GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39
40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41                             int send_sz, dma_addr_t dma, int frag_end,
42                             int buf_num, enum hns_desc_type type, int mtu)
43 {
44         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46         struct iphdr *iphdr;
47         struct ipv6hdr *ipv6hdr;
48         struct sk_buff *skb;
49         __be16 protocol;
50         u8 bn_pid = 0;
51         u8 rrcfv = 0;
52         u8 ip_offset = 0;
53         u8 tvsvsn = 0;
54         u16 mss = 0;
55         u8 l4_len = 0;
56         u16 paylen = 0;
57
58         desc_cb->priv = priv;
59         desc_cb->length = size;
60         desc_cb->dma = dma;
61         desc_cb->type = type;
62
63         desc->addr = cpu_to_le64(dma);
64         desc->tx.send_size = cpu_to_le16((u16)send_sz);
65
66         /* config bd buffer end */
67         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69
70         /* fill port_id in the tx bd for sending management pkts */
71         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73
74         if (type == DESC_TYPE_SKB) {
75                 skb = (struct sk_buff *)priv;
76
77                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
78                         skb_reset_mac_len(skb);
79                         protocol = skb->protocol;
80                         ip_offset = ETH_HLEN;
81
82                         if (protocol == htons(ETH_P_8021Q)) {
83                                 ip_offset += VLAN_HLEN;
84                                 protocol = vlan_get_protocol(skb);
85                                 skb->protocol = protocol;
86                         }
87
88                         if (skb->protocol == htons(ETH_P_IP)) {
89                                 iphdr = ip_hdr(skb);
90                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92
93                                 /* check for tcp/udp header */
94                                 if (iphdr->protocol == IPPROTO_TCP &&
95                                     skb_is_gso(skb)) {
96                                         hnae_set_bit(tvsvsn,
97                                                      HNSV2_TXD_TSE_B, 1);
98                                         l4_len = tcp_hdrlen(skb);
99                                         mss = skb_shinfo(skb)->gso_size;
100                                         paylen = skb->len - SKB_TMP_LEN(skb);
101                                 }
102                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
103                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104                                 ipv6hdr = ipv6_hdr(skb);
105                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106
107                                 /* check for tcp/udp header */
108                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110                                         hnae_set_bit(tvsvsn,
111                                                      HNSV2_TXD_TSE_B, 1);
112                                         l4_len = tcp_hdrlen(skb);
113                                         mss = skb_shinfo(skb)->gso_size;
114                                         paylen = skb->len - SKB_TMP_LEN(skb);
115                                 }
116                         }
117                         desc->tx.ip_offset = ip_offset;
118                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119                         desc->tx.mss = cpu_to_le16(mss);
120                         desc->tx.l4_len = l4_len;
121                         desc->tx.paylen = cpu_to_le16(paylen);
122                 }
123         }
124
125         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126
127         desc->tx.bn_pid = bn_pid;
128         desc->tx.ra_ri_cs_fe_vld = rrcfv;
129
130         ring_ptr_move_fw(ring, next_to_use);
131 }
132
133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134                          int size, dma_addr_t dma, int frag_end,
135                          int buf_num, enum hns_desc_type type, int mtu)
136 {
137         fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138                         buf_num, type, mtu);
139 }
140
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142         { "HISI00C1", 0 },
143         { "HISI00C2", 0 },
144         { },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147
148 static void fill_desc(struct hnae_ring *ring, void *priv,
149                       int size, dma_addr_t dma, int frag_end,
150                       int buf_num, enum hns_desc_type type, int mtu)
151 {
152         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154         struct sk_buff *skb;
155         __be16 protocol;
156         u32 ip_offset;
157         u32 asid_bufnum_pid = 0;
158         u32 flag_ipoffset = 0;
159
160         desc_cb->priv = priv;
161         desc_cb->length = size;
162         desc_cb->dma = dma;
163         desc_cb->type = type;
164
165         desc->addr = cpu_to_le64(dma);
166         desc->tx.send_size = cpu_to_le16((u16)size);
167
168         /*config bd buffer end */
169         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170
171         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172
173         if (type == DESC_TYPE_SKB) {
174                 skb = (struct sk_buff *)priv;
175
176                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
177                         protocol = skb->protocol;
178                         ip_offset = ETH_HLEN;
179
180                         /*if it is a SW VLAN check the next protocol*/
181                         if (protocol == htons(ETH_P_8021Q)) {
182                                 ip_offset += VLAN_HLEN;
183                                 protocol = vlan_get_protocol(skb);
184                                 skb->protocol = protocol;
185                         }
186
187                         if (skb->protocol == htons(ETH_P_IP)) {
188                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189                                 /* check for tcp/udp header */
190                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191
192                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
193                                 /* ipv6 has not l3 cs, check for L4 header */
194                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195                         }
196
197                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198                 }
199         }
200
201         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202
203         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205
206         ring_ptr_move_fw(ring, next_to_use);
207 }
208
209 static void unfill_desc(struct hnae_ring *ring)
210 {
211         ring_ptr_move_bw(ring, next_to_use);
212 }
213
214 static int hns_nic_maybe_stop_tx(
215         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217         struct sk_buff *skb = *out_skb;
218         struct sk_buff *new_skb = NULL;
219         int buf_num;
220
221         /* no. of segments (plus a header) */
222         buf_num = skb_shinfo(skb)->nr_frags + 1;
223
224         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225                 if (ring_space(ring) < 1)
226                         return -EBUSY;
227
228                 new_skb = skb_copy(skb, GFP_ATOMIC);
229                 if (!new_skb)
230                         return -ENOMEM;
231
232                 dev_kfree_skb_any(skb);
233                 *out_skb = new_skb;
234                 buf_num = 1;
235         } else if (buf_num > ring_space(ring)) {
236                 return -EBUSY;
237         }
238
239         *bnum = buf_num;
240         return 0;
241 }
242
243 static int hns_nic_maybe_stop_tso(
244         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246         int i;
247         int size;
248         int buf_num;
249         int frag_num;
250         struct sk_buff *skb = *out_skb;
251         struct sk_buff *new_skb = NULL;
252         struct skb_frag_struct *frag;
253
254         size = skb_headlen(skb);
255         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256
257         frag_num = skb_shinfo(skb)->nr_frags;
258         for (i = 0; i < frag_num; i++) {
259                 frag = &skb_shinfo(skb)->frags[i];
260                 size = skb_frag_size(frag);
261                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262         }
263
264         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266                 if (ring_space(ring) < buf_num)
267                         return -EBUSY;
268                 /* manual split the send packet */
269                 new_skb = skb_copy(skb, GFP_ATOMIC);
270                 if (!new_skb)
271                         return -ENOMEM;
272                 dev_kfree_skb_any(skb);
273                 *out_skb = new_skb;
274
275         } else if (ring_space(ring) < buf_num) {
276                 return -EBUSY;
277         }
278
279         *bnum = buf_num;
280         return 0;
281 }
282
283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284                           int size, dma_addr_t dma, int frag_end,
285                           int buf_num, enum hns_desc_type type, int mtu)
286 {
287         int frag_buf_num;
288         int sizeoflast;
289         int k;
290
291         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292         sizeoflast = size % BD_MAX_SEND_SIZE;
293         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294
295         /* when the frag size is bigger than hardware, split this frag */
296         for (k = 0; k < frag_buf_num; k++)
297                 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298                                 (k == frag_buf_num - 1) ?
299                                         sizeoflast : BD_MAX_SEND_SIZE,
300                                 dma + BD_MAX_SEND_SIZE * k,
301                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302                                 buf_num,
303                                 (type == DESC_TYPE_SKB && !k) ?
304                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
305                                 mtu);
306 }
307
308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309                                 struct sk_buff *skb,
310                                 struct hns_nic_ring_data *ring_data)
311 {
312         struct hns_nic_priv *priv = netdev_priv(ndev);
313         struct hnae_ring *ring = ring_data->ring;
314         struct device *dev = ring_to_dev(ring);
315         struct netdev_queue *dev_queue;
316         struct skb_frag_struct *frag;
317         int buf_num;
318         int seg_num;
319         dma_addr_t dma;
320         int size, next_to_use;
321         int i;
322
323         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324         case -EBUSY:
325                 ring->stats.tx_busy++;
326                 goto out_net_tx_busy;
327         case -ENOMEM:
328                 ring->stats.sw_err_cnt++;
329                 netdev_err(ndev, "no memory to xmit!\n");
330                 goto out_err_tx_ok;
331         default:
332                 break;
333         }
334
335         /* no. of segments (plus a header) */
336         seg_num = skb_shinfo(skb)->nr_frags + 1;
337         next_to_use = ring->next_to_use;
338
339         /* fill the first part */
340         size = skb_headlen(skb);
341         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342         if (dma_mapping_error(dev, dma)) {
343                 netdev_err(ndev, "TX head DMA map failed\n");
344                 ring->stats.sw_err_cnt++;
345                 goto out_err_tx_ok;
346         }
347         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348                             buf_num, DESC_TYPE_SKB, ndev->mtu);
349
350         /* fill the fragments */
351         for (i = 1; i < seg_num; i++) {
352                 frag = &skb_shinfo(skb)->frags[i - 1];
353                 size = skb_frag_size(frag);
354                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355                 if (dma_mapping_error(dev, dma)) {
356                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357                         ring->stats.sw_err_cnt++;
358                         goto out_map_frag_fail;
359                 }
360                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361                                     seg_num - 1 == i ? 1 : 0, buf_num,
362                                     DESC_TYPE_PAGE, ndev->mtu);
363         }
364
365         /*complete translate all packets*/
366         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367         netdev_tx_sent_queue(dev_queue, skb->len);
368
369         netif_trans_update(ndev);
370         ndev->stats.tx_bytes += skb->len;
371         ndev->stats.tx_packets++;
372
373         wmb(); /* commit all data before submit */
374         assert(skb->queue_mapping < priv->ae_handle->q_num);
375         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376
377         return NETDEV_TX_OK;
378
379 out_map_frag_fail:
380
381         while (ring->next_to_use != next_to_use) {
382                 unfill_desc(ring);
383                 if (ring->next_to_use != next_to_use)
384                         dma_unmap_page(dev,
385                                        ring->desc_cb[ring->next_to_use].dma,
386                                        ring->desc_cb[ring->next_to_use].length,
387                                        DMA_TO_DEVICE);
388                 else
389                         dma_unmap_single(dev,
390                                          ring->desc_cb[next_to_use].dma,
391                                          ring->desc_cb[next_to_use].length,
392                                          DMA_TO_DEVICE);
393         }
394
395 out_err_tx_ok:
396
397         dev_kfree_skb_any(skb);
398         return NETDEV_TX_OK;
399
400 out_net_tx_busy:
401
402         netif_stop_subqueue(ndev, skb->queue_mapping);
403
404         /* Herbert's original patch had:
405          *  smp_mb__after_netif_stop_queue();
406          * but since that doesn't exist yet, just open code it.
