpaa_fq *dpaa_fq;
668         int i;
669
670         dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
671                                GFP_KERNEL);
672         if (!dpaa_fq)
673                 return NULL;
674
675         for (i = 0; i < count; i++) {
676                 dpaa_fq[i].fq_type = fq_type;
677                 dpaa_fq[i].fqid = start ? start + i : 0;
678                 list_add_tail(&dpaa_fq[i].list, list);
679         }
680
681         for (i = 0; i < count; i++)
682                 dpaa_assign_wq(dpaa_fq + i, i);
683
684         return dpaa_fq;
685 }
686
687 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
688                               struct fm_port_fqs *port_fqs)
689 {
690         struct dpaa_fq *dpaa_fq;
691         u32 fq_base, fq_base_aligned, i;
692
693         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
694         if (!dpaa_fq)
695                 goto fq_alloc_failed;
696
697         port_fqs->rx_errq = &dpaa_fq[0];
698
699         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
700         if (!dpaa_fq)
701                 goto fq_alloc_failed;
702
703         port_fqs->rx_defq = &dpaa_fq[0];
704
705         /* the PCD FQIDs range needs to be aligned for correct operation */
706         if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
707                 goto fq_alloc_failed;
708
709         fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
710
711         for (i = fq_base; i < fq_base_aligned; i++)
712                 qman_release_fqid(i);
713
714         for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
715              i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
716                 qman_release_fqid(i);
717
718         dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
719                                 list, FQ_TYPE_RX_PCD);
720         if (!dpaa_fq)
721                 goto fq_alloc_failed;
722
723         port_fqs->rx_pcdq = &dpaa_fq[0];
724
725         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
726                 goto fq_alloc_failed;
727
728         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
729         if (!dpaa_fq)
730                 goto fq_alloc_failed;
731
732         port_fqs->tx_errq = &dpaa_fq[0];
733
734         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
735         if (!dpaa_fq)
736                 goto fq_alloc_failed;
737
738         port_fqs->tx_defq = &dpaa_fq[0];
739
740         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
741                 goto fq_alloc_failed;
742
743         return 0;
744
745 fq_alloc_failed:
746         dev_err(dev, "dpaa_fq_alloc() failed\n");
747         return -ENOMEM;
748 }
749
750 static u32 rx_pool_channel;
751 static DEFINE_SPINLOCK(rx_pool_channel_init);
752
753 static int dpaa_get_channel(void)
754 {
755         spin_lock(&rx_pool_channel_init);
756         if (!rx_pool_channel) {
757                 u32 pool;
758                 int ret;
759
760                 ret = qman_alloc_pool(&pool);
761
762                 if (!ret)
763                         rx_pool_channel = pool;
764         }
765         spin_unlock(&rx_pool_channel_init);
766         if (!rx_pool_channel)
767                 return -ENOMEM;
768         return rx_pool_channel;
769 }
770
771 static void dpaa_release_channel(void)
772 {
773         qman_release_pool(rx_pool_channel);
774 }
775
776 static void dpaa_eth_add_channel(u16 channel)
777 {
778         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
779         const cpumask_t *cpus = qman_affine_cpus();
780         struct qman_portal *portal;
781         int cpu;
782
783         for_each_cpu(cpu, cpus) {
784                 portal = qman_get_affine_portal(cpu);
785                 qman_p_static_dequeue_add(portal, pool);
786         }
787 }
788
789 /* Congestion group state change notification callback.
790  * Stops the device's egress queues while they are congested and
791  * wakes them upon exiting congested state.
792  * Also updates some CGR-related stats.
793  */
794 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
795                            int congested)
796 {
797         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
798                 struct dpaa_priv, cgr_data.cgr);
799
800         if (congested) {
801                 priv->cgr_data.congestion_start_jiffies = jiffies;
802                 netif_tx_stop_all_queues(priv->net_dev);
803                 priv->cgr_data.cgr_congested_count++;
804         } else {
805                 priv->cgr_data.congested_jiffies +=
806                         (jiffies - priv->cgr_data.congestion_start_jiffies);
807                 netif_tx_wake_all_queues(priv->net_dev);
808         }
809 }
810
811 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
812 {
813         struct qm_mcc_initcgr initcgr;
814         u32 cs_th;
815         int err;
816
817         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
818         if (err < 0) {
819                 if (netif_msg_drv(priv))
820                         pr_err("%s: Error %d allocating CGR ID\n",
821                                __func__, err);
822                 goto out_error;
823         }
824         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
825
826         /* Enable Congestion State Change Notifications and CS taildrop */
827         memset(&initcgr, 0, sizeof(initcgr));
828         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
829         initcgr.cgr.cscn_en = QM_CGR_EN;
830
831         /* Set different thresholds based on the MAC speed.
832          * This may turn suboptimal if the MAC is reconfigured at a speed
833          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
834          * In such cases, we ought to reconfigure the threshold, too.
835          */
836         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
837                 cs_th = DPAA_CS_THRESHOLD_10G;
838         else
839                 cs_th = DPAA_CS_THRESHOLD_1G;
840         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
841
842         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
843         initcgr.cgr.cstd_en = QM_CGR_EN;
844
845         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
846                               &initcgr);
847         if (err < 0) {
848                 if (netif_msg_drv(priv))
849                         pr_err("%s: Error %d creating CGR with ID %d\n",
850                                __func__, err, priv->cgr_data.cgr.cgrid);
851                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
852                 goto out_error;
853         }
854         if (netif_msg_drv(priv))
855                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
856                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
857                          priv->cgr_data.cgr.chan);
858
859 out_error:
860         return err;
861 }
862
863 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
864                                       struct dpaa_fq *fq,
865                                       const struct qman_fq *template)
866 {
867         fq->fq_base = *template;
868         fq->net_dev = priv->net_dev;
869
870         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
871         fq->channel = priv->channel;
872 }
873
874 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
875                                      struct dpaa_fq *fq,
876                                      struct fman_port *port,
877                                      const struct qman_fq *template)
878 {
879         fq->fq_base = *template;
880         fq->net_dev = priv->net_dev;
881
882         if (port) {
883                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
884                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
885         } else {
886                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
887         }
888 }
889
890 static void dpaa_fq_setup(struct dpaa_priv *priv,
891                           const struct dpaa_fq_cbs *fq_cbs,
892                           struct fman_port *tx_port)
893 {
894         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
895         const cpumask_t *affine_cpus = qman_affine_cpus();
896         u16 channels[NR_CPUS];
897         struct dpaa_fq *fq;
898
899         for_each_cpu(cpu, affine_cpus)
900                 channels[num_portals++] = qman_affine_channel(cpu);
901
902         if (num_portals == 0)
903                 dev_err(priv->net_dev->dev.parent,
904                         "No Qman software (affine) channels found");
905
906         /* Initialize each FQ in the list */
907         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
908                 switch (fq->fq_type) {
909                 case FQ_TYPE_RX_DEFAULT:
910                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
911                         break;
912                 case FQ_TYPE_RX_ERROR:
913                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
914                         break;
915                 case FQ_TYPE_RX_PCD:
916                         if (!num_portals)
917                                 continue;
918                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
919                         fq->channel = channels[portal_cnt++ % num_portals];
920                         break;
921                 case FQ_TYPE_TX:
922                         dpaa_setup_egress(priv, fq, tx_port,
923                                           &fq_cbs->egress_ern);
924                         /* If we have more Tx queues than the number of cores,
925                          * just ignore the extra ones.
926                          */
927                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
928                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
929                         break;
930                 case FQ_TYPE_TX_CONF_MQ:
931                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
932                         /* fall through */
933                 case FQ_TYPE_TX_CONFIRM:
934                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
935                         break;
936                 case FQ_TYPE_TX_ERROR:
937                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
938                         break;
939                 default:
940                         dev_warn(priv->net_dev->dev.parent,
941                                  "Unknown FQ type detected!\n");
942                         break;
943                 }
944         }
945
946          /* Make sure all CPUs receive a corresponding Tx queue. */
947         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
948                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
949                         if (fq->fq_type != FQ_TYPE_TX)
950                                 continue;
951                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
952                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
953                                 break;
954                 }
955         }
956 }
957
958 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
959                                    struct qman_fq *tx_fq)
960 {
961         int i;
962
963         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
964                 if (priv->egress_fqs[i] == tx_fq)
965                         return i;
966
967         return -EINVAL;
968 }
969
970 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
971 {
972         const struct dpaa_priv  *priv;
973         struct qman_fq *confq = NULL;
974         struct qm_mcc_initfq initfq;
975         struct device *dev;
976         struct qman_fq *fq;
977         int queue_id;
978         int err;
979
980         priv = netdev_priv(dpaa_fq->net_dev);
981         dev = dpaa_fq->net_dev->dev.parent;
982
983         if (dpaa_fq->fqid == 0)
984                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
985
986         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
987
988         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
989         if (err) {
990                 dev_err(dev, "qman_create_fq() failed\n");
991                 return err;
992         }
993         fq = &dpaa_fq->fq_base;
994
995         if (dpaa_fq->init) {
996                 memset(&initfq, 0, sizeof(initfq));
997
998                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
999                 /* Note: we may get to keep an empty FQ in cache */
1000                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1001
1002                 /* Try to reduce the number of portal interrupts for
1003                  * Tx Confirmation FQs.
