GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000e / phy.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include "e1000.h"
5
6 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
7 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
8                                           u16 *data, bool read, bool page_set);
9 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
10 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
11                                           u16 *data, bool read);
12
13 /* Cable length tables */
14 static const u16 e1000_m88_cable_length_table[] = {
15         0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
16 };
17
18 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
19                 ARRAY_SIZE(e1000_m88_cable_length_table)
20
21 static const u16 e1000_igp_2_cable_length_table[] = {
22         0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
23         6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
24         26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
25         44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
26         66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
27         87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
28         100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
29         124
30 };
31
32 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
33                 ARRAY_SIZE(e1000_igp_2_cable_length_table)
34
35 /**
36  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
37  *  @hw: pointer to the HW structure
38  *
39  *  Read the PHY management control register and check whether a PHY reset
40  *  is blocked.  If a reset is not blocked return 0, otherwise
41  *  return E1000_BLK_PHY_RESET (12).
42  **/
43 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
44 {
45         u32 manc;
46
47         manc = er32(MANC);
48
49         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
50 }
51
52 /**
53  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
54  *  @hw: pointer to the HW structure
55  *
56  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
57  *  revision in the hardware structure.
58  **/
59 s32 e1000e_get_phy_id(struct e1000_hw *hw)
60 {
61         struct e1000_phy_info *phy = &hw->phy;
62         s32 ret_val = 0;
63         u16 phy_id;
64         u16 retry_count = 0;
65
66         if (!phy->ops.read_reg)
67                 return 0;
68
69         while (retry_count < 2) {
70                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
71                 if (ret_val)
72                         return ret_val;
73
74                 phy->id = (u32)(phy_id << 16);
75                 usleep_range(20, 40);
76                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
77                 if (ret_val)
78                         return ret_val;
79
80                 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
81                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
82
83                 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
84                         return 0;
85
86                 retry_count++;
87         }
88
89         return 0;
90 }
91
92 /**
93  *  e1000e_phy_reset_dsp - Reset PHY DSP
94  *  @hw: pointer to the HW structure
95  *
96  *  Reset the digital signal processor.
97  **/
98 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
99 {
100         s32 ret_val;
101
102         ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
103         if (ret_val)
104                 return ret_val;
105
106         return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
107 }
108
109 /**
110  *  e1000e_read_phy_reg_mdic - Read MDI control register
111  *  @hw: pointer to the HW structure
112  *  @offset: register offset to be read
113  *  @data: pointer to the read data
114  *
115  *  Reads the MDI control register in the PHY at offset and stores the
116  *  information read to data.
117  **/
118 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
119 {
120         struct e1000_phy_info *phy = &hw->phy;
121         u32 i, mdic = 0;
122
123         if (offset > MAX_PHY_REG_ADDRESS) {
124                 e_dbg("PHY Address %d is out of range\n", offset);
125                 return -E1000_ERR_PARAM;
126         }
127
128         /* Set up Op-code, Phy Address, and register offset in the MDI
129          * Control register.  The MAC will take care of interfacing with the
130          * PHY to retrieve the desired data.
131          */
132         mdic = ((offset << E1000_MDIC_REG_SHIFT) |
133                 (phy->addr << E1000_MDIC_PHY_SHIFT) |
134                 (E1000_MDIC_OP_READ));
135
136         ew32(MDIC, mdic);
137
138         /* Poll the ready bit to see if the MDI read completed
139          * Increasing the time out as testing showed failures with
140          * the lower time out
141          */
142         for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
143                 udelay(50);
144                 mdic = er32(MDIC);
145                 if (mdic & E1000_MDIC_READY)
146                         break;
147         }
148         if (!(mdic & E1000_MDIC_READY)) {
149                 e_dbg("MDI Read did not complete\n");
150                 return -E1000_ERR_PHY;
151         }
152         if (mdic & E1000_MDIC_ERROR) {
153                 e_dbg("MDI Error\n");
154                 return -E1000_ERR_PHY;
155         }
156         if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
157                 e_dbg("MDI Read offset error - requested %d, returned %d\n",
158                       offset,
159                       (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
160                 return -E1000_ERR_PHY;
161         }
162         *data = (u16)mdic;
163
164         /* Allow some time after each MDIC transaction to avoid
165          * reading duplicate data in the next MDIC transaction.
166          */
167         if (hw->mac.type == e1000_pch2lan)
168                 udelay(100);
169
170         return 0;
171 }
172
173 /**
174  *  e1000e_write_phy_reg_mdic - Write MDI control register
175  *  @hw: pointer to the HW structure
176  *  @offset: register offset to write to
177  *  @data: data to write to register at offset
178  *
179  *  Writes data to MDI control register in the PHY at offset.
180  **/
181 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
182 {
183         struct e1000_phy_info *phy = &hw->phy;
184         u32 i, mdic = 0;
185
186         if (offset > MAX_PHY_REG_ADDRESS) {
187                 e_dbg("PHY Address %d is out of range\n", offset);
188                 return -E1000_ERR_PARAM;
189         }
190
191         /* Set up Op-code, Phy Address, and register offset in the MDI
192          * Control register.  The MAC will take care of interfacing with the
193          * PHY to retrieve the desired data.
194          */
195         mdic = (((u32)data) |
196                 (offset << E1000_MDIC_REG_SHIFT) |
197                 (phy->addr << E1000_MDIC_PHY_SHIFT) |
198                 (E1000_MDIC_OP_WRITE));
199
200         ew32(MDIC, mdic);
201
202         /* Poll the ready bit to see if the MDI read completed
203          * Increasing the time out as testing showed failures with
204          * the lower time out
205          */
206         for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
207                 udelay(50);
208                 mdic = er32(MDIC);
209                 if (mdic & E1000_MDIC_READY)
210                         break;
211         }
212         if (!(mdic & E1000_MDIC_READY)) {
213                 e_dbg("MDI Write did not complete\n");
214                 return -E1000_ERR_PHY;
215         }
216         if (mdic & E1000_MDIC_ERROR) {
217                 e_dbg("MDI Error\n");
218                 return -E1000_ERR_PHY;
219         }
220         if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
221                 e_dbg("MDI Write offset error - requested %d, returned %d\n",
222                       offset,
223                       (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
224                 return -E1000_ERR_PHY;
225         }
226
227         /* Allow some time after each MDIC transaction to avoid
228          * reading duplicate data in the next MDIC transaction.
229          */
230         if (hw->mac.type == e1000_pch2lan)
231                 udelay(100);
232
233         return 0;
234 }
235
236 /**
237  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
238  *  @hw: pointer to the HW structure
239  *  @offset: register offset to be read
240  *  @data: pointer to the read data
241  *
242  *  Acquires semaphore, if necessary, then reads the PHY register at offset
243  *  and storing the retrieved information in data.  Release any acquired
244  *  semaphores before exiting.
245  **/
246 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
247 {
248         s32 ret_val;
249
250         ret_val = hw->phy.ops.acquire(hw);
251         if (ret_val)
252                 return ret_val;
253
254         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
255                                            data);
256
257         hw->phy.ops.release(hw);
258
259         return ret_val;
260 }
261
262 /**
263  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
264  *  @hw: pointer to the HW structure
265  *  @offset: register offset to write to
266  *  @data: data to write at register offset
267  *
268  *  Acquires semaphore, if necessary, then writes the data to PHY register
269  *  at the offset.  Release any acquired semaphores before exiting.
270  **/
271 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
272 {
273         s32 ret_val;
274
275         ret_val = hw->phy.ops.acquire(hw);
276         if (ret_val)
277                 return ret_val;
278
279         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
280                                             data);
281
282         hw->phy.ops.release(hw);
283
284         return ret_val;
285 }
286
287 /**
288  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
289  *  @hw: pointer to the HW structure
290  *  @page: page to set (shifted left when necessary)
291  *
292  *  Sets PHY page required for PHY register access.  Assumes semaphore is
293  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
294  *  must set it appropriately (if necessary) after this function returns.
295  **/
296 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
297 {
298         e_dbg("Setting page 0x%x\n", page);
299
300         hw->phy.addr = 1;
301
302         return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
303 }
304
305 /**
306  *  __e1000e_read_phy_reg_igp - Read igp PHY register
307  *  @hw: pointer to the HW structure
308  *  @offset: register offset to be read
309  *  @data: pointer to the read data
310  *  @locked: semaphore has already been acquired or not
311  *
312  *  Acquires semaphore, if necessary, then reads the PHY register at offset
313  *  and stores the retrieved information in data.  Release any acquired
314  *  semaphores before exiting.
315  **/
316 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
317                                      bool locked)
318 {
319         s32 ret_val = 0;
320
321         if (!locked) {
322                 if (!hw->phy.ops.acquire)
323                         return 0;
324
325                 ret_val = hw->phy.ops.acquire(hw);
326                 if (ret_val)
327                         return ret_val;
328         }
329
330         if (offset > MAX_PHY_MULTI_PAGE_REG)
331                 ret_val = e1000e_write_phy_reg_mdic(hw,
332                                                     IGP01E1000_PHY_PAGE_SELECT,
333                                                     (u16)offset);
334         if (!ret_val)
335                 ret_val = e1000e_read_phy_reg_mdic(hw,
336                                                    MAX_PHY_REG_ADDRESS & offset,
337                                                    data);
338         if (!locked)
339                 hw->phy.ops.release(hw);
340
341         return ret_val;
342 }
343
344 /**
345  *  e1000e_read_phy_reg_igp - Read igp PHY register
346  *  @hw: pointer to the HW structure
347  *  @offset: register offset to be read
348  *  @data: pointer to the read data
349  *
350  *  Acquires semaphore then reads the PHY register at offset and stores the
351  *  retrieved information in data.
352  *  Release the acquired semaphore before exiting.
353  **/
354 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
355 {
356         return __e1000e_read_phy_reg_igp(hw, offset, data, false);
357 }
358
359 /**
360  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
361  *  @hw: pointer to the HW structure
362  *  @offset: register offset to be read
363  *  @data: pointer to the read data
364  *
365  *  Reads the PHY register at offset and stores the retrieved information
366  *  in data.  Assumes semaphore already acquired.
367  **/
368 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
369 {
370         return __e1000e_read_phy_reg_igp(hw, offset, data, true);
371 }
372
373 /**
374  *  e1000e_write_phy_reg_igp - Write igp PHY register
375  *  @hw: pointer to the HW structure
376  *  @offset: register offset to write to
377  *  @data: data to write at register offset
378  *  @locked: semaphore has already been acquired or not
379  *
380  *  Acquires semaphore, if necessary, then writes the data to PHY register
381  *  at the offset.  Release any acquired semaphores before exiting.
382  **/
383 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
384                                       bool locked)
385 {
386         s32 ret_val = 0;
387
388         if (!locked) {
389                 if (!hw->phy.ops.acquire)
390                         return 0;
391
392                 ret_val = hw->phy.ops.acquire(hw);
393                 if (ret_val)
394                         return ret_val;
395         }
396
397         if (offset > MAX_PHY_MULTI_PAGE_REG)
398                 ret_val = e1000e_write_phy_reg_mdic(hw,
399                                                     IGP01E1000_PHY_PAGE_SELECT,
400                                                     (u16)offset);
401         if (!ret_val)
402                 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
403                                                     offset, data);
404         if (!locked)
405                 hw->phy.ops.release(hw);
406
407         return ret_val;
408 }
409
410 /**
411  *  e1000e_write_phy_reg_igp - Write igp PHY register
412  *  @hw: pointer to the HW structure
413  *  @offset: register offset to write to
414  *  @data: data to write at register offset
415  *
416  *  Acquires semaphore then writes the data to PHY register
417  *  at the offset.  Release any acquired semaphores before exiting.
