GNU Linux-libre 4.4.284-gnu1
[releases.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* ethtool support for igb */
25
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define IGB_STAT(_name, _stat) { \
48         .stat_string = _name, \
49         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50         .stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53         IGB_STAT("rx_packets", stats.gprc),
54         IGB_STAT("tx_packets", stats.gptc),
55         IGB_STAT("rx_bytes", stats.gorc),
56         IGB_STAT("tx_bytes", stats.gotc),
57         IGB_STAT("rx_broadcast", stats.bprc),
58         IGB_STAT("tx_broadcast", stats.bptc),
59         IGB_STAT("rx_multicast", stats.mprc),
60         IGB_STAT("tx_multicast", stats.mptc),
61         IGB_STAT("multicast", stats.mprc),
62         IGB_STAT("collisions", stats.colc),
63         IGB_STAT("rx_crc_errors", stats.crcerrs),
64         IGB_STAT("rx_no_buffer_count", stats.rnbc),
65         IGB_STAT("rx_missed_errors", stats.mpc),
66         IGB_STAT("tx_aborted_errors", stats.ecol),
67         IGB_STAT("tx_carrier_errors", stats.tncrs),
68         IGB_STAT("tx_window_errors", stats.latecol),
69         IGB_STAT("tx_abort_late_coll", stats.latecol),
70         IGB_STAT("tx_deferred_ok", stats.dc),
71         IGB_STAT("tx_single_coll_ok", stats.scc),
72         IGB_STAT("tx_multi_coll_ok", stats.mcc),
73         IGB_STAT("tx_timeout_count", tx_timeout_count),
74         IGB_STAT("rx_long_length_errors", stats.roc),
75         IGB_STAT("rx_short_length_errors", stats.ruc),
76         IGB_STAT("rx_align_errors", stats.algnerrc),
77         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81         IGB_STAT("tx_flow_control_xon", stats.xontxc),
82         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83         IGB_STAT("rx_long_byte_count", stats.gorc),
84         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85         IGB_STAT("tx_smbus", stats.mgptc),
86         IGB_STAT("rx_smbus", stats.mgprc),
87         IGB_STAT("dropped_smbus", stats.mgpdc),
88         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143         u32 status;
144         u32 speed;
145
146         status = pm_runtime_suspended(&adapter->pdev->dev) ?
147                  0 : rd32(E1000_STATUS);
148         if (hw->phy.media_type == e1000_media_type_copper) {
149
150                 ecmd->supported = (SUPPORTED_10baseT_Half |
151                                    SUPPORTED_10baseT_Full |
152                                    SUPPORTED_100baseT_Half |
153                                    SUPPORTED_100baseT_Full |
154                                    SUPPORTED_1000baseT_Full|
155                                    SUPPORTED_Autoneg |
156                                    SUPPORTED_TP |
157                                    SUPPORTED_Pause);
158                 ecmd->advertising = ADVERTISED_TP;
159
160                 if (hw->mac.autoneg == 1) {
161                         ecmd->advertising |= ADVERTISED_Autoneg;
162                         /* the e1000 autoneg seems to match ethtool nicely */
163                         ecmd->advertising |= hw->phy.autoneg_advertised;
164                 }
165
166                 ecmd->port = PORT_TP;
167                 ecmd->phy_address = hw->phy.addr;
168                 ecmd->transceiver = XCVR_INTERNAL;
169         } else {
170                 ecmd->supported = (SUPPORTED_FIBRE |
171                                    SUPPORTED_1000baseKX_Full |
172                                    SUPPORTED_Autoneg |
173                                    SUPPORTED_Pause);
174                 ecmd->advertising = (ADVERTISED_FIBRE |
175                                      ADVERTISED_1000baseKX_Full);
176                 if (hw->mac.type == e1000_i354) {
177                         if ((hw->device_id ==
178                              E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
179                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
180                                 ecmd->supported |= SUPPORTED_2500baseX_Full;
181                                 ecmd->supported &=
182                                         ~SUPPORTED_1000baseKX_Full;
183                                 ecmd->advertising |= ADVERTISED_2500baseX_Full;
184                                 ecmd->advertising &=
185                                         ~ADVERTISED_1000baseKX_Full;
186                         }
187                 }
188                 if (eth_flags->e100_base_fx) {
189                         ecmd->supported |= SUPPORTED_100baseT_Full;
190                         ecmd->advertising |= ADVERTISED_100baseT_Full;
191                 }
192                 if (hw->mac.autoneg == 1)
193                         ecmd->advertising |= ADVERTISED_Autoneg;
194
195                 ecmd->port = PORT_FIBRE;
196                 ecmd->transceiver = XCVR_EXTERNAL;
197         }
198         if (hw->mac.autoneg != 1)
199                 ecmd->advertising &= ~(ADVERTISED_Pause |
200                                        ADVERTISED_Asym_Pause);
201
202         switch (hw->fc.requested_mode) {
203         case e1000_fc_full:
204                 ecmd->advertising |= ADVERTISED_Pause;
205                 break;
206         case e1000_fc_rx_pause:
207                 ecmd->advertising |= (ADVERTISED_Pause |
208                                       ADVERTISED_Asym_Pause);
209                 break;