1004                  */
1005                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1006                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1007
1008                 /* FQ placement */
1009                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1010
1011                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1012
1013                 /* Put all egress queues in a congestion group of their own.
1014                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
1015                  * rather than Tx - but they nonetheless account for the
1016                  * memory footprint on behalf of egress traffic. We therefore
1017                  * place them in the netdev's CGR, along with the Tx FQs.
1018                  */
1019                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1020                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1021                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1022                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1023                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1024                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1025                         /* Set a fixed overhead accounting, in an attempt to
1026                          * reduce the impact of fixed-size skb shells and the
1027                          * driver's needed headroom on system memory. This is
1028                          * especially the case when the egress traffic is
1029                          * composed of small datagrams.
1030                          * Unfortunately, QMan's OAL value is capped to an
1031                          * insufficient value, but even that is better than
1032                          * no overhead accounting at all.
1033                          */
1034                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1035                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1036                         qm_fqd_set_oal(&initfq.fqd,
1037                                        min(sizeof(struct sk_buff) +
1038                                        priv->tx_headroom,
1039                                        (size_t)FSL_QMAN_MAX_OAL));
1040                 }
1041
1042                 if (td_enable) {
1043                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1044                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1045                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1046                 }
1047
1048                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1049                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1050                         if (queue_id >= 0)
1051                                 confq = priv->conf_fqs[queue_id];
1052                         if (confq) {
1053                                 initfq.we_mask |=
1054                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1055                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1056                          *           A2V=1 (contextA A2 field is valid)
1057                          *           A0V=1 (contextA A0 field is valid)
1058                          *           B0V=1 (contextB field is valid)
1059                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1060                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1061                          */
1062                                 qm_fqd_context_a_set64(&initfq.fqd,
1063                                                        0x1e00000080000000ULL);
1064                         }
1065                 }
1066
1067                 /* Put all the ingress queues in our "ingress CGR". */
1068                 if (priv->use_ingress_cgr &&
1069                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1070                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1071                      dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1072                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1073                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1074                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1075                         /* Set a fixed overhead accounting, just like for the
1076                          * egress CGR.
1077                          */
1078                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1079                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1080                         qm_fqd_set_oal(&initfq.fqd,
1081                                        min(sizeof(struct sk_buff) +
1082                                        priv->tx_headroom,
1083                                        (size_t)FSL_QMAN_MAX_OAL));
1084                 }
1085
1086                 /* Initialization common to all ingress queues */
1087                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1088                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1089                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1090                                                 QM_FQCTRL_CTXASTASHING);
1091                         initfq.fqd.context_a.stashing.exclusive =
1092                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1093                                 QM_STASHING_EXCL_ANNOTATION;
1094                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1095                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1096                                                          64));
1097                 }
1098
1099                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1100                 if (err < 0) {
1101                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1102                                 qman_fq_fqid(fq), err);
1103                         qman_destroy_fq(fq);
1104                         return err;
1105                 }
1106         }
1107
1108         dpaa_fq->fqid = qman_fq_fqid(fq);
1109
1110         return 0;
1111 }
1112
1113 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1114 {
1115         const struct dpaa_priv  *priv;
1116         struct dpaa_fq *dpaa_fq;
1117         int err, error;
1118
1119         err = 0;
1120
1121         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1122         priv = netdev_priv(dpaa_fq->net_dev);
1123
1124         if (dpaa_fq->init) {
1125                 err = qman_retire_fq(fq, NULL);
1126                 if (err < 0 && netif_msg_drv(priv))
1127                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1128                                 qman_fq_fqid(fq), err);
1129
1130                 error = qman_oos_fq(fq);
1131                 if (error < 0 && netif_msg_drv(priv)) {
1132                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1133                                 qman_fq_fqid(fq), error);
1134                         if (err >= 0)
1135                                 err = error;
1136                 }
1137         }
1138
1139         qman_destroy_fq(fq);
1140         list_del(&dpaa_fq->list);
1141
1142         return err;
1143 }
1144
1145 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1146 {
1147         struct dpaa_fq *dpaa_fq, *tmp;
1148         int err, error;
1149
1150         err = 0;
1151         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1152                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1153                 if (error < 0 && err >= 0)
1154                         err = error;
1155         }
1156
1157         return err;
1158 }
1159
1160 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1161                                  struct dpaa_fq *defq,
1162                                  struct dpaa_buffer_layout *buf_layout)
1163 {
1164         struct fman_buffer_prefix_content buf_prefix_content;
1165         struct fman_port_params params;
1166         int err;
1167
1168         memset(&params, 0, sizeof(params));
1169         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1170
1171         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1172         buf_prefix_content.pass_prs_result = true;
1173         buf_prefix_content.pass_hash_result = true;
1174         buf_prefix_content.pass_time_stamp = true;
1175         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1176
1177         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1178         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1179
1180         err = fman_port_config(port, &params);
1181         if (err) {
1182                 pr_err("%s: fman_port_config failed\n", __func__);
1183                 return err;
1184         }
1185
1186         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1187         if (err) {
1188                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1189                        __func__);
1190                 return err;
1191         }
1192
1193         err = fman_port_init(port);
1194         if (err)
1195                 pr_err("%s: fm_port_init failed\n", __func__);
1196
1197         return err;
1198 }
1199
1200 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1201                                  size_t count, struct dpaa_fq *errq,
1202                                  struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1203                                  struct dpaa_buffer_layout *buf_layout)
1204 {
1205         struct fman_buffer_prefix_content buf_prefix_content;
1206         struct fman_port_rx_params *rx_p;
1207         struct fman_port_params params;
1208         int i, err;
1209
1210         memset(&params, 0, sizeof(params));
1211         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1212
1213         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1214         buf_prefix_content.pass_prs_result = true;
1215         buf_prefix_content.pass_hash_result = true;
1216         buf_prefix_content.pass_time_stamp = true;
1217         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1218
1219         rx_p = &params.specific_params.rx_params;
1220         rx_p->err_fqid = errq->fqid;
1221         rx_p->dflt_fqid = defq->fqid;
1222         if (pcdq) {
1223                 rx_p->pcd_base_fqid = pcdq->fqid;
1224                 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1225         }
1226
1227         count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1228         rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1229         for (i = 0; i < count; i++) {
1230                 rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1231                 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1232         }
1233
1234         err = fman_port_config(port, &params);
1235         if (err) {
1236                 pr_err("%s: fman_port_config failed\n", __func__);
1237                 return err;
1238         }
1239
1240         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1241         if (err) {
1242                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1243                        __func__);
1244                 return err;
1245         }
1246
1247         err = fman_port_init(port);
1248         if (err)
1249                 pr_err("%s: fm_port_init failed\n", __func__);
1250
1251         return err;
1252 }
1253
1254 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1255                                struct dpaa_bp **bps, size_t count,
1256                                struct fm_port_fqs *port_fqs,
1257                                struct dpaa_buffer_layout *buf_layout,
1258                                struct device *dev)
1259 {
1260         struct fman_port *rxport = mac_dev->port[RX];
1261         struct fman_port *txport = mac_dev->port[TX];
1262         int err;
1263
1264         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1265                                     port_fqs->tx_defq, &buf_layout[TX]);
1266         if (err)
1267                 return err;
1268
1269         err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1270                                     port_fqs->rx_defq, port_fqs->rx_pcdq,
1271                                     &buf_layout[RX]);
1272
1273         return err;
1274 }
1275