418  **/
419 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
420 {
421         return __e1000e_write_phy_reg_igp(hw, offset, data, false);
422 }
423
424 /**
425  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
426  *  @hw: pointer to the HW structure
427  *  @offset: register offset to write to
428  *  @data: data to write at register offset
429  *
430  *  Writes the data to PHY register at the offset.
431  *  Assumes semaphore already acquired.
432  **/
433 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
434 {
435         return __e1000e_write_phy_reg_igp(hw, offset, data, true);
436 }
437
438 /**
439  *  __e1000_read_kmrn_reg - Read kumeran register
440  *  @hw: pointer to the HW structure
441  *  @offset: register offset to be read
442  *  @data: pointer to the read data
443  *  @locked: semaphore has already been acquired or not
444  *
445  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
446  *  using the kumeran interface.  The information retrieved is stored in data.
447  *  Release any acquired semaphores before exiting.
448  **/
449 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
450                                  bool locked)
451 {
452         u32 kmrnctrlsta;
453
454         if (!locked) {
455                 s32 ret_val = 0;
456
457                 if (!hw->phy.ops.acquire)
458                         return 0;
459
460                 ret_val = hw->phy.ops.acquire(hw);
461                 if (ret_val)
462                         return ret_val;
463         }
464
465         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
466                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
467         ew32(KMRNCTRLSTA, kmrnctrlsta);
468         e1e_flush();
469
470         udelay(2);
471
472         kmrnctrlsta = er32(KMRNCTRLSTA);
473         *data = (u16)kmrnctrlsta;
474
475         if (!locked)
476                 hw->phy.ops.release(hw);
477
478         return 0;
479 }
480
481 /**
482  *  e1000e_read_kmrn_reg -  Read kumeran register
483  *  @hw: pointer to the HW structure
484  *  @offset: register offset to be read
485  *  @data: pointer to the read data
486  *
487  *  Acquires semaphore then reads the PHY register at offset using the
488  *  kumeran interface.  The information retrieved is stored in data.
489  *  Release the acquired semaphore before exiting.
490  **/
491 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
492 {
493         return __e1000_read_kmrn_reg(hw, offset, data, false);
494 }
495
496 /**
497  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
498  *  @hw: pointer to the HW structure
499  *  @offset: register offset to be read
500  *  @data: pointer to the read data
501  *
502  *  Reads the PHY register at offset using the kumeran interface.  The
503  *  information retrieved is stored in data.
504  *  Assumes semaphore already acquired.
505  **/
506 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
507 {
508         return __e1000_read_kmrn_reg(hw, offset, data, true);
509 }
510
511 /**
512  *  __e1000_write_kmrn_reg - Write kumeran register
513  *  @hw: pointer to the HW structure
514  *  @offset: register offset to write to
515  *  @data: data to write at register offset
516  *  @locked: semaphore has already been acquired or not
517  *
518  *  Acquires semaphore, if necessary.  Then write the data to PHY register
519  *  at the offset using the kumeran interface.  Release any acquired semaphores
520  *  before exiting.
521  **/
522 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
523                                   bool locked)
524 {
525         u32 kmrnctrlsta;
526
527         if (!locked) {
528                 s32 ret_val = 0;
529
530                 if (!hw->phy.ops.acquire)
531                         return 0;
532
533                 ret_val = hw->phy.ops.acquire(hw);
534                 if (ret_val)
535                         return ret_val;
536         }
537
538         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
539                        E1000_KMRNCTRLSTA_OFFSET) | data;
540         ew32(KMRNCTRLSTA, kmrnctrlsta);
541         e1e_flush();
542
543         udelay(2);
544
545         if (!locked)
546                 hw->phy.ops.release(hw);
547
548         return 0;
549 }
550
551 /**
552  *  e1000e_write_kmrn_reg -  Write kumeran register
553  *  @hw: pointer to the HW structure
554  *  @offset: register offset to write to
555  *  @data: data to write at register offset
556  *
557  *  Acquires semaphore then writes the data to the PHY register at the offset
558  *  using the kumeran interface.  Release the acquired semaphore before exiting.
559  **/
560 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
561 {
562         return __e1000_write_kmrn_reg(hw, offset, data, false);
563 }
564
565 /**
566  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
567  *  @hw: pointer to the HW structure
568  *  @offset: register offset to write to
569  *  @data: data to write at register offset
570  *
571  *  Write the data to PHY register at the offset using the kumeran interface.
572  *  Assumes semaphore already acquired.
573  **/
574 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
575 {
576         return __e1000_write_kmrn_reg(hw, offset, data, true);
577 }
578
579 /**
580  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
581  *  @hw: pointer to the HW structure
582  *
583  *  Sets up Master/slave mode
584  **/
585 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
586 {
587         s32 ret_val;
588         u16 phy_data;
589
590         /* Resolve Master/Slave mode */
591         ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
592         if (ret_val)
593                 return ret_val;
594
595         /* load defaults for future use */
596         hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
597             ((phy_data & CTL1000_AS_MASTER) ?
598              e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
599
600         switch (hw->phy.ms_type) {
601         case e1000_ms_force_master:
602                 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
603                 break;
604         case e1000_ms_force_slave:
605                 phy_data |= CTL1000_ENABLE_MASTER;
606                 phy_data &= ~(CTL1000_AS_MASTER);
607                 break;
608         case e1000_ms_auto:
609                 phy_data &= ~CTL1000_ENABLE_MASTER;
610                 /* fall-through */
611         default:
612                 break;
613         }
614
615         return e1e_wphy(hw, MII_CTRL1000, phy_data);
616 }
617
618 /**
619  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
620  *  @hw: pointer to the HW structure
621  *
622  *  Sets up Carrier-sense on Transmit and downshift values.
623  **/
624 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
625 {
626         s32 ret_val;
627         u16 phy_data;
628
629         /* Enable CRS on Tx. This must be set for half-duplex operation. */
630         ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
631         if (ret_val)
632                 return ret_val;
633
634         phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
635
636         /* Enable downshift */
637         phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
638
639         ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
640         if (ret_val)
641                 return ret_val;
642
643         /* Set MDI/MDIX mode */
644         ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
645         if (ret_val)
646                 return ret_val;
647         phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
648         /* Options:
649          *   0 - Auto (default)
650          *   1 - MDI mode
651          *   2 - MDI-X mode
652          */
653         switch (hw->phy.mdix) {
654         case 1:
655                 break;
656         case 2:
657                 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
658                 break;
659         case 0:
660         default:
661                 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
662                 break;
663         }
664         ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
665         if (ret_val)
666                 return ret_val;
667
668         return e1000_set_master_slave_mode(hw);
669 }
670
671 /**
672  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
673  *  @hw: pointer to the HW structure
674  *
675  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
676  *  and downshift values are set also.
677  **/
678 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
679 {
680         struct e1000_phy_info *phy = &hw->phy;
681         s32 ret_val;
682         u16 phy_data;
683
684         /* Enable CRS on Tx. This must be set for half-duplex operation. */
685         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
686         if (ret_val)
687                 return ret_val;
688
689         /* For BM PHY this bit is downshift enable */
690         if (phy->type != e1000_phy_bm)
691                 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
692
693         /* Options:
694          *   MDI/MDI-X = 0 (default)
695          *   0 - Auto for all speeds
696          *   1 - MDI mode
697          *   2 - MDI-X mode
698          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
699          */
700         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
701
702         switch (phy->mdix) {
703         case 1:
704                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
705                 break;
706         case 2:
707                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
708                 break;
709         case 3:
710                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
711                 break;
712         case 0:
713         default:
714                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
715                 break;
716         }
717
718         /* Options:
719          *   disable_polarity_correction = 0 (default)
720          *       Automatic Correction for Reversed Cable Polarity
721          *   0 - Disabled
722          *   1 - Enabled
723          */
724         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
725         if (phy->disable_polarity_correction)
726                 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
727
728         /* Enable downshift on BM (disabled by default) */
729         if (phy->type == e1000_phy_bm) {
730                 /* For 82574/82583, first disable then enable downshift */
731                 if (phy->id == BME1000_E_PHY_ID_R2) {
732                         phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
733                         ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
734                                            phy_data);
735                         if (ret_val)
736                                 return ret_val;
737                         /* Commit the changes. */
738                         ret_val = phy->ops.commit(hw);
739                         if (ret_val) {
740                                 e_dbg("Error committing the PHY changes\n");
741                                 return ret_val;
742                         }
743                 }
744
745                 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
746         }
747
748         ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
749         if (ret_val)
750                 return ret_val;
751
752         if ((phy->type == e1000_phy_m88) &&
753             (phy->revision < E1000_REVISION_4) &&
754             (phy->id != BME1000_E_PHY_ID_R2)) {
755                 /* Force TX_CLK in the Extended PHY Specific Control Register
756                  * to 25MHz clock.
757                  */
758                 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
759                 if (ret_val)
760                         return ret_val;
761
762                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
763
764                 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
765                         /* 82573L PHY - set the downshift counter to 5x. */
766                         phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
767                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
768                 } else {
769                         /* Configure Master and Slave downshift values */
770                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
771                                       M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
772                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
773                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
774                 }
775                 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
776                 if (ret_val)
777                         return ret_val;
778         }
779
780         if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
781                 /* Set PHY page 0, register 29 to 0x0003 */
782                 ret_val = e1e_wphy(hw, 29, 0x0003);
783                 if (ret_val)
784                         return ret_val;
785
786                 /* Set PHY page 0, register 30 to 0x0000 */
787                 ret_val = e1e_wphy(hw, 30, 0x0000);
788                 if (ret_val)
789                         return ret_val;
790         }
791
792         /* Commit the changes. */
793         if (phy->ops.commit) {
794                 ret_val = phy->ops.commit(hw);
795                 if (ret_val) {
796                         e_dbg("Error committing the PHY changes\n");
797                         return ret_val;
798                 }
799         }
800
801         if (phy->type == e1000_phy_82578) {
802                 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
803                 if (ret_val)
804                         return ret_val;
805
806                 /* 82578 PHY - set the downshift count to 1x. */
807                 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
808                 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
809                 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
810                 if (ret_val)
811                         return ret_val;
812         }
813
814         return 0;
815 }
816
817 /**
818  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
819  *  @hw: pointer to the HW structure
820  *
821  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
822  *  igp PHY's.
823  **/
824 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
825 {
826         struct e1000_phy_info *phy = &hw->phy;
827         s32 ret_val;
828         u16 data;
829
830         ret_val = e1000_phy_hw_reset(hw);
831         if (ret_val) {
832                 e_dbg("Error resetting the PHY.\n");
833                 return ret_val;
834         }
835
836         /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
837          * timeout issues when LFS is enabled.
838          */
839         msleep(100);
840
841         /* disable lplu d0 during driver init */
842         if (hw->phy.ops.set_d0_lplu_state) {
843                 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
844                 if (ret_val) {
845                         e_dbg("Error Disabling LPLU D0\n");
846                         return ret_val;
847                 }
848         }
849         /* Configure mdi-mdix settings */
850         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
851         if (ret_val)
852                 return ret_val;
853
854         data &= ~IGP01E1000_PSCR_AUTO_MDIX;
855
856         switch (phy->mdix) {
857         case 1:
858                 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
859                 break;
860         case 2:
861                 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
862                 break;
863         case 0:
864         default:
865                 data |= IGP01E1000_PSCR_AUTO_MDIX;
866                 break;
867         }
868         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
869         if (ret_val)
870                 return ret_val;
871
872         /* set auto-master slave resolution settings */
873         if (hw->mac.autoneg) {
874                 /* when autonegotiation advertisement is only 1000Mbps then we
875                  * should disable SmartSpeed and enable Auto MasterSlave
876                  * resolution as hardware default.
