GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.h
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #ifndef _I40E_TXRX_H_
28 #define _I40E_TXRX_H_
29
30 /* Interrupt Throttling and Rate Limiting Goodies */
31
32 #define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K              0x0005
35 #define I40E_ITR_50K               0x000A
36 #define I40E_ITR_20K               0x0019
37 #define I40E_ITR_18K               0x001B
38 #define I40E_ITR_8K                0x003E
39 #define I40E_ITR_4K                0x007A
40 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF            I40E_ITR_20K
42 #define I40E_ITR_TX_DEF            I40E_ITR_20K
43 #define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
44 #define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45 #define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
46 #define I40E_DEFAULT_IRQ_WORK      256
47 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
50 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51  * the value of the rate limit is non-zero
52  */
53 #define INTRL_ENA                  BIT(6)
54 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55 /**
56  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
57  * @intrl: interrupt rate limit to convert
58  *
59  * This function converts a decimal interrupt rate limit to the appropriate
60  * register format expected by the firmware when setting interrupt rate limit.
61  */
62 static inline u16 i40e_intrl_usec_to_reg(int intrl)
63 {
64         if (intrl >> 2)
65                 return ((intrl >> 2) | INTRL_ENA);
66         else
67                 return 0;
68 }
69 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
70 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
71 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
72
73 #define I40E_QUEUE_END_OF_LIST 0x7FF
74
75 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
76  * registers and QINT registers or more generally anywhere in the manual
77  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
78  * register but instead is a special value meaning "don't update" ITR0/1/2.
79  */
80 enum i40e_dyn_idx_t {
81         I40E_IDX_ITR0 = 0,
82         I40E_IDX_ITR1 = 1,
83         I40E_IDX_ITR2 = 2,
84         I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
85 };
86
87 /* these are indexes into ITRN registers */
88 #define I40E_RX_ITR    I40E_IDX_ITR0
89 #define I40E_TX_ITR    I40E_IDX_ITR1
90 #define I40E_PE_ITR    I40E_IDX_ITR2
91
92 /* Supported RSS offloads */
93 #define I40E_DEFAULT_RSS_HENA ( \
94         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
95         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
96         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
97         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
98         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
99         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
100         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
101         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
102         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
103         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
104         BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
105
106 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
107         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
108         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
109         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
110         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
111         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
112         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
113
114 #define i40e_pf_get_default_rss_hena(pf) \
115         (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
116           I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
117
118 /* Supported Rx Buffer Sizes (a multiple of 128) */
119 #define I40E_RXBUFFER_256   256
120 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
121 #define I40E_RXBUFFER_2048  2048
122 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
123 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
124
125 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
126  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
127  * this adds up to 512 bytes of extra data meaning the smallest allocation
128  * we could have is 1K.
129  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
130  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
131  */
132 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
133 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
134 #define i40e_rx_desc i40e_32byte_rx_desc
135
136 #define I40E_RX_DMA_ATTR \
137         (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
138
139 /* Attempt to maximize the headroom available for incoming frames.  We
140  * use a 2K buffer for receives and need 1536/1534 to store the data for
141  * the frame.  This leaves us with 512 bytes of room.  From that we need
142  * to deduct the space needed for the shared info and the padding needed
143  * to IP align the frame.
144  *
145  * Note: For cache line sizes 256 or larger this value is going to end
146  *       up negative.  In these cases we should fall back to the legacy
147  *       receive path.
148  */
149 #if (PAGE_SIZE < 8192)
150 #define I40E_2K_TOO_SMALL_WITH_PADDING \
151 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
152
153 static inline int i40e_compute_pad(int rx_buf_len)
154 {
155         int page_size, pad_size;
156
157         page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
158         pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
159
160         return pad_size;
161 }
162
163 static inline int i40e_skb_pad(void)
164 {
165         int rx_buf_len;
166
167         /* If a 2K buffer cannot handle a standard Ethernet frame then
168          * optimize padding for a 3K buffer instead of a 1.5K buffer.
169          *
170          * For a 3K buffer we need to add enough padding to allow for
171          * tailroom due to NET_IP_ALIGN possibly shifting us out of
172          * cache-line alignment.