407          */
408         smp_mb();
409         return NETDEV_TX_BUSY;
410 }
411
412 /**
413  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
414  * @data: pointer to the start of the headers
415  * @max: total length of section to find headers in
416  *
417  * This function is meant to determine the length of headers that will
418  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
419  * motivation of doing this is to only perform one pull for IPv4 TCP
420  * packets so that we can do basic things like calculating the gso_size
421  * based on the average data per packet.
422  **/
423 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
424                                         unsigned int max_size)
425 {
426         unsigned char *network;
427         u8 hlen;
428
429         /* this should never happen, but better safe than sorry */
430         if (max_size < ETH_HLEN)
431                 return max_size;
432
433         /* initialize network frame pointer */
434         network = data;
435
436         /* set first protocol and move network header forward */
437         network += ETH_HLEN;
438
439         /* handle any vlan tag if present */
440         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
441                 == HNS_RX_FLAG_VLAN_PRESENT) {
442                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
443                         return max_size;
444
445                 network += VLAN_HLEN;
446         }
447
448         /* handle L3 protocols */
449         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
450                 == HNS_RX_FLAG_L3ID_IPV4) {
451                 if ((typeof(max_size))(network - data) >
452                     (max_size - sizeof(struct iphdr)))
453                         return max_size;
454
455                 /* access ihl as a u8 to avoid unaligned access on ia64 */
456                 hlen = (network[0] & 0x0F) << 2;
457
458                 /* verify hlen meets minimum size requirements */
459                 if (hlen < sizeof(struct iphdr))
460                         return network - data;
461
462                 /* record next protocol if header is present */
463         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
464                 == HNS_RX_FLAG_L3ID_IPV6) {
465                 if ((typeof(max_size))(network - data) >
466                     (max_size - sizeof(struct ipv6hdr)))
467                         return max_size;
468
469                 /* record next protocol */
470                 hlen = sizeof(struct ipv6hdr);
471         } else {
472                 return network - data;
473         }
474
475         /* relocate pointer to start of L4 header */
476         network += hlen;
477
478         /* finally sort out TCP/UDP */
479         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
480                 == HNS_RX_FLAG_L4ID_TCP) {
481                 if ((typeof(max_size))(network - data) >
482                     (max_size - sizeof(struct tcphdr)))
483                         return max_size;
484
485                 /* access doff as a u8 to avoid unaligned access on ia64 */
486                 hlen = (network[12] & 0xF0) >> 2;
487
488                 /* verify hlen meets minimum size requirements */
489                 if (hlen < sizeof(struct tcphdr))
490                         return network - data;
491
492                 network += hlen;
493         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
494                 == HNS_RX_FLAG_L4ID_UDP) {
495                 if ((typeof(max_size))(network - data) >
496                     (max_size - sizeof(struct udphdr)))
497                         return max_size;
498
499                 network += sizeof(struct udphdr);
500         }
501
502         /* If everything has gone correctly network should be the
503          * data section of the packet and will be the end of the header.
504          * If not then it probably represents the end of the last recognized
505          * header.
506          */
507         if ((typeof(max_size))(network - data) < max_size)
508                 return network - data;
509         else
510                 return max_size;
511 }
512
513 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
514                                struct hnae_ring *ring, int pull_len,
515                                struct hnae_desc_cb *desc_cb)
516 {
517         struct hnae_desc *desc;
518         int truesize, size;
519         int last_offset;
520         bool twobufs;
521
522         twobufs = ((PAGE_SIZE < 8192) &&
523                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
524
525         desc = &ring->desc[ring->next_to_clean];
526         size = le16_to_cpu(desc->rx.size);
527
528         if (twobufs) {
529                 truesize = hnae_buf_size(ring);
530         } else {
531                 truesize = ALIGN(size, L1_CACHE_BYTES);
532                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
533         }
534
535         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
536                         size - pull_len, truesize);
537
538          /* avoid re-using remote pages,flag default unreuse */
539         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
540                 return;
541
542         if (twobufs) {
543                 /* if we are only owner of page we can reuse it */
544                 if (likely(page_count(desc_cb->priv) == 1)) {
545                         /* flip page offset to other buffer */
546                         desc_cb->page_offset ^= truesize;
547
548                         desc_cb->reuse_flag = 1;
549                         /* bump ref count on page before it is given*/
550                         get_page(desc_cb->priv);
551                 }
552                 return;
553         }
554
555         /* move offset up to the next cache line */
556         desc_cb->page_offset += truesize;
557
558         if (desc_cb->page_offset <= last_offset) {
559                 desc_cb->reuse_flag = 1;
560                 /* bump ref count on page before it is given*/
561                 get_page(desc_cb->priv);
562         }
563 }
564
565 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
566 {
567         *out_bnum = hnae_get_field(bnum_flag,
568                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
569 }
570
571 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
572 {
573         *out_bnum = hnae_get_field(bnum_flag,
574                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
575 }
576
577 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
578                                 struct sk_buff *skb, u32 flag)
579 {
580         struct net_device *netdev = ring_data->napi.dev;
581         u32 l3id;
582         u32 l4id;
583
584         /* check if RX checksum offload is enabled */
585         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
586                 return;
587
588         /* In hardware, we only support checksum for the following protocols:
589          * 1) IPv4,
590          * 2) TCP(over IPv4 or IPv6),
591          * 3) UDP(over IPv4 or IPv6),
592          * 4) SCTP(over IPv4 or IPv6)
593          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
594          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
595          *
596          * Hardware limitation:
597          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
598          * Error" bit (which usually can be used to indicate whether checksum
599          * was calculated by the hardware and if there was any error encountered
600          * during checksum calculation).
601          *
602          * Software workaround:
603          * We do get info within the RX descriptor about the kind of L3/L4
604          * protocol coming in the packet and the error status. These errors
605          * might not just be checksum errors but could be related to version,
606          * length of IPv4, UDP, TCP etc.
607          * Because there is no-way of knowing if it is a L3/L4 error due to bad
608          * checksum or any other L3/L4 error, we will not (cannot) convey
609          * checksum status for such cases to upper stack and will not maintain
610          * the RX L3/L4 checksum counters as well.