877                  */
878                 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
879                         /* Disable SmartSpeed */
880                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
881                                            &data);
882                         if (ret_val)
883                                 return ret_val;
884
885                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
886                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
887                                            data);
888                         if (ret_val)
889                                 return ret_val;
890
891                         /* Set auto Master/Slave resolution process */
892                         ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
893                         if (ret_val)
894                                 return ret_val;
895
896                         data &= ~CTL1000_ENABLE_MASTER;
897                         ret_val = e1e_wphy(hw, MII_CTRL1000, data);
898                         if (ret_val)
899                                 return ret_val;
900                 }
901
902                 ret_val = e1000_set_master_slave_mode(hw);
903         }
904
905         return ret_val;
906 }
907
908 /**
909  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
910  *  @hw: pointer to the HW structure
911  *
912  *  Reads the MII auto-neg advertisement register and/or the 1000T control
913  *  register and if the PHY is already setup for auto-negotiation, then
914  *  return successful.  Otherwise, setup advertisement and flow control to
915  *  the appropriate values for the wanted auto-negotiation.
916  **/
917 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
918 {
919         struct e1000_phy_info *phy = &hw->phy;
920         s32 ret_val;
921         u16 mii_autoneg_adv_reg;
922         u16 mii_1000t_ctrl_reg = 0;
923
924         phy->autoneg_advertised &= phy->autoneg_mask;
925
926         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
927         ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
928         if (ret_val)
929                 return ret_val;
930
931         if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
932                 /* Read the MII 1000Base-T Control Register (Address 9). */
933                 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
934                 if (ret_val)
935                         return ret_val;
936         }
937
938         /* Need to parse both autoneg_advertised and fc and set up
939          * the appropriate PHY registers.  First we will parse for
940          * autoneg_advertised software override.  Since we can advertise
941          * a plethora of combinations, we need to check each bit
942          * individually.
943          */
944
945         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
946          * Advertisement Register (Address 4) and the 1000 mb speed bits in
947          * the  1000Base-T Control Register (Address 9).
948          */
949         mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
950                                  ADVERTISE_100HALF |
951                                  ADVERTISE_10FULL | ADVERTISE_10HALF);
952         mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
953
954         e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
955
956         /* Do we want to advertise 10 Mb Half Duplex? */
957         if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
958                 e_dbg("Advertise 10mb Half duplex\n");
959                 mii_autoneg_adv_reg |= ADVERTISE_10HALF;
960         }
961
962         /* Do we want to advertise 10 Mb Full Duplex? */
963         if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
964                 e_dbg("Advertise 10mb Full duplex\n");
965                 mii_autoneg_adv_reg |= ADVERTISE_10FULL;
966         }
967
968         /* Do we want to advertise 100 Mb Half Duplex? */
969         if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
970                 e_dbg("Advertise 100mb Half duplex\n");
971                 mii_autoneg_adv_reg |= ADVERTISE_100HALF;
972         }
973
974         /* Do we want to advertise 100 Mb Full Duplex? */
975         if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
976                 e_dbg("Advertise 100mb Full duplex\n");
977                 mii_autoneg_adv_reg |= ADVERTISE_100FULL;
978         }
979
980         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
981         if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
982                 e_dbg("Advertise 1000mb Half duplex request denied!\n");
983
984         /* Do we want to advertise 1000 Mb Full Duplex? */
985         if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
986                 e_dbg("Advertise 1000mb Full duplex\n");
987                 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
988         }
989
990         /* Check for a software override of the flow control settings, and
991          * setup the PHY advertisement registers accordingly.  If
992          * auto-negotiation is enabled, then software will have to set the
993          * "PAUSE" bits to the correct value in the Auto-Negotiation
994          * Advertisement Register (MII_ADVERTISE) and re-start auto-
995          * negotiation.
996          *
997          * The possible values of the "fc" parameter are:
998          *      0:  Flow control is completely disabled
999          *      1:  Rx flow control is enabled (we can receive pause frames
1000          *          but not send pause frames).
1001          *      2:  Tx flow control is enabled (we can send pause frames
1002          *          but we do not support receiving pause frames).
1003          *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1004          *  other:  No software override.  The flow control configuration
1005          *          in the EEPROM is used.
1006          */
1007         switch (hw->fc.current_mode) {
1008         case e1000_fc_none:
1009                 /* Flow control (Rx & Tx) is completely disabled by a
1010                  * software over-ride.
1011                  */
1012                 mii_autoneg_adv_reg &=
1013                     ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1014                 break;
1015         case e1000_fc_rx_pause:
1016                 /* Rx Flow control is enabled, and Tx Flow control is
1017                  * disabled, by a software over-ride.
1018                  *
1019                  * Since there really isn't a way to advertise that we are
1020                  * capable of Rx Pause ONLY, we will advertise that we
1021                  * support both symmetric and asymmetric Rx PAUSE.  Later
1022                  * (in e1000e_config_fc_after_link_up) we will disable the
1023                  * hw's ability to send PAUSE frames.
1024                  */
1025                 mii_autoneg_adv_reg |=
1026                     (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1027                 break;
1028         case e1000_fc_tx_pause:
1029                 /* Tx Flow control is enabled, and Rx Flow control is
1030                  * disabled, by a software over-ride.
1031                  */
1032                 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1033                 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1034                 break;
1035         case e1000_fc_full:
1036                 /* Flow control (both Rx and Tx) is enabled by a software
1037                  * over-ride.
1038                  */
1039                 mii_autoneg_adv_reg |=
1040                     (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1041                 break;
1042         default:
1043                 e_dbg("Flow control param set incorrectly\n");
1044                 return -E1000_ERR_CONFIG;
1045         }
1046
1047         ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1048         if (ret_val)
1049                 return ret_val;
1050
1051         e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1052
1053         if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1054                 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1055
1056         return ret_val;
1057 }
1058
1059 /**
1060  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061  *  @hw: pointer to the HW structure
1062  *
1063  *  Performs initial bounds checking on autoneg advertisement parameter, then
1064  *  configure to advertise the full capability.  Setup the PHY to autoneg
1065  *  and restart the negotiation process between the link partner.  If
1066  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1067  **/
1068 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1069 {
1070         struct e1000_phy_info *phy = &hw->phy;
1071         s32 ret_val;
1072         u16 phy_ctrl;
1073
1074         /* Perform some bounds checking on the autoneg advertisement
1075          * parameter.
1076          */
1077         phy->autoneg_advertised &= phy->autoneg_mask;
1078
1079         /* If autoneg_advertised is zero, we assume it was not defaulted
1080          * by the calling code so we set to advertise full capability.
1081          */
1082         if (!phy->autoneg_advertised)
1083                 phy->autoneg_advertised = phy->autoneg_mask;
1084
1085         e_dbg("Reconfiguring auto-neg advertisement params\n");
1086         ret_val = e1000_phy_setup_autoneg(hw);
1087         if (ret_val) {
1088                 e_dbg("Error Setting up Auto-Negotiation\n");
1089                 return ret_val;
1090         }
1091         e_dbg("Restarting Auto-Neg\n");
1092
1093         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1094          * the Auto Neg Restart bit in the PHY control register.
1095          */
1096         ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1097         if (ret_val)
1098                 return ret_val;
1099
1100         phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1101         ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1102         if (ret_val)
1103                 return ret_val;
1104
1105         /* Does the user want to wait for Auto-Neg to complete here, or
1106          * check at a later time (for example, callback routine).
1107          */
1108         if (phy->autoneg_wait_to_complete) {
1109                 ret_val = e1000_wait_autoneg(hw);
1110                 if (ret_val) {
1111                         e_dbg("Error while waiting for autoneg to complete\n");
1112                         return ret_val;
1113                 }
1114         }
1115
1116         hw->mac.get_link_status = true;
1117
1118         return ret_val;
1119 }
1120
1121 /**
1122  *  e1000e_setup_copper_link - Configure copper link settings
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Calls the appropriate function to configure the link for auto-neg or forced
1126  *  speed and duplex.  Then we check for link, once link is established calls
1127  *  to configure collision distance and flow control are called.  If link is
1128  *  not established, we return -E1000_ERR_PHY (-2).
1129  **/
1130 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1131 {
1132         s32 ret_val;
1133         bool link;
1134
1135         if (hw->mac.autoneg) {
1136                 /* Setup autoneg and flow control advertisement and perform
1137                  * autonegotiation.
1138                  */
1139                 ret_val = e1000_copper_link_autoneg(hw);
1140                 if (ret_val)
1141                         return ret_val;
1142         } else {
1143                 /* PHY will be set to 10H, 10F, 100H or 100F
1144                  * depending on user settings.
1145                  */
1146                 e_dbg("Forcing Speed and Duplex\n");
1147                 ret_val = hw->phy.ops.force_speed_duplex(hw);
1148                 if (ret_val) {
1149                         e_dbg("Error Forcing Speed and Duplex\n");
1150                         return ret_val;
1151                 }
1152         }
1153
1154         /* Check link status. Wait up to 100 microseconds for link to become
1155          * valid.
1156          */
1157         ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1158                                               &link);
1159         if (ret_val)
1160                 return ret_val;
1161
1162         if (link) {
1163                 e_dbg("Valid link established!!!\n");
1164                 hw->mac.ops.config_collision_dist(hw);
1165                 ret_val = e1000e_config_fc_after_link_up(hw);
1166         } else {
1167                 e_dbg("Unable to establish link!!!\n");
1168         }
1169
1170         return ret_val;
1171 }
1172
1173 /**
1174  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175  *  @hw: pointer to the HW structure
1176  *
1177  *  Calls the PHY setup function to force speed and duplex.  Clears the
1178  *  auto-crossover to force MDI manually.  Waits for link and returns
1179  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1180  **/
1181 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1182 {
1183         struct e1000_phy_info *phy = &hw->phy;
1184         s32 ret_val;
1185         u16 phy_data;
1186         bool link;
1187
1188         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1189         if (ret_val)
1190                 return ret_val;
1191
1192         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1193
1194         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1195         if (ret_val)
1196                 return ret_val;
1197
1198         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1199          * forced whenever speed and duplex are forced.
1200          */
1201         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1202         if (ret_val)
1203                 return ret_val;
1204
1205         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1206         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1207
1208         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1209         if (ret_val)
1210                 return ret_val;
1211
1212         e_dbg("IGP PSCR: %X\n", phy_data);
1213
1214         udelay(1);
1215
1216         if (phy->autoneg_wait_to_complete) {
1217                 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1218
1219                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1220                                                       100000, &link);
1221                 if (ret_val)
1222                         return ret_val;
1223
1224                 if (!link)
1225                         e_dbg("Link taking longer than expected.\n");
1226
1227                 /* Try once more */
1228                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1229                                                       100000, &link);
1230         }
1231
1232         return ret_val;
1233 }
1234
1235 /**
1236  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237  *  @hw: pointer to the HW structure
1238  *
1239  *  Calls the PHY setup function to force speed and duplex.  Clears the
1240  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1241  *  changes.  If time expires while waiting for link up, we reset the DSP.
1242  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1243  *  successful completion, else return corresponding error code.
1244  **/
1245 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1246 {
1247         struct e1000_phy_info *phy = &hw->phy;
1248         s32 ret_val;
1249         u16 phy_data;
1250         bool link;
1251
1252         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1253          * forced whenever speed and duplex are forced.