1276 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1277                              struct bm_buffer *bmb, int cnt)
1278 {
1279         int err;
1280
1281         err = bman_release(dpaa_bp->pool, bmb, cnt);
1282         /* Should never occur, address anyway to avoid leaking the buffers */
1283         if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1284                 while (cnt-- > 0)
1285                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1286
1287         return cnt;
1288 }
1289
1290 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1291 {
1292         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1293         struct dpaa_bp *dpaa_bp;
1294         int i = 0, j;
1295
1296         memset(bmb, 0, sizeof(bmb));
1297
1298         do {
1299                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1300                 if (!dpaa_bp)
1301                         return;
1302
1303                 j = 0;
1304                 do {
1305                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1306
1307                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1308
1309                         j++; i++;
1310                 } while (j < ARRAY_SIZE(bmb) &&
1311                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1312                                 sgt[i - 1].bpid == sgt[i].bpid);
1313
1314                 dpaa_bman_release(dpaa_bp, bmb, j);
1315         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1316 }
1317
1318 static void dpaa_fd_release(const struct net_device *net_dev,
1319                             const struct qm_fd *fd)
1320 {
1321         struct qm_sg_entry *sgt;
1322         struct dpaa_bp *dpaa_bp;
1323         struct bm_buffer bmb;
1324         dma_addr_t addr;
1325         void *vaddr;
1326
1327         bmb.data = 0;
1328         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1329
1330         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1331         if (!dpaa_bp)
1332                 return;
1333
1334         if (qm_fd_get_format(fd) == qm_fd_sg) {
1335                 vaddr = phys_to_virt(qm_fd_addr(fd));
1336                 sgt = vaddr + qm_fd_get_offset(fd);
1337
1338                 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1339                                  DMA_FROM_DEVICE);
1340
1341                 dpaa_release_sgt_members(sgt);
1342
1343                 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1344                                       DMA_FROM_DEVICE);
1345                 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1346                         dev_err(dpaa_bp->dev, "DMA mapping failed");
1347                         return;
1348                 }
1349                 bm_buffer_set64(&bmb, addr);
1350         }
1351
1352         dpaa_bman_release(dpaa_bp, &bmb, 1);
1353 }
1354
1355 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1356                       const union qm_mr_entry *msg)
1357 {
1358         switch (msg->ern.rc & QM_MR_RC_MASK) {
1359         case QM_MR_RC_CGR_TAILDROP:
1360                 percpu_priv->ern_cnt.cg_tdrop++;
1361                 break;
1362         case QM_MR_RC_WRED:
1363                 percpu_priv->ern_cnt.wred++;
1364                 break;
1365         case QM_MR_RC_ERROR:
1366                 percpu_priv->ern_cnt.err_cond++;
1367                 break;
1368         case QM_MR_RC_ORPWINDOW_EARLY:
1369                 percpu_priv->ern_cnt.early_window++;
1370                 break;
1371         case QM_MR_RC_ORPWINDOW_LATE:
1372                 percpu_priv->ern_cnt.late_window++;
1373                 break;
1374         case QM_MR_RC_FQ_TAILDROP:
1375                 percpu_priv->ern_cnt.fq_tdrop++;
1376                 break;
1377         case QM_MR_RC_ORPWINDOW_RETIRED:
1378                 percpu_priv->ern_cnt.fq_retired++;
1379                 break;
1380         case QM_MR_RC_ORP_ZERO:
1381                 percpu_priv->ern_cnt.orp_zero++;
1382                 break;
1383         }
1384 }
1385
1386 /* Turn on HW checksum computation for this outgoing frame.
1387  * If the current protocol is not something we support in this regard
1388  * (or if the stack has already computed the SW checksum), we do nothing.
1389  *
1390  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1391  * otherwise.
1392  *
1393  * Note that this function may modify the fd->cmd field and the skb data buffer
1394  * (the Parse Results area).
1395  */
1396 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1397                                struct sk_buff *skb,
1398                                struct qm_fd *fd,
1399                                char *parse_results)
1400 {
1401         struct fman_prs_result *parse_result;
1402         u16 ethertype = ntohs(skb->protocol);
1403         struct ipv6hdr *ipv6h = NULL;
1404         struct iphdr *iph;
1405         int retval = 0;
1406         u8 l4_proto;
1407
1408         if (skb->ip_summed != CHECKSUM_PARTIAL)
1409                 return 0;
1410
1411         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1412          * L4 alone from the FM configuration anyway.
1413          */
1414
1415         /* Fill in some fields of the Parse Results array, so the FMan
1416          * can find them as if they came from the FMan Parser.
1417          */
1418         parse_result = (struct fman_prs_result *)parse_results;
1419
1420         /* If we're dealing with VLAN, get the real Ethernet type */
1421         if (ethertype == ETH_P_8021Q) {
1422                 /* We can't always assume the MAC header is set correctly
1423                  * by the stack, so reset to beginning of skb->data
1424                  */
1425                 skb_reset_mac_header(skb);
1426                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1427         }
1428
1429         /* Fill in the relevant L3 parse result fields
1430          * and read the L4 protocol type
1431          */
1432         switch (ethertype) {
1433         case ETH_P_IP:
1434                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1435                 iph = ip_hdr(skb);
1436                 WARN_ON(!iph);
1437                 l4_proto = iph->protocol;
1438                 break;
1439         case ETH_P_IPV6:
1440                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1441                 ipv6h = ipv6_hdr(skb);
1442                 WARN_ON(!ipv6h);
1443                 l4_proto = ipv6h->nexthdr;
1444                 break;
1445         default:
1446                 /* We shouldn't even be here */
1447                 if (net_ratelimit())
1448                         netif_alert(priv, tx_err, priv->net_dev,
1449                                     "Can't compute HW csum for L3 proto 0x%x\n",
1450                                     ntohs(skb->protocol));
1451                 retval = -EIO;
1452                 goto return_error;
1453         }
1454
1455         /* Fill in the relevant L4 parse result fields */
1456         switch (l4_proto) {
1457         case IPPROTO_UDP:
1458                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1459                 break;
1460         case IPPROTO_TCP:
1461                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1462                 break;
1463         default:
1464                 if (net_ratelimit())
1465                         netif_alert(priv, tx_err, priv->net_dev,
1466                                     "Can't compute HW csum for L4 proto 0x%x\n",
1467                                     l4_proto);
1468                 retval = -EIO;
1469                 goto return_error;
1470         }
1471
1472         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1473         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1474         parse_result->l4_off = (u8)skb_transport_offset(skb);
1475
1476         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1477         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1478
1479         /* On P1023 and similar platforms fd->cmd interpretation could
1480          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1481          * is not set so we do not need to check; in the future, if/when
1482          * using context_a we need to check this bit
1483          */
1484
1485 return_error:
1486         return retval;
1487 }
1488
1489 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1490 {
1491         struct device *dev = dpaa_bp->dev;
1492         struct bm_buffer bmb[8];
1493         dma_addr_t addr;
1494         void *new_buf;
1495         u8 i;
1496
1497         for (i = 0; i < 8; i++) {
1498                 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1499                 if (unlikely(!new_buf)) {
1500                         dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1501                                 dpaa_bp->raw_size);
1502                         goto release_previous_buffs;
1503                 }
1504                 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1505
1506                 addr = dma_map_single(dev, new_buf,
1507                                       dpaa_bp->size, DMA_FROM_DEVICE);
1508                 if (unlikely(dma_mapping_error(dev, addr))) {
1509                         dev_err(dpaa_bp->dev, "DMA map failed");
1510                         goto release_previous_buffs;
1511                 }
1512
1513                 bmb[i].data = 0;
1514                 bm_buffer_set64(&bmb[i], addr);
1515         }
1516
1517 release_bufs:
1518         return dpaa_bman_release(dpaa_bp, bmb, i);
1519
1520 release_previous_buffs:
1521         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1522
1523         bm_buffer_set64(&bmb[i], 0);
1524         /* Avoid releasing a completely null buffer; bman_release() requires
1525          * at least one buffer.
1526          */
1527         if (likely(i))
1528                 goto release_bufs;
1529
1530         return 0;
1531 }
1532
1533 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1534 {
1535         int i;
1536
1537         /* Give each CPU an allotment of "config_count" buffers */
1538         for_each_possible_cpu(i) {
1539                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1540                 int j;
1541
1542                 /* Although we access another CPU's counters here
1543                  * we do it at boot time so it is safe
1544                  */
1545                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1546                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1547         }
1548         return 0;
1549 }
1550
1551 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1552  * REFILL_THRESHOLD.
1553  */
1554 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1555 {
1556         int count = *countptr;
1557         int new_bufs;
1558
1559         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1560                 do {
1561                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1562                         if (unlikely(!new_bufs)) {
1563                                 /* Avoid looping forever if we've temporarily
1564                                  * run out of memory. We'll try again at the
1565                                  * next NAPI cycle.
1566                                  */
1567                                 break;
1568                         }
1569                         count += new_bufs;
1570                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1571
1572                 *countptr = count;
1573                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1574                         return -ENOMEM;
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1581 {
1582         struct dpaa_bp *dpaa_bp;
1583         int *countptr;
1584         int res, i;
1585
1586         for (i = 0; i < DPAA_BPS_NUM; i++) {
1587                 dpaa_bp = priv->dpaa_bps[i];
1588                 if (!dpaa_bp)
1589                         return -EINVAL;
1590                 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1591                 res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1592                 if (res)
1593                         return res;
1594         }
1595         return 0;
1596 }
1597
1598 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1599  * either contiguous frames or scatter/gather ones.