611          */
612
613         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
614         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
615
616         /*  check L3 protocol for which checksum is supported */
617         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
618                 return;
619
620         /* check for any(not just checksum)flagged L3 protocol errors */
621         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
622                 return;
623
624         /* we do not support checksum of fragmented packets */
625         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
626                 return;
627
628         /*  check L4 protocol for which checksum is supported */
629         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
630             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
631             (l4id != HNS_RX_FLAG_L4ID_SCTP))
632                 return;
633
634         /* check for any(not just checksum)flagged L4 protocol errors */
635         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
636                 return;
637
638         /* now, this has to be a packet with valid RX checksum */
639         skb->ip_summed = CHECKSUM_UNNECESSARY;
640 }
641
642 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
643                                struct sk_buff **out_skb, int *out_bnum)
644 {
645         struct hnae_ring *ring = ring_data->ring;
646         struct net_device *ndev = ring_data->napi.dev;
647         struct hns_nic_priv *priv = netdev_priv(ndev);
648         struct sk_buff *skb;
649         struct hnae_desc *desc;
650         struct hnae_desc_cb *desc_cb;
651         unsigned char *va;
652         int bnum, length, i;
653         int pull_len;
654         u32 bnum_flag;
655
656         desc = &ring->desc[ring->next_to_clean];
657         desc_cb = &ring->desc_cb[ring->next_to_clean];
658
659         prefetch(desc);
660
661         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
662
663         /* prefetch first cache line of first page */
664         prefetch(va);
665 #if L1_CACHE_BYTES < 128
666         prefetch(va + L1_CACHE_BYTES);
667 #endif
668
669         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
670                                         HNS_RX_HEAD_SIZE);
671         if (unlikely(!skb)) {
672                 ring->stats.sw_err_cnt++;
673                 return -ENOMEM;
674         }
675
676         prefetchw(skb->data);
677         length = le16_to_cpu(desc->rx.pkt_len);
678         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
679         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
680         *out_bnum = bnum;
681
682         if (length <= HNS_RX_HEAD_SIZE) {
683                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
684
685                 /* we can reuse buffer as-is, just make sure it is local */
686                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
687                         desc_cb->reuse_flag = 1;
688                 else /* this page cannot be reused so discard it */
689                         put_page(desc_cb->priv);
690
691                 ring_ptr_move_fw(ring, next_to_clean);
692
693                 if (unlikely(bnum != 1)) { /* check err*/
694                         *out_bnum = 1;
695                         goto out_bnum_err;
696                 }
697         } else {
698                 ring->stats.seg_pkt_cnt++;
699
700                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
701                 memcpy(__skb_put(skb, pull_len), va,
702                        ALIGN(pull_len, sizeof(long)));
703
704                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
705                 ring_ptr_move_fw(ring, next_to_clean);
706
707                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
708                         *out_bnum = 1;
709                         goto out_bnum_err;
710                 }
711                 for (i = 1; i < bnum; i++) {
712                         desc = &ring->desc[ring->next_to_clean];
713                         desc_cb = &ring->desc_cb[ring->next_to_clean];
714
715                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
716                         ring_ptr_move_fw(ring, next_to_clean);
717                 }
718         }
719
720         /* check except process, free skb and jump the desc */
721         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
722 out_bnum_err:
723                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
724                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
725                            bnum, ring->max_desc_num_per_pkt,
726                            length, (int)MAX_SKB_FRAGS,
727                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
728                 ring->stats.err_bd_num++;
729                 dev_kfree_skb_any(skb);
730                 return -EDOM;
731         }
732
733         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
734
735         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
736                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
737                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
738                 ring->stats.non_vld_descs++;
739                 dev_kfree_skb_any(skb);
740                 return -EINVAL;
741         }
742
743         if (unlikely((!desc->rx.pkt_len) ||
744                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
745                 ring->stats.err_pkt_len++;
746                 dev_kfree_skb_any(skb);
747                 return -EFAULT;
748         }
749
750         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
751                 ring->stats.l2_err++;
752                 dev_kfree_skb_any(skb);
753                 return -EFAULT;
754         }
755
756         ring->stats.rx_pkts++;
757         ring->stats.rx_bytes += skb->len;
758
759         /* indicate to upper stack if our hardware has already calculated
760          * the RX checksum
761          */
762         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
763
764         return 0;
765 }
766
767 static void
768 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
769 {
770         int i, ret;
771         struct hnae_desc_cb res_cbs;
772         struct hnae_desc_cb *desc_cb;
773         struct hnae_ring *ring = ring_data->ring;
774         struct net_device *ndev = ring_data->napi.dev;
775
776         for (i = 0; i < cleand_count; i++) {
777                 desc_cb = &ring->desc_cb[ring->next_to_use];
778                 if (desc_cb->reuse_flag) {
779                         ring->stats.reuse_pg_cnt++;
780                         hnae_reuse_buffer(ring, ring->next_to_use);
781                 } else {
782                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
783                         if (ret) {
784                                 ring->stats.sw_err_cnt++;
785                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
786                                 break;
787                         }
788                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
789                 }
790
791                 ring_ptr_move_fw(ring, next_to_use);
792         }
793
794         wmb(); /* make all data has been write before submit */
795         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
796 }
797
798 /* return error number for error or number of desc left to take
799  */
800 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
801                               struct sk_buff *skb)
802 {
803         struct net_device *ndev = ring_data->napi.dev;
804
805         skb->protocol = eth_type_trans(skb, ndev);
806         (void)napi_gro_receive(&ring_data->napi, skb);
807 }
808
809 static int hns_desc_unused(struct hnae_ring *ring)
810 {
811         int ntc = ring->next_to_clean;
812         int ntu = ring->next_to_use;
813
814         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
815 }
816
817 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
818 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
819
820 #define HNS_COAL_BDNUM                  3
821
822 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
823 {
824         bool coal_enable = ring->q->handle->coal_adapt_en;
825
826         if (coal_enable &&
827             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
828                 return HNS_COAL_BDNUM;
829         else
830                 return 0;
831 }
832
833 static void hns_update_rx_rate(struct hnae_ring *ring)
834 {
835         bool coal_enable = ring->q->handle->coal_adapt_en;
836         u32 time_passed_ms;
837         u64 total_bytes;
838
839         if (!coal_enable ||
840             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
841                 return;
842
843         /* ring->stats.rx_bytes overflowed */
844         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
845                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
846                 ring->coal_last_jiffies = jiffies;
847                 return;
848         }
849
850         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
851         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
852         do_div(total_bytes, time_passed_ms);
853         ring->coal_rx_rate = total_bytes >> 10;
854
855         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
856         ring->coal_last_jiffies = jiffies;
857 }
858
859 /**
860  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
861  **/
862 static u32 smooth_alg(u32 new_param, u32 old_param)
863 {
864         u32 gap = (new_param > old_param) ? new_param - old_param
865                                           : old_param - new_param;
866
867         if (gap > 8)
868                 gap >>= 3;
869
870         if (new_param > old_param)
871                 return old_param + gap;
872         else
873                 return old_param - gap;
874 }
875
876 /**
877  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
878  * @ring_data: pointer to hns_nic_ring_data
879  **/
880 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
881 {
882         struct hnae_ring *ring = ring_data->ring;
883         struct hnae_handle *handle = ring->q->handle;
884         u32 new_coal_param, old_coal_param = ring->coal_param;
885
886         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
887                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
888         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
889                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
890         else
891                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
892
893         if (new_coal_param == old_coal_param &&
894             new_coal_param == handle->coal_param)
895                 return;
896
897         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
898         ring->coal_param = new_coal_param;
899
900         /**
901          * Because all ring in one port has one coalesce param, when one ring
902          * calculate its own coalesce param, it cannot write to hardware at
903          * once. There are three conditions as follows:
904          *       1. current ring's coalesce param is larger than the hardware.
905          *       2. or ring which adapt last time can change again.
906          *       3. timeout.
907          */
908         if (new_coal_param == handle->coal_param) {
909                 handle->coal_last_jiffies = jiffies;
910                 handle->coal_ring_idx = ring_data->queue_index;
911         } else if (new_coal_param > handle->coal_param ||
912                    handle->coal_ring_idx == ring_data->queue_index ||
913                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
914                 handle->dev->ops->set_coalesce_usecs(handle,
915                                         new_coal_param);
916                 handle->dev->ops->set_coalesce_frames(handle,
917                                         1, new_coal_param);
918                 handle->coal_param = new_coal_param;
919                 handle->coal_ring_idx = ring_data->queue_index;
920                 handle->coal_last_jiffies = jiffies;
921         }
922 }
923
924 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
925                                int budget, void *v)
926 {
927         struct hnae_ring *ring = ring_data->ring;
928         struct sk_buff *skb;
929         int num, bnum;
930 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
931         int recv_pkts, recv_bds, clean_count, err;
932         int unused_count = hns_desc_unused(ring);
933
934         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
935         rmb(); /* make sure num taken effect before the other data is touched */
936
937         recv_pkts = 0, recv_bds = 0, clean_count = 0;
938         num -= unused_count;
939
940         while (recv_pkts < budget && recv_bds < num) {
941                 /* reuse or realloc buffers */
942                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
943                         hns_nic_alloc_rx_buffers(ring_data,
944                                                  clean_count + unused_count);
945                         clean_count = 0;
946                         unused_count = hns_desc_unused(ring);
947                 }
948
949                 /* poll one pkt */
950                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
951                 if (unlikely(!skb)) /* this fault cannot be repaired */
952                         goto out;
953
954                 recv_bds += bnum;
955                 clean_count += bnum;
956                 if (unlikely(err)) {  /* do jump the err */
957                         recv_pkts++;
958                         continue;
959                 }
960
961                 /* do update ip stack process*/
962                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
963                                                         ring_data, skb);
964                 recv_pkts++;
965         }
966
967 out:
968         /* make all data has been write before submit */
969         if (clean_count + unused_count > 0)
970                 hns_nic_alloc_rx_buffers(ring_data,
971                                          clean_count + unused_count);
972
973         return recv_pkts;
974 }
975
976 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
977 {
978         struct hnae_ring *ring = ring_data->ring;
979         int num = 0;
980         bool rx_stopped;
981
982         hns_update_rx_rate(ring);
983
984         /* for hardware bug fixed */
985         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
986         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
987
988         if (num <= hns_coal_rx_bdnum(ring)) {
989                 if (ring->q->handle->coal_adapt_en)
990                         hns_nic_adpt_coalesce(ring_data);
991
992                 rx_stopped = true;
993         } else {
994                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
995                         ring_data->ring, 1);
996
997                 rx_stopped = false;
998         }
999
1000         return rx_stopped;
1001 }
1002
1003 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1004 {
1005         struct hnae_ring *ring = ring_data->ring;
1006         int num;
1007
1008         hns_update_rx_rate(ring);
1009         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
1010
1011         if (num <= hns_coal_rx_bdnum(ring)) {
1012                 if (ring->q->handle->coal_adapt_en)
1013                         hns_nic_adpt_coalesce(ring_data);
1014
1015                 return true;
1016         }
1017
1018         return false;
1019 }
1020
1021 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
1022                                             int *bytes, int *pkts)
1023 {
1024         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1025
1026         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1027         (*bytes) += desc_cb->length;
1028         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1029         hnae_free_buffer_detach(ring, ring->next_to_clean);
1030
1031         ring_ptr_move_fw(ring, next_to_clean);
1032 }
1033
1034 static int is_valid_clean_head(struct hnae_ring *ring, int h)
1035 {
1036         int u = ring->next_to_use;
1037         int c = ring->next_to_clean;
1038
1039         if (unlikely(h > ring->desc_num))
1040                 return 0;
1041
1042         assert(u > 0 && u < ring->desc_num);
1043         assert(c > 0 && c < ring->desc_num);
1044         assert(u != c && h != c); /* must be checked before call this func */
1045
1046         return u > c ? (h > c && h <= u) : (h > c || h <= u);
1047 }
1048
1049 /* netif_tx_lock will turn down the performance, set only when necessary */
1050 #ifdef CONFIG_NET_POLL_CONTROLLER
1051 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
1052 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
1053 #else
1054 #define NETIF_TX_LOCK(ring)
1055 #define NETIF_TX_UNLOCK(ring)
1056 #endif
1057
1058 /* reclaim all desc in one budget
1059  * return error or number of desc left
1060  */
1061 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
1062                                int budget, void *v)
1063 {
1064         struct hnae_ring *ring = ring_data->ring;
1065         struct net_device *ndev = ring_data->napi.dev;
1066         struct netdev_queue *dev_queue;
1067         struct hns_nic_priv *priv = netdev_priv(ndev);
1068         int head;
1069         int bytes, pkts;
1070
1071         NETIF_TX_LOCK(ring);
1072
1073         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1074         rmb(); /* make sure head is ready before touch any data */
1075
1076         if (is_ring_empty(ring) || head == ring->next_to_clean) {
1077                 NETIF_TX_UNLOCK(ring);
1078                 return 0; /* no data to poll */
1079         }
1080
1081         if (!is_valid_clean_head(ring, head)) {
1082                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
1083                            ring->next_to_use, ring->next_to_clean);
1084                 ring->stats.io_err_cnt++;
1085                 NETIF_TX_UNLOCK(ring);
1086                 return -EIO;
1087         }
1088
1089         bytes = 0;
1090         pkts = 0;
1091         while (head != ring->next_to_clean) {
1092                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1093                 /* issue prefetch for next Tx descriptor */
1094                 prefetch(&ring->desc_cb[ring->next_to_clean]);
1095         }
1096         /* update tx ring statistics. */
1097         ring->stats.tx_pkts += pkts;
1098         ring->stats.tx_bytes += bytes;
1099
1100         NETIF_TX_UNLOCK(ring);
1101
1102         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1103         netdev_tx_completed_queue(dev_queue, pkts, bytes);
1104
1105         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1106                 netif_carrier_on(ndev);
1107
1108         if (unlikely(pkts && netif_carrier_ok(ndev) &&
1109                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1110                 /* Make sure that anybody stopping the queue after this
1111                  * sees the new next_to_clean.