1254          */
1255         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1256         if (ret_val)
1257                 return ret_val;
1258
1259         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1260         ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1261         if (ret_val)
1262                 return ret_val;
1263
1264         e_dbg("M88E1000 PSCR: %X\n", phy_data);
1265
1266         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1267         if (ret_val)
1268                 return ret_val;
1269
1270         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1273         if (ret_val)
1274                 return ret_val;
1275
1276         /* Reset the phy to commit changes. */
1277         if (hw->phy.ops.commit) {
1278                 ret_val = hw->phy.ops.commit(hw);
1279                 if (ret_val)
1280                         return ret_val;
1281         }
1282
1283         if (phy->autoneg_wait_to_complete) {
1284                 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1285
1286                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1287                                                       100000, &link);
1288                 if (ret_val)
1289                         return ret_val;
1290
1291                 if (!link) {
1292                         if (hw->phy.type != e1000_phy_m88) {
1293                                 e_dbg("Link taking longer than expected.\n");
1294                         } else {
1295                                 /* We didn't get link.
1296                                  * Reset the DSP and cross our fingers.
1297                                  */
1298                                 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1299                                                    0x001d);
1300                                 if (ret_val)
1301                                         return ret_val;
1302                                 ret_val = e1000e_phy_reset_dsp(hw);
1303                                 if (ret_val)
1304                                         return ret_val;
1305                         }
1306                 }
1307
1308                 /* Try once more */
1309                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1310                                                       100000, &link);
1311                 if (ret_val)
1312                         return ret_val;
1313         }
1314
1315         if (hw->phy.type != e1000_phy_m88)
1316                 return 0;
1317
1318         ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1319         if (ret_val)
1320                 return ret_val;
1321
1322         /* Resetting the phy means we need to re-force TX_CLK in the
1323          * Extended PHY Specific Control Register to 25MHz clock from
1324          * the reset value of 2.5MHz.
1325          */
1326         phy_data |= M88E1000_EPSCR_TX_CLK_25;
1327         ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1328         if (ret_val)
1329                 return ret_val;
1330
1331         /* In addition, we must re-enable CRS on Tx for both half and full
1332          * duplex.
1333          */
1334         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1335         if (ret_val)
1336                 return ret_val;
1337
1338         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1339         ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1340
1341         return ret_val;
1342 }
1343
1344 /**
1345  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346  *  @hw: pointer to the HW structure
1347  *
1348  *  Forces the speed and duplex settings of the PHY.
1349  *  This is a function pointer entry point only called by
1350  *  PHY setup routines.
1351  **/
1352 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1353 {
1354         struct e1000_phy_info *phy = &hw->phy;
1355         s32 ret_val;
1356         u16 data;
1357         bool link;
1358
1359         ret_val = e1e_rphy(hw, MII_BMCR, &data);
1360         if (ret_val)
1361                 return ret_val;
1362
1363         e1000e_phy_force_speed_duplex_setup(hw, &data);
1364
1365         ret_val = e1e_wphy(hw, MII_BMCR, data);
1366         if (ret_val)
1367                 return ret_val;
1368
1369         /* Disable MDI-X support for 10/100 */
1370         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1371         if (ret_val)
1372                 return ret_val;
1373
1374         data &= ~IFE_PMC_AUTO_MDIX;
1375         data &= ~IFE_PMC_FORCE_MDIX;
1376
1377         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1378         if (ret_val)
1379                 return ret_val;
1380
1381         e_dbg("IFE PMC: %X\n", data);
1382
1383         udelay(1);
1384
1385         if (phy->autoneg_wait_to_complete) {
1386                 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1387
1388                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389                                                       100000, &link);
1390                 if (ret_val)
1391                         return ret_val;
1392
1393                 if (!link)
1394                         e_dbg("Link taking longer than expected.\n");
1395
1396                 /* Try once more */
1397                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1398                                                       100000, &link);
1399                 if (ret_val)
1400                         return ret_val;
1401         }
1402
1403         return 0;
1404 }
1405
1406 /**
1407  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408  *  @hw: pointer to the HW structure
1409  *  @phy_ctrl: pointer to current value of MII_BMCR
1410  *
1411  *  Forces speed and duplex on the PHY by doing the following: disable flow
1412  *  control, force speed/duplex on the MAC, disable auto speed detection,
1413  *  disable auto-negotiation, configure duplex, configure speed, configure
1414  *  the collision distance, write configuration to CTRL register.  The
1415  *  caller must write to the MII_BMCR register for these settings to
1416  *  take affect.
1417  **/
1418 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1419 {
1420         struct e1000_mac_info *mac = &hw->mac;
1421         u32 ctrl;
1422
1423         /* Turn off flow control when forcing speed/duplex */
1424         hw->fc.current_mode = e1000_fc_none;
1425
1426         /* Force speed/duplex on the mac */
1427         ctrl = er32(CTRL);
1428         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429         ctrl &= ~E1000_CTRL_SPD_SEL;
1430
1431         /* Disable Auto Speed Detection */
1432         ctrl &= ~E1000_CTRL_ASDE;
1433
1434         /* Disable autoneg on the phy */
1435         *phy_ctrl &= ~BMCR_ANENABLE;
1436
1437         /* Forcing Full or Half Duplex? */
1438         if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1439                 ctrl &= ~E1000_CTRL_FD;
1440                 *phy_ctrl &= ~BMCR_FULLDPLX;
1441                 e_dbg("Half Duplex\n");
1442         } else {
1443                 ctrl |= E1000_CTRL_FD;
1444                 *phy_ctrl |= BMCR_FULLDPLX;
1445                 e_dbg("Full Duplex\n");
1446         }
1447
1448         /* Forcing 10mb or 100mb? */
1449         if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1450                 ctrl |= E1000_CTRL_SPD_100;
1451                 *phy_ctrl |= BMCR_SPEED100;
1452                 *phy_ctrl &= ~BMCR_SPEED1000;
1453                 e_dbg("Forcing 100mb\n");
1454         } else {
1455                 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1456                 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1457                 e_dbg("Forcing 10mb\n");
1458         }
1459
1460         hw->mac.ops.config_collision_dist(hw);
1461
1462         ew32(CTRL, ctrl);
1463 }
1464
1465 /**
1466  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467  *  @hw: pointer to the HW structure
1468  *  @active: boolean used to enable/disable lplu
1469  *
1470  *  Success returns 0, Failure returns 1
1471  *
1472  *  The low power link up (lplu) state is set to the power management level D3
1473  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1474  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1475  *  is used during Dx states where the power conservation is most important.
1476  *  During driver activity, SmartSpeed should be enabled so performance is
1477  *  maintained.
1478  **/
1479 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480 {
1481         struct e1000_phy_info *phy = &hw->phy;
1482         s32 ret_val;
1483         u16 data;
1484
1485         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1486         if (ret_val)
1487                 return ret_val;
1488
1489         if (!active) {
1490                 data &= ~IGP02E1000_PM_D3_LPLU;
1491                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1492                 if (ret_val)
1493                         return ret_val;
1494                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1495                  * during Dx states where the power conservation is most
1496                  * important.  During driver activity we should enable
1497                  * SmartSpeed, so performance is maintained.
1498                  */
1499                 if (phy->smart_speed == e1000_smart_speed_on) {
1500                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1501                                            &data);
1502                         if (ret_val)
1503                                 return ret_val;
1504
1505                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1506                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1507                                            data);
1508                         if (ret_val)
1509                                 return ret_val;
1510                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1511                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512                                            &data);
1513                         if (ret_val)
1514                                 return ret_val;
1515
1516                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1517                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1518                                            data);
1519                         if (ret_val)
1520                                 return ret_val;
1521                 }
1522         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1523                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1524                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1525                 data |= IGP02E1000_PM_D3_LPLU;
1526                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1527                 if (ret_val)
1528                         return ret_val;
1529
1530                 /* When LPLU is enabled, we should disable SmartSpeed */
1531                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1532                 if (ret_val)
1533                         return ret_val;
1534
1535                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1537         }
1538
1539         return ret_val;
1540 }
1541
1542 /**
1543  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1544  *  @hw: pointer to the HW structure
1545  *
1546  *  Success returns 0, Failure returns 1
1547  *
1548  *  A downshift is detected by querying the PHY link health.
1549  **/
1550 s32 e1000e_check_downshift(struct e1000_hw *hw)
1551 {
1552         struct e1000_phy_info *phy = &hw->phy;
1553         s32 ret_val;
1554         u16 phy_data, offset, mask;
1555
1556         switch (phy->type) {
1557         case e1000_phy_m88:
1558         case e1000_phy_gg82563:
1559         case e1000_phy_bm:
1560         case e1000_phy_82578:
1561                 offset = M88E1000_PHY_SPEC_STATUS;
1562                 mask = M88E1000_PSSR_DOWNSHIFT;
1563                 break;
1564         case e1000_phy_igp_2:
1565         case e1000_phy_igp_3:
1566                 offset = IGP01E1000_PHY_LINK_HEALTH;
1567                 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1568                 break;
1569         default:
1570                 /* speed downshift not supported */
1571                 phy->speed_downgraded = false;
1572                 return 0;
1573         }
1574
1575         ret_val = e1e_rphy(hw, offset, &phy_data);
1576
1577         if (!ret_val)
1578                 phy->speed_downgraded = !!(phy_data & mask);
1579
1580         return ret_val;
1581 }
1582
1583 /**
1584  *  e1000_check_polarity_m88 - Checks the polarity.
1585  *  @hw: pointer to the HW structure
1586  *
1587  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1588  *
1589  *  Polarity is determined based on the PHY specific status register.
1590  **/
1591 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1592 {
1593         struct e1000_phy_info *phy = &hw->phy;
1594         s32 ret_val;
1595         u16 data;
1596
1597         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1598
1599         if (!ret_val)
1600                 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1601                                        ? e1000_rev_polarity_reversed
1602                                        : e1000_rev_polarity_normal);
1603
1604         return ret_val;
1605 }
1606
1607 /**
1608  *  e1000_check_polarity_igp - Checks the polarity.
1609  *  @hw: pointer to the HW structure
1610  *
1611  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612  *
1613  *  Polarity is determined based on the PHY port status register, and the
1614  *  current speed (since there is no polarity at 100Mbps).
1615  **/
1616 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1617 {
1618         struct e1000_phy_info *phy = &hw->phy;
1619         s32 ret_val;
1620         u16 data, offset, mask;
1621
1622         /* Polarity is determined based on the speed of
1623          * our connection.
1624          */
1625         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1626         if (ret_val)
1627                 return ret_val;
1628
1629         if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1630             IGP01E1000_PSSR_SPEED_1000MBPS) {
1631                 offset = IGP01E1000_PHY_PCS_INIT_REG;
1632                 mask = IGP01E1000_PHY_POLARITY_MASK;
1633         } else {
1634                 /* This really only applies to 10Mbps since
1635                  * there is no polarity for 100Mbps (always 0).
1636                  */
1637                 offset = IGP01E1000_PHY_PORT_STATUS;
1638                 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1639         }
1640
1641         ret_val = e1e_rphy(hw, offset, &data);
1642
1643         if (!ret_val)
1644                 phy->cable_polarity = ((data & mask)
1645                                        ? e1000_rev_polarity_reversed
1646                                        : e1000_rev_polarity_normal);
1647
1648         return ret_val;
1649 }
1650
1651 /**
1652  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653  *  @hw: pointer to the HW structure
1654  *
1655  *  Polarity is determined on the polarity reversal feature being enabled.
1656  **/
1657 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1658 {
1659         struct e1000_phy_info *phy = &hw->phy;
1660         s32 ret_val;
1661         u16 phy_data, offset, mask;
1662
1663         /* Polarity is determined based on the reversal feature being enabled.