173          */
174         if (I40E_2K_TOO_SMALL_WITH_PADDING)
175                 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
176         else
177                 rx_buf_len = I40E_RXBUFFER_1536;
178
179         /* if needed make room for NET_IP_ALIGN */
180         rx_buf_len -= NET_IP_ALIGN;
181
182         return i40e_compute_pad(rx_buf_len);
183 }
184
185 #define I40E_SKB_PAD i40e_skb_pad()
186 #else
187 #define I40E_2K_TOO_SMALL_WITH_PADDING false
188 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
189 #endif
190
191 /**
192  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
193  * @rx_desc: pointer to receive descriptor (in le64 format)
194  * @stat_err_bits: value to mask
195  *
196  * This function does some fast chicanery in order to return the
197  * value of the mask which is really only used for boolean tests.
198  * The status_error_len doesn't need to be shifted because it begins
199  * at offset zero.
200  */
201 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
202                                      const u64 stat_err_bits)
203 {
204         return !!(rx_desc->wb.qword1.status_error_len &
205                   cpu_to_le64(stat_err_bits));
206 }
207
208 /* How many Rx Buffers do we bundle into one write to the hardware ? */
209 #define I40E_RX_BUFFER_WRITE    16      /* Must be power of 2 */
210 #define I40E_RX_INCREMENT(r, i) \
211         do {                                    \
212                 (i)++;                          \
213                 if ((i) == (r)->count)          \
214                         i = 0;                  \
215                 r->next_to_clean = i;           \
216         } while (0)
217
218 #define I40E_RX_NEXT_DESC(r, i, n)              \
219         do {                                    \
220                 (i)++;                          \
221                 if ((i) == (r)->count)          \
222                         i = 0;                  \
223                 (n) = I40E_RX_DESC((r), (i));   \
224         } while (0)
225
226 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
227         do {                                            \
228                 I40E_RX_NEXT_DESC((r), (i), (n));       \
229                 prefetch((n));                          \
230         } while (0)
231
232 #define I40E_MAX_BUFFER_TXD     8
233 #define I40E_MIN_TX_LEN         17
234
235 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
236  * In order to align with the read requests we will align the value to
237  * the nearest 4K which represents our maximum read request size.
238  */
239 #define I40E_MAX_READ_REQ_SIZE          4096
240 #define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
241 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
242         (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
243
244 /**
245  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
246  * @size: transmit request size in bytes
247  *
248  * Due to hardware alignment restrictions (4K alignment), we need to
249  * assume that we can have no more than 12K of data per descriptor, even
250  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
251  * Thus, we need to divide by 12K. But division is slow! Instead,
252  * we decompose the operation into shifts and one relatively cheap
253  * multiply operation.
254  *
255  * To divide by 12K, we first divide by 4K, then divide by 3:
256  *     To divide by 4K, shift right by 12 bits
257  *     To divide by 3, multiply by 85, then divide by 256
258  *     (Divide by 256 is done by shifting right by 8 bits)
259  * Finally, we add one to round up. Because 256 isn't an exact multiple of
260  * 3, we'll underestimate near each multiple of 12K. This is actually more
261  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
262  * segment.  For our purposes this is accurate out to 1M which is orders of
263  * magnitude greater than our largest possible GSO size.
264  *
265  * This would then be implemented as:
266  *     return (((size >> 12) * 85) >> 8) + 1;
267  *
268  * Since multiplication and division are commutative, we can reorder
269  * operations into:
270  *     return ((size * 85) >> 20) + 1;
271  */
272 static inline unsigned int i40e_txd_use_count(unsigned int size)
273 {
274         return ((size * 85) >> 20) + 1;
275 }
276
277 /* Tx Descriptors needed, worst case */
278 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
279 #define I40E_MIN_DESC_PENDING   4
280
281 #define I40E_TX_FLAGS_HW_VLAN           BIT(1)
282 #define I40E_TX_FLAGS_SW_VLAN           BIT(2)
283 #define I40E_TX_FLAGS_TSO               BIT(3)
284 #define I40E_TX_FLAGS_IPV4              BIT(4)
285 #define I40E_TX_FLAGS_IPV6              BIT(5)
286 #define I40E_TX_FLAGS_FCCRC             BIT(6)
287 #define I40E_TX_FLAGS_FSO               BIT(7)
288 #define I40E_TX_FLAGS_TSYN              BIT(8)
289 #define I40E_TX_FLAGS_FD_SB             BIT(9)
290 #define I40E_TX_FLAGS_UDP_TUNNEL        BIT(10)