1112                  */
1113                 smp_mb();
1114                 if (netif_tx_queue_stopped(dev_queue) &&
1115                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
1116                         netif_tx_wake_queue(dev_queue);
1117                         ring->stats.restart_queue++;
1118                 }
1119         }
1120         return 0;
1121 }
1122
1123 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1124 {
1125         struct hnae_ring *ring = ring_data->ring;
1126         int head;
1127
1128         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1129
1130         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1131
1132         if (head != ring->next_to_clean) {
1133                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1134                         ring_data->ring, 1);
1135
1136                 return false;
1137         } else {
1138                 return true;
1139         }
1140 }
1141
1142 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1143 {
1144         struct hnae_ring *ring = ring_data->ring;
1145         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1146
1147         if (head == ring->next_to_clean)
1148                 return true;
1149         else
1150                 return false;
1151 }
1152
1153 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1154 {
1155         struct hnae_ring *ring = ring_data->ring;
1156         struct net_device *ndev = ring_data->napi.dev;
1157         struct netdev_queue *dev_queue;
1158         int head;
1159         int bytes, pkts;
1160
1161         NETIF_TX_LOCK(ring);
1162
1163         head = ring->next_to_use; /* ntu :soft setted ring position*/
1164         bytes = 0;
1165         pkts = 0;
1166         while (head != ring->next_to_clean)
1167                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1168
1169         NETIF_TX_UNLOCK(ring);
1170
1171         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1172         netdev_tx_reset_queue(dev_queue);
1173 }
1174
1175 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1176 {
1177         int clean_complete = 0;
1178         struct hns_nic_ring_data *ring_data =
1179                 container_of(napi, struct hns_nic_ring_data, napi);
1180         struct hnae_ring *ring = ring_data->ring;
1181
1182         clean_complete += ring_data->poll_one(
1183                                 ring_data, budget - clean_complete,
1184                                 ring_data->ex_process);
1185
1186         if (clean_complete < budget) {
1187                 if (ring_data->fini_process(ring_data)) {
1188                         napi_complete(napi);
1189                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1190                 } else {
1191                         return budget;
1192                 }
1193         }
1194
1195         return clean_complete;
1196 }
1197
1198 static irqreturn_t hns_irq_handle(int irq, void *dev)
1199 {
1200         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1201
1202         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1203                 ring_data->ring, 1);
1204         napi_schedule(&ring_data->napi);
1205
1206         return IRQ_HANDLED;
1207 }
1208
1209 /**
1210  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1211  *@ndev: net device
1212  */
1213 static void hns_nic_adjust_link(struct net_device *ndev)
1214 {
1215         struct hns_nic_priv *priv = netdev_priv(ndev);
1216         struct hnae_handle *h = priv->ae_handle;
1217         int state = 1;
1218
1219         /* If there is no phy, do not need adjust link */
1220         if (ndev->phydev) {
1221                 /* When phy link down, do nothing */
1222                 if (ndev->phydev->link == 0)
1223                         return;
1224
1225                 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1226                                                   ndev->phydev->duplex)) {
1227                         /* because Hi161X chip don't support to change gmac
1228                          * speed and duplex with traffic. Delay 200ms to
1229                          * make sure there is no more data in chip FIFO.
1230                          */
1231                         netif_carrier_off(ndev);
1232                         msleep(200);
1233                         h->dev->ops->adjust_link(h, ndev->phydev->speed,
1234                                                  ndev->phydev->duplex);
1235                         netif_carrier_on(ndev);
1236                 }
1237         }
1238
1239         state = state && h->dev->ops->get_status(h);
1240
1241         if (state != priv->link) {
1242                 if (state) {
1243                         netif_carrier_on(ndev);
1244                         netif_tx_wake_all_queues(ndev);
1245                         netdev_info(ndev, "link up\n");
1246                 } else {
1247                         netif_carrier_off(ndev);
1248                         netdev_info(ndev, "link down\n");
1249                 }
1250                 priv->link = state;
1251         }
1252 }
1253
1254 /**
1255  *hns_nic_init_phy - init phy
1256  *@ndev: net device
1257  *@h: ae handle
1258  * Return 0 on success, negative on failure
1259  */
1260 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1261 {
1262         struct phy_device *phy_dev = h->phy_dev;
1263         int ret;
1264
1265         if (!h->phy_dev)
1266                 return 0;
1267
1268         phy_dev->supported &= h->if_support;
1269         phy_dev->advertising = phy_dev->supported;
1270
1271         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1272                 phy_dev->autoneg = false;
1273
1274         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1275                 phy_dev->dev_flags = 0;
1276
1277                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1278                                          h->phy_if);
1279         } else {
1280                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1281         }
1282         if (unlikely(ret))
1283                 return -ENODEV;
1284
1285         return 0;
1286 }
1287
1288 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1289 {
1290         struct hns_nic_priv *priv = netdev_priv(netdev);
1291         struct hnae_handle *h = priv->ae_handle;
1292
1293         napi_enable(&priv->ring_data[idx].napi);
1294
1295         enable_irq(priv->ring_data[idx].ring->irq);
1296         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1297
1298         return 0;
1299 }
1300
1301 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1302 {
1303         struct hns_nic_priv *priv = netdev_priv(ndev);
1304         struct hnae_handle *h = priv->ae_handle;
1305         struct sockaddr *mac_addr = p;
1306         int ret;
1307
1308         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1309                 return -EADDRNOTAVAIL;
1310
1311         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1312         if (ret) {
1313                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1314                 return ret;
1315         }
1316
1317         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1318
1319         return 0;
1320 }
1321
1322 void hns_nic_update_stats(struct net_device *netdev)
1323 {
1324         struct hns_nic_priv *priv = netdev_priv(netdev);
1325         struct hnae_handle *h = priv->ae_handle;
1326
1327         h->dev->ops->update_stats(h, &netdev->stats);
1328 }
1329
1330 /* set mac addr if it is configed. or leave it to the AE driver */
1331 static void hns_init_mac_addr(struct net_device *ndev)
1332 {
1333         struct hns_nic_priv *priv = netdev_priv(ndev);
1334
1335         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1336                 eth_hw_addr_random(ndev);
1337                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1338                          ndev->dev_addr);
1339         }
1340 }
1341
1342 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1343 {
1344         struct hns_nic_priv *priv = netdev_priv(netdev);
1345         struct hnae_handle *h = priv->ae_handle;
1346
1347         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1348         disable_irq(priv->ring_data[idx].ring->irq);
1349
1350         napi_disable(&priv->ring_data[idx].napi);
1351 }
1352
1353 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1354                                       struct hnae_ring *ring, cpumask_t *mask)
1355 {
1356         int cpu;
1357
1358         /* Diffrent irq banlance between 16core and 32core.
1359          * The cpu mask set by ring index according to the ring flag
1360          * which indicate the ring is tx or rx.