1664          */
1665         if (phy->polarity_correction) {
1666                 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1667                 mask = IFE_PESC_POLARITY_REVERSED;
1668         } else {
1669                 offset = IFE_PHY_SPECIAL_CONTROL;
1670                 mask = IFE_PSC_FORCE_POLARITY;
1671         }
1672
1673         ret_val = e1e_rphy(hw, offset, &phy_data);
1674
1675         if (!ret_val)
1676                 phy->cable_polarity = ((phy_data & mask)
1677                                        ? e1000_rev_polarity_reversed
1678                                        : e1000_rev_polarity_normal);
1679
1680         return ret_val;
1681 }
1682
1683 /**
1684  *  e1000_wait_autoneg - Wait for auto-neg completion
1685  *  @hw: pointer to the HW structure
1686  *
1687  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1688  *  limit to expire, which ever happens first.
1689  **/
1690 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1691 {
1692         s32 ret_val = 0;
1693         u16 i, phy_status;
1694
1695         /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696         for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1697                 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1698                 if (ret_val)
1699                         break;
1700                 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1701                 if (ret_val)
1702                         break;
1703                 if (phy_status & BMSR_ANEGCOMPLETE)
1704                         break;
1705                 msleep(100);
1706         }
1707
1708         /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1709          * has completed.
1710          */
1711         return ret_val;
1712 }
1713
1714 /**
1715  *  e1000e_phy_has_link_generic - Polls PHY for link
1716  *  @hw: pointer to the HW structure
1717  *  @iterations: number of times to poll for link
1718  *  @usec_interval: delay between polling attempts
1719  *  @success: pointer to whether polling was successful or not
1720  *
1721  *  Polls the PHY status register for link, 'iterations' number of times.
1722  **/
1723 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1724                                 u32 usec_interval, bool *success)
1725 {
1726         s32 ret_val = 0;
1727         u16 i, phy_status;
1728
1729         *success = false;
1730         for (i = 0; i < iterations; i++) {
1731                 /* Some PHYs require the MII_BMSR register to be read
1732                  * twice due to the link bit being sticky.  No harm doing
1733                  * it across the board.
1734                  */
1735                 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1736                 if (ret_val) {
1737                         /* If the first read fails, another entity may have
1738                          * ownership of the resources, wait and try again to
1739                          * see if they have relinquished the resources yet.
1740                          */
1741                         if (usec_interval >= 1000)
1742                                 msleep(usec_interval / 1000);
1743                         else
1744                                 udelay(usec_interval);
1745                 }
1746                 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747                 if (ret_val)
1748                         break;
1749                 if (phy_status & BMSR_LSTATUS) {
1750                         *success = true;
1751                         break;
1752                 }
1753                 if (usec_interval >= 1000)
1754                         msleep(usec_interval / 1000);
1755                 else
1756                         udelay(usec_interval);
1757         }
1758
1759         return ret_val;
1760 }
1761
1762 /**
1763  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764  *  @hw: pointer to the HW structure
1765  *
1766  *  Reads the PHY specific status register to retrieve the cable length
1767  *  information.  The cable length is determined by averaging the minimum and
1768  *  maximum values to get the "average" cable length.  The m88 PHY has four
1769  *  possible cable length values, which are:
1770  *      Register Value          Cable Length
1771  *      0                       < 50 meters
1772  *      1                       50 - 80 meters
1773  *      2                       80 - 110 meters
1774  *      3                       110 - 140 meters
1775  *      4                       > 140 meters
1776  **/
1777 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1778 {
1779         struct e1000_phy_info *phy = &hw->phy;
1780         s32 ret_val;
1781         u16 phy_data, index;
1782
1783         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1784         if (ret_val)
1785                 return ret_val;
1786
1787         index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1788                  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1789
1790         if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1791                 return -E1000_ERR_PHY;
1792
1793         phy->min_cable_length = e1000_m88_cable_length_table[index];
1794         phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1795
1796         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1797
1798         return 0;
1799 }
1800
1801 /**
1802  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803  *  @hw: pointer to the HW structure
1804  *
1805  *  The automatic gain control (agc) normalizes the amplitude of the
1806  *  received signal, adjusting for the attenuation produced by the
1807  *  cable.  By reading the AGC registers, which represent the
1808  *  combination of coarse and fine gain value, the value can be put
1809  *  into a lookup table to obtain the approximate cable length
1810  *  for each channel.
1811  **/
1812 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1813 {
1814         struct e1000_phy_info *phy = &hw->phy;
1815         s32 ret_val;
1816         u16 phy_data, i, agc_value = 0;
1817         u16 cur_agc_index, max_agc_index = 0;
1818         u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1819         static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1820                 IGP02E1000_PHY_AGC_A,
1821                 IGP02E1000_PHY_AGC_B,
1822                 IGP02E1000_PHY_AGC_C,
1823                 IGP02E1000_PHY_AGC_D
1824         };
1825
1826         /* Read the AGC registers for all channels */
1827         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1828                 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1829                 if (ret_val)
1830                         return ret_val;
1831
1832                 /* Getting bits 15:9, which represent the combination of
1833                  * coarse and fine gain values.  The result is a number
1834                  * that can be put into the lookup table to obtain the
1835                  * approximate cable length.
1836                  */
1837                 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1838                                  IGP02E1000_AGC_LENGTH_MASK);
1839
1840                 /* Array index bound check. */
1841                 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1842                     (cur_agc_index == 0))
1843                         return -E1000_ERR_PHY;
1844
1845                 /* Remove min & max AGC values from calculation. */
1846                 if (e1000_igp_2_cable_length_table[min_agc_index] >
1847                     e1000_igp_2_cable_length_table[cur_agc_index])
1848                         min_agc_index = cur_agc_index;
1849                 if (e1000_igp_2_cable_length_table[max_agc_index] <
1850                     e1000_igp_2_cable_length_table[cur_agc_index])
1851                         max_agc_index = cur_agc_index;
1852
1853                 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1854         }
1855
1856         agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1857                       e1000_igp_2_cable_length_table[max_agc_index]);
1858         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1859
1860         /* Calculate cable length with the error range of +/- 10 meters. */
1861         phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1862                                  (agc_value - IGP02E1000_AGC_RANGE) : 0);
1863         phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1864
1865         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1866
1867         return 0;
1868 }
1869
1870 /**
1871  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1872  *  @hw: pointer to the HW structure
1873  *
1874  *  Valid for only copper links.  Read the PHY status register (sticky read)
1875  *  to verify that link is up.  Read the PHY special control register to
1876  *  determine the polarity and 10base-T extended distance.  Read the PHY
1877  *  special status register to determine MDI/MDIx and current speed.  If
1878  *  speed is 1000, then determine cable length, local and remote receiver.
1879  **/
1880 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1881 {
1882         struct e1000_phy_info *phy = &hw->phy;
1883         s32 ret_val;
1884         u16 phy_data;
1885         bool link;
1886
1887         if (phy->media_type != e1000_media_type_copper) {
1888                 e_dbg("Phy info is only valid for copper media\n");
1889                 return -E1000_ERR_CONFIG;
1890         }
1891
1892         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1893         if (ret_val)
1894                 return ret_val;
1895
1896         if (!link) {
1897                 e_dbg("Phy info is only valid if link is up\n");
1898                 return -E1000_ERR_CONFIG;
1899         }
1900
1901         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1902         if (ret_val)
1903                 return ret_val;
1904
1905         phy->polarity_correction = !!(phy_data &
1906                                       M88E1000_PSCR_POLARITY_REVERSAL);
1907
1908         ret_val = e1000_check_polarity_m88(hw);
1909         if (ret_val)
1910                 return ret_val;
1911
1912         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1913         if (ret_val)
1914                 return ret_val;
1915
1916         phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1917
1918         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1919                 ret_val = hw->phy.ops.get_cable_length(hw);
1920                 if (ret_val)
1921                         return ret_val;
1922
1923                 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1924                 if (ret_val)
1925                         return ret_val;
1926
1927                 phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1928                     ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1929
1930                 phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1931                     ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1932         } else {
1933                 /* Set values to "undefined" */
1934                 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1935                 phy->local_rx = e1000_1000t_rx_status_undefined;
1936                 phy->remote_rx = e1000_1000t_rx_status_undefined;
1937         }
1938
1939         return ret_val;
1940 }
1941
1942 /**
1943  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1944  *  @hw: pointer to the HW structure
1945  *
1946  *  Read PHY status to determine if link is up.  If link is up, then
1947  *  set/determine 10base-T extended distance and polarity correction.  Read
1948  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1949  *  determine on the cable length, local and remote receiver.
1950  **/
1951 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1952 {
1953         struct e1000_phy_info *phy = &hw->phy;
1954         s32 ret_val;
1955         u16 data;
1956         bool link;
1957
1958         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1959         if (ret_val)
1960                 return ret_val;
1961
1962         if (!link) {
1963                 e_dbg("Phy info is only valid if link is up\n");
1964                 return -E1000_ERR_CONFIG;
1965         }
1966
1967         phy->polarity_correction = true;
1968
1969         ret_val = e1000_check_polarity_igp(hw);
1970         if (ret_val)
1971                 return ret_val;
1972
1973         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1974         if (ret_val)
1975                 return ret_val;
1976
1977         phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1978
1979         if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1980             IGP01E1000_PSSR_SPEED_1000MBPS) {
1981                 ret_val = phy->ops.get_cable_length(hw);
1982                 if (ret_val)
1983                         return ret_val;
1984
1985                 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1986                 if (ret_val)
1987                         return ret_val;
1988
1989                 phy->local_rx = (data & LPA_1000LOCALRXOK)
1990                     ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1991
1992                 phy->remote_rx = (data & LPA_1000REMRXOK)
1993                     ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1994         } else {
1995                 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1996                 phy->local_rx = e1000_1000t_rx_status_undefined;
1997                 phy->remote_rx = e1000_1000t_rx_status_undefined;
1998         }
1999
2000         return ret_val;
2001 }
2002
2003 /**
2004  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005  *  @hw: pointer to the HW structure
2006  *
2007  *  Populates "phy" structure with various feature states.
2008  **/
2009 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2010 {
2011         struct e1000_phy_info *phy = &hw->phy;
2012         s32 ret_val;
2013         u16 data;
2014         bool link;
2015
2016         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2017         if (ret_val)
2018                 return ret_val;
2019
2020         if (!link) {
2021                 e_dbg("Phy info is only valid if link is up\n");
2022                 return -E1000_ERR_CONFIG;
2023         }
2024
2025         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2026         if (ret_val)
2027                 return ret_val;
2028         phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2029
2030         if (phy->polarity_correction) {
2031                 ret_val = e1000_check_polarity_ife(hw);
2032                 if (ret_val)
2033                         return ret_val;
2034         } else {
2035                 /* Polarity is forced */
2036                 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2037                                        ? e1000_rev_polarity_reversed
2038                                        : e1000_rev_polarity_normal);
2039         }
2040
2041         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2042         if (ret_val)
2043                 return ret_val;
2044
2045         phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2046
2047         /* The following parameters are undefined for 10/100 operation. */
2048         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2049         phy->local_rx = e1000_1000t_rx_status_undefined;
2050         phy->remote_rx = e1000_1000t_rx_status_undefined;
2051
2052         return 0;
2053 }
2054
2055 /**
2056  *  e1000e_phy_sw_reset - PHY software reset
2057  *  @hw: pointer to the HW structure
2058  *
2059  *  Does a software reset of the PHY by reading the PHY control register and
2060  *  setting/write the control register reset bit to the PHY.
