GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000e / mac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include "e1000.h"
5
6 /**
7  *  e1000e_get_bus_info_pcie - Get PCIe bus information
8  *  @hw: pointer to the HW structure
9  *
10  *  Determines and stores the system bus information for a particular
11  *  network interface.  The following bus information is determined and stored:
12  *  bus speed, bus width, type (PCIe), and PCIe function.
13  **/
14 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
15 {
16         struct e1000_mac_info *mac = &hw->mac;
17         struct e1000_bus_info *bus = &hw->bus;
18         struct e1000_adapter *adapter = hw->adapter;
19         u16 pcie_link_status, cap_offset;
20
21         cap_offset = adapter->pdev->pcie_cap;
22         if (!cap_offset) {
23                 bus->width = e1000_bus_width_unknown;
24         } else {
25                 pci_read_config_word(adapter->pdev,
26                                      cap_offset + PCIE_LINK_STATUS,
27                                      &pcie_link_status);
28                 bus->width = (enum e1000_bus_width)((pcie_link_status &
29                                                      PCIE_LINK_WIDTH_MASK) >>
30                                                     PCIE_LINK_WIDTH_SHIFT);
31         }
32
33         mac->ops.set_lan_id(hw);
34
35         return 0;
36 }
37
38 /**
39  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
40  *
41  *  @hw: pointer to the HW structure
42  *
43  *  Determines the LAN function id by reading memory-mapped registers
44  *  and swaps the port value if requested.
45  **/
46 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
47 {
48         struct e1000_bus_info *bus = &hw->bus;
49         u32 reg;
50
51         /* The status register reports the correct function number
52          * for the device regardless of function swap state.
53          */
54         reg = er32(STATUS);
55         bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
56 }
57
58 /**
59  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
60  *  @hw: pointer to the HW structure
61  *
62  *  Sets the LAN function id to zero for a single port device.
63  **/
64 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
65 {
66         struct e1000_bus_info *bus = &hw->bus;
67
68         bus->func = 0;
69 }
70
71 /**
72  *  e1000_clear_vfta_generic - Clear VLAN filter table
73  *  @hw: pointer to the HW structure
74  *
75  *  Clears the register array which contains the VLAN filter table by
76  *  setting all the values to 0.
77  **/
78 void e1000_clear_vfta_generic(struct e1000_hw *hw)
79 {
80         u32 offset;
81
82         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
83                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
84                 e1e_flush();
85         }
86 }
87
88 /**
89  *  e1000_write_vfta_generic - Write value to VLAN filter table
90  *  @hw: pointer to the HW structure
91  *  @offset: register offset in VLAN filter table
92  *  @value: register value written to VLAN filter table
93  *
94  *  Writes value at the given offset in the register array which stores
95  *  the VLAN filter table.
96  **/
97 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
98 {
99         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
100         e1e_flush();
101 }
102
103 /**
104  *  e1000e_init_rx_addrs - Initialize receive address's
105  *  @hw: pointer to the HW structure
106  *  @rar_count: receive address registers
107  *
108  *  Setup the receive address registers by setting the base receive address
109  *  register to the devices MAC address and clearing all the other receive
110  *  address registers to 0.
111  **/
112 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
113 {
114         u32 i;
115         u8 mac_addr[ETH_ALEN] = { 0 };
116
117         /* Setup the receive address */
118         e_dbg("Programming MAC Address into RAR[0]\n");
119
120         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
121
122         /* Zero out the other (rar_entry_count - 1) receive addresses */
123         e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
124         for (i = 1; i < rar_count; i++)
125                 hw->mac.ops.rar_set(hw, mac_addr, i);
126 }
127
128 /**
129  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
130  *  @hw: pointer to the HW structure
131  *
132  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
133  *  can be setup by pre-boot software and must be treated like a permanent
134  *  address and must override the actual permanent MAC address. If an
135  *  alternate MAC address is found it is programmed into RAR0, replacing
136  *  the permanent address that was installed into RAR0 by the Si on reset.
137  *  This function will return SUCCESS unless it encounters an error while
138  *  reading the EEPROM.
139  **/
140 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
141 {
142         u32 i;
143         s32 ret_val;
144         u16 offset, nvm_alt_mac_addr_offset, nvm_data;
145         u8 alt_mac_addr[ETH_ALEN];
146
147         ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
148         if (ret_val)
149                 return ret_val;
150
151         /* not supported on 82573 */
152         if (hw->mac.type == e1000_82573)
153                 return 0;
154
155         ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
156                                  &nvm_alt_mac_addr_offset);
157         if (ret_val) {
158                 e_dbg("NVM Read Error\n");
159                 return ret_val;
160         }
161
162         if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
163             (nvm_alt_mac_addr_offset == 0x0000))
164                 /* There is no Alternate MAC Address */
165                 return 0;
166
167         if (hw->bus.func == E1000_FUNC_1)
168                 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
169         for (i = 0; i < ETH_ALEN; i += 2) {
170                 offset = nvm_alt_mac_addr_offset + (i >> 1);
171                 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
172                 if (ret_val) {
173                         e_dbg("NVM Read Error\n");
174                         return ret_val;
175                 }
176
177                 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
178                 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
179         }
180
181         /* if multicast bit is set, the alternate address will not be used */
182         if (is_multicast_ether_addr(alt_mac_addr)) {
183                 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
184                 return 0;
185         }
186
187         /* We have a valid alternate MAC address, and we want to treat it the
188          * same as the normal permanent MAC address stored by the HW into the
189          * RAR. Do this by mapping this address into RAR0.
190          */
191         hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
192
193         return 0;
194 }
195
196 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
197 {
198         return hw->mac.rar_entry_count;
199 }
200
201 /**
202  *  e1000e_rar_set_generic - Set receive address register
203  *  @hw: pointer to the HW structure
204  *  @addr: pointer to the receive address
205  *  @index: receive address array register
206  *
207  *  Sets the receive address array register at index to the address passed
208  *  in by addr.
209  **/
210 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
211 {
212         u32 rar_low, rar_high;
213
214         /* HW expects these in little endian so we reverse the byte order
215          * from network order (big endian) to little endian
216          */
217         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
218                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
219
220         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
221
222         /* If MAC address zero, no need to set the AV bit */
223         if (rar_low || rar_high)
224                 rar_high |= E1000_RAH_AV;
225
226         /* Some bridges will combine consecutive 32-bit writes into
227          * a single burst write, which will malfunction on some parts.
228          * The flushes avoid this.
229          */
230         ew32(RAL(index), rar_low);
231         e1e_flush();
232         ew32(RAH(index), rar_high);
233         e1e_flush();
234
235         return 0;
236 }
237
238 /**
239  *  e1000_hash_mc_addr - Generate a multicast hash value
240  *  @hw: pointer to the HW structure
241  *  @mc_addr: pointer to a multicast address
242  *
243  *  Generates a multicast address hash value which is used to determine
244  *  the multicast filter table array address and new table value.
245  **/
246 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
247 {
248         u32 hash_value, hash_mask;
249         u8 bit_shift = 0;
250
251         /* Register count multiplied by bits per register */
252         hash_mask = (hw->mac.mta_reg_count * 32) - 1;
253
254         /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
255          * where 0xFF would still fall within the hash mask.