1600  * Skb freeing is not handled here.
1601  *
1602  * This function may be called on error paths in the Tx function, so guard
1603  * against cases when not all fd relevant fields were filled in. To avoid
1604  * reading the invalid transmission timestamp for the error paths set ts to
1605  * false.
1606  *
1607  * Return the skb backpointer, since for S/G frames the buffer containing it
1608  * gets freed here.
1609  */
1610 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1611                                           const struct qm_fd *fd, bool ts)
1612 {
1613         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1614         struct device *dev = priv->net_dev->dev.parent;
1615         struct skb_shared_hwtstamps shhwtstamps;
1616         dma_addr_t addr = qm_fd_addr(fd);
1617         const struct qm_sg_entry *sgt;
1618         struct sk_buff **skbh, *skb;
1619         int nr_frags, i;
1620         u64 ns;
1621
1622         skbh = (struct sk_buff **)phys_to_virt(addr);
1623         skb = *skbh;
1624
1625         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1626                 nr_frags = skb_shinfo(skb)->nr_frags;
1627                 dma_unmap_single(dev, addr,
1628                                  qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1629                                  dma_dir);
1630
1631                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1632                  * it's from lowmem.
1633                  */
1634                 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1635
1636                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1637                 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1638                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1639
1640                 /* remaining pages were mapped with skb_frag_dma_map() */
1641                 for (i = 1; i <= nr_frags; i++) {
1642                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1643
1644                         dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1645                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1646                 }
1647         } else {
1648                 dma_unmap_single(dev, addr,
1649                                  skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1650         }
1651
1652         /* DMA unmapping is required before accessing the HW provided info */
1653         if (ts && priv->tx_tstamp &&
1654             skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1655                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1656
1657                 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], (void *)skbh,
1658                                           &ns)) {
1659                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
1660                         skb_tstamp_tx(skb, &shhwtstamps);
1661                 } else {
1662                         dev_warn(dev, "fman_port_get_tstamp failed!\n");
1663                 }
1664         }
1665
1666         if (qm_fd_get_format(fd) == qm_fd_sg)
1667                 /* Free the page frag that we allocated on Tx */
1668                 skb_free_frag(phys_to_virt(addr));
1669
1670         return skb;
1671 }
1672
1673 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1674 {
1675         /* The parser has run and performed L4 checksum validation.
1676          * We know there were no parser errors (and implicitly no
1677          * L4 csum error), otherwise we wouldn't be here.
1678          */
1679         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1680             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1681                 return CHECKSUM_UNNECESSARY;
1682
1683         /* We're here because either the parser didn't run or the L4 checksum
1684          * was not verified. This may include the case of a UDP frame with
1685          * checksum zero or an L4 proto other than TCP/UDP
1686          */
1687         return CHECKSUM_NONE;
1688 }
1689
1690 /* Build a linear skb around the received buffer.
1691  * We are guaranteed there is enough room at the end of the data buffer to
1692  * accommodate the shared info area of the skb.
1693  */
1694 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1695                                         const struct qm_fd *fd)
1696 {
1697         ssize_t fd_off = qm_fd_get_offset(fd);
1698         dma_addr_t addr = qm_fd_addr(fd);
1699         struct dpaa_bp *dpaa_bp;
1700         struct sk_buff *skb;
1701         void *vaddr;
1702
1703         vaddr = phys_to_virt(addr);
1704         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1705
1706         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1707         if (!dpaa_bp)
1708                 goto free_buffer;
1709
1710         skb = build_skb(vaddr, dpaa_bp->size +
1711                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1712         if (unlikely(!skb)) {
1713                 WARN_ONCE(1, "Build skb failure on Rx\n");
1714                 goto free_buffer;
1715         }
1716         WARN_ON(fd_off != priv->rx_headroom);
1717         skb_reserve(skb, fd_off);
1718         skb_put(skb, qm_fd_get_length(fd));
1719
1720         skb->ip_summed = rx_csum_offload(priv, fd);
1721
1722         return skb;
1723
1724 free_buffer:
1725         skb_free_frag(vaddr);
1726         return NULL;
1727 }
1728
1729 /* Build an skb with the data of the first S/G entry in the linear portion and
1730  * the rest of the frame as skb fragments.
1731  *
1732  * The page fragment holding the S/G Table is recycled here.
1733  */
1734 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1735                                     const struct qm_fd *fd)
1736 {
1737         ssize_t fd_off = qm_fd_get_offset(fd);
1738         dma_addr_t addr = qm_fd_addr(fd);
1739         const struct qm_sg_entry *sgt;
1740         struct page *page, *head_page;
1741         struct dpaa_bp *dpaa_bp;
1742         void *vaddr, *sg_vaddr;
1743         int frag_off, frag_len;
1744         struct sk_buff *skb;
1745         dma_addr_t sg_addr;
1746         int page_offset;
1747         unsigned int sz;
1748         int *count_ptr;
1749         int i;
1750
1751         vaddr = phys_to_virt(addr);
1752         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1753
1754         /* Iterate through the SGT entries and add data buffers to the skb */
1755         sgt = vaddr + fd_off;
1756         skb = NULL;
1757         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1758                 /* Extension bit is not supported */
1759                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1760
1761                 sg_addr = qm_sg_addr(&sgt[i]);
1762                 sg_vaddr = phys_to_virt(sg_addr);
1763                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1764                                     SMP_CACHE_BYTES));
1765
1766                 /* We may use multiple Rx pools */
1767                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1768                 if (!dpaa_bp)
1769                         goto free_buffers;
1770
1771                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1772                 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1773                                  DMA_FROM_DEVICE);
1774                 if (!skb) {
1775                         sz = dpaa_bp->size +
1776                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1777                         skb = build_skb(sg_vaddr, sz);
1778                         if (WARN_ON(unlikely(!skb)))
1779                                 goto free_buffers;
1780
1781                         skb->ip_summed = rx_csum_offload(priv, fd);
1782
1783                         /* Make sure forwarded skbs will have enough space
1784                          * on Tx, if extra headers are added.
1785                          */
1786                         WARN_ON(fd_off != priv->rx_headroom);
1787                         skb_reserve(skb, fd_off);
1788                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1789                 } else {
1790                         /* Not the first S/G entry; all data from buffer will
1791                          * be added in an skb fragment; fragment index is offset
1792                          * by one since first S/G entry was incorporated in the
1793                          * linear part of the skb.
1794                          *
1795                          * Caution: 'page' may be a tail page.
1796                          */
1797                         page = virt_to_page(sg_vaddr);
1798                         head_page = virt_to_head_page(sg_vaddr);
1799
1800                         /* Compute offset in (possibly tail) page */
1801                         page_offset = ((unsigned long)sg_vaddr &
1802                                         (PAGE_SIZE - 1)) +
1803                                 (page_address(page) - page_address(head_page));
1804                         /* page_offset only refers to the beginning of sgt[i];
1805                          * but the buffer itself may have an internal offset.
1806                          */
1807                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1808                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1809                         /* skb_add_rx_frag() does no checking on the page; if
1810                          * we pass it a tail page, we'll end up with
1811                          * bad page accounting and eventually with segafults.
1812                          */
1813                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1814                                         frag_len, dpaa_bp->size);
1815                 }
1816                 /* Update the pool count for the current {cpu x bpool} */
1817                 (*count_ptr)--;
1818
1819                 if (qm_sg_entry_is_final(&sgt[i]))
1820                         break;
1821         }
1822         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1823
1824         /* free the SG table buffer */
1825         skb_free_frag(vaddr);
1826
1827         return skb;
1828
1829 free_buffers:
1830         /* compensate sw bpool counter changes */
1831         for (i--; i >= 0; i--) {
1832                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1833                 if (dpaa_bp) {
1834                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1835                         (*count_ptr)++;
1836                 }
1837         }
1838         /* free all the SG entries */
1839         for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1840                 sg_addr = qm_sg_addr(&sgt[i]);
1841                 sg_vaddr = phys_to_virt(sg_addr);
1842                 skb_free_frag(sg_vaddr);
1843                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1844                 if (dpaa_bp) {
1845                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1846                         (*count_ptr)--;
1847                 }
1848
1849                 if (qm_sg_entry_is_final(&sgt[i]))
1850                         break;
1851         }
1852         /* free the SGT fragment */
1853         skb_free_frag(vaddr);
1854
1855         return NULL;
1856 }
1857
1858 static int skb_to_contig_fd(struct dpaa_priv *priv,
1859                             struct sk_buff *skb, struct qm_fd *fd,
1860                             int *offset)
1861 {
1862         struct net_device *net_dev = priv->net_dev;
1863         struct device *dev = net_dev->dev.parent;
1864         enum dma_data_direction dma_dir;
1865         unsigned char *buffer_start;
1866         struct sk_buff **skbh;
1867         dma_addr_t addr;
1868         int err;
1869
1870         /* We are guaranteed to have at least tx_headroom bytes
1871          * available, so just use that for offset.