291 #define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
292 #define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
293 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
294 #define I40E_TX_FLAGS_VLAN_SHIFT        16
295
296 struct i40e_tx_buffer {
297         struct i40e_tx_desc *next_to_watch;
298         union {
299                 struct sk_buff *skb;
300                 void *raw_buf;
301         };
302         unsigned int bytecount;
303         unsigned short gso_segs;
304
305         DEFINE_DMA_UNMAP_ADDR(dma);
306         DEFINE_DMA_UNMAP_LEN(len);
307         u32 tx_flags;
308 };
309
310 struct i40e_rx_buffer {
311         dma_addr_t dma;
312         struct page *page;
313 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
314         __u32 page_offset;
315 #else
316         __u16 page_offset;
317 #endif
318         __u16 pagecnt_bias;
319 };
320
321 struct i40e_queue_stats {
322         u64 packets;
323         u64 bytes;
324 };
325
326 struct i40e_tx_queue_stats {
327         u64 restart_queue;
328         u64 tx_busy;
329         u64 tx_done_old;
330         u64 tx_linearize;
331         u64 tx_force_wb;
332 };
333
334 struct i40e_rx_queue_stats {
335         u64 non_eop_descs;
336         u64 alloc_page_failed;
337         u64 alloc_buff_failed;
338         u64 page_reuse_count;
339         u64 realloc_count;
340 };
341
342 enum i40e_ring_state_t {
343         __I40E_TX_FDIR_INIT_DONE,
344         __I40E_TX_XPS_INIT_DONE,
345 };
346
347 /* some useful defines for virtchannel interface, which
348  * is the only remaining user of header split
349  */
350 #define I40E_RX_DTYPE_NO_SPLIT      0
351 #define I40E_RX_DTYPE_HEADER_SPLIT  1
352 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
353 #define I40E_RX_SPLIT_L2      0x1
354 #define I40E_RX_SPLIT_IP      0x2
355 #define I40E_RX_SPLIT_TCP_UDP 0x4
356 #define I40E_RX_SPLIT_SCTP    0x8
357
358 /* struct that defines a descriptor ring, associated with a VSI */
359 struct i40e_ring {
360         struct i40e_ring *next;         /* pointer to next ring in q_vector */
361         void *desc;                     /* Descriptor ring memory */
362         struct device *dev;             /* Used for DMA mapping */
363         struct net_device *netdev;      /* netdev ring maps to */
364         struct bpf_prog *xdp_prog;
365         union {
366                 struct i40e_tx_buffer *tx_bi;
367                 struct i40e_rx_buffer *rx_bi;
368         };
369         unsigned long state;
370         u16 queue_index;                /* Queue number of ring */
371         u8 dcb_tc;                      /* Traffic class of ring */
372         u8 __iomem *tail;
373
374         /* high bit set means dynamic, use accessor routines to read/write.
375          * hardware only supports 2us resolution for the ITR registers.
376          * these values always store the USER setting, and must be converted
377          * before programming to a register.
378          */
379         u16 rx_itr_setting;
380         u16 tx_itr_setting;
381
382         u16 count;                      /* Number of descriptors */
383         u16 reg_idx;                    /* HW register index of the ring */
384         u16 rx_buf_len;
385
386         /* used in interrupt processing */
387         u16 next_to_use;
388         u16 next_to_clean;
389
390         u8 atr_sample_rate;
391         u8 atr_count;
392
393         bool ring_active;               /* is ring online or not */
394         bool arm_wb;            /* do something to arm write back */
395         u8 packet_stride;
396
397         u16 flags;
398 #define I40E_TXR_FLAGS_WB_ON_ITR                BIT(0)
399 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
400 #define I40E_TXR_FLAGS_XDP                      BIT(2)
401
402         /* stats structs */
403         struct i40e_queue_stats stats;
404         struct u64_stats_sync syncp;
405         union {
406                 struct i40e_tx_queue_stats tx_stats;
407                 struct i40e_rx_queue_stats rx_stats;
408         };
409
410         unsigned int size;              /* length of descriptor ring in bytes */
411         dma_addr_t dma;                 /* physical address of ring */
412
413         struct i40e_vsi *vsi;           /* Backreference to associated VSI */
414         struct i40e_q_vector *q_vector; /* Backreference to associated vector */
415
416         struct rcu_head rcu;            /* to avoid race on free */
417         u16 next_to_alloc;
418         struct sk_buff *skb;            /* When i40e_clean_rx_ring_irq() must
419                                          * return before it sees the EOP for
420                                          * the current packet, we save that skb
421                                          * here and resume receiving this
422                                          * packet the next time
423                                          * i40e_clean_rx_ring_irq() is called
424                                          * for this ring.