256          */
257         while (hash_mask >> bit_shift != 0xFF)
258                 bit_shift++;
259
260         /* The portion of the address that is used for the hash table
261          * is determined by the mc_filter_type setting.
262          * The algorithm is such that there is a total of 8 bits of shifting.
263          * The bit_shift for a mc_filter_type of 0 represents the number of
264          * left-shifts where the MSB of mc_addr[5] would still fall within
265          * the hash_mask.  Case 0 does this exactly.  Since there are a total
266          * of 8 bits of shifting, then mc_addr[4] will shift right the
267          * remaining number of bits. Thus 8 - bit_shift.  The rest of the
268          * cases are a variation of this algorithm...essentially raising the
269          * number of bits to shift mc_addr[5] left, while still keeping the
270          * 8-bit shifting total.
271          *
272          * For example, given the following Destination MAC Address and an
273          * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
274          * we can see that the bit_shift for case 0 is 4.  These are the hash
275          * values resulting from each mc_filter_type...
276          * [0] [1] [2] [3] [4] [5]
277          * 01  AA  00  12  34  56
278          * LSB           MSB
279          *
280          * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
281          * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
282          * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
283          * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
284          */
285         switch (hw->mac.mc_filter_type) {
286         default:
287         case 0:
288                 break;
289         case 1:
290                 bit_shift += 1;
291                 break;
292         case 2:
293                 bit_shift += 2;
294                 break;
295         case 3:
296                 bit_shift += 4;
297                 break;
298         }
299
300         hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
301                                    (((u16)mc_addr[5]) << bit_shift)));
302
303         return hash_value;
304 }
305
306 /**
307  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
308  *  @hw: pointer to the HW structure
309  *  @mc_addr_list: array of multicast addresses to program
310  *  @mc_addr_count: number of multicast addresses to program
311  *
312  *  Updates entire Multicast Table Array.
313  *  The caller must have a packed mc_addr_list of multicast addresses.
314  **/
315 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
316                                         u8 *mc_addr_list, u32 mc_addr_count)
317 {
318         u32 hash_value, hash_bit, hash_reg;
319         int i;
320
321         /* clear mta_shadow */
322         memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
323
324         /* update mta_shadow from mc_addr_list */
325         for (i = 0; (u32)i < mc_addr_count; i++) {
326                 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
327
328                 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
329                 hash_bit = hash_value & 0x1F;
330
331                 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
332                 mc_addr_list += (ETH_ALEN);
333         }
334
335         /* replace the entire MTA table */
336         for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
337                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
338         e1e_flush();
339 }
340
341 /**
342  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
343  *  @hw: pointer to the HW structure
344  *
345  *  Clears the base hardware counters by reading the counter registers.
346  **/
347 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
348 {
349         er32(CRCERRS);
350         er32(SYMERRS);
351         er32(MPC);
352         er32(SCC);
353         er32(ECOL);
354         er32(MCC);
355         er32(LATECOL);
356         er32(COLC);
357         er32(DC);
358         er32(SEC);
359         er32(RLEC);
360         er32(XONRXC);
361         er32(XONTXC);
362         er32(XOFFRXC);
363         er32(XOFFTXC);
364         er32(FCRUC);
365         er32(GPRC);
366         er32(BPRC);
367         er32(MPRC);
368         er32(GPTC);
369         er32(GORCL);
370         er32(GORCH);
371         er32(GOTCL);
372         er32(GOTCH);
373         er32(RNBC);
374         er32(RUC);
375         er32(RFC);
376         er32(ROC);
377         er32(RJC);
378         er32(TORL);
379         er32(TORH);
380         er32(TOTL);
381         er32(TOTH);
382         er32(TPR);
383         er32(TPT);
384         er32(MPTC);
385         er32(BPTC);
386 }
387
388 /**
389  *  e1000e_check_for_copper_link - Check for link (Copper)
390  *  @hw: pointer to the HW structure
391  *
392  *  Checks to see of the link status of the hardware has changed.  If a
393  *  change in link status has been detected, then we read the PHY registers
394  *  to get the current speed/duplex if link exists.
395  **/
396 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
397 {
398         struct e1000_mac_info *mac = &hw->mac;
399         s32 ret_val;
400         bool link;
401
402         /* We only want to go out to the PHY registers to see if Auto-Neg
403          * has completed and/or if our link status has changed.  The
404          * get_link_status flag is set upon receiving a Link Status
405          * Change or Rx Sequence Error interrupt.
406          */
407         if (!mac->get_link_status)
408                 return 0;
409         mac->get_link_status = false;
410
411         /* First we want to see if the MII Status Register reports
412          * link.  If so, then we want to get the current speed/duplex
413          * of the PHY.
414          */
415         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
416         if (ret_val || !link)
417                 goto out;
418
419         /* Check if there was DownShift, must be checked
420          * immediately after link-up
421          */
422         e1000e_check_downshift(hw);
423
424         /* If we are forcing speed/duplex, then we simply return since
425          * we have already determined whether we have link or not.
426          */
427         if (!mac->autoneg)
428                 return -E1000_ERR_CONFIG;
429
430         /* Auto-Neg is enabled.  Auto Speed Detection takes care
431          * of MAC speed/duplex configuration.  So we only need to
432          * configure Collision Distance in the MAC.
433          */
434         mac->ops.config_collision_dist(hw);
435
436         /* Configure Flow Control now that Auto-Neg has completed.
437          * First, we need to restore the desired flow control
438          * settings because we may have had to re-autoneg with a
439          * different link partner.
440          */
441         ret_val = e1000e_config_fc_after_link_up(hw);
442         if (ret_val)
443                 e_dbg("Error configuring flow control\n");
444
445         return ret_val;
446
447 out:
448         mac->get_link_status = true;
449         return ret_val;
450 }
451
452 /**
453  *  e1000e_check_for_fiber_link - Check for link (Fiber)
454  *  @hw: pointer to the HW structure
455  *
456  *  Checks for link up on the hardware.  If link is not up and we have
457  *  a signal, then we need to force link up.
458  **/
459 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
460 {
461         struct e1000_mac_info *mac = &hw->mac;
462         u32 rxcw;
463         u32 ctrl;
464         u32 status;
465         s32 ret_val;
466
467         ctrl = er32(CTRL);
468         status = er32(STATUS);
469         rxcw = er32(RXCW);
470
471         /* If we don't have link (auto-negotiation failed or link partner
472          * cannot auto-negotiate), the cable is plugged in (we have signal),
473          * and our link partner is not trying to auto-negotiate with us (we
474          * are receiving idles or data), we need to force link up. We also
475          * need to give auto-negotiation time to complete, in case the cable
476          * was just plugged in. The autoneg_failed flag does this.