1361          */
1362         if (q_num == num_possible_cpus()) {
1363                 if (is_tx_ring(ring))
1364                         cpu = ring_idx;
1365                 else
1366                         cpu = ring_idx - q_num;
1367         } else {
1368                 if (is_tx_ring(ring))
1369                         cpu = ring_idx * 2;
1370                 else
1371                         cpu = (ring_idx - q_num) * 2 + 1;
1372         }
1373
1374         cpumask_clear(mask);
1375         cpumask_set_cpu(cpu, mask);
1376
1377         return cpu;
1378 }
1379
1380 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1381 {
1382         int i;
1383
1384         for (i = 0; i < q_num * 2; i++) {
1385                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1386                         irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1387                                               NULL);
1388                         free_irq(priv->ring_data[i].ring->irq,
1389                                  &priv->ring_data[i]);
1390                         priv->ring_data[i].ring->irq_init_flag =
1391                                 RCB_IRQ_NOT_INITED;
1392                 }
1393         }
1394 }
1395
1396 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1397 {
1398         struct hnae_handle *h = priv->ae_handle;
1399         struct hns_nic_ring_data *rd;
1400         int i;
1401         int ret;
1402         int cpu;
1403
1404         for (i = 0; i < h->q_num * 2; i++) {
1405                 rd = &priv->ring_data[i];
1406
1407                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1408                         break;
1409
1410                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1411                          "%s-%s%d", priv->netdev->name,
1412                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1413
1414                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1415
1416                 ret = request_irq(rd->ring->irq,
1417                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1418                 if (ret) {
1419                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1420                                    rd->ring->irq);
1421                         goto out_free_irq;
1422                 }
1423                 disable_irq(rd->ring->irq);
1424
1425                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1426                                                  rd->ring, &rd->mask);
1427
1428                 if (cpu_online(cpu))
1429                         irq_set_affinity_hint(rd->ring->irq,
1430                                               &rd->mask);
1431
1432                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1433         }
1434
1435         return 0;
1436
1437 out_free_irq:
1438         hns_nic_free_irq(h->q_num, priv);
1439         return ret;
1440 }
1441
1442 static int hns_nic_net_up(struct net_device *ndev)
1443 {
1444         struct hns_nic_priv *priv = netdev_priv(ndev);
1445         struct hnae_handle *h = priv->ae_handle;
1446         int i, j;
1447         int ret;
1448
1449         if (!test_bit(NIC_STATE_DOWN, &priv->state))
1450                 return 0;
1451
1452         ret = hns_nic_init_irq(priv);
1453         if (ret != 0) {
1454                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1455                 return ret;
1456         }
1457
1458         for (i = 0; i < h->q_num * 2; i++) {
1459                 ret = hns_nic_ring_open(ndev, i);
1460                 if (ret)
1461                         goto out_has_some_queues;
1462         }
1463
1464         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1465         if (ret)
1466                 goto out_set_mac_addr_err;
1467
1468         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1469         if (ret)
1470                 goto out_start_err;
1471
1472         if (ndev->phydev)
1473                 phy_start(ndev->phydev);
1474
1475         clear_bit(NIC_STATE_DOWN, &priv->state);
1476         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1477
1478         return 0;
1479
1480 out_start_err:
1481         netif_stop_queue(ndev);
1482 out_set_mac_addr_err:
1483 out_has_some_queues:
1484         for (j = i - 1; j >= 0; j--)
1485                 hns_nic_ring_close(ndev, j);
1486
1487         hns_nic_free_irq(h->q_num, priv);
1488         set_bit(NIC_STATE_DOWN, &priv->state);
1489
1490         return ret;
1491 }
1492
1493 static void hns_nic_net_down(struct net_device *ndev)
1494 {
1495         int i;
1496         struct hnae_ae_ops *ops;
1497         struct hns_nic_priv *priv = netdev_priv(ndev);
1498
1499         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1500                 return;
1501
1502         (void)del_timer_sync(&priv->service_timer);
1503         netif_tx_stop_all_queues(ndev);
1504         netif_carrier_off(ndev);
1505         netif_tx_disable(ndev);
1506         priv->link = 0;
1507
1508         if (ndev->phydev)
1509                 phy_stop(ndev->phydev);
1510
1511         ops = priv->ae_handle->dev->ops;
1512
1513         if (ops->stop)
1514                 ops->stop(priv->ae_handle);
1515
1516         netif_tx_stop_all_queues(ndev);
1517
1518         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1519                 hns_nic_ring_close(ndev, i);
1520                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1521
1522                 /* clean tx buffers*/
1523                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1524         }
1525 }
1526
1527 void hns_nic_net_reset(struct net_device *ndev)
1528 {
1529         struct hns_nic_priv *priv = netdev_priv(ndev);
1530         struct hnae_handle *handle = priv->ae_handle;
1531
1532         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1533                 usleep_range(1000, 2000);
1534
1535         (void)hnae_reinit_handle(handle);
1536
1537         clear_bit(NIC_STATE_RESETTING, &priv->state);
1538 }
1539
1540 void hns_nic_net_reinit(struct net_device *netdev)
1541 {
1542         struct hns_nic_priv *priv = netdev_priv(netdev);
1543         enum hnae_port_type type = priv->ae_handle->port_type;
1544
1545         netif_trans_update(priv->netdev);
1546         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1547                 usleep_range(1000, 2000);
1548
1549         hns_nic_net_down(netdev);
1550
1551         /* Only do hns_nic_net_reset in debug mode
1552          * because of hardware limitation.
1553          */
1554         if (type == HNAE_PORT_DEBUG)
1555                 hns_nic_net_reset(netdev);
1556
1557         (void)hns_nic_net_up(netdev);
1558         clear_bit(NIC_STATE_REINITING, &priv->state);
1559 }
1560
1561 static int hns_nic_net_open(struct net_device *ndev)
1562 {
1563         struct hns_nic_priv *priv = netdev_priv(ndev);
1564         struct hnae_handle *h = priv->ae_handle;
1565         int ret;
1566
1567         if (test_bit(NIC_STATE_TESTING, &priv->state))
1568                 return -EBUSY;
1569
1570         priv->link = 0;
1571         netif_carrier_off(ndev);
1572
1573         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1574         if (ret < 0) {
1575                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1576                            ret);
1577                 return ret;
1578         }
1579
1580         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1581         if (ret < 0) {
1582                 netdev_err(ndev,
1583                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1584                 return ret;
1585         }
1586
1587         ret = hns_nic_net_up(ndev);
1588         if (ret) {
1589                 netdev_err(ndev,
1590                            "hns net up fail, ret=%d!\n", ret);
1591                 return ret;
1592         }
1593
1594         return 0;
1595 }
1596
1597 static int hns_nic_net_stop(struct net_device *ndev)
1598 {
1599         hns_nic_net_down(ndev);
1600
1601         return 0;
1602 }
1603
1604 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1605 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1606 static void hns_nic_net_timeout(struct net_device *ndev)
1607 {
1608         struct hns_nic_priv *priv = netdev_priv(ndev);
1609
1610         if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1611                 ndev->watchdog_timeo *= 2;
1612                 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1613                             ndev->watchdog_timeo);
1614         } else {
1615                 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1616                 hns_tx_timeout_reset(priv);
1617         }
1618 }
1619
1620 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1621                             int cmd)
1622 {
1623         struct phy_device *phy_dev = netdev->phydev;
1624
1625         if (!netif_running(netdev))
1626                 return -EINVAL;
1627
1628         if (!phy_dev)
1629                 return -ENOTSUPP;
1630
1631         return phy_mii_ioctl(phy_dev, ifr, cmd);
1632 }
1633
1634 /* use only for netconsole to poll with the device without interrupt */
1635 #ifdef CONFIG_NET_POLL_CONTROLLER
1636 void hns_nic_poll_controller(struct net_device *ndev)
1637 {
1638         struct hns_nic_priv *priv = netdev_priv(ndev);
1639         unsigned long flags;
1640         int i;
1641
1642         local_irq_save(flags);
1643         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1644                 napi_schedule(&priv->ring_data[i].napi);
1645         local_irq_restore(flags);
1646 }
1647 #endif
1648
1649 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1650                                     struct net_device *ndev)
1651 {
1652         struct hns_nic_priv *priv = netdev_priv(ndev);
1653
1654         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1655
1656         return hns_nic_net_xmit_hw(ndev, skb,
1657                                    &tx_ring_data(priv, skb->queue_mapping));
1658 }
1659
1660 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1661                                   struct sk_buff *skb)
1662 {
1663         dev_kfree_skb_any(skb);
1664 }
1665
1666 #define HNS_LB_TX_RING  0
1667 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1668 {
1669         struct sk_buff *skb;
1670         struct ethhdr *ethhdr;
1671         int frame_len;
1672
1673         /* allocate test skb */
1674         skb = alloc_skb(64, GFP_KERNEL);
1675         if (!skb)
1676                 return NULL;
1677
1678         skb_put(skb, 64);
1679         skb->dev = ndev;
1680         memset(skb->data, 0xFF, skb->len);
1681
1682         /* must be tcp/ip package */
1683         ethhdr = (struct ethhdr *)skb->data;
1684         ethhdr->h_proto = htons(ETH_P_IP);
1685
1686         frame_len = skb->len & (~1ul);
1687         memset(&skb->data[frame_len / 2], 0xAA,
1688                frame_len / 2 - 1);
1689
1690         skb->queue_mapping = HNS_LB_TX_RING;
1691
1692         return skb;
1693 }
1694
1695 static int hns_enable_serdes_lb(struct net_device *ndev)
1696 {
1697         struct hns_nic_priv *priv = netdev_priv(ndev);
1698         struct hnae_handle *h = priv->ae_handle;
1699         struct hnae_ae_ops *ops = h->dev->ops;
1700         int speed, duplex;
1701         int ret;
1702
1703         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1704         if (ret)
1705                 return ret;
1706
1707         ret = ops->start ? ops->start(h) : 0;
1708         if (ret)
1709                 return ret;
1710
1711         /* link adjust duplex*/
1712         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1713                 speed = 1000;
1714         else
1715                 speed = 10000;
1716         duplex = 1;
1717
1718         ops->adjust_link(h, speed, duplex);
1719
1720         /* wait h/w ready */
1721         mdelay(300);
1722
1723         return 0;
1724 }
1725
1726 static void hns_disable_serdes_lb(struct net_device *ndev)
1727 {
1728         struct hns_nic_priv *priv = netdev_priv(ndev);
1729         struct hnae_handle *h = priv->ae_handle;
1730         struct hnae_ae_ops *ops = h->dev->ops;
1731
1732         ops->stop(h);
1733         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1734 }
1735
1736 /**
1737  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1738  *function as follows:
1739  *    1. if one rx ring has found the page_offset is not equal 0 between head
1740  *       and tail, it means that the chip fetched the wrong descs for the ring
1741  *       which buffer size is 4096.