2061  **/
2062 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2063 {
2064         s32 ret_val;
2065         u16 phy_ctrl;
2066
2067         ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2068         if (ret_val)
2069                 return ret_val;
2070
2071         phy_ctrl |= BMCR_RESET;
2072         ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2073         if (ret_val)
2074                 return ret_val;
2075
2076         udelay(1);
2077
2078         return ret_val;
2079 }
2080
2081 /**
2082  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2083  *  @hw: pointer to the HW structure
2084  *
2085  *  Verify the reset block is not blocking us from resetting.  Acquire
2086  *  semaphore (if necessary) and read/set/write the device control reset
2087  *  bit in the PHY.  Wait the appropriate delay time for the device to
2088  *  reset and release the semaphore (if necessary).
2089  **/
2090 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2091 {
2092         struct e1000_phy_info *phy = &hw->phy;
2093         s32 ret_val;
2094         u32 ctrl;
2095
2096         if (phy->ops.check_reset_block) {
2097                 ret_val = phy->ops.check_reset_block(hw);
2098                 if (ret_val)
2099                         return 0;
2100         }
2101
2102         ret_val = phy->ops.acquire(hw);
2103         if (ret_val)
2104                 return ret_val;
2105
2106         ctrl = er32(CTRL);
2107         ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2108         e1e_flush();
2109
2110         udelay(phy->reset_delay_us);
2111
2112         ew32(CTRL, ctrl);
2113         e1e_flush();
2114
2115         usleep_range(150, 300);
2116
2117         phy->ops.release(hw);
2118
2119         return phy->ops.get_cfg_done(hw);
2120 }
2121
2122 /**
2123  *  e1000e_get_cfg_done_generic - Generic configuration done
2124  *  @hw: pointer to the HW structure
2125  *
2126  *  Generic function to wait 10 milli-seconds for configuration to complete
2127  *  and return success.
2128  **/
2129 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2130 {
2131         mdelay(10);
2132
2133         return 0;
2134 }
2135
2136 /**
2137  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138  *  @hw: pointer to the HW structure
2139  *
2140  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2141  **/
2142 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2143 {
2144         e_dbg("Running IGP 3 PHY init script\n");
2145
2146         /* PHY init IGP 3 */
2147         /* Enable rise/fall, 10-mode work in class-A */
2148         e1e_wphy(hw, 0x2F5B, 0x9018);
2149         /* Remove all caps from Replica path filter */
2150         e1e_wphy(hw, 0x2F52, 0x0000);
2151         /* Bias trimming for ADC, AFE and Driver (Default) */
2152         e1e_wphy(hw, 0x2FB1, 0x8B24);
2153         /* Increase Hybrid poly bias */
2154         e1e_wphy(hw, 0x2FB2, 0xF8F0);
2155         /* Add 4% to Tx amplitude in Gig mode */
2156         e1e_wphy(hw, 0x2010, 0x10B0);
2157         /* Disable trimming (TTT) */
2158         e1e_wphy(hw, 0x2011, 0x0000);
2159         /* Poly DC correction to 94.6% + 2% for all channels */
2160         e1e_wphy(hw, 0x20DD, 0x249A);
2161         /* ABS DC correction to 95.9% */
2162         e1e_wphy(hw, 0x20DE, 0x00D3);
2163         /* BG temp curve trim */
2164         e1e_wphy(hw, 0x28B4, 0x04CE);
2165         /* Increasing ADC OPAMP stage 1 currents to max */
2166         e1e_wphy(hw, 0x2F70, 0x29E4);
2167         /* Force 1000 ( required for enabling PHY regs configuration) */
2168         e1e_wphy(hw, 0x0000, 0x0140);
2169         /* Set upd_freq to 6 */
2170         e1e_wphy(hw, 0x1F30, 0x1606);
2171         /* Disable NPDFE */
2172         e1e_wphy(hw, 0x1F31, 0xB814);
2173         /* Disable adaptive fixed FFE (Default) */
2174         e1e_wphy(hw, 0x1F35, 0x002A);
2175         /* Enable FFE hysteresis */
2176         e1e_wphy(hw, 0x1F3E, 0x0067);
2177         /* Fixed FFE for short cable lengths */
2178         e1e_wphy(hw, 0x1F54, 0x0065);
2179         /* Fixed FFE for medium cable lengths */
2180         e1e_wphy(hw, 0x1F55, 0x002A);
2181         /* Fixed FFE for long cable lengths */
2182         e1e_wphy(hw, 0x1F56, 0x002A);
2183         /* Enable Adaptive Clip Threshold */
2184         e1e_wphy(hw, 0x1F72, 0x3FB0);
2185         /* AHT reset limit to 1 */
2186         e1e_wphy(hw, 0x1F76, 0xC0FF);
2187         /* Set AHT master delay to 127 msec */
2188         e1e_wphy(hw, 0x1F77, 0x1DEC);
2189         /* Set scan bits for AHT */
2190         e1e_wphy(hw, 0x1F78, 0xF9EF);
2191         /* Set AHT Preset bits */
2192         e1e_wphy(hw, 0x1F79, 0x0210);
2193         /* Change integ_factor of channel A to 3 */
2194         e1e_wphy(hw, 0x1895, 0x0003);
2195         /* Change prop_factor of channels BCD to 8 */
2196         e1e_wphy(hw, 0x1796, 0x0008);
2197         /* Change cg_icount + enable integbp for channels BCD */
2198         e1e_wphy(hw, 0x1798, 0xD008);
2199         /* Change cg_icount + enable integbp + change prop_factor_master
2200          * to 8 for channel A
2201          */
2202         e1e_wphy(hw, 0x1898, 0xD918);
2203         /* Disable AHT in Slave mode on channel A */
2204         e1e_wphy(hw, 0x187A, 0x0800);
2205         /* Enable LPLU and disable AN to 1000 in non-D0a states,
2206          * Enable SPD+B2B
2207          */
2208         e1e_wphy(hw, 0x0019, 0x008D);
2209         /* Enable restart AN on an1000_dis change */
2210         e1e_wphy(hw, 0x001B, 0x2080);
2211         /* Enable wh_fifo read clock in 10/100 modes */
2212         e1e_wphy(hw, 0x0014, 0x0045);
2213         /* Restart AN, Speed selection is 1000 */
2214         e1e_wphy(hw, 0x0000, 0x1340);
2215
2216         return 0;
2217 }
2218
2219 /**
2220  *  e1000e_get_phy_type_from_id - Get PHY type from id
2221  *  @phy_id: phy_id read from the phy
2222  *
2223  *  Returns the phy type from the id.
2224  **/
2225 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2226 {
2227         enum e1000_phy_type phy_type = e1000_phy_unknown;
2228
2229         switch (phy_id) {
2230         case M88E1000_I_PHY_ID:
2231         case M88E1000_E_PHY_ID:
2232         case M88E1111_I_PHY_ID:
2233         case M88E1011_I_PHY_ID:
2234                 phy_type = e1000_phy_m88;
2235                 break;
2236         case IGP01E1000_I_PHY_ID:       /* IGP 1 & 2 share this */
2237                 phy_type = e1000_phy_igp_2;
2238                 break;
2239         case GG82563_E_PHY_ID:
2240                 phy_type = e1000_phy_gg82563;
2241                 break;
2242         case IGP03E1000_E_PHY_ID:
2243                 phy_type = e1000_phy_igp_3;
2244                 break;
2245         case IFE_E_PHY_ID:
2246         case IFE_PLUS_E_PHY_ID:
2247         case IFE_C_E_PHY_ID:
2248                 phy_type = e1000_phy_ife;
2249                 break;
2250         case BME1000_E_PHY_ID:
2251         case BME1000_E_PHY_ID_R2:
2252                 phy_type = e1000_phy_bm;
2253                 break;
2254         case I82578_E_PHY_ID:
2255                 phy_type = e1000_phy_82578;
2256                 break;
2257         case I82577_E_PHY_ID:
2258                 phy_type = e1000_phy_82577;
2259                 break;
2260         case I82579_E_PHY_ID:
2261                 phy_type = e1000_phy_82579;
2262                 break;
2263         case I217_E_PHY_ID:
2264                 phy_type = e1000_phy_i217;
2265                 break;
2266         default:
2267                 phy_type = e1000_phy_unknown;
2268                 break;
2269         }
2270         return phy_type;
2271 }
2272
2273 /**
2274  *  e1000e_determine_phy_address - Determines PHY address.
2275  *  @hw: pointer to the HW structure
2276  *
2277  *  This uses a trial and error method to loop through possible PHY
2278  *  addresses. It tests each by reading the PHY ID registers and
2279  *  checking for a match.
2280  **/
2281 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2282 {
2283         u32 phy_addr = 0;
2284         u32 i;
2285         enum e1000_phy_type phy_type = e1000_phy_unknown;
2286
2287         hw->phy.id = phy_type;
2288
2289         for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2290                 hw->phy.addr = phy_addr;
2291                 i = 0;
2292
2293                 do {
2294                         e1000e_get_phy_id(hw);
2295                         phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2296
2297                         /* If phy_type is valid, break - we found our
2298                          * PHY address
2299                          */
2300                         if (phy_type != e1000_phy_unknown)
2301                                 return 0;
2302
2303                         usleep_range(1000, 2000);
2304                         i++;
2305                 } while (i < 10);
2306         }
2307
2308         return -E1000_ERR_PHY_TYPE;
2309 }
2310
2311 /**
2312  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313  *  @page: page to access
2314  *
2315  *  Returns the phy address for the page requested.
2316  **/
2317 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2318 {
2319         u32 phy_addr = 2;
2320
2321         if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2322                 phy_addr = 1;
2323
2324         return phy_addr;
2325 }
2326
2327 /**
2328  *  e1000e_write_phy_reg_bm - Write BM PHY register
2329  *  @hw: pointer to the HW structure
2330  *  @offset: register offset to write to
2331  *  @data: data to write at register offset
2332  *
2333  *  Acquires semaphore, if necessary, then writes the data to PHY register
2334  *  at the offset.  Release any acquired semaphores before exiting.
2335  **/
2336 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2337 {
2338         s32 ret_val;
2339         u32 page = offset >> IGP_PAGE_SHIFT;
2340
2341         ret_val = hw->phy.ops.acquire(hw);
2342         if (ret_val)
2343                 return ret_val;
2344
2345         /* Page 800 works differently than the rest so it has its own func */
2346         if (page == BM_WUC_PAGE) {
2347                 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2348                                                          false, false);
2349                 goto release;
2350         }
2351
2352         hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2353
2354         if (offset > MAX_PHY_MULTI_PAGE_REG) {
2355                 u32 page_shift, page_select;
2356
2357                 /* Page select is register 31 for phy address 1 and 22 for
2358                  * phy address 2 and 3. Page select is shifted only for
2359                  * phy address 1.
2360                  */
2361                 if (hw->phy.addr == 1) {
2362                         page_shift = IGP_PAGE_SHIFT;
2363                         page_select = IGP01E1000_PHY_PAGE_SELECT;
2364                 } else {
2365                         page_shift = 0;
2366                         page_select = BM_PHY_PAGE_SELECT;
2367                 }
2368
2369                 /* Page is shifted left, PHY expects (page x 32) */
2370                 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2371                                                     (page << page_shift));
2372                 if (ret_val)
2373                         goto release;
2374         }
2375
2376         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2377                                             data);
2378
2379 release:
2380         hw->phy.ops.release(hw);
2381         return ret_val;
2382 }
2383
2384 /**
2385  *  e1000e_read_phy_reg_bm - Read BM PHY register
2386  *  @hw: pointer to the HW structure
2387  *  @offset: register offset to be read
2388  *  @data: pointer to the read data
2389  *
2390  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2391  *  and storing the retrieved information in data.  Release any acquired
2392  *  semaphores before exiting.