477          */
478         /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
479         if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
480             !(rxcw & E1000_RXCW_C)) {
481                 if (!mac->autoneg_failed) {
482                         mac->autoneg_failed = true;
483                         return 0;
484                 }
485                 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
486
487                 /* Disable auto-negotiation in the TXCW register */
488                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
489
490                 /* Force link-up and also force full-duplex. */
491                 ctrl = er32(CTRL);
492                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
493                 ew32(CTRL, ctrl);
494
495                 /* Configure Flow Control after forcing link up. */
496                 ret_val = e1000e_config_fc_after_link_up(hw);
497                 if (ret_val) {
498                         e_dbg("Error configuring flow control\n");
499                         return ret_val;
500                 }
501         } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
502                 /* If we are forcing link and we are receiving /C/ ordered
503                  * sets, re-enable auto-negotiation in the TXCW register
504                  * and disable forced link in the Device Control register
505                  * in an attempt to auto-negotiate with our link partner.
506                  */
507                 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
508                 ew32(TXCW, mac->txcw);
509                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
510
511                 mac->serdes_has_link = true;
512         }
513
514         return 0;
515 }
516
517 /**
518  *  e1000e_check_for_serdes_link - Check for link (Serdes)
519  *  @hw: pointer to the HW structure
520  *
521  *  Checks for link up on the hardware.  If link is not up and we have
522  *  a signal, then we need to force link up.
523  **/
524 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
525 {
526         struct e1000_mac_info *mac = &hw->mac;
527         u32 rxcw;
528         u32 ctrl;
529         u32 status;
530         s32 ret_val;
531
532         ctrl = er32(CTRL);
533         status = er32(STATUS);
534         rxcw = er32(RXCW);
535
536         /* If we don't have link (auto-negotiation failed or link partner
537          * cannot auto-negotiate), and our link partner is not trying to
538          * auto-negotiate with us (we are receiving idles or data),
539          * we need to force link up. We also need to give auto-negotiation
540          * time to complete.
541          */
542         /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
543         if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
544                 if (!mac->autoneg_failed) {
545                         mac->autoneg_failed = true;
546                         return 0;
547                 }
548                 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
549
550                 /* Disable auto-negotiation in the TXCW register */
551                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
552
553                 /* Force link-up and also force full-duplex. */
554                 ctrl = er32(CTRL);
555                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
556                 ew32(CTRL, ctrl);
557
558                 /* Configure Flow Control after forcing link up. */
559                 ret_val = e1000e_config_fc_after_link_up(hw);
560                 if (ret_val) {
561                         e_dbg("Error configuring flow control\n");
562                         return ret_val;
563                 }
564         } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
565                 /* If we are forcing link and we are receiving /C/ ordered
566                  * sets, re-enable auto-negotiation in the TXCW register
567                  * and disable forced link in the Device Control register
568                  * in an attempt to auto-negotiate with our link partner.
569                  */
570                 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
571                 ew32(TXCW, mac->txcw);
572                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
573
574                 mac->serdes_has_link = true;
575         } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
576                 /* If we force link for non-auto-negotiation switch, check
577                  * link status based on MAC synchronization for internal
578                  * serdes media type.
579                  */
580                 /* SYNCH bit and IV bit are sticky. */
581                 usleep_range(10, 20);
582                 rxcw = er32(RXCW);
583                 if (rxcw & E1000_RXCW_SYNCH) {
584                         if (!(rxcw & E1000_RXCW_IV)) {
585                                 mac->serdes_has_link = true;
586                                 e_dbg("SERDES: Link up - forced.\n");
587                         }
588                 } else {
589                         mac->serdes_has_link = false;
590                         e_dbg("SERDES: Link down - force failed.\n");
591                 }
592         }
593
594         if (E1000_TXCW_ANE & er32(TXCW)) {
595                 status = er32(STATUS);
596                 if (status & E1000_STATUS_LU) {
597                         /* SYNCH bit and IV bit are sticky, so reread rxcw. */
598                         usleep_range(10, 20);
599                         rxcw = er32(RXCW);
600                         if (rxcw & E1000_RXCW_SYNCH) {
601                                 if (!(rxcw & E1000_RXCW_IV)) {
602                                         mac->serdes_has_link = true;
603                                         e_dbg("SERDES: Link up - autoneg completed successfully.\n");
604                                 } else {
605                                         mac->serdes_has_link = false;
606                                         e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
607                                 }
608                         } else {
609                                 mac->serdes_has_link = false;
610                                 e_dbg("SERDES: Link down - no sync.\n");
611                         }
612                 } else {
613                         mac->serdes_has_link = false;
614                         e_dbg("SERDES: Link down - autoneg failed\n");
615                 }
616         }
617
618         return 0;
619 }
620
621 /**
622  *  e1000_set_default_fc_generic - Set flow control default values
623  *  @hw: pointer to the HW structure
624  *
625  *  Read the EEPROM for the default values for flow control and store the
626  *  values.
627  **/
628 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
629 {
630         s32 ret_val;
631         u16 nvm_data;
632
633         /* Read and store word 0x0F of the EEPROM. This word contains bits
634          * that determine the hardware's default PAUSE (flow control) mode,
635          * a bit that determines whether the HW defaults to enabling or
636          * disabling auto-negotiation, and the direction of the
637          * SW defined pins. If there is no SW over-ride of the flow
638          * control setting, then the variable hw->fc will
639          * be initialized based on a value in the EEPROM.
640          */
641         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
642
643         if (ret_val) {
644                 e_dbg("NVM Read Error\n");
645                 return ret_val;
646         }
647
648         if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
649                 hw->fc.requested_mode = e1000_fc_none;
650         else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
651                 hw->fc.requested_mode = e1000_fc_tx_pause;
652         else
653                 hw->fc.requested_mode = e1000_fc_full;
654
655         return 0;
656 }
657
658 /**
659  *  e1000e_setup_link_generic - Setup flow control and link settings
660  *  @hw: pointer to the HW structure
661  *
662  *  Determines which flow control settings to use, then configures flow
663  *  control.  Calls the appropriate media-specific link configuration
664  *  function.  Assuming the adapter has a valid link partner, a valid link
665  *  should be established.  Assumes the hardware has previously been reset
666  *  and the transmitter and receiver are not enabled.
667  **/
668 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
669 {
670         s32 ret_val;
671
672         /* In the case of the phy reset being blocked, we already have a link.
673          * We do not need to set it up again.
674          */
675         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
676                 return 0;
677
678         /* If requested flow control is set to default, set flow control
679          * based on the EEPROM flow control settings.
680          */
681         if (hw->fc.requested_mode == e1000_fc_default) {
682                 ret_val = e1000_set_default_fc_generic(hw);
683                 if (ret_val)
684                         return ret_val;
685         }
686
687         /* Save off the requested flow control mode for use later.  Depending
688          * on the link partner's capabilities, we may or may not use this mode.
689          */
690         hw->fc.current_mode = hw->fc.requested_mode;
691
692         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
693
694         /* Call the necessary media_type subroutine to configure the link. */
695         ret_val = hw->mac.ops.setup_physical_interface(hw);
696         if (ret_val)
697                 return ret_val;
698
699         /* Initialize the flow control address, type, and PAUSE timer
700          * registers to their default values.  This is done even if flow
701          * control is disabled, because it does not hurt anything to
702          * initialize these registers.
703          */
704         e_dbg("Initializing the Flow Control address, type and timer regs\n");
705         ew32(FCT, FLOW_CONTROL_TYPE);
706         ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
707         ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
708
709         ew32(FCTTV, hw->fc.pause_time);
710
711         return e1000e_set_fc_watermarks(hw);
712 }
713
714 /**
715  *  e1000_commit_fc_settings_generic - Configure flow control
716  *  @hw: pointer to the HW structure
717  *
718  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
719  *  base on the flow control settings in e1000_mac_info.