1742  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1743  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1744  *       recieving all packages and it will fetch new descriptions.
1745  *    4. recover to the original state.
1746  *
1747  *@ndev: net device
1748  */
1749 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1750 {
1751         struct hns_nic_priv *priv = netdev_priv(ndev);
1752         struct hnae_handle *h = priv->ae_handle;
1753         struct hnae_ae_ops *ops = h->dev->ops;
1754         struct hns_nic_ring_data *rd;
1755         struct hnae_ring *ring;
1756         struct sk_buff *skb;
1757         u32 *org_indir;
1758         u32 *cur_indir;
1759         int indir_size;
1760         int head, tail;
1761         int fetch_num;
1762         int i, j;
1763         bool found;
1764         int retry_times;
1765         int ret = 0;
1766
1767         /* alloc indir memory */
1768         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1769         org_indir = kzalloc(indir_size, GFP_KERNEL);
1770         if (!org_indir)
1771                 return -ENOMEM;
1772
1773         /* store the orginal indirection */
1774         ops->get_rss(h, org_indir, NULL, NULL);
1775
1776         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1777         if (!cur_indir) {
1778                 ret = -ENOMEM;
1779                 goto cur_indir_alloc_err;
1780         }
1781
1782         /* set loopback */
1783         if (hns_enable_serdes_lb(ndev)) {
1784                 ret = -EINVAL;
1785                 goto enable_serdes_lb_err;
1786         }
1787
1788         /* foreach every rx ring to clear fetch desc */
1789         for (i = 0; i < h->q_num; i++) {
1790                 ring = &h->qs[i]->rx_ring;
1791                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1792                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1793                 found = false;
1794                 fetch_num = ring_dist(ring, head, tail);
1795
1796                 while (head != tail) {
1797                         if (ring->desc_cb[head].page_offset != 0) {
1798                                 found = true;
1799                                 break;
1800                         }
1801
1802                         head++;
1803                         if (head == ring->desc_num)
1804                                 head = 0;
1805                 }
1806
1807                 if (found) {
1808                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1809                                 cur_indir[j] = i;
1810                         ops->set_rss(h, cur_indir, NULL, 0);
1811
1812                         for (j = 0; j < fetch_num; j++) {
1813                                 /* alloc one skb and init */
1814                                 skb = hns_assemble_skb(ndev);
1815                                 if (!skb) {
1816                                         ret = -ENOMEM;
1817                                         goto out;
1818                                 }
1819                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1820                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1821
1822                                 retry_times = 0;
1823                                 while (retry_times++ < 10) {
1824                                         mdelay(10);
1825                                         /* clean rx */
1826                                         rd = &rx_ring_data(priv, i);
1827                                         if (rd->poll_one(rd, fetch_num,
1828                                                          hns_nic_drop_rx_fetch))
1829                                                 break;
1830                                 }
1831
1832                                 retry_times = 0;
1833                                 while (retry_times++ < 10) {
1834                                         mdelay(10);
1835                                         /* clean tx ring 0 send package */
1836                                         rd = &tx_ring_data(priv,
1837                                                            HNS_LB_TX_RING);
1838                                         if (rd->poll_one(rd, fetch_num, NULL))
1839                                                 break;
1840                                 }
1841                         }
1842                 }
1843         }
1844
1845 out:
1846         /* restore everything */
1847         ops->set_rss(h, org_indir, NULL, 0);
1848         hns_disable_serdes_lb(ndev);
1849 enable_serdes_lb_err:
1850         kfree(cur_indir);
1851 cur_indir_alloc_err:
1852         kfree(org_indir);
1853
1854         return ret;
1855 }
1856
1857 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1858 {
1859         struct hns_nic_priv *priv = netdev_priv(ndev);
1860         struct hnae_handle *h = priv->ae_handle;
1861         bool if_running = netif_running(ndev);
1862         int ret;
1863
1864         /* MTU < 68 is an error and causes problems on some kernels */
1865         if (new_mtu < 68)
1866                 return -EINVAL;
1867
1868         /* MTU no change */
1869         if (new_mtu == ndev->mtu)
1870                 return 0;
1871
1872         if (!h->dev->ops->set_mtu)
1873                 return -ENOTSUPP;
1874
1875         if (if_running) {
1876                 (void)hns_nic_net_stop(ndev);
1877                 msleep(100);
1878         }
1879
1880         if (priv->enet_ver != AE_VERSION_1 &&
1881             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1882             new_mtu > BD_SIZE_2048_MAX_MTU) {
1883                 /* update desc */
1884                 hnae_reinit_all_ring_desc(h);
1885
1886                 /* clear the package which the chip has fetched */
1887                 ret = hns_nic_clear_all_rx_fetch(ndev);
1888
1889                 /* the page offset must be consist with desc */
1890                 hnae_reinit_all_ring_page_off(h);
1891
1892                 if (ret) {
1893                         netdev_err(ndev, "clear the fetched desc fail\n");
1894                         goto out;
1895                 }
1896         }
1897
1898         ret = h->dev->ops->set_mtu(h, new_mtu);
1899         if (ret) {
1900                 netdev_err(ndev, "set mtu fail, return value %d\n",
1901                            ret);
1902                 goto out;
1903         }
1904
1905         /* finally, set new mtu to netdevice */
1906         ndev->mtu = new_mtu;
1907
1908 out:
1909         if (if_running) {
1910                 if (hns_nic_net_open(ndev)) {
1911                         netdev_err(ndev, "hns net open fail\n");
1912                         ret = -EINVAL;
1913                 }
1914         }
1915
1916         return ret;
1917 }
1918
1919 static int hns_nic_set_features(struct net_device *netdev,
1920                                 netdev_features_t features)
1921 {
1922         struct hns_nic_priv *priv = netdev_priv(netdev);
1923
1924         switch (priv->enet_ver) {
1925         case AE_VERSION_1:
1926                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1927                         netdev_info(netdev, "enet v1 do not support tso!\n");
1928                 break;
1929         default:
1930                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1931                         priv->ops.fill_desc = fill_tso_desc;
1932                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1933                         /* The chip only support 7*4096 */
1934                         netif_set_gso_max_size(netdev, 7 * 4096);
1935                 } else {
1936                         priv->ops.fill_desc = fill_v2_desc;
1937                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1938                 }
1939                 break;
1940         }
1941         netdev->features = features;
1942         return 0;
1943 }
1944
1945 static netdev_features_t hns_nic_fix_features(
1946                 struct net_device *netdev, netdev_features_t features)
1947 {
1948         struct hns_nic_priv *priv = netdev_priv(netdev);
1949
1950         switch (priv->enet_ver) {
1951         case AE_VERSION_1:
1952                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1953                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1954                 break;
1955         default:
1956                 break;
1957         }
1958         return features;
1959 }
1960
1961 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1962 {
1963         struct hns_nic_priv *priv = netdev_priv(netdev);
1964         struct hnae_handle *h = priv->ae_handle;
1965
1966         if (h->dev->ops->add_uc_addr)
1967                 return h->dev->ops->add_uc_addr(h, addr);
1968
1969         return 0;
1970 }
1971
1972 static int hns_nic_uc_unsync(struct net_device *netdev,
1973                              const unsigned char *addr)
1974 {
1975         struct hns_nic_priv *priv = netdev_priv(netdev);
1976         struct hnae_handle *h = priv->ae_handle;
1977
1978         if (h->dev->ops->rm_uc_addr)
1979                 return h->dev->ops->rm_uc_addr(h, addr);
1980
1981         return 0;
1982 }
1983
1984 /**
1985  * nic_set_multicast_list - set mutl mac address
1986  * @netdev: net device
1987  * @p: mac address
1988  *
1989  * return void
1990  */
1991 void hns_set_multicast_list(struct net_device *ndev)
1992 {
1993         struct hns_nic_priv *priv = netdev_priv(ndev);
1994         struct hnae_handle *h = priv->ae_handle;
1995         struct netdev_hw_addr *ha = NULL;
1996
1997         if (!h) {
1998                 netdev_err(ndev, "hnae handle is null\n");
1999                 return;
2000         }
2001
2002         if (h->dev->ops->clr_mc_addr)
2003                 if (h->dev->ops->clr_mc_addr(h))
2004                         netdev_err(ndev, "clear multicast address fail\n");
2005
2006         if (h->dev->ops->set_mc_addr) {
2007                 netdev_for_each_mc_addr(ha, ndev)
2008                         if (h->dev->ops->set_mc_addr(h, ha->addr))
2009                                 netdev_err(ndev, "set multicast fail\n");
2010         }
2011 }
2012
2013 void hns_nic_set_rx_mode(struct net_device *ndev)
2014 {
2015         struct hns_nic_priv *priv = netdev_priv(ndev);
2016         struct hnae_handle *h = priv->ae_handle;
2017
2018         if (h->dev->ops->set_promisc_mode) {
2019                 if (ndev->flags & IFF_PROMISC)
2020                         h->dev->ops->set_promisc_mode(h, 1);
2021                 else
2022                         h->dev->ops->set_promisc_mode(h, 0);
2023         }
2024
2025         hns_set_multicast_list(ndev);
2026
2027         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
2028                 netdev_err(ndev, "sync uc address fail\n");
2029 }
2030
2031 static void hns_nic_get_stats64(struct net_device *ndev,
2032                                 struct rtnl_link_stats64 *stats)
2033 {
2034         int idx = 0;
2035         u64 tx_bytes = 0;
2036         u64 rx_bytes = 0;
2037         u64 tx_pkts = 0;
2038         u64 rx_pkts = 0;
2039         struct hns_nic_priv *priv = netdev_priv(ndev);