1872          */
1873         fd->bpid = FSL_DPAA_BPID_INV;
1874         buffer_start = skb->data - priv->tx_headroom;
1875         dma_dir = DMA_TO_DEVICE;
1876
1877         skbh = (struct sk_buff **)buffer_start;
1878         *skbh = skb;
1879
1880         /* Enable L3/L4 hardware checksum computation.
1881          *
1882          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1883          * need to write into the skb.
1884          */
1885         err = dpaa_enable_tx_csum(priv, skb, fd,
1886                                   ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1887         if (unlikely(err < 0)) {
1888                 if (net_ratelimit())
1889                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1890                                   err);
1891                 return err;
1892         }
1893
1894         /* Fill in the rest of the FD fields */
1895         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1896         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1897
1898         /* Map the entire buffer size that may be seen by FMan, but no more */
1899         addr = dma_map_single(dev, skbh,
1900                               skb_tail_pointer(skb) - buffer_start, dma_dir);
1901         if (unlikely(dma_mapping_error(dev, addr))) {
1902                 if (net_ratelimit())
1903                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1904                 return -EINVAL;
1905         }
1906         qm_fd_addr_set64(fd, addr);
1907
1908         return 0;
1909 }
1910
1911 static int skb_to_sg_fd(struct dpaa_priv *priv,
1912                         struct sk_buff *skb, struct qm_fd *fd)
1913 {
1914         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1915         const int nr_frags = skb_shinfo(skb)->nr_frags;
1916         struct net_device *net_dev = priv->net_dev;
1917         struct device *dev = net_dev->dev.parent;
1918         struct qm_sg_entry *sgt;
1919         struct sk_buff **skbh;
1920         int i, j, err, sz;
1921         void *buffer_start;
1922         skb_frag_t *frag;
1923         dma_addr_t addr;
1924         size_t frag_len;
1925         void *sgt_buf;
1926
1927         /* get a page frag to store the SGTable */
1928         sz = SKB_DATA_ALIGN(priv->tx_headroom + DPAA_SGT_SIZE);
1929         sgt_buf = netdev_alloc_frag(sz);
1930         if (unlikely(!sgt_buf)) {
1931                 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1932                            sz);
1933                 return -ENOMEM;
1934         }
1935
1936         /* Enable L3/L4 hardware checksum computation.
1937          *
1938          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1939          * need to write into the skb.
1940          */
1941         err = dpaa_enable_tx_csum(priv, skb, fd,
1942                                   sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1943         if (unlikely(err < 0)) {
1944                 if (net_ratelimit())
1945                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1946                                   err);
1947                 goto csum_failed;
1948         }
1949
1950         /* SGT[0] is used by the linear part */
1951         sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1952         frag_len = skb_headlen(skb);
1953         qm_sg_entry_set_len(&sgt[0], frag_len);
1954         sgt[0].bpid = FSL_DPAA_BPID_INV;
1955         sgt[0].offset = 0;
1956         addr = dma_map_single(dev, skb->data,
1957                               skb_headlen(skb), dma_dir);
1958         if (unlikely(dma_mapping_error(dev, addr))) {
1959                 dev_err(dev, "DMA mapping failed");
1960                 err = -EINVAL;
1961                 goto sg0_map_failed;
1962         }
1963         qm_sg_entry_set64(&sgt[0], addr);
1964
1965         /* populate the rest of SGT entries */
1966         for (i = 0; i < nr_frags; i++) {
1967                 frag = &skb_shinfo(skb)->frags[i];
1968                 frag_len = frag->size;
1969                 WARN_ON(!skb_frag_page(frag));
1970                 addr = skb_frag_dma_map(dev, frag, 0,
1971                                         frag_len, dma_dir);
1972                 if (unlikely(dma_mapping_error(dev, addr))) {
1973                         dev_err(dev, "DMA mapping failed");
1974                         err = -EINVAL;
1975                         goto sg_map_failed;
1976                 }
1977
1978                 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1979                 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1980                 sgt[i + 1].offset = 0;
1981
1982                 /* keep the offset in the address */
1983                 qm_sg_entry_set64(&sgt[i + 1], addr);
1984         }
1985
1986         /* Set the final bit in the last used entry of the SGT */
1987         qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
1988
1989         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1990
1991         /* DMA map the SGT page */
1992         buffer_start = (void *)sgt - priv->tx_headroom;
1993         skbh = (struct sk_buff **)buffer_start;
1994         *skbh = skb;
1995
1996         addr = dma_map_single(dev, buffer_start,
1997                               priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
1998         if (unlikely(dma_mapping_error(dev, addr))) {
1999                 dev_err(dev, "DMA mapping failed");
2000                 err = -EINVAL;
2001                 goto sgt_map_failed;
2002         }
2003
2004         fd->bpid = FSL_DPAA_BPID_INV;
2005         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2006         qm_fd_addr_set64(fd, addr);
2007
2008         return 0;
2009
2010 sgt_map_failed:
2011 sg_map_failed:
2012         for (j = 0; j < i; j++)
2013                 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
2014                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
2015 sg0_map_failed:
2016 csum_failed:
2017         skb_free_frag(sgt_buf);
2018
2019         return err;
2020 }
2021
2022 static inline int dpaa_xmit(struct dpaa_priv *priv,
2023                             struct rtnl_link_stats64 *percpu_stats,
2024                             int queue,
2025                             struct qm_fd *fd)
2026 {
2027         struct qman_fq *egress_fq;
2028         int err, i;
2029
2030         egress_fq = priv->egress_fqs[queue];
2031         if (fd->bpid == FSL_DPAA_BPID_INV)
2032                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2033
2034         /* Trace this Tx fd */
2035         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2036
2037         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2038                 err = qman_enqueue(egress_fq, fd);
2039                 if (err != -EBUSY)
2040                         break;
2041         }
2042
2043         if (unlikely(err < 0)) {
2044                 percpu_stats->tx_fifo_errors++;
2045                 return err;
2046         }
2047
2048         percpu_stats->tx_packets++;
2049         percpu_stats->tx_bytes += qm_fd_get_length(fd);
2050
2051         return 0;
2052 }
2053
2054 static netdev_tx_t
2055 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2056 {
2057         const int queue_mapping = skb_get_queue_mapping(skb);
2058         bool nonlinear = skb_is_nonlinear(skb);
2059         struct rtnl_link_stats64 *percpu_stats;
2060         struct dpaa_percpu_priv *percpu_priv;
2061         struct netdev_queue *txq;
2062         struct dpaa_priv *priv;
2063         struct qm_fd fd;
2064         int offset = 0;
2065         int err = 0;
2066
2067         priv = netdev_priv(net_dev);
2068         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2069         percpu_stats = &percpu_priv->stats;
2070
2071         qm_fd_clear_fd(&fd);
2072
2073         if (!nonlinear) {
2074                 /* We're going to store the skb backpointer at the beginning
2075                  * of the data buffer, so we need a privately owned skb
2076                  *
2077                  * We've made sure skb is not shared in dev->priv_flags,
2078                  * we need to verify the skb head is not cloned
2079                  */
2080                 if (skb_cow_head(skb, priv->tx_headroom))
2081                         goto enomem;
2082
2083                 WARN_ON(skb_is_nonlinear(skb));
2084         }
2085
2086         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2087          * make sure we don't feed FMan with more fragments than it supports.
2088          */
2089         if (unlikely(nonlinear &&
2090                      (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2091                 /* If the egress skb contains more fragments than we support
2092                  * we have no choice but to linearize it ourselves.