720  **/
721 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
722 {
723         struct e1000_mac_info *mac = &hw->mac;
724         u32 txcw;
725
726         /* Check for a software override of the flow control settings, and
727          * setup the device accordingly.  If auto-negotiation is enabled, then
728          * software will have to set the "PAUSE" bits to the correct value in
729          * the Transmit Config Word Register (TXCW) and re-start auto-
730          * negotiation.  However, if auto-negotiation is disabled, then
731          * software will have to manually configure the two flow control enable
732          * bits in the CTRL register.
733          *
734          * The possible values of the "fc" parameter are:
735          *      0:  Flow control is completely disabled
736          *      1:  Rx flow control is enabled (we can receive pause frames,
737          *          but not send pause frames).
738          *      2:  Tx flow control is enabled (we can send pause frames but we
739          *          do not support receiving pause frames).
740          *      3:  Both Rx and Tx flow control (symmetric) are enabled.
741          */
742         switch (hw->fc.current_mode) {
743         case e1000_fc_none:
744                 /* Flow control completely disabled by a software over-ride. */
745                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
746                 break;
747         case e1000_fc_rx_pause:
748                 /* Rx Flow control is enabled and Tx Flow control is disabled
749                  * by a software over-ride. Since there really isn't a way to
750                  * advertise that we are capable of Rx Pause ONLY, we will
751                  * advertise that we support both symmetric and asymmetric Rx
752                  * PAUSE.  Later, we will disable the adapter's ability to send
753                  * PAUSE frames.
754                  */
755                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
756                 break;
757         case e1000_fc_tx_pause:
758                 /* Tx Flow control is enabled, and Rx Flow control is disabled,
759                  * by a software over-ride.
760                  */
761                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
762                 break;
763         case e1000_fc_full:
764                 /* Flow control (both Rx and Tx) is enabled by a software
765                  * over-ride.
766                  */
767                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
768                 break;
769         default:
770                 e_dbg("Flow control param set incorrectly\n");
771                 return -E1000_ERR_CONFIG;
772         }
773
774         ew32(TXCW, txcw);
775         mac->txcw = txcw;
776
777         return 0;
778 }
779
780 /**
781  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
782  *  @hw: pointer to the HW structure
783  *
784  *  Polls for link up by reading the status register, if link fails to come
785  *  up with auto-negotiation, then the link is forced if a signal is detected.
786  **/
787 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
788 {
789         struct e1000_mac_info *mac = &hw->mac;
790         u32 i, status;
791         s32 ret_val;
792
793         /* If we have a signal (the cable is plugged in, or assumed true for
794          * serdes media) then poll for a "Link-Up" indication in the Device
795          * Status Register.  Time-out if a link isn't seen in 500 milliseconds
796          * seconds (Auto-negotiation should complete in less than 500
797          * milliseconds even if the other end is doing it in SW).
798          */
799         for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
800                 usleep_range(10000, 20000);
801                 status = er32(STATUS);
802                 if (status & E1000_STATUS_LU)
803                         break;
804         }
805         if (i == FIBER_LINK_UP_LIMIT) {
806                 e_dbg("Never got a valid link from auto-neg!!!\n");
807                 mac->autoneg_failed = true;
808                 /* AutoNeg failed to achieve a link, so we'll call
809                  * mac->check_for_link. This routine will force the
810                  * link up if we detect a signal. This will allow us to
811                  * communicate with non-autonegotiating link partners.
812                  */
813                 ret_val = mac->ops.check_for_link(hw);
814                 if (ret_val) {
815                         e_dbg("Error while checking for link\n");
816                         return ret_val;
817                 }
818                 mac->autoneg_failed = false;
819         } else {
820                 mac->autoneg_failed = false;
821                 e_dbg("Valid Link Found\n");
822         }
823
824         return 0;
825 }
826
827 /**
828  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
829  *  @hw: pointer to the HW structure
830  *
831  *  Configures collision distance and flow control for fiber and serdes
832  *  links.  Upon successful setup, poll for link.
833  **/
834 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
835 {
836         u32 ctrl;
837         s32 ret_val;
838
839         ctrl = er32(CTRL);
840
841         /* Take the link out of reset */
842         ctrl &= ~E1000_CTRL_LRST;
843
844         hw->mac.ops.config_collision_dist(hw);
845
846         ret_val = e1000_commit_fc_settings_generic(hw);
847         if (ret_val)
848                 return ret_val;
849
850         /* Since auto-negotiation is enabled, take the link out of reset (the
851          * link will be in reset, because we previously reset the chip). This
852          * will restart auto-negotiation.  If auto-negotiation is successful
853          * then the link-up status bit will be set and the flow control enable
854          * bits (RFCE and TFCE) will be set according to their negotiated value.
855          */
856         e_dbg("Auto-negotiation enabled\n");
857
858         ew32(CTRL, ctrl);
859         e1e_flush();
860         usleep_range(1000, 2000);
861
862         /* For these adapters, the SW definable pin 1 is set when the optics
863          * detect a signal.  If we have a signal, then poll for a "Link-Up"
864          * indication.
865          */
866         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
867             (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
868                 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
869         } else {
870                 e_dbg("No signal detected\n");
871         }
872
873         return ret_val;
874 }
875
876 /**
877  *  e1000e_config_collision_dist_generic - Configure collision distance
878  *  @hw: pointer to the HW structure
879  *
880  *  Configures the collision distance to the default value and is used
881  *  during link setup.
882  **/
883 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
884 {
885         u32 tctl;
886
887         tctl = er32(TCTL);
888
889         tctl &= ~E1000_TCTL_COLD;
890         tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
891
892         ew32(TCTL, tctl);
893         e1e_flush();
894 }
895
896 /**
897  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
898  *  @hw: pointer to the HW structure
899  *
900  *  Sets the flow control high/low threshold (watermark) registers.  If
901  *  flow control XON frame transmission is enabled, then set XON frame
902  *  transmission as well.
903  **/
904 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
905 {
906         u32 fcrtl = 0, fcrth = 0;
907
908         /* Set the flow control receive threshold registers.  Normally,
909          * these registers will be set to a default threshold that may be
910          * adjusted later by the driver's runtime code.  However, if the
911          * ability to transmit pause frames is not enabled, then these
912          * registers will be set to 0.
913          */
914         if (hw->fc.current_mode & e1000_fc_tx_pause) {
915                 /* We need to set up the Receive Threshold high and low water
916                  * marks as well as (optionally) enabling the transmission of
917                  * XON frames.
918                  */
919                 fcrtl = hw->fc.low_water;
920                 if (hw->fc.send_xon)
921                         fcrtl |= E1000_FCRTL_XONE;
922
923                 fcrth = hw->fc.high_water;
924         }
925         ew32(FCRTL, fcrtl);
926         ew32(FCRTH, fcrth);
927
928         return 0;
929 }
930
931 /**
932  *  e1000e_force_mac_fc - Force the MAC's flow control settings
933  *  @hw: pointer to the HW structure
934  *
935  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
936  *  device control register to reflect the adapter settings.  TFCE and RFCE
937  *  need to be explicitly set by software when a copper PHY is used because
938  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
939  *  also configure these bits when link is forced on a fiber connection.