2040         struct hnae_handle *h = priv->ae_handle;
2041
2042         for (idx = 0; idx < h->q_num; idx++) {
2043                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
2044                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
2045                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
2046                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
2047         }
2048
2049         stats->tx_bytes = tx_bytes;
2050         stats->tx_packets = tx_pkts;
2051         stats->rx_bytes = rx_bytes;
2052         stats->rx_packets = rx_pkts;
2053
2054         stats->rx_errors = ndev->stats.rx_errors;
2055         stats->multicast = ndev->stats.multicast;
2056         stats->rx_length_errors = ndev->stats.rx_length_errors;
2057         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
2058         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
2059
2060         stats->tx_errors = ndev->stats.tx_errors;
2061         stats->rx_dropped = ndev->stats.rx_dropped;
2062         stats->tx_dropped = ndev->stats.tx_dropped;
2063         stats->collisions = ndev->stats.collisions;
2064         stats->rx_over_errors = ndev->stats.rx_over_errors;
2065         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
2066         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
2067         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
2068         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
2069         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
2070         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
2071         stats->tx_window_errors = ndev->stats.tx_window_errors;
2072         stats->rx_compressed = ndev->stats.rx_compressed;
2073         stats->tx_compressed = ndev->stats.tx_compressed;
2074 }
2075
2076 static u16
2077 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
2078                      void *accel_priv, select_queue_fallback_t fallback)
2079 {
2080         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
2081         struct hns_nic_priv *priv = netdev_priv(ndev);
2082
2083         /* fix hardware broadcast/multicast packets queue loopback */
2084         if (!AE_IS_VER1(priv->enet_ver) &&
2085             is_multicast_ether_addr(eth_hdr->h_dest))
2086                 return 0;
2087         else
2088                 return fallback(ndev, skb);
2089 }
2090
2091 static const struct net_device_ops hns_nic_netdev_ops = {
2092         .ndo_open = hns_nic_net_open,
2093         .ndo_stop = hns_nic_net_stop,
2094         .ndo_start_xmit = hns_nic_net_xmit,
2095         .ndo_tx_timeout = hns_nic_net_timeout,
2096         .ndo_set_mac_address = hns_nic_net_set_mac_address,
2097         .ndo_change_mtu = hns_nic_change_mtu,
2098         .ndo_do_ioctl = hns_nic_do_ioctl,
2099         .ndo_set_features = hns_nic_set_features,
2100         .ndo_fix_features = hns_nic_fix_features,
2101         .ndo_get_stats64 = hns_nic_get_stats64,
2102 #ifdef CONFIG_NET_POLL_CONTROLLER
2103         .ndo_poll_controller = hns_nic_poll_controller,
2104 #endif
2105         .ndo_set_rx_mode = hns_nic_set_rx_mode,
2106         .ndo_select_queue = hns_nic_select_queue,
2107 };
2108
2109 static void hns_nic_update_link_status(struct net_device *netdev)
2110 {
2111         struct hns_nic_priv *priv = netdev_priv(netdev);
2112
2113         struct hnae_handle *h = priv->ae_handle;
2114
2115         if (h->phy_dev) {
2116                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2117                         return;
2118
2119                 (void)genphy_read_status(h->phy_dev);
2120         }
2121         hns_nic_adjust_link(netdev);
2122 }
2123
2124 /* for dumping key regs*/
2125 static void hns_nic_dump(struct hns_nic_priv *priv)
2126 {
2127         struct hnae_handle *h = priv->ae_handle;
2128         struct hnae_ae_ops *ops = h->dev->ops;
2129         u32 *data, reg_num, i;
2130
2131         if (ops->get_regs_len && ops->get_regs) {
2132                 reg_num = ops->get_regs_len(priv->ae_handle);
2133                 reg_num = (reg_num + 3ul) & ~3ul;
2134                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2135                 if (data) {
2136                         ops->get_regs(priv->ae_handle, data);
2137                         for (i = 0; i < reg_num; i += 4)
2138                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2139                                         i, data[i], data[i + 1],
2140                                         data[i + 2], data[i + 3]);
2141                         kfree(data);
2142                 }
2143         }
2144
2145         for (i = 0; i < h->q_num; i++) {
2146                 pr_info("tx_queue%d_next_to_clean:%d\n",
2147                         i, h->qs[i]->tx_ring.next_to_clean);
2148                 pr_info("tx_queue%d_next_to_use:%d\n",
2149                         i, h->qs[i]->tx_ring.next_to_use);
2150                 pr_info("rx_queue%d_next_to_clean:%d\n",
2151                         i, h->qs[i]->rx_ring.next_to_clean);
2152                 pr_info("rx_queue%d_next_to_use:%d\n",
2153                         i, h->qs[i]->rx_ring.next_to_use);
2154         }
2155 }
2156
2157 /* for resetting subtask */
2158 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2159 {
2160         enum hnae_port_type type = priv->ae_handle->port_type;
2161
2162         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2163                 return;
2164         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2165
2166         /* If we're already down, removing or resetting, just bail */
2167         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2168             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2169             test_bit(NIC_STATE_RESETTING, &priv->state))
2170                 return;
2171
2172         hns_nic_dump(priv);
2173         netdev_info(priv->netdev, "try to reset %s port!\n",
2174                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2175
2176         rtnl_lock();
2177         /* put off any impending NetWatchDogTimeout */
2178         netif_trans_update(priv->netdev);
2179         hns_nic_net_reinit(priv->netdev);
2180
2181         rtnl_unlock();
2182 }
2183
2184 /* for doing service complete*/
2185 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2186 {
2187         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2188         /* make sure to commit the things */
2189         smp_mb__before_atomic();
2190         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2191 }
2192
2193 static void hns_nic_service_task(struct work_struct *work)
2194 {
2195         struct hns_nic_priv *priv
2196                 = container_of(work, struct hns_nic_priv, service_task);
2197         struct hnae_handle *h = priv->ae_handle;
2198
2199         hns_nic_reset_subtask(priv);
2200         hns_nic_update_link_status(priv->netdev);
2201         h->dev->ops->update_led_status(h);
2202         hns_nic_update_stats(priv->netdev);
2203
2204         hns_nic_service_event_complete(priv);
2205 }
2206
2207 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2208 {
2209         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2210             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2211             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2212                 (void)schedule_work(&priv->service_task);
2213 }
2214
2215 static void hns_nic_service_timer(unsigned long data)
2216 {
2217         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2218
2219         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2220
2221         hns_nic_task_schedule(priv);
2222 }
2223
2224 /**
2225  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2226  * @priv: driver private struct
2227  **/
2228 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2229 {
2230         /* Do the reset outside of interrupt context */
2231         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2232                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2233                 netdev_warn(priv->netdev,
2234                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2235                             priv->tx_timeout_count, priv->state);
2236                 priv->tx_timeout_count++;
2237                 hns_nic_task_schedule(priv);
2238         }
2239 }
2240
2241 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2242 {
2243         struct hnae_handle *h = priv->ae_handle;
2244         struct hns_nic_ring_data *rd;
2245         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2246         int i;
2247
2248         if (h->q_num > NIC_MAX_Q_PER_VF) {
2249                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2250                 return -EINVAL;
2251         }
2252
2253         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2254                                   GFP_KERNEL);
2255         if (!priv->ring_data)
2256                 return -ENOMEM;
2257
2258         for (i = 0; i < h->q_num; i++) {
2259                 rd = &priv->ring_data[i];
2260                 rd->queue_index = i;
2261                 rd->ring = &h->qs[i]->tx_ring;
2262                 rd->poll_one = hns_nic_tx_poll_one;
2263                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2264                         hns_nic_tx_fini_pro_v2;
2265
2266                 netif_napi_add(priv->netdev, &rd->napi,
2267                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2268                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2269         }
2270         for (i = h->q_num; i < h->q_num * 2; i++) {
2271                 rd = &priv->ring_data[i];
2272                 rd->queue_index = i - h->q_num;
2273                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2274                 rd->poll_one = hns_nic_rx_poll_one;
2275                 rd->ex_process = hns_nic_rx_up_pro;
2276                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2277                         hns_nic_rx_fini_pro_v2;
2278
2279                 netif_napi_add(priv->netdev, &rd->napi,
2280                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2281                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2282         }
2283
2284         return 0;
2285 }
2286
2287 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2288 {
2289         struct hnae_handle *h = priv->ae_handle;
2290         int i;
2291
2292         for (i = 0; i < h->q_num * 2; i++) {
2293                 netif_napi_del(&priv->ring_data[i].napi);
2294                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2295                         (void)irq_set_affinity_hint(
2296                                 priv->ring_data[i].ring->irq,
2297                                 NULL);
2298                         free_irq(priv->ring_data[i].ring->irq,
2299                                  &priv->ring_data[i]);
2300                 }
2301
2302                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2303         }
2304         kfree(priv->ring_data);
2305 }
2306
2307 static void hns_nic_set_priv_ops(struct net_device *netdev)
2308 {
2309         struct hns_nic_priv *priv = netdev_priv(netdev);