425                                          */
426 } ____cacheline_internodealigned_in_smp;
427
428 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
429 {
430         return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
431 }
432
433 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
434 {
435         ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
436 }
437
438 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
439 {
440         ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
441 }
442
443 static inline bool ring_is_xdp(struct i40e_ring *ring)
444 {
445         return !!(ring->flags & I40E_TXR_FLAGS_XDP);
446 }
447
448 static inline void set_ring_xdp(struct i40e_ring *ring)
449 {
450         ring->flags |= I40E_TXR_FLAGS_XDP;
451 }
452
453 enum i40e_latency_range {
454         I40E_LOWEST_LATENCY = 0,
455         I40E_LOW_LATENCY = 1,
456         I40E_BULK_LATENCY = 2,
457 };
458
459 struct i40e_ring_container {
460         /* array of pointers to rings */
461         struct i40e_ring *ring;
462         unsigned int total_bytes;       /* total bytes processed this int */
463         unsigned int total_packets;     /* total packets processed this int */
464         unsigned long last_itr_update;  /* jiffies of last ITR update */
465         u16 count;
466         enum i40e_latency_range latency_range;
467         u16 itr;
468 };
469
470 /* iterator for handling rings in ring container */
471 #define i40e_for_each_ring(pos, head) \
472         for (pos = (head).ring; pos != NULL; pos = pos->next)
473
474 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
475 {
476 #if (PAGE_SIZE < 8192)
477         if (ring->rx_buf_len > (PAGE_SIZE / 2))
478                 return 1;
479 #endif
480         return 0;
481 }
482
483 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
484
485 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
486 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
487 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
488 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
489 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
490 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
491 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
492 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
493 int i40e_napi_poll(struct napi_struct *napi, int budget);
494 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
495 u32 i40e_get_tx_pending(struct i40e_ring *ring);
496 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
497 bool __i40e_chk_linearize(struct sk_buff *skb);
498
499 /**
500  * i40e_get_head - Retrieve head from head writeback
501  * @tx_ring:  tx ring to fetch head of
502  *
503  * Returns value of Tx ring head based on value stored
504  * in head write-back location
505  **/
506 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
507 {
508         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
509
510         return le32_to_cpu(*(volatile __le32 *)head);
511 }
512
513 /**
514  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
515  * @skb:     send buffer
516  * @tx_ring: ring to send buffer on
517  *
518  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
519  * there is not enough descriptors available in this ring since we need at least
520  * one descriptor.
521  **/
522 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
523 {
524         const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
525         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
526         int count = 0, size = skb_headlen(skb);
527
528         for (;;) {
529                 count += i40e_txd_use_count(size);
530
531                 if (!nr_frags--)
532                         break;
533
534                 size = skb_frag_size(frag++);
535         }
536
537         return count;
538 }
539
540 /**
541  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
542  * @tx_ring: the ring to be checked
543  * @size:    the size buffer we want to assure is available
544  *
545  * Returns 0 if stop is not needed
546  **/
547 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
548 {
549         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
550                 return 0;
551         return __i40e_maybe_stop_tx(tx_ring, size);
552 }
553
554 /**
555  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
556  * @skb:      send buffer
557  * @count:    number of buffers used
558  *
559  * Note: Our HW can't scatter-gather more than 8 fragments to build
560  * a packet on the wire and so we need to figure out the cases where we
561  * need to linearize the skb.
562  **/
563 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
564 {
565         /* Both TSO and single send will work if count is less than 8 */
566         if (likely(count < I40E_MAX_BUFFER_TXD))
567                 return false;
568
569         if (skb_is_gso(skb))
570                 return __i40e_chk_linearize(skb);
571
572         /* we can support up to 8 data buffers for a single send */
573         return count != I40E_MAX_BUFFER_TXD;
574 }
575
576 /**
577  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
578  * @ring: Tx ring to find the netdev equivalent of
579  **/
580 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
581 {
582         return netdev_get_tx_queue(ring->netdev, ring->queue_index);
583 }
584 #endif /* _I40E_TXRX_H_ */