940  **/
941 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
942 {
943         u32 ctrl;
944
945         ctrl = er32(CTRL);
946
947         /* Because we didn't get link via the internal auto-negotiation
948          * mechanism (we either forced link or we got link via PHY
949          * auto-neg), we have to manually enable/disable transmit an
950          * receive flow control.
951          *
952          * The "Case" statement below enables/disable flow control
953          * according to the "hw->fc.current_mode" parameter.
954          *
955          * The possible values of the "fc" parameter are:
956          *      0:  Flow control is completely disabled
957          *      1:  Rx flow control is enabled (we can receive pause
958          *          frames but not send pause frames).
959          *      2:  Tx flow control is enabled (we can send pause frames
960          *          frames but we do not receive pause frames).
961          *      3:  Both Rx and Tx flow control (symmetric) is enabled.
962          *  other:  No other values should be possible at this point.
963          */
964         e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
965
966         switch (hw->fc.current_mode) {
967         case e1000_fc_none:
968                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
969                 break;
970         case e1000_fc_rx_pause:
971                 ctrl &= (~E1000_CTRL_TFCE);
972                 ctrl |= E1000_CTRL_RFCE;
973                 break;
974         case e1000_fc_tx_pause:
975                 ctrl &= (~E1000_CTRL_RFCE);
976                 ctrl |= E1000_CTRL_TFCE;
977                 break;
978         case e1000_fc_full:
979                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
980                 break;
981         default:
982                 e_dbg("Flow control param set incorrectly\n");
983                 return -E1000_ERR_CONFIG;
984         }
985
986         ew32(CTRL, ctrl);
987
988         return 0;
989 }
990
991 /**
992  *  e1000e_config_fc_after_link_up - Configures flow control after link
993  *  @hw: pointer to the HW structure
994  *
995  *  Checks the status of auto-negotiation after link up to ensure that the
996  *  speed and duplex were not forced.  If the link needed to be forced, then
997  *  flow control needs to be forced also.  If auto-negotiation is enabled
998  *  and did not fail, then we configure flow control based on our link
999  *  partner.
1000  **/
1001 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1002 {
1003         struct e1000_mac_info *mac = &hw->mac;
1004         s32 ret_val = 0;
1005         u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1006         u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1007         u16 speed, duplex;
1008
1009         /* Check for the case where we have fiber media and auto-neg failed
1010          * so we had to force link.  In this case, we need to force the
1011          * configuration of the MAC to match the "fc" parameter.
1012          */
1013         if (mac->autoneg_failed) {
1014                 if (hw->phy.media_type == e1000_media_type_fiber ||
1015                     hw->phy.media_type == e1000_media_type_internal_serdes)
1016                         ret_val = e1000e_force_mac_fc(hw);
1017         } else {
1018                 if (hw->phy.media_type == e1000_media_type_copper)
1019                         ret_val = e1000e_force_mac_fc(hw);
1020         }
1021
1022         if (ret_val) {
1023                 e_dbg("Error forcing flow control settings\n");
1024                 return ret_val;
1025         }
1026
1027         /* Check for the case where we have copper media and auto-neg is
1028          * enabled.  In this case, we need to check and see if Auto-Neg
1029          * has completed, and if so, how the PHY and link partner has
1030          * flow control configured.
1031          */
1032         if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1033                 /* Read the MII Status Register and check to see if AutoNeg
1034                  * has completed.  We read this twice because this reg has
1035                  * some "sticky" (latched) bits.
1036                  */
1037                 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1038                 if (ret_val)
1039                         return ret_val;
1040                 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1041                 if (ret_val)
1042                         return ret_val;
1043
1044                 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1045                         e_dbg("Copper PHY and Auto Neg has not completed.\n");
1046                         return ret_val;
1047                 }
1048
1049                 /* The AutoNeg process has completed, so we now need to
1050                  * read both the Auto Negotiation Advertisement
1051                  * Register (Address 4) and the Auto_Negotiation Base
1052                  * Page Ability Register (Address 5) to determine how
1053                  * flow control was negotiated.
1054                  */
1055                 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1056                 if (ret_val)
1057                         return ret_val;
1058                 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1059                 if (ret_val)
1060                         return ret_val;
1061
1062                 /* Two bits in the Auto Negotiation Advertisement Register
1063                  * (Address 4) and two bits in the Auto Negotiation Base
1064                  * Page Ability Register (Address 5) determine flow control
1065                  * for both the PHY and the link partner.  The following
1066                  * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067                  * 1999, describes these PAUSE resolution bits and how flow
1068                  * control is determined based upon these settings.
1069                  * NOTE:  DC = Don't Care
1070                  *
1071                  *   LOCAL DEVICE  |   LINK PARTNER
1072                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073                  *-------|---------|-------|---------|--------------------
1074                  *   0   |    0    |  DC   |   DC    | e1000_fc_none
1075                  *   0   |    1    |   0   |   DC    | e1000_fc_none
1076                  *   0   |    1    |   1   |    0    | e1000_fc_none
1077                  *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1078                  *   1   |    0    |   0   |   DC    | e1000_fc_none
1079                  *   1   |   DC    |   1   |   DC    | e1000_fc_full
1080                  *   1   |    1    |   0   |    0    | e1000_fc_none
1081                  *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1082                  *
1083                  * Are both PAUSE bits set to 1?  If so, this implies
1084                  * Symmetric Flow Control is enabled at both ends.  The
1085                  * ASM_DIR bits are irrelevant per the spec.
1086                  *
1087                  * For Symmetric Flow Control:
1088                  *
1089                  *   LOCAL DEVICE  |   LINK PARTNER
1090                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091                  *-------|---------|-------|---------|--------------------
1092                  *   1   |   DC    |   1   |   DC    | E1000_fc_full
1093                  *
1094                  */
1095                 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1096                     (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1097                         /* Now we need to check if the user selected Rx ONLY
1098                          * of pause frames.  In this case, we had to advertise
1099                          * FULL flow control because we could not advertise Rx
1100                          * ONLY. Hence, we must now check to see if we need to
1101                          * turn OFF the TRANSMISSION of PAUSE frames.
1102                          */
1103                         if (hw->fc.requested_mode == e1000_fc_full) {
1104                                 hw->fc.current_mode = e1000_fc_full;
1105                                 e_dbg("Flow Control = FULL.\n");
1106                         } else {
1107                                 hw->fc.current_mode = e1000_fc_rx_pause;
1108                                 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1109                         }
1110                 }
1111                 /* For receiving PAUSE frames ONLY.
1112                  *
1113                  *   LOCAL DEVICE  |   LINK PARTNER
1114                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115                  *-------|---------|-------|---------|--------------------
1116                  *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1117                  */
1118                 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1119                          (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1120                          (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1121                          (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1122                         hw->fc.current_mode = e1000_fc_tx_pause;
1123                         e_dbg("Flow Control = Tx PAUSE frames only.\n");
1124                 }
1125                 /* For transmitting PAUSE frames ONLY.