2310         struct hnae_handle *h = priv->ae_handle;
2311
2312         if (AE_IS_VER1(priv->enet_ver)) {
2313                 priv->ops.fill_desc = fill_desc;
2314                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2315                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2316         } else {
2317                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2318                 if ((netdev->features & NETIF_F_TSO) ||
2319                     (netdev->features & NETIF_F_TSO6)) {
2320                         priv->ops.fill_desc = fill_tso_desc;
2321                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2322                         /* This chip only support 7*4096 */
2323                         netif_set_gso_max_size(netdev, 7 * 4096);
2324                 } else {
2325                         priv->ops.fill_desc = fill_v2_desc;
2326                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2327                 }
2328                 /* enable tso when init
2329                  * control tso on/off through TSE bit in bd
2330                  */
2331                 h->dev->ops->set_tso_stats(h, 1);
2332         }
2333 }
2334
2335 static int hns_nic_try_get_ae(struct net_device *ndev)
2336 {
2337         struct hns_nic_priv *priv = netdev_priv(ndev);
2338         struct hnae_handle *h;
2339         int ret;
2340
2341         h = hnae_get_handle(&priv->netdev->dev,
2342                             priv->fwnode, priv->port_id, NULL);
2343         if (IS_ERR_OR_NULL(h)) {
2344                 ret = -ENODEV;
2345                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2346                 goto out;
2347         }
2348         priv->ae_handle = h;
2349
2350         ret = hns_nic_init_phy(ndev, h);
2351         if (ret) {
2352                 dev_err(priv->dev, "probe phy device fail!\n");
2353                 goto out_init_phy;
2354         }
2355
2356         ret = hns_nic_init_ring_data(priv);
2357         if (ret) {
2358                 ret = -ENOMEM;
2359                 goto out_init_ring_data;
2360         }
2361
2362         hns_nic_set_priv_ops(ndev);
2363
2364         ret = register_netdev(ndev);
2365         if (ret) {
2366                 dev_err(priv->dev, "probe register netdev fail!\n");
2367                 goto out_reg_ndev_fail;
2368         }
2369         return 0;
2370
2371 out_reg_ndev_fail:
2372         hns_nic_uninit_ring_data(priv);
2373         priv->ring_data = NULL;
2374 out_init_phy:
2375 out_init_ring_data:
2376         hnae_put_handle(priv->ae_handle);
2377         priv->ae_handle = NULL;
2378 out:
2379         return ret;
2380 }
2381
2382 static int hns_nic_notifier_action(struct notifier_block *nb,
2383                                    unsigned long action, void *data)
2384 {
2385         struct hns_nic_priv *priv =
2386                 container_of(nb, struct hns_nic_priv, notifier_block);
2387
2388         assert(action == HNAE_AE_REGISTER);
2389
2390         if (!hns_nic_try_get_ae(priv->netdev)) {
2391                 hnae_unregister_notifier(&priv->notifier_block);
2392                 priv->notifier_block.notifier_call = NULL;
2393         }
2394         return 0;
2395 }
2396
2397 static int hns_nic_dev_probe(struct platform_device *pdev)
2398 {
2399         struct device *dev = &pdev->dev;
2400         struct net_device *ndev;
2401         struct hns_nic_priv *priv;
2402         u32 port_id;
2403         int ret;
2404
2405         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2406         if (!ndev)
2407                 return -ENOMEM;
2408
2409         platform_set_drvdata(pdev, ndev);
2410
2411         priv = netdev_priv(ndev);
2412         priv->dev = dev;
2413         priv->netdev = ndev;
2414
2415         if (dev_of_node(dev)) {
2416                 struct device_node *ae_node;
2417
2418                 if (of_device_is_compatible(dev->of_node,
2419                                             "hisilicon,hns-nic-v1"))
2420                         priv->enet_ver = AE_VERSION_1;
2421                 else
2422                         priv->enet_ver = AE_VERSION_2;
2423
2424                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2425                 if (!ae_node) {
2426                         ret = -ENODEV;
2427                         dev_err(dev, "not find ae-handle\n");
2428                         goto out_read_prop_fail;
2429                 }
2430                 priv->fwnode = &ae_node->fwnode;
2431         } else if (is_acpi_node(dev->fwnode)) {
2432                 struct acpi_reference_args args;
2433
2434                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2435                         priv->enet_ver = AE_VERSION_1;
2436                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2437                         priv->enet_ver = AE_VERSION_2;
2438                 else {
2439                         ret = -ENXIO;
2440                         goto out_read_prop_fail;
2441                 }
2442
2443                 /* try to find port-idx-in-ae first */
2444                 ret = acpi_node_get_property_reference(dev->fwnode,
2445                                                        "ae-handle", 0, &args);
2446                 if (ret) {
2447                         dev_err(dev, "not find ae-handle\n");
2448                         goto out_read_prop_fail;
2449                 }
2450                 priv->fwnode = acpi_fwnode_handle(args.adev);
2451         } else {
2452                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2453                 ret = -ENXIO;
2454                 goto out_read_prop_fail;
2455         }
2456
2457         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2458         if (ret) {
2459                 /* only for old code compatible */
2460                 ret = device_property_read_u32(dev, "port-id", &port_id);
2461                 if (ret)
2462                         goto out_read_prop_fail;
2463                 /* for old dts, we need to caculate the port offset */
2464                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2465                         : port_id - HNS_SRV_OFFSET;
2466         }
2467         priv->port_id = port_id;
2468
2469         hns_init_mac_addr(ndev);
2470
2471         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2472         ndev->priv_flags |= IFF_UNICAST_FLT;
2473         ndev->netdev_ops = &hns_nic_netdev_ops;
2474         hns_ethtool_set_ops(ndev);
2475
2476         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2477                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2478                 NETIF_F_GRO;
2479         ndev->vlan_features |=
2480                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2481         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2482
2483         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2484         ndev->min_mtu = MAC_MIN_MTU;
2485         switch (priv->enet_ver) {
2486         case AE_VERSION_2:
2487                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2488                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2489                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2490                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2491                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2492                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2493                 break;
2494         default:
2495                 ndev->max_mtu = MAC_MAX_MTU -
2496                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2497                 break;
2498         }
2499
2500         SET_NETDEV_DEV(ndev, dev);
2501
2502         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2503                 dev_dbg(dev, "set mask to 64bit\n");
2504         else
2505                 dev_err(dev, "set mask to 64bit fail!\n");
2506
2507         /* carrier off reporting is important to ethtool even BEFORE open */
2508         netif_carrier_off(ndev);
2509
2510         setup_timer(&priv->service_timer, hns_nic_service_timer,
2511                     (unsigned long)priv);
2512         INIT_WORK(&priv->service_task, hns_nic_service_task);
2513
2514         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2515         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2516         set_bit(NIC_STATE_DOWN, &priv->state);
2517
2518         if (hns_nic_try_get_ae(priv->netdev)) {
2519                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2520                 ret = hnae_register_notifier(&priv->notifier_block);
2521                 if (ret) {
2522                         dev_err(dev, "register notifier fail!\n");
2523                         goto out_notify_fail;
2524                 }
2525                 dev_dbg(dev, "has not handle, register notifier!\n");
2526         }
2527
2528         return 0;
2529
2530 out_notify_fail:
2531         (void)cancel_work_sync(&priv->service_task);
2532 out_read_prop_fail:
2533         /* safe for ACPI FW */
2534         of_node_put(to_of_node(priv->fwnode));
2535         free_netdev(ndev);
2536         return ret;
2537 }
2538
2539 static int hns_nic_dev_remove(struct platform_device *pdev)
2540 {
2541         struct net_device *ndev = platform_get_drvdata(pdev);
2542         struct hns_nic_priv *priv = netdev_priv(ndev);
2543
2544         if (ndev->reg_state != NETREG_UNINITIALIZED)
2545                 unregister_netdev(ndev);
2546
2547         if (priv->ring_data)
2548                 hns_nic_uninit_ring_data(priv);
2549         priv->ring_data = NULL;
2550
2551         if (ndev->phydev)
2552                 phy_disconnect(ndev->phydev);
2553
2554         if (!IS_ERR_OR_NULL(priv->ae_handle))
2555                 hnae_put_handle(priv->ae_handle);
2556         priv->ae_handle = NULL;
2557         if (priv->notifier_block.notifier_call)
2558                 hnae_unregister_notifier(&priv->notifier_block);
2559         priv->notifier_block.notifier_call = NULL;
2560
2561         set_bit(NIC_STATE_REMOVING, &priv->state);
2562         (void)cancel_work_sync(&priv->service_task);
2563
2564         /* safe for ACPI FW */
2565         of_node_put(to_of_node(priv->fwnode));
2566
2567         free_netdev(ndev);
2568         return 0;
2569 }
2570
2571 static const struct of_device_id hns_enet_of_match[] = {
2572         {.compatible = "hisilicon,hns-nic-v1",},
2573         {.compatible = "hisilicon,hns-nic-v2",},
2574         {},
2575 };
2576
2577 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2578
2579 static struct platform_driver hns_nic_dev_driver = {
2580         .driver = {
2581                 .name = "hns-nic",
2582                 .of_match_table = hns_enet_of_match,
2583                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2584         },
2585         .probe = hns_nic_dev_probe,
2586         .remove = hns_nic_dev_remove,
2587 };
2588
2589 module_platform_driver(hns_nic_dev_driver);
2590
2591 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2592 MODULE_AUTHOR("Hisilicon, Inc.");
2593 MODULE_LICENSE("GPL");
2594 MODULE_ALIAS("platform:hns-nic");