2093                  */
2094                 if (__skb_linearize(skb))
2095                         goto enomem;
2096
2097                 nonlinear = skb_is_nonlinear(skb);
2098         }
2099
2100         if (nonlinear) {
2101                 /* Just create a S/G fd based on the skb */
2102                 err = skb_to_sg_fd(priv, skb, &fd);
2103                 percpu_priv->tx_frag_skbuffs++;
2104         } else {
2105                 /* Create a contig FD from this skb */
2106                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2107         }
2108         if (unlikely(err < 0))
2109                 goto skb_to_fd_failed;
2110
2111         txq = netdev_get_tx_queue(net_dev, queue_mapping);
2112
2113         /* LLTX requires to do our own update of trans_start */
2114         txq->trans_start = jiffies;
2115
2116         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2117                 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2118                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2119         }
2120
2121         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2122                 return NETDEV_TX_OK;
2123
2124         dpaa_cleanup_tx_fd(priv, &fd, false);
2125 skb_to_fd_failed:
2126 enomem:
2127         percpu_stats->tx_errors++;
2128         dev_kfree_skb(skb);
2129         return NETDEV_TX_OK;
2130 }
2131
2132 static void dpaa_rx_error(struct net_device *net_dev,
2133                           const struct dpaa_priv *priv,
2134                           struct dpaa_percpu_priv *percpu_priv,
2135                           const struct qm_fd *fd,
2136                           u32 fqid)
2137 {
2138         if (net_ratelimit())
2139                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2140                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2141
2142         percpu_priv->stats.rx_errors++;
2143
2144         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2145                 percpu_priv->rx_errors.dme++;
2146         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2147                 percpu_priv->rx_errors.fpe++;
2148         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2149                 percpu_priv->rx_errors.fse++;
2150         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2151                 percpu_priv->rx_errors.phe++;
2152
2153         dpaa_fd_release(net_dev, fd);
2154 }
2155
2156 static void dpaa_tx_error(struct net_device *net_dev,
2157                           const struct dpaa_priv *priv,
2158                           struct dpaa_percpu_priv *percpu_priv,
2159                           const struct qm_fd *fd,
2160                           u32 fqid)
2161 {
2162         struct sk_buff *skb;
2163
2164         if (net_ratelimit())
2165                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2166                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2167
2168         percpu_priv->stats.tx_errors++;
2169
2170         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2171         dev_kfree_skb(skb);
2172 }
2173
2174 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2175 {
2176         struct dpaa_napi_portal *np =
2177                         container_of(napi, struct dpaa_napi_portal, napi);
2178
2179         int cleaned = qman_p_poll_dqrr(np->p, budget);
2180
2181         if (cleaned < budget) {
2182                 napi_complete_done(napi, cleaned);
2183                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2184
2185         } else if (np->down) {
2186                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2187         }
2188
2189         return cleaned;
2190 }
2191
2192 static void dpaa_tx_conf(struct net_device *net_dev,
2193                          const struct dpaa_priv *priv,
2194                          struct dpaa_percpu_priv *percpu_priv,
2195                          const struct qm_fd *fd,
2196                          u32 fqid)
2197 {
2198         struct sk_buff  *skb;
2199
2200         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2201                 if (net_ratelimit())
2202                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2203                                    be32_to_cpu(fd->status) &
2204                                    FM_FD_STAT_TX_ERRORS);
2205
2206                 percpu_priv->stats.tx_errors++;
2207         }
2208
2209         percpu_priv->tx_confirm++;
2210
2211         skb = dpaa_cleanup_tx_fd(priv, fd, true);
2212
2213         consume_skb(skb);
2214 }
2215
2216 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2217                                          struct qman_portal *portal)
2218 {
2219         if (unlikely(in_irq() || !in_serving_softirq())) {
2220                 /* Disable QMan IRQ and invoke NAPI */
2221                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2222
2223                 percpu_priv->np.p = portal;
2224                 napi_schedule(&percpu_priv->np.napi);
2225                 percpu_priv->in_interrupt++;
2226                 return 1;
2227         }
2228         return 0;
2229 }
2230
2231 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2232                                               struct qman_fq *fq,
2233                                               const struct qm_dqrr_entry *dq)
2234 {
2235         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2236         struct dpaa_percpu_priv *percpu_priv;
2237         struct net_device *net_dev;
2238         struct dpaa_bp *dpaa_bp;
2239         struct dpaa_priv *priv;
2240
2241         net_dev = dpaa_fq->net_dev;
2242         priv = netdev_priv(net_dev);
2243         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2244         if (!dpaa_bp)
2245                 return qman_cb_dqrr_consume;
2246
2247         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2248
2249         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2250                 return qman_cb_dqrr_stop;
2251
2252         dpaa_eth_refill_bpools(priv);
2253         dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2254
2255         return qman_cb_dqrr_consume;
2256 }
2257
2258 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2259                                                 struct qman_fq *fq,
2260                                                 const struct qm_dqrr_entry *dq)
2261 {
2262         struct skb_shared_hwtstamps *shhwtstamps;
2263         struct rtnl_link_stats64 *percpu_stats;
2264         struct dpaa_percpu_priv *percpu_priv;
2265         const struct qm_fd *fd = &dq->fd;
2266         dma_addr_t addr = qm_fd_addr(fd);
2267         enum qm_fd_format fd_format;
2268         struct net_device *net_dev;
2269         u32 fd_status, hash_offset;
2270         struct dpaa_bp *dpaa_bp;
2271         struct dpaa_priv *priv;
2272         unsigned int skb_len;
2273         struct sk_buff *skb;
2274         int *count_ptr;
2275         void *vaddr;
2276         u64 ns;
2277
2278         fd_status = be32_to_cpu(fd->status);
2279         fd_format = qm_fd_get_format(fd);
2280         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2281         priv = netdev_priv(net_dev);
2282         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2283         if (!dpaa_bp)
2284                 return qman_cb_dqrr_consume;
2285
2286         /* Trace the Rx fd */
2287         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2288
2289         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2290         percpu_stats = &percpu_priv->stats;
2291
2292         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2293                 return qman_cb_dqrr_stop;
2294
2295         /* Make sure we didn't run out of buffers */
2296         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2297                 /* Unable to refill the buffer pool due to insufficient
2298                  * system memory. Just release the frame back into the pool,
2299                  * otherwise we'll soon end up with an empty buffer pool.
2300                  */
2301                 dpaa_fd_release(net_dev, &dq->fd);
2302                 return qman_cb_dqrr_consume;
2303         }
2304
2305         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2306                 if (net_ratelimit())
2307                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2308                                    fd_status & FM_FD_STAT_RX_ERRORS);
2309
2310                 percpu_stats->rx_errors++;
2311                 dpaa_fd_release(net_dev, fd);
2312                 return qman_cb_dqrr_consume;
2313         }
2314
2315         dpaa_bp = dpaa_bpid2pool(fd->bpid);
2316         if (!dpaa_bp)
2317                 return qman_cb_dqrr_consume;
2318
2319         dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2320
2321         /* prefetch the first 64 bytes of the frame or the SGT start */
2322         vaddr = phys_to_virt(addr);
2323         prefetch(vaddr + qm_fd_get_offset(fd));
2324
2325         /* The only FD types that we may receive are contig and S/G */
2326         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2327
2328         /* Account for either the contig buffer or the SGT buffer (depending on
2329          * which case we were in) having been removed from the pool.