1126                  *
1127                  *   LOCAL DEVICE  |   LINK PARTNER
1128                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1129                  *-------|---------|-------|---------|--------------------
1130                  *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1131                  */
1132                 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1133                          (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1134                          !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1135                          (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1136                         hw->fc.current_mode = e1000_fc_rx_pause;
1137                         e_dbg("Flow Control = Rx PAUSE frames only.\n");
1138                 } else {
1139                         /* Per the IEEE spec, at this point flow control
1140                          * should be disabled.
1141                          */
1142                         hw->fc.current_mode = e1000_fc_none;
1143                         e_dbg("Flow Control = NONE.\n");
1144                 }
1145
1146                 /* Now we need to do one last check...  If we auto-
1147                  * negotiated to HALF DUPLEX, flow control should not be
1148                  * enabled per IEEE 802.3 spec.
1149                  */
1150                 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1151                 if (ret_val) {
1152                         e_dbg("Error getting link speed and duplex\n");
1153                         return ret_val;
1154                 }
1155
1156                 if (duplex == HALF_DUPLEX)
1157                         hw->fc.current_mode = e1000_fc_none;
1158
1159                 /* Now we call a subroutine to actually force the MAC
1160                  * controller to use the correct flow control settings.
1161                  */
1162                 ret_val = e1000e_force_mac_fc(hw);
1163                 if (ret_val) {
1164                         e_dbg("Error forcing flow control settings\n");
1165                         return ret_val;
1166                 }
1167         }
1168
1169         /* Check for the case where we have SerDes media and auto-neg is
1170          * enabled.  In this case, we need to check and see if Auto-Neg
1171          * has completed, and if so, how the PHY and link partner has
1172          * flow control configured.
1173          */
1174         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1175             mac->autoneg) {
1176                 /* Read the PCS_LSTS and check to see if AutoNeg
1177                  * has completed.
1178                  */
1179                 pcs_status_reg = er32(PCS_LSTAT);
1180
1181                 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1182                         e_dbg("PCS Auto Neg has not completed.\n");
1183                         return ret_val;
1184                 }
1185
1186                 /* The AutoNeg process has completed, so we now need to
1187                  * read both the Auto Negotiation Advertisement
1188                  * Register (PCS_ANADV) and the Auto_Negotiation Base
1189                  * Page Ability Register (PCS_LPAB) to determine how
1190                  * flow control was negotiated.
1191                  */
1192                 pcs_adv_reg = er32(PCS_ANADV);
1193                 pcs_lp_ability_reg = er32(PCS_LPAB);
1194
1195                 /* Two bits in the Auto Negotiation Advertisement Register
1196                  * (PCS_ANADV) and two bits in the Auto Negotiation Base
1197                  * Page Ability Register (PCS_LPAB) determine flow control
1198                  * for both the PHY and the link partner.  The following
1199                  * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1200                  * 1999, describes these PAUSE resolution bits and how flow
1201                  * control is determined based upon these settings.
1202                  * NOTE:  DC = Don't Care
1203                  *
1204                  *   LOCAL DEVICE  |   LINK PARTNER
1205                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1206                  *-------|---------|-------|---------|--------------------
1207                  *   0   |    0    |  DC   |   DC    | e1000_fc_none
1208                  *   0   |    1    |   0   |   DC    | e1000_fc_none
1209                  *   0   |    1    |   1   |    0    | e1000_fc_none
1210                  *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1211                  *   1   |    0    |   0   |   DC    | e1000_fc_none
1212                  *   1   |   DC    |   1   |   DC    | e1000_fc_full
1213                  *   1   |    1    |   0   |    0    | e1000_fc_none
1214                  *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1215                  *
1216                  * Are both PAUSE bits set to 1?  If so, this implies
1217                  * Symmetric Flow Control is enabled at both ends.  The
1218                  * ASM_DIR bits are irrelevant per the spec.
1219                  *
1220                  * For Symmetric Flow Control:
1221                  *
1222                  *   LOCAL DEVICE  |   LINK PARTNER
1223                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1224                  *-------|---------|-------|---------|--------------------
1225                  *   1   |   DC    |   1   |   DC    | e1000_fc_full
1226                  *
1227                  */
1228                 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1229                     (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1230                         /* Now we need to check if the user selected Rx ONLY
1231                          * of pause frames.  In this case, we had to advertise
1232                          * FULL flow control because we could not advertise Rx
1233                          * ONLY. Hence, we must now check to see if we need to
1234                          * turn OFF the TRANSMISSION of PAUSE frames.
1235                          */
1236                         if (hw->fc.requested_mode == e1000_fc_full) {
1237                                 hw->fc.current_mode = e1000_fc_full;
1238                                 e_dbg("Flow Control = FULL.\n");
1239                         } else {
1240                                 hw->fc.current_mode = e1000_fc_rx_pause;
1241                                 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1242                         }
1243                 }
1244                 /* For receiving PAUSE frames ONLY.
1245                  *
1246                  *   LOCAL DEVICE  |   LINK PARTNER
1247                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1248                  *-------|---------|-------|---------|--------------------
1249                  *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1250                  */
1251                 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1252                          (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1253                          (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1254                          (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1255                         hw->fc.current_mode = e1000_fc_tx_pause;
1256                         e_dbg("Flow Control = Tx PAUSE frames only.\n");
1257                 }
1258                 /* For transmitting PAUSE frames ONLY.
1259                  *
1260                  *   LOCAL DEVICE  |   LINK PARTNER
1261                  * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1262                  *-------|---------|-------|---------|--------------------
1263                  *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1264                  */
1265                 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1266                          (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1267                          !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1268                          (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1269                         hw->fc.current_mode = e1000_fc_rx_pause;
1270                         e_dbg("Flow Control = Rx PAUSE frames only.\n");
1271                 } else {
1272                         /* Per the IEEE spec, at this point flow control
1273                          * should be disabled.
1274                          */
1275                         hw->fc.current_mode = e1000_fc_none;
1276                         e_dbg("Flow Control = NONE.\n");
1277                 }
1278
1279                 /* Now we call a subroutine to actually force the MAC
1280                  * controller to use the correct flow control settings.
1281                  */
1282                 pcs_ctrl_reg = er32(PCS_LCTL);
1283                 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1284                 ew32(PCS_LCTL, pcs_ctrl_reg);
1285
1286                 ret_val = e1000e_force_mac_fc(hw);
1287                 if (ret_val) {
1288                         e_dbg("Error forcing flow control settings\n");
1289                         return ret_val;
1290                 }
1291         }
1292
1293         return 0;
1294 }
1295
1296 /**
1297  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1298  *  @hw: pointer to the HW structure
1299  *  @speed: stores the current speed
1300  *  @duplex: stores the current duplex
1301  *
1302  *  Read the status register for the current speed/duplex and store the current
1303  *  speed and duplex for copper connections.