2393  **/
2394 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2395 {
2396         s32 ret_val;
2397         u32 page = offset >> IGP_PAGE_SHIFT;
2398
2399         ret_val = hw->phy.ops.acquire(hw);
2400         if (ret_val)
2401                 return ret_val;
2402
2403         /* Page 800 works differently than the rest so it has its own func */
2404         if (page == BM_WUC_PAGE) {
2405                 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2406                                                          true, false);
2407                 goto release;
2408         }
2409
2410         hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2411
2412         if (offset > MAX_PHY_MULTI_PAGE_REG) {
2413                 u32 page_shift, page_select;
2414
2415                 /* Page select is register 31 for phy address 1 and 22 for
2416                  * phy address 2 and 3. Page select is shifted only for
2417                  * phy address 1.
2418                  */
2419                 if (hw->phy.addr == 1) {
2420                         page_shift = IGP_PAGE_SHIFT;
2421                         page_select = IGP01E1000_PHY_PAGE_SELECT;
2422                 } else {
2423                         page_shift = 0;
2424                         page_select = BM_PHY_PAGE_SELECT;
2425                 }
2426
2427                 /* Page is shifted left, PHY expects (page x 32) */
2428                 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2429                                                     (page << page_shift));
2430                 if (ret_val)
2431                         goto release;
2432         }
2433
2434         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2435                                            data);
2436 release:
2437         hw->phy.ops.release(hw);
2438         return ret_val;
2439 }
2440
2441 /**
2442  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2443  *  @hw: pointer to the HW structure
2444  *  @offset: register offset to be read
2445  *  @data: pointer to the read data
2446  *
2447  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2448  *  and storing the retrieved information in data.  Release any acquired
2449  *  semaphores before exiting.
2450  **/
2451 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2452 {
2453         s32 ret_val;
2454         u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2455
2456         ret_val = hw->phy.ops.acquire(hw);
2457         if (ret_val)
2458                 return ret_val;
2459
2460         /* Page 800 works differently than the rest so it has its own func */
2461         if (page == BM_WUC_PAGE) {
2462                 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2463                                                          true, false);
2464                 goto release;
2465         }
2466
2467         hw->phy.addr = 1;
2468
2469         if (offset > MAX_PHY_MULTI_PAGE_REG) {
2470                 /* Page is shifted left, PHY expects (page x 32) */
2471                 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2472                                                     page);
2473
2474                 if (ret_val)
2475                         goto release;
2476         }
2477
2478         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2479                                            data);
2480 release:
2481         hw->phy.ops.release(hw);
2482         return ret_val;
2483 }
2484
2485 /**
2486  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2487  *  @hw: pointer to the HW structure
2488  *  @offset: register offset to write to
2489  *  @data: data to write at register offset
2490  *
2491  *  Acquires semaphore, if necessary, then writes the data to PHY register
2492  *  at the offset.  Release any acquired semaphores before exiting.
2493  **/
2494 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2495 {
2496         s32 ret_val;
2497         u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2498
2499         ret_val = hw->phy.ops.acquire(hw);
2500         if (ret_val)
2501                 return ret_val;
2502
2503         /* Page 800 works differently than the rest so it has its own func */
2504         if (page == BM_WUC_PAGE) {
2505                 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2506                                                          false, false);
2507                 goto release;
2508         }
2509
2510         hw->phy.addr = 1;
2511
2512         if (offset > MAX_PHY_MULTI_PAGE_REG) {
2513                 /* Page is shifted left, PHY expects (page x 32) */
2514                 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2515                                                     page);
2516
2517                 if (ret_val)
2518                         goto release;
2519         }
2520
2521         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2522                                             data);
2523
2524 release:
2525         hw->phy.ops.release(hw);
2526         return ret_val;
2527 }
2528
2529 /**
2530  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2531  *  @hw: pointer to the HW structure
2532  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2533  *
2534  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2535  *  address to store contents of the BM_WUC_ENABLE_REG register.
2536  **/
2537 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2538 {
2539         s32 ret_val;
2540         u16 temp;
2541
2542         /* All page select, port ctrl and wakeup registers use phy address 1 */
2543         hw->phy.addr = 1;
2544
2545         /* Select Port Control Registers page */
2546         ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2547         if (ret_val) {
2548                 e_dbg("Could not set Port Control page\n");
2549                 return ret_val;
2550         }
2551
2552         ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2553         if (ret_val) {
2554                 e_dbg("Could not read PHY register %d.%d\n",
2555                       BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2556                 return ret_val;
2557         }
2558
2559         /* Enable both PHY wakeup mode and Wakeup register page writes.
2560          * Prevent a power state change by disabling ME and Host PHY wakeup.
2561          */
2562         temp = *phy_reg;
2563         temp |= BM_WUC_ENABLE_BIT;
2564         temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2565
2566         ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2567         if (ret_val) {
2568                 e_dbg("Could not write PHY register %d.%d\n",
2569                       BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2570                 return ret_val;
2571         }
2572
2573         /* Select Host Wakeup Registers page - caller now able to write
2574          * registers on the Wakeup registers page
2575          */
2576         return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2577 }
2578
2579 /**
2580  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2581  *  @hw: pointer to the HW structure
2582  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2583  *
2584  *  Restore BM_WUC_ENABLE_REG to its original value.
2585  *
2586  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2587  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2588  *  caller.
2589  **/
2590 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2591 {
2592         s32 ret_val;
2593
2594         /* Select Port Control Registers page */
2595         ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596         if (ret_val) {
2597                 e_dbg("Could not set Port Control page\n");
2598                 return ret_val;
2599         }
2600
2601         /* Restore 769.17 to its original value */
2602         ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2603         if (ret_val)
2604                 e_dbg("Could not restore PHY register %d.%d\n",
2605                       BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2606
2607         return ret_val;
2608 }
2609
2610 /**
2611  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2612  *  @hw: pointer to the HW structure
2613  *  @offset: register offset to be read or written
2614  *  @data: pointer to the data to read or write
2615  *  @read: determines if operation is read or write
2616  *  @page_set: BM_WUC_PAGE already set and access enabled
2617  *
2618  *  Read the PHY register at offset and store the retrieved information in
2619  *  data, or write data to PHY register at offset.  Note the procedure to
2620  *  access the PHY wakeup registers is different than reading the other PHY
2621  *  registers. It works as such:
2622  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2623  *  2) Set page to 800 for host (801 if we were manageability)
2624  *  3) Write the address using the address opcode (0x11)
2625  *  4) Read or write the data using the data opcode (0x12)
2626  *  5) Restore 769.17.2 to its original value
2627  *
2628  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2629  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2630  *
2631  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2632  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2633  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2634  **/
2635 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2636                                           u16 *data, bool read, bool page_set)
2637 {
2638         s32 ret_val;
2639         u16 reg = BM_PHY_REG_NUM(offset);
2640         u16 page = BM_PHY_REG_PAGE(offset);
2641         u16 phy_reg = 0;
2642
2643         /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2644         if ((hw->mac.type == e1000_pchlan) &&
2645             (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2646                 e_dbg("Attempting to access page %d while gig enabled.\n",
2647                       page);
2648
2649         if (!page_set) {
2650                 /* Enable access to PHY wakeup registers */
2651                 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2652                 if (ret_val) {
2653                         e_dbg("Could not enable PHY wakeup reg access\n");
2654                         return ret_val;
2655                 }
2656         }
2657
2658         e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2659
2660         /* Write the Wakeup register page offset value using opcode 0x11 */
2661         ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2662         if (ret_val) {
2663                 e_dbg("Could not write address opcode to page %d\n", page);
2664                 return ret_val;
2665         }
2666
2667         if (read) {
2668                 /* Read the Wakeup register page value using opcode 0x12 */
2669                 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2670                                                    data);
2671         } else {
2672                 /* Write the Wakeup register page value using opcode 0x12 */
2673                 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2674                                                     *data);
2675         }
2676
2677         if (ret_val) {
2678                 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2679                 return ret_val;
2680         }
2681
2682         if (!page_set)
2683                 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2684
2685         return ret_val;
2686 }
2687
2688 /**
2689  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2690  * @hw: pointer to the HW structure
2691  *
2692  * In the case of a PHY power down to save power, or to turn off link during a
2693  * driver unload, or wake on lan is not enabled, restore the link to previous
2694  * settings.
2695  **/
2696 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2697 {
2698         u16 mii_reg = 0;
2699
2700         /* The PHY will retain its settings across a power down/up cycle */
2701         e1e_rphy(hw, MII_BMCR, &mii_reg);
2702         mii_reg &= ~BMCR_PDOWN;
2703         e1e_wphy(hw, MII_BMCR, mii_reg);
2704 }
2705
2706 /**
2707  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2708  * @hw: pointer to the HW structure
2709  *
2710  * In the case of a PHY power down to save power, or to turn off link during a
2711  * driver unload, or wake on lan is not enabled, restore the link to previous
2712  * settings.
2713  **/
2714 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2715 {
2716         u16 mii_reg = 0;
2717
2718         /* The PHY will retain its settings across a power down/up cycle */
2719         e1e_rphy(hw, MII_BMCR, &mii_reg);
2720         mii_reg |= BMCR_PDOWN;
2721         e1e_wphy(hw, MII_BMCR, mii_reg);
2722         usleep_range(1000, 2000);
2723 }
2724
2725 /**
2726  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2727  *  @hw: pointer to the HW structure
2728  *  @offset: register offset to be read
2729  *  @data: pointer to the read data
2730  *  @locked: semaphore has already been acquired or not
2731  *
2732  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2733  *  and stores the retrieved information in data.  Release any acquired
2734  *  semaphore before exiting.
2735  **/
2736 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2737                                    bool locked, bool page_set)
2738 {
2739         s32 ret_val;
2740         u16 page = BM_PHY_REG_PAGE(offset);
2741         u16 reg = BM_PHY_REG_NUM(offset);
2742         u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2743
2744         if (!locked) {
2745                 ret_val = hw->phy.ops.acquire(hw);
2746                 if (ret_val)
2747                         return ret_val;
2748         }
2749
2750         /* Page 800 works differently than the rest so it has its own func */
2751         if (page == BM_WUC_PAGE) {
2752                 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2753                                                          true, page_set);
2754                 goto out;
2755         }
2756
2757         if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2758                 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2759                                                          data, true);
2760                 goto out;
2761         }
2762
2763         if (!page_set) {
2764                 if (page == HV_INTC_FC_PAGE_START)
2765                         page = 0;
2766
2767                 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2768                         /* Page is shifted left, PHY expects (page x 32) */
2769                         ret_val = e1000_set_page_igp(hw,
2770                                                      (page << IGP_PAGE_SHIFT));
2771
2772                         hw->phy.addr = phy_addr;
2773
2774                         if (ret_val)
2775                                 goto out;
2776                 }
2777         }
2778
2779         e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2780               page << IGP_PAGE_SHIFT, reg);
2781
2782         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2783 out:
2784         if (!locked)
2785                 hw->phy.ops.release(hw);
2786
2787         return ret_val;
2788 }
2789
2790 /**
2791  *  e1000_read_phy_reg_hv -  Read HV PHY register
2792  *  @hw: pointer to the HW structure
2793  *  @offset: register offset to be read
2794  *  @data: pointer to the read data
2795  *
2796  *  Acquires semaphore then reads the PHY register at offset and stores
2797  *  the retrieved information in data.  Release the acquired semaphore
2798  *  before exiting.