2330          */
2331         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2332         (*count_ptr)--;
2333
2334         if (likely(fd_format == qm_fd_contig))
2335                 skb = contig_fd_to_skb(priv, fd);
2336         else
2337                 skb = sg_fd_to_skb(priv, fd);
2338         if (!skb)
2339                 return qman_cb_dqrr_consume;
2340
2341         if (priv->rx_tstamp) {
2342                 shhwtstamps = skb_hwtstamps(skb);
2343                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2344
2345                 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2346                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
2347                 else
2348                         dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2349         }
2350
2351         skb->protocol = eth_type_trans(skb, net_dev);
2352
2353         if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2354             !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2355                                               &hash_offset)) {
2356                 enum pkt_hash_types type;
2357
2358                 /* if L4 exists, it was used in the hash generation */
2359                 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2360                         PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2361                 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2362                              type);
2363         }
2364
2365         skb_len = skb->len;
2366
2367         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2368                 percpu_stats->rx_dropped++;
2369                 return qman_cb_dqrr_consume;
2370         }
2371
2372         percpu_stats->rx_packets++;
2373         percpu_stats->rx_bytes += skb_len;
2374
2375         return qman_cb_dqrr_consume;
2376 }
2377
2378 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2379                                                 struct qman_fq *fq,
2380                                                 const struct qm_dqrr_entry *dq)
2381 {
2382         struct dpaa_percpu_priv *percpu_priv;
2383         struct net_device *net_dev;
2384         struct dpaa_priv *priv;
2385
2386         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2387         priv = netdev_priv(net_dev);
2388
2389         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2390
2391         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2392                 return qman_cb_dqrr_stop;
2393
2394         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2395
2396         return qman_cb_dqrr_consume;
2397 }
2398
2399 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2400                                                struct qman_fq *fq,
2401                                                const struct qm_dqrr_entry *dq)
2402 {
2403         struct dpaa_percpu_priv *percpu_priv;
2404         struct net_device *net_dev;
2405         struct dpaa_priv *priv;
2406
2407         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2408         priv = netdev_priv(net_dev);
2409
2410         /* Trace the fd */
2411         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2412
2413         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2414
2415         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2416                 return qman_cb_dqrr_stop;
2417
2418         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2419
2420         return qman_cb_dqrr_consume;
2421 }
2422
2423 static void egress_ern(struct qman_portal *portal,
2424                        struct qman_fq *fq,
2425                        const union qm_mr_entry *msg)
2426 {
2427         const struct qm_fd *fd = &msg->ern.fd;
2428         struct dpaa_percpu_priv *percpu_priv;
2429         const struct dpaa_priv *priv;
2430         struct net_device *net_dev;
2431         struct sk_buff *skb;
2432
2433         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2434         priv = netdev_priv(net_dev);
2435         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2436
2437         percpu_priv->stats.tx_dropped++;
2438         percpu_priv->stats.tx_fifo_errors++;
2439         count_ern(percpu_priv, msg);
2440
2441         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2442         dev_kfree_skb_any(skb);
2443 }
2444
2445 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2446         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2447         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2448         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2449         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2450         .egress_ern = { .cb = { .ern = egress_ern } }
2451 };
2452
2453 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2454 {
2455         struct dpaa_percpu_priv *percpu_priv;
2456         int i;
2457
2458         for_each_possible_cpu(i) {
2459                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2460
2461                 percpu_priv->np.down = 0;
2462                 napi_enable(&percpu_priv->np.napi);
2463         }
2464 }
2465
2466 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2467 {
2468         struct dpaa_percpu_priv *percpu_priv;
2469         int i;
2470
2471         for_each_possible_cpu(i) {
2472                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2473
2474                 percpu_priv->np.down = 1;
2475                 napi_disable(&percpu_priv->np.napi);
2476         }
2477 }
2478
2479 static void dpaa_adjust_link(struct net_device *net_dev)
2480 {
2481         struct mac_device *mac_dev;
2482         struct dpaa_priv *priv;
2483
2484         priv = netdev_priv(net_dev);
2485         mac_dev = priv->mac_dev;
2486         mac_dev->adjust_link(mac_dev);
2487 }
2488
2489 static int dpaa_phy_init(struct net_device *net_dev)
2490 {
2491         struct mac_device *mac_dev;
2492         struct phy_device *phy_dev;
2493         struct dpaa_priv *priv;
2494
2495         priv = netdev_priv(net_dev);
2496         mac_dev = priv->mac_dev;
2497
2498         phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2499                                  &dpaa_adjust_link, 0,
2500                                  mac_dev->phy_if);
2501         if (!phy_dev) {
2502                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2503                 return -ENODEV;
2504         }
2505
2506         /* Remove any features not supported by the controller */
2507         phy_dev->supported &= mac_dev->if_support;
2508         phy_dev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2509         phy_dev->advertising = phy_dev->supported;
2510
2511         mac_dev->phy_dev = phy_dev;
2512         net_dev->phydev = phy_dev;
2513
2514         return 0;
2515 }
2516
2517 static int dpaa_open(struct net_device *net_dev)
2518 {
2519         struct mac_device *mac_dev;
2520         struct dpaa_priv *priv;
2521         int err, i;
2522
2523         priv = netdev_priv(net_dev);
2524         mac_dev = priv->mac_dev;
2525         dpaa_eth_napi_enable(priv);
2526
2527         err = dpaa_phy_init(net_dev);
2528         if (err)
2529                 goto phy_init_failed;
2530
2531         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2532                 err = fman_port_enable(mac_dev->port[i]);
2533                 if (err)
2534                         goto mac_start_failed;
2535         }
2536
2537         err = priv->mac_dev->start(mac_dev);
2538         if (err < 0) {
2539                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2540                 goto mac_start_failed;
2541         }
2542
2543         netif_tx_start_all_queues(net_dev);
2544
2545         return 0;
2546
2547 mac_start_failed:
2548         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2549                 fman_port_disable(mac_dev->port[i]);
2550
2551 phy_init_failed:
2552         dpaa_eth_napi_disable(priv);
2553
2554         return err;
2555 }
2556
2557 static int dpaa_eth_stop(struct net_device *net_dev)
2558 {
2559         struct dpaa_priv *priv;
2560         int err;
2561
2562         err = dpaa_stop(net_dev);
2563
2564         priv = netdev_priv(net_dev);
2565         dpaa_eth_napi_disable(priv);
2566
2567         return err;
2568 }
2569
2570 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2571 {
2572         struct dpaa_priv *priv = netdev_priv(dev);
2573         struct hwtstamp_config config;
2574
2575         if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2576                 return -EFAULT;
2577
2578         switch (config.tx_type) {
2579         case HWTSTAMP_TX_OFF:
2580                 /* Couldn't disable rx/tx timestamping separately.
2581                  * Do nothing here.
2582                  */
2583                 priv->tx_tstamp = false;
2584                 break;
2585         case HWTSTAMP_TX_ON:
2586                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2587                 priv->tx_tstamp = true;
2588                 break;
2589         default:
2590                 return -ERANGE;
2591         }
2592
2593         if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2594                 /* Couldn't disable rx/tx timestamping separately.
2595                  * Do nothing here.
2596                  */
2597                 priv->rx_tstamp = false;
2598         } else {
2599                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2600                 priv->rx_tstamp = true;
2601                 /* TS is set for all frame types, not only those requested */
2602                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2603         }
2604
2605         return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2606                         -EFAULT : 0;
2607 }
2608
2609 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2610 {
2611         int ret = -EINVAL;
2612
2613         if (cmd == SIOCGMIIREG) {
2614                 if (net_dev->phydev)
2615                         return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2616         }
2617
2618         if (cmd == SIOCSHWTSTAMP)
2619                 return dpaa_ts_ioctl(net_dev, rq, cmd);
2620
2621         return ret;
2622 }
2623
2624 static const struct net_device_ops dpaa_ops = {
2625         .ndo_open = dpaa_open,
2626         .ndo_start_xmit = dpaa_start_xmit,
2627         .ndo_stop = dpaa_eth_stop,
2628         .ndo_tx_timeout = dpaa_tx_timeout,
2629         .ndo_get_stats64 = dpaa_get_stats64,
2630         .ndo_set_mac_address = dpaa_set_mac_address,
2631         .ndo_validate_addr = eth_validate_addr,
2632         .ndo_set_rx_mode = dpaa_set_rx_mode,
2633         .ndo_do_ioctl = dpaa_ioctl,
2634         .ndo_setup_tc = dpaa_setup_tc,
2635 };
2636
2637 static int dpaa_napi_add(struct net_device *net_dev)
2638 {
2639         struct dpaa_priv *priv = netdev_priv(net_dev);
2640         struct dpaa_percpu_priv *percpu_priv;
2641         int cpu;
2642
2643         for_each_possible_cpu(cpu) {
2644                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2645
2646                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2647                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2648         }
2649
2650         return 0;
2651 }
2652
2653 static void dpaa_napi_del(struct net_device *net_dev)
2654 {
2655         struct dpaa_priv *priv = netdev_priv(net_dev);
2656         struct dpaa_percpu_priv *percpu_priv;
2657         int cpu;
2658
2659         for_each_possible_cpu(cpu) {
2660                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2661
2662                 netif_napi_del(&percpu_priv->np.napi);
2663         }
2664 }
2665
2666 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2667                                    struct bm_buffer *bmb)
2668 {
2669         dma_addr_t addr = bm_buf_addr(bmb);
2670
2671         dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2672
2673         skb_free_frag(phys_to_virt(addr));
2674 }
2675
2676 /* Alloc the dpaa_bp struct and configure default values */
2677 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2678 {
2679         struct dpaa_bp *dpaa_bp;
2680
2681         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2682         if (!dpaa_bp)
2683                 return ERR_PTR(-ENOMEM);
2684
2685         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2686         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2687         if (!dpaa_bp->percpu_count)
2688                 return ERR_PTR(-ENOMEM);
2689
2690         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2691
2692         dpaa_bp->seed_cb = dpaa_bp_seed;
2693         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2694
2695         return dpaa_bp;
2696 }
2697
2698 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2699  * We won't be sending congestion notifications to FMan; for now, we just use
2700  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2701  * before they reach our ingress queues and eat up memory.
2702  */
2703 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2704 {
2705         struct qm_mcc_initcgr initcgr;
2706         u32 cs_th;
2707         int err;
2708
2709         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2710         if (err < 0) {
2711                 if (netif_msg_drv(priv))
2712                         pr_err("Error %d allocating CGR ID\n", err);
2713                 goto out_error;
2714         }
2715
2716         /* Enable CS TD, but disable Congestion State Change Notifications. */
2717         memset(&initcgr, 0, sizeof(initcgr));
2718         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2719         initcgr.cgr.cscn_en = QM_CGR_EN;
2720         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2721         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2722
2723         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2724         initcgr.cgr.cstd_en = QM_CGR_EN;
2725
2726         /* This CGR will be associated with the SWP affined to the current CPU.
2727          * However, we'll place all our ingress FQs in it.