1304  **/
1305 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1306                                        u16 *duplex)
1307 {
1308         u32 status;
1309
1310         status = er32(STATUS);
1311         if (status & E1000_STATUS_SPEED_1000)
1312                 *speed = SPEED_1000;
1313         else if (status & E1000_STATUS_SPEED_100)
1314                 *speed = SPEED_100;
1315         else
1316                 *speed = SPEED_10;
1317
1318         if (status & E1000_STATUS_FD)
1319                 *duplex = FULL_DUPLEX;
1320         else
1321                 *duplex = HALF_DUPLEX;
1322
1323         e_dbg("%u Mbps, %s Duplex\n",
1324               *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1325               *duplex == FULL_DUPLEX ? "Full" : "Half");
1326
1327         return 0;
1328 }
1329
1330 /**
1331  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1332  *  @hw: pointer to the HW structure
1333  *  @speed: stores the current speed
1334  *  @duplex: stores the current duplex
1335  *
1336  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1337  *  for fiber/serdes links.
1338  **/
1339 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1340                                              *hw, u16 *speed, u16 *duplex)
1341 {
1342         *speed = SPEED_1000;
1343         *duplex = FULL_DUPLEX;
1344
1345         return 0;
1346 }
1347
1348 /**
1349  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1350  *  @hw: pointer to the HW structure
1351  *
1352  *  Acquire the HW semaphore to access the PHY or NVM
1353  **/
1354 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1355 {
1356         u32 swsm;
1357         s32 timeout = hw->nvm.word_size + 1;
1358         s32 i = 0;
1359
1360         /* Get the SW semaphore */
1361         while (i < timeout) {
1362                 swsm = er32(SWSM);
1363                 if (!(swsm & E1000_SWSM_SMBI))
1364                         break;
1365
1366                 usleep_range(50, 100);
1367                 i++;
1368         }
1369
1370         if (i == timeout) {
1371                 e_dbg("Driver can't access device - SMBI bit is set.\n");
1372                 return -E1000_ERR_NVM;
1373         }
1374
1375         /* Get the FW semaphore. */
1376         for (i = 0; i < timeout; i++) {
1377                 swsm = er32(SWSM);
1378                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1379
1380                 /* Semaphore acquired if bit latched */
1381                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1382                         break;
1383
1384                 usleep_range(50, 100);
1385         }
1386
1387         if (i == timeout) {
1388                 /* Release semaphores */
1389                 e1000e_put_hw_semaphore(hw);
1390                 e_dbg("Driver can't access the NVM\n");
1391                 return -E1000_ERR_NVM;
1392         }
1393
1394         return 0;
1395 }
1396
1397 /**
1398  *  e1000e_put_hw_semaphore - Release hardware semaphore
1399  *  @hw: pointer to the HW structure
1400  *
1401  *  Release hardware semaphore used to access the PHY or NVM
1402  **/
1403 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1404 {
1405         u32 swsm;
1406
1407         swsm = er32(SWSM);
1408         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1409         ew32(SWSM, swsm);
1410 }
1411
1412 /**
1413  *  e1000e_get_auto_rd_done - Check for auto read completion
1414  *  @hw: pointer to the HW structure
1415  *
1416  *  Check EEPROM for Auto Read done bit.
1417  **/
1418 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1419 {
1420         s32 i = 0;
1421
1422         while (i < AUTO_READ_DONE_TIMEOUT) {
1423                 if (er32(EECD) & E1000_EECD_AUTO_RD)
1424                         break;
1425                 usleep_range(1000, 2000);
1426                 i++;
1427         }
1428
1429         if (i == AUTO_READ_DONE_TIMEOUT) {
1430                 e_dbg("Auto read by HW from NVM has not completed.\n");
1431                 return -E1000_ERR_RESET;
1432         }
1433
1434         return 0;
1435 }
1436
1437 /**
1438  *  e1000e_valid_led_default - Verify a valid default LED config
1439  *  @hw: pointer to the HW structure
1440  *  @data: pointer to the NVM (EEPROM)
1441  *
1442  *  Read the EEPROM for the current default LED configuration.  If the
1443  *  LED configuration is not valid, set to a valid LED configuration.
1444  **/
1445 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1446 {
1447         s32 ret_val;
1448
1449         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1450         if (ret_val) {
1451                 e_dbg("NVM Read Error\n");
1452                 return ret_val;
1453         }
1454
1455         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1456                 *data = ID_LED_DEFAULT;
1457
1458         return 0;
1459 }
1460
1461 /**
1462  *  e1000e_id_led_init_generic -
1463  *  @hw: pointer to the HW structure
1464  *
1465  **/
1466 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1467 {
1468         struct e1000_mac_info *mac = &hw->mac;
1469         s32 ret_val;
1470         const u32 ledctl_mask = 0x000000FF;
1471         const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1472         const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1473         u16 data, i, temp;
1474         const u16 led_mask = 0x0F;
1475
1476         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1477         if (ret_val)
1478                 return ret_val;
1479
1480         mac->ledctl_default = er32(LEDCTL);
1481         mac->ledctl_mode1 = mac->ledctl_default;
1482         mac->ledctl_mode2 = mac->ledctl_default;
1483
1484         for (i = 0; i < 4; i++) {
1485                 temp = (data >> (i << 2)) & led_mask;
1486                 switch (temp) {
1487                 case ID_LED_ON1_DEF2:
1488                 case ID_LED_ON1_ON2:
1489                 case ID_LED_ON1_OFF2:
1490                         mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1491                         mac->ledctl_mode1 |= ledctl_on << (i << 3);
1492                         break;
1493                 case ID_LED_OFF1_DEF2:
1494                 case ID_LED_OFF1_ON2:
1495                 case ID_LED_OFF1_OFF2:
1496                         mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1497                         mac->ledctl_mode1 |= ledctl_off << (i << 3);
1498                         break;
1499                 default:
1500                         /* Do nothing */
1501                         break;
1502                 }
1503                 switch (temp) {
1504                 case ID_LED_DEF1_ON2:
1505                 case ID_LED_ON1_ON2:
1506                 case ID_LED_OFF1_ON2:
1507                         mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1508                         mac->ledctl_mode2 |= ledctl_on << (i << 3);
1509                         break;
1510                 case ID_LED_DEF1_OFF2:
1511                 case ID_LED_ON1_OFF2:
1512                 case ID_LED_OFF1_OFF2:
1513                         mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1514                         mac->ledctl_mode2 |= ledctl_off << (i << 3);
1515                         break;
1516                 default:
1517                         /* Do nothing */
1518                         break;
1519                 }
1520         }
1521
1522         return 0;
1523 }
1524
1525 /**
1526  *  e1000e_setup_led_generic - Configures SW controllable LED
1527  *  @hw: pointer to the HW structure
1528  *
1529  *  This prepares the SW controllable LED for use and saves the current state
1530  *  of the LED so it can be later restored.
1531  **/
1532 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1533 {
1534         u32 ledctl;
1535
1536         if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1537                 return -E1000_ERR_CONFIG;
1538
1539         if (hw->phy.media_type == e1000_media_type_fiber) {
1540                 ledctl = er32(LEDCTL);
1541                 hw->mac.ledctl_default = ledctl;
1542                 /* Turn off LED0 */
1543                 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1544                             E1000_LEDCTL_LED0_MODE_MASK);
1545                 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1546                            E1000_LEDCTL_LED0_MODE_SHIFT);
1547                 ew32(LEDCTL, ledctl);
1548         } else if (hw->phy.media_type == e1000_media_type_copper) {
1549                 ew32(LEDCTL, hw->mac.ledctl_mode1);
1550         }
1551
1552         return 0;
1553 }
1554
1555 /**
1556  *  e1000e_cleanup_led_generic - Set LED config to default operation
1557  *  @hw: pointer to the HW structure
1558  *
1559  *  Remove the current LED configuration and set the LED configuration
1560  *  to the default value, saved from the EEPROM.