2799  **/
2800 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2801 {
2802         return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2803 }
2804
2805 /**
2806  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2807  *  @hw: pointer to the HW structure
2808  *  @offset: register offset to be read
2809  *  @data: pointer to the read data
2810  *
2811  *  Reads the PHY register at offset and stores the retrieved information
2812  *  in data.  Assumes semaphore already acquired.
2813  **/
2814 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2815 {
2816         return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2817 }
2818
2819 /**
2820  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2821  *  @hw: pointer to the HW structure
2822  *  @offset: register offset to write to
2823  *  @data: data to write at register offset
2824  *
2825  *  Reads the PHY register at offset and stores the retrieved information
2826  *  in data.  Assumes semaphore already acquired and page already set.
2827  **/
2828 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2829 {
2830         return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2831 }
2832
2833 /**
2834  *  __e1000_write_phy_reg_hv - Write HV PHY register
2835  *  @hw: pointer to the HW structure
2836  *  @offset: register offset to write to
2837  *  @data: data to write at register offset
2838  *  @locked: semaphore has already been acquired or not
2839  *
2840  *  Acquires semaphore, if necessary, then writes the data to PHY register
2841  *  at the offset.  Release any acquired semaphores before exiting.
2842  **/
2843 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2844                                     bool locked, bool page_set)
2845 {
2846         s32 ret_val;
2847         u16 page = BM_PHY_REG_PAGE(offset);
2848         u16 reg = BM_PHY_REG_NUM(offset);
2849         u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2850
2851         if (!locked) {
2852                 ret_val = hw->phy.ops.acquire(hw);
2853                 if (ret_val)
2854                         return ret_val;
2855         }
2856
2857         /* Page 800 works differently than the rest so it has its own func */
2858         if (page == BM_WUC_PAGE) {
2859                 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2860                                                          false, page_set);
2861                 goto out;
2862         }
2863
2864         if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2865                 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2866                                                          &data, false);
2867                 goto out;
2868         }
2869
2870         if (!page_set) {
2871                 if (page == HV_INTC_FC_PAGE_START)
2872                         page = 0;
2873
2874                 /* Workaround MDIO accesses being disabled after entering IEEE
2875                  * Power Down (when bit 11 of the PHY Control register is set)
2876                  */
2877                 if ((hw->phy.type == e1000_phy_82578) &&
2878                     (hw->phy.revision >= 1) &&
2879                     (hw->phy.addr == 2) &&
2880                     !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2881                         u16 data2 = 0x7EFF;
2882
2883                         ret_val = e1000_access_phy_debug_regs_hv(hw,
2884                                                                  BIT(6) | 0x3,
2885                                                                  &data2, false);
2886                         if (ret_val)
2887                                 goto out;
2888                 }
2889
2890                 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2891                         /* Page is shifted left, PHY expects (page x 32) */
2892                         ret_val = e1000_set_page_igp(hw,
2893                                                      (page << IGP_PAGE_SHIFT));
2894
2895                         hw->phy.addr = phy_addr;
2896
2897                         if (ret_val)
2898                                 goto out;
2899                 }
2900         }
2901
2902         e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2903               page << IGP_PAGE_SHIFT, reg);
2904
2905         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2906                                             data);
2907
2908 out:
2909         if (!locked)
2910                 hw->phy.ops.release(hw);
2911
2912         return ret_val;
2913 }
2914
2915 /**
2916  *  e1000_write_phy_reg_hv - Write HV PHY register
2917  *  @hw: pointer to the HW structure
2918  *  @offset: register offset to write to
2919  *  @data: data to write at register offset
2920  *
2921  *  Acquires semaphore then writes the data to PHY register at the offset.
2922  *  Release the acquired semaphores before exiting.
2923  **/
2924 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2925 {
2926         return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2927 }
2928
2929 /**
2930  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2931  *  @hw: pointer to the HW structure
2932  *  @offset: register offset to write to
2933  *  @data: data to write at register offset
2934  *
2935  *  Writes the data to PHY register at the offset.  Assumes semaphore
2936  *  already acquired.
2937  **/
2938 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2939 {
2940         return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2941 }
2942
2943 /**
2944  *  e1000_write_phy_reg_page_hv - Write HV PHY register
2945  *  @hw: pointer to the HW structure
2946  *  @offset: register offset to write to
2947  *  @data: data to write at register offset
2948  *
2949  *  Writes the data to PHY register at the offset.  Assumes semaphore
2950  *  already acquired and page already set.
2951  **/
2952 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2953 {
2954         return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2955 }
2956
2957 /**
2958  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2959  *  @page: page to be accessed
2960  **/
2961 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2962 {
2963         u32 phy_addr = 2;
2964
2965         if (page >= HV_INTC_FC_PAGE_START)
2966                 phy_addr = 1;
2967
2968         return phy_addr;
2969 }
2970
2971 /**
2972  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2973  *  @hw: pointer to the HW structure
2974  *  @offset: register offset to be read or written
2975  *  @data: pointer to the data to be read or written
2976  *  @read: determines if operation is read or write
2977  *
2978  *  Reads the PHY register at offset and stores the retreived information
2979  *  in data.  Assumes semaphore already acquired.  Note that the procedure
2980  *  to access these regs uses the address port and data port to read/write.
2981  *  These accesses done with PHY address 2 and without using pages.
2982  **/
2983 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2984                                           u16 *data, bool read)
2985 {
2986         s32 ret_val;
2987         u32 addr_reg;
2988         u32 data_reg;
2989
2990         /* This takes care of the difference with desktop vs mobile phy */
2991         addr_reg = ((hw->phy.type == e1000_phy_82578) ?
2992                     I82578_ADDR_REG : I82577_ADDR_REG);
2993         data_reg = addr_reg + 1;
2994
2995         /* All operations in this function are phy address 2 */
2996         hw->phy.addr = 2;
2997
2998         /* masking with 0x3F to remove the page from offset */
2999         ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3000         if (ret_val) {
3001                 e_dbg("Could not write the Address Offset port register\n");
3002                 return ret_val;
3003         }
3004
3005         /* Read or write the data value next */
3006         if (read)
3007                 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3008         else
3009                 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3010
3011         if (ret_val)
3012                 e_dbg("Could not access the Data port register\n");
3013
3014         return ret_val;
3015 }
3016
3017 /**
3018  *  e1000_link_stall_workaround_hv - Si workaround
3019  *  @hw: pointer to the HW structure
3020  *
3021  *  This function works around a Si bug where the link partner can get
3022  *  a link up indication before the PHY does.  If small packets are sent
3023  *  by the link partner they can be placed in the packet buffer without
3024  *  being properly accounted for by the PHY and will stall preventing
3025  *  further packets from being received.  The workaround is to clear the
3026  *  packet buffer after the PHY detects link up.
3027  **/
3028 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3029 {
3030         s32 ret_val = 0;
3031         u16 data;
3032
3033         if (hw->phy.type != e1000_phy_82578)
3034                 return 0;
3035
3036         /* Do not apply workaround if in PHY loopback bit 14 set */
3037         e1e_rphy(hw, MII_BMCR, &data);
3038         if (data & BMCR_LOOPBACK)
3039                 return 0;
3040
3041         /* check if link is up and at 1Gbps */
3042         ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3043         if (ret_val)
3044                 return ret_val;
3045
3046         data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3047                  BM_CS_STATUS_SPEED_MASK);
3048
3049         if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3050                      BM_CS_STATUS_SPEED_1000))
3051                 return 0;
3052
3053         msleep(200);
3054
3055         /* flush the packets in the fifo buffer */
3056         ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3057                            (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3058                             HV_MUX_DATA_CTRL_FORCE_SPEED));
3059         if (ret_val)
3060                 return ret_val;
3061
3062         return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3063 }
3064
3065 /**
3066  *  e1000_check_polarity_82577 - Checks the polarity.
3067  *  @hw: pointer to the HW structure
3068  *
3069  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3070  *
3071  *  Polarity is determined based on the PHY specific status register.
3072  **/
3073 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3074 {
3075         struct e1000_phy_info *phy = &hw->phy;
3076         s32 ret_val;
3077         u16 data;
3078
3079         ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3080
3081         if (!ret_val)
3082                 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3083                                        ? e1000_rev_polarity_reversed
3084                                        : e1000_rev_polarity_normal);
3085
3086         return ret_val;
3087 }
3088
3089 /**
3090  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3091  *  @hw: pointer to the HW structure
3092  *
3093  *  Calls the PHY setup function to force speed and duplex.
3094  **/
3095 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3096 {
3097         struct e1000_phy_info *phy = &hw->phy;
3098         s32 ret_val;
3099         u16 phy_data;
3100         bool link;
3101
3102         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3103         if (ret_val)
3104                 return ret_val;
3105
3106         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3107
3108         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3109         if (ret_val)
3110                 return ret_val;
3111
3112         udelay(1);
3113
3114         if (phy->autoneg_wait_to_complete) {
3115                 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3116
3117                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3118                                                       100000, &link);
3119                 if (ret_val)
3120                         return ret_val;
3121
3122                 if (!link)
3123                         e_dbg("Link taking longer than expected.\n");
3124
3125                 /* Try once more */
3126                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3127                                                       100000, &link);
3128         }
3129
3130         return ret_val;
3131 }
3132
3133 /**
3134  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3135  *  @hw: pointer to the HW structure
3136  *
3137  *  Read PHY status to determine if link is up.  If link is up, then
3138  *  set/determine 10base-T extended distance and polarity correction.  Read
3139  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3140  *  determine on the cable length, local and remote receiver.
3141  **/
3142 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3143 {
3144         struct e1000_phy_info *phy = &hw->phy;
3145         s32 ret_val;
3146         u16 data;
3147         bool link;
3148
3149         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3150         if (ret_val)
3151                 return ret_val;
3152
3153         if (!link) {
3154                 e_dbg("Phy info is only valid if link is up\n");
3155                 return -E1000_ERR_CONFIG;
3156         }
3157
3158         phy->polarity_correction = true;
3159
3160         ret_val = e1000_check_polarity_82577(hw);
3161         if (ret_val)
3162                 return ret_val;
3163
3164         ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3165         if (ret_val)
3166                 return ret_val;
3167
3168         phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3169
3170         if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3171             I82577_PHY_STATUS2_SPEED_1000MBPS) {
3172                 ret_val = hw->phy.ops.get_cable_length(hw);
3173                 if (ret_val)
3174                         return ret_val;
3175
3176                 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3177                 if (ret_val)
3178                         return ret_val;
3179
3180                 phy->local_rx = (data & LPA_1000LOCALRXOK)
3181                     ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3182
3183                 phy->remote_rx = (data & LPA_1000REMRXOK)
3184                     ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3185         } else {
3186                 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3187                 phy->local_rx = e1000_1000t_rx_status_undefined;
3188                 phy->remote_rx = e1000_1000t_rx_status_undefined;
3189         }
3190
3191         return 0;
3192 }
3193
3194 /**
3195  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3196  *  @hw: pointer to the HW structure
3197  *
3198  * Reads the diagnostic status register and verifies result is valid before
3199  * placing it in the phy_cable_length field.
3200  **/
3201 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3202 {
3203         struct e1000_phy_info *phy = &hw->phy;
3204         s32 ret_val;
3205         u16 phy_data, length;
3206
3207         ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3208         if (ret_val)
3209                 return ret_val;
3210
3211         length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3212                   I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3213
3214         if (length == E1000_CABLE_LENGTH_UNDEFINED)
3215                 return -E1000_ERR_PHY;
3216
3217         phy->cable_length = length;
3218
3219         return 0;
3220 }