2728          */
2729         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2730                               &initcgr);
2731         if (err < 0) {
2732                 if (netif_msg_drv(priv))
2733                         pr_err("Error %d creating ingress CGR with ID %d\n",
2734                                err, priv->ingress_cgr.cgrid);
2735                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2736                 goto out_error;
2737         }
2738         if (netif_msg_drv(priv))
2739                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2740                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2741
2742         priv->use_ingress_cgr = true;
2743
2744 out_error:
2745         return err;
2746 }
2747
2748 static const struct of_device_id dpaa_match[];
2749
2750 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2751 {
2752         u16 headroom;
2753
2754         /* The frame headroom must accommodate:
2755          * - the driver private data area
2756          * - parse results, hash results, timestamp if selected
2757          * If either hash results or time stamp are selected, both will
2758          * be copied to/from the frame headroom, as TS is located between PR and
2759          * HR in the IC and IC copy size has a granularity of 16bytes
2760          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2761          *
2762          * Also make sure the headroom is a multiple of data_align bytes
2763          */
2764         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2765                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2766
2767         return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
2768 }
2769
2770 static int dpaa_eth_probe(struct platform_device *pdev)
2771 {
2772         struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2773         struct net_device *net_dev = NULL;
2774         struct dpaa_fq *dpaa_fq, *tmp;
2775         struct dpaa_priv *priv = NULL;
2776         struct fm_port_fqs port_fqs;
2777         struct mac_device *mac_dev;
2778         int err = 0, i, channel;
2779         struct device *dev;
2780
2781         /* device used for DMA mapping */
2782         dev = pdev->dev.parent;
2783         err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2784         if (err) {
2785                 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2786                 return err;
2787         }
2788
2789         /* Allocate this early, so we can store relevant information in
2790          * the private area
2791          */
2792         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2793         if (!net_dev) {
2794                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2795                 return -ENOMEM;
2796         }
2797
2798         /* Do this here, so we can be verbose early */
2799         SET_NETDEV_DEV(net_dev, dev);
2800         dev_set_drvdata(dev, net_dev);
2801
2802         priv = netdev_priv(net_dev);
2803         priv->net_dev = net_dev;
2804
2805         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2806
2807         mac_dev = dpaa_mac_dev_get(pdev);
2808         if (IS_ERR(mac_dev)) {
2809                 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2810                 err = PTR_ERR(mac_dev);
2811                 goto free_netdev;
2812         }
2813
2814         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2815          * we choose conservatively and let the user explicitly set a higher
2816          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2817          * in the same LAN.
2818          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2819          * start with the maximum allowed.
2820          */
2821         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2822
2823         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2824                    net_dev->mtu);
2825
2826         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2827         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2828
2829         /* bp init */
2830         for (i = 0; i < DPAA_BPS_NUM; i++) {
2831                 dpaa_bps[i] = dpaa_bp_alloc(dev);
2832                 if (IS_ERR(dpaa_bps[i])) {
2833                         err = PTR_ERR(dpaa_bps[i]);
2834                         goto free_dpaa_bps;
2835                 }
2836                 /* the raw size of the buffers used for reception */
2837                 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2838                 /* avoid runtime computations by keeping the usable size here */
2839                 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2840                 dpaa_bps[i]->dev = dev;
2841
2842                 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2843                 if (err < 0)
2844                         goto free_dpaa_bps;
2845                 priv->dpaa_bps[i] = dpaa_bps[i];
2846         }
2847
2848         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2849
2850         memset(&port_fqs, 0, sizeof(port_fqs));
2851
2852         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2853         if (err < 0) {
2854                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2855                 goto free_dpaa_bps;
2856         }
2857
2858         priv->mac_dev = mac_dev;
2859
2860         channel = dpaa_get_channel();
2861         if (channel < 0) {
2862                 dev_err(dev, "dpaa_get_channel() failed\n");
2863                 err = channel;
2864                 goto free_dpaa_bps;
2865         }
2866
2867         priv->channel = (u16)channel;
2868
2869         /* Walk the CPUs with affine portals
2870          * and add this pool channel to each's dequeue mask.
2871          */
2872         dpaa_eth_add_channel(priv->channel);
2873
2874         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2875
2876         /* Create a congestion group for this netdev, with
2877          * dynamically-allocated CGR ID.
2878          * Must be executed after probing the MAC, but before
2879          * assigning the egress FQs to the CGRs.
2880          */
2881         err = dpaa_eth_cgr_init(priv);
2882         if (err < 0) {
2883                 dev_err(dev, "Error initializing CGR\n");
2884                 goto free_dpaa_bps;
2885         }
2886
2887         err = dpaa_ingress_cgr_init(priv);
2888         if (err < 0) {
2889                 dev_err(dev, "Error initializing ingress CGR\n");
2890                 goto delete_egress_cgr;
2891         }
2892
2893         /* Add the FQs to the interface, and make them active */
2894         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2895                 err = dpaa_fq_init(dpaa_fq, false);
2896                 if (err < 0)
2897                         goto free_dpaa_fqs;
2898         }
2899
2900         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2901         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2902
2903         /* All real interfaces need their ports initialized */
2904         err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2905                                   &priv->buf_layout[0], dev);
2906         if (err)
2907                 goto free_dpaa_fqs;
2908
2909         /* Rx traffic distribution based on keygen hashing defaults to on */
2910         priv->keygen_in_use = true;
2911
2912         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2913         if (!priv->percpu_priv) {
2914                 dev_err(dev, "devm_alloc_percpu() failed\n");
2915                 err = -ENOMEM;
2916                 goto free_dpaa_fqs;
2917         }
2918
2919         priv->num_tc = 1;
2920         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2921
2922         /* Initialize NAPI */
2923         err = dpaa_napi_add(net_dev);
2924         if (err < 0)
2925                 goto delete_dpaa_napi;
2926
2927         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2928         if (err < 0)
2929                 goto delete_dpaa_napi;
2930
2931         dpaa_eth_sysfs_init(&net_dev->dev);
2932
2933         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2934                    net_dev->name);
2935
2936         return 0;
2937
2938 delete_dpaa_napi:
2939         dpaa_napi_del(net_dev);
2940 free_dpaa_fqs:
2941         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2942         qman_delete_cgr_safe(&priv->ingress_cgr);
2943         qman_release_cgrid(priv->ingress_cgr.cgrid);
2944 delete_egress_cgr:
2945         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2946         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2947 free_dpaa_bps:
2948         dpaa_bps_free(priv);
2949 free_netdev:
2950         dev_set_drvdata(dev, NULL);
2951         free_netdev(net_dev);
2952
2953         return err;
2954 }
2955
2956 static int dpaa_remove(struct platform_device *pdev)
2957 {
2958         struct net_device *net_dev;
2959         struct dpaa_priv *priv;
2960         struct device *dev;
2961         int err;
2962
2963         dev = pdev->dev.parent;
2964         net_dev = dev_get_drvdata(dev);
2965
2966         priv = netdev_priv(net_dev);
2967
2968         dpaa_eth_sysfs_remove(dev);
2969
2970         dev_set_drvdata(dev, NULL);
2971         unregister_netdev(net_dev);
2972
2973         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2974
2975         qman_delete_cgr_safe(&priv->ingress_cgr);
2976         qman_release_cgrid(priv->ingress_cgr.cgrid);
2977         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2978         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2979
2980         dpaa_napi_del(net_dev);
2981
2982         dpaa_bps_free(priv);
2983
2984         free_netdev(net_dev);
2985
2986         return err;
2987 }
2988
2989 static const struct platform_device_id dpaa_devtype[] = {
2990         {
2991                 .name = "dpaa-ethernet",
2992                 .driver_data = 0,
2993         }, {
2994         }
2995 };
2996 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2997
2998 static struct platform_driver dpaa_driver = {
2999         .driver = {
3000                 .name = KBUILD_MODNAME,
3001         },
3002         .id_table = dpaa_devtype,
3003         .probe = dpaa_eth_probe,
3004         .remove = dpaa_remove
3005 };
3006
3007 static int __init dpaa_load(void)
3008 {
3009         int err;
3010
3011         pr_debug("FSL DPAA Ethernet driver\n");
3012
3013         /* initialize dpaa_eth mirror values */
3014         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3015         dpaa_max_frm = fman_get_max_frm();
3016
3017         err = platform_driver_register(&dpaa_driver);
3018         if (err < 0)
3019                 pr_err("Error, platform_driver_register() = %d\n", err);
3020
3021         return err;
3022 }
3023 module_init(dpaa_load);
3024
3025 static void __exit dpaa_unload(void)
3026 {
3027         platform_driver_unregister(&dpaa_driver);
3028
3029         /* Only one channel is used and needs to be released after all
3030          * interfaces are removed
3031          */
3032         dpaa_release_channel();
3033 }
3034 module_exit(dpaa_unload);
3035
3036 MODULE_LICENSE("Dual BSD/GPL");
3037 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");