1561  **/
1562 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1563 {
1564         ew32(LEDCTL, hw->mac.ledctl_default);
1565         return 0;
1566 }
1567
1568 /**
1569  *  e1000e_blink_led_generic - Blink LED
1570  *  @hw: pointer to the HW structure
1571  *
1572  *  Blink the LEDs which are set to be on.
1573  **/
1574 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1575 {
1576         u32 ledctl_blink = 0;
1577         u32 i;
1578
1579         if (hw->phy.media_type == e1000_media_type_fiber) {
1580                 /* always blink LED0 for PCI-E fiber */
1581                 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1582                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1583         } else {
1584                 /* Set the blink bit for each LED that's "on" (0x0E)
1585                  * (or "off" if inverted) in ledctl_mode2.  The blink
1586                  * logic in hardware only works when mode is set to "on"
1587                  * so it must be changed accordingly when the mode is
1588                  * "off" and inverted.
1589                  */
1590                 ledctl_blink = hw->mac.ledctl_mode2;
1591                 for (i = 0; i < 32; i += 8) {
1592                         u32 mode = (hw->mac.ledctl_mode2 >> i) &
1593                             E1000_LEDCTL_LED0_MODE_MASK;
1594                         u32 led_default = hw->mac.ledctl_default >> i;
1595
1596                         if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1597                              (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1598                             ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1599                              (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1600                                 ledctl_blink &=
1601                                     ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1602                                 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1603                                                  E1000_LEDCTL_MODE_LED_ON) << i;
1604                         }
1605                 }
1606         }
1607
1608         ew32(LEDCTL, ledctl_blink);
1609
1610         return 0;
1611 }
1612
1613 /**
1614  *  e1000e_led_on_generic - Turn LED on
1615  *  @hw: pointer to the HW structure
1616  *
1617  *  Turn LED on.
1618  **/
1619 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1620 {
1621         u32 ctrl;
1622
1623         switch (hw->phy.media_type) {
1624         case e1000_media_type_fiber:
1625                 ctrl = er32(CTRL);
1626                 ctrl &= ~E1000_CTRL_SWDPIN0;
1627                 ctrl |= E1000_CTRL_SWDPIO0;
1628                 ew32(CTRL, ctrl);
1629                 break;
1630         case e1000_media_type_copper:
1631                 ew32(LEDCTL, hw->mac.ledctl_mode2);
1632                 break;
1633         default:
1634                 break;
1635         }
1636
1637         return 0;
1638 }
1639
1640 /**
1641  *  e1000e_led_off_generic - Turn LED off
1642  *  @hw: pointer to the HW structure
1643  *
1644  *  Turn LED off.
1645  **/
1646 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1647 {
1648         u32 ctrl;
1649
1650         switch (hw->phy.media_type) {
1651         case e1000_media_type_fiber:
1652                 ctrl = er32(CTRL);
1653                 ctrl |= E1000_CTRL_SWDPIN0;
1654                 ctrl |= E1000_CTRL_SWDPIO0;
1655                 ew32(CTRL, ctrl);
1656                 break;
1657         case e1000_media_type_copper:
1658                 ew32(LEDCTL, hw->mac.ledctl_mode1);
1659                 break;
1660         default:
1661                 break;
1662         }
1663
1664         return 0;
1665 }
1666
1667 /**
1668  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1669  *  @hw: pointer to the HW structure
1670  *  @no_snoop: bitmap of snoop events
1671  *
1672  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1673  **/
1674 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1675 {
1676         u32 gcr;
1677
1678         if (no_snoop) {
1679                 gcr = er32(GCR);
1680                 gcr &= ~(PCIE_NO_SNOOP_ALL);
1681                 gcr |= no_snoop;
1682                 ew32(GCR, gcr);
1683         }
1684 }
1685
1686 /**
1687  *  e1000e_disable_pcie_master - Disables PCI-express master access
1688  *  @hw: pointer to the HW structure
1689  *
1690  *  Returns 0 if successful, else returns -10
1691  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1692  *  the master requests to be disabled.
1693  *
1694  *  Disables PCI-Express master access and verifies there are no pending
1695  *  requests.
1696  **/
1697 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1698 {
1699         u32 ctrl;
1700         s32 timeout = MASTER_DISABLE_TIMEOUT;
1701
1702         ctrl = er32(CTRL);
1703         ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1704         ew32(CTRL, ctrl);
1705
1706         while (timeout) {
1707                 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1708                         break;
1709                 usleep_range(100, 200);
1710                 timeout--;
1711         }
1712
1713         if (!timeout) {
1714                 e_dbg("Master requests are pending.\n");
1715                 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1716         }
1717
1718         return 0;
1719 }
1720
1721 /**
1722  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1723  *  @hw: pointer to the HW structure
1724  *
1725  *  Reset the Adaptive Interframe Spacing throttle to default values.
1726  **/
1727 void e1000e_reset_adaptive(struct e1000_hw *hw)
1728 {
1729         struct e1000_mac_info *mac = &hw->mac;
1730
1731         if (!mac->adaptive_ifs) {
1732                 e_dbg("Not in Adaptive IFS mode!\n");
1733                 return;
1734         }
1735
1736         mac->current_ifs_val = 0;
1737         mac->ifs_min_val = IFS_MIN;
1738         mac->ifs_max_val = IFS_MAX;
1739         mac->ifs_step_size = IFS_STEP;
1740         mac->ifs_ratio = IFS_RATIO;
1741
1742         mac->in_ifs_mode = false;
1743         ew32(AIT, 0);
1744 }
1745
1746 /**
1747  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1748  *  @hw: pointer to the HW structure
1749  *
1750  *  Update the Adaptive Interframe Spacing Throttle value based on the
1751  *  time between transmitted packets and time between collisions.
1752  **/
1753 void e1000e_update_adaptive(struct e1000_hw *hw)
1754 {
1755         struct e1000_mac_info *mac = &hw->mac;
1756
1757         if (!mac->adaptive_ifs) {
1758                 e_dbg("Not in Adaptive IFS mode!\n");
1759                 return;
1760         }
1761
1762         if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1763                 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1764                         mac->in_ifs_mode = true;
1765                         if (mac->current_ifs_val < mac->ifs_max_val) {
1766                                 if (!mac->current_ifs_val)
1767                                         mac->current_ifs_val = mac->ifs_min_val;
1768                                 else
1769                                         mac->current_ifs_val +=
1770                                             mac->ifs_step_size;
1771                                 ew32(AIT, mac->current_ifs_val);
1772                         }
1773                 }
1774         } else {
1775                 if (mac->in_ifs_mode &&
1776                     (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1777                         mac->current_ifs_val = 0;
1778                         mac->in_ifs_mode = false;
1779                         ew32(AIT, 0);
1780                 }
1781         }
1782 }