210         case e1000_fc_tx_pause:
211                 ecmd->advertising |=  ADVERTISED_Asym_Pause;
212                 break;
213         default:
214                 ecmd->advertising &= ~(ADVERTISED_Pause |
215                                        ADVERTISED_Asym_Pause);
216         }
217         if (status & E1000_STATUS_LU) {
218                 if ((status & E1000_STATUS_2P5_SKU) &&
219                     !(status & E1000_STATUS_2P5_SKU_OVER)) {
220                         speed = SPEED_2500;
221                 } else if (status & E1000_STATUS_SPEED_1000) {
222                         speed = SPEED_1000;
223                 } else if (status & E1000_STATUS_SPEED_100) {
224                         speed = SPEED_100;
225                 } else {
226                         speed = SPEED_10;
227                 }
228                 if ((status & E1000_STATUS_FD) ||
229                     hw->phy.media_type != e1000_media_type_copper)
230                         ecmd->duplex = DUPLEX_FULL;
231                 else
232                         ecmd->duplex = DUPLEX_HALF;
233         } else {
234                 speed = SPEED_UNKNOWN;
235                 ecmd->duplex = DUPLEX_UNKNOWN;
236         }
237         ethtool_cmd_speed_set(ecmd, speed);
238         if ((hw->phy.media_type == e1000_media_type_fiber) ||
239             hw->mac.autoneg)
240                 ecmd->autoneg = AUTONEG_ENABLE;
241         else
242                 ecmd->autoneg = AUTONEG_DISABLE;
243
244         /* MDI-X => 2; MDI =>1; Invalid =>0 */
245         if (hw->phy.media_type == e1000_media_type_copper)
246                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
247                                                       ETH_TP_MDI;
248         else
249                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
250
251         if (hw->phy.mdix == AUTO_ALL_MODES)
252                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
253         else
254                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
255
256         return 0;
257 }
258
259 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
260 {
261         struct igb_adapter *adapter = netdev_priv(netdev);
262         struct e1000_hw *hw = &adapter->hw;
263
264         /* When SoL/IDER sessions are active, autoneg/speed/duplex
265          * cannot be changed
266          */
267         if (igb_check_reset_block(hw)) {
268                 dev_err(&adapter->pdev->dev,
269                         "Cannot change link characteristics when SoL/IDER is active.\n");
270                 return -EINVAL;
271         }
272
273         /* MDI setting is only allowed when autoneg enabled because
274          * some hardware doesn't allow MDI setting when speed or
275          * duplex is forced.
276          */
277         if (ecmd->eth_tp_mdix_ctrl) {
278                 if (hw->phy.media_type != e1000_media_type_copper)
279                         return -EOPNOTSUPP;
280
281                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
282                     (ecmd->autoneg != AUTONEG_ENABLE)) {
283                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
284                         return -EINVAL;
285                 }
286         }
287
288         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
289                 usleep_range(1000, 2000);
290
291         if (ecmd->autoneg == AUTONEG_ENABLE) {
292                 hw->mac.autoneg = 1;
293                 if (hw->phy.media_type == e1000_media_type_fiber) {
294                         hw->phy.autoneg_advertised = ecmd->advertising |
295                                                      ADVERTISED_FIBRE |
296                                                      ADVERTISED_Autoneg;
297                         switch (adapter->link_speed) {
298                         case SPEED_2500:
299                                 hw->phy.autoneg_advertised =
300                                         ADVERTISED_2500baseX_Full;
301                                 break;
302                         case SPEED_1000:
303                                 hw->phy.autoneg_advertised =
304                                         ADVERTISED_1000baseT_Full;
305                                 break;
306                         case SPEED_100:
307                                 hw->phy.autoneg_advertised =
308                                         ADVERTISED_100baseT_Full;
309                                 break;
310                         default:
311                                 break;
312                         }
313                 } else {
314                         hw->phy.autoneg_advertised = ecmd->advertising |
315                                                      ADVERTISED_TP |
316                                                      ADVERTISED_Autoneg;
317                 }
318                 ecmd->advertising = hw->phy.autoneg_advertised;
319                 if (adapter->fc_autoneg)
320                         hw->fc.requested_mode = e1000_fc_default;
321         } else {
322                 u32 speed = ethtool_cmd_speed(ecmd);
323                 /* calling this overrides forced MDI setting */
324                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
325                         clear_bit(__IGB_RESETTING, &adapter->state);
326                         return -EINVAL;
327                 }
328         }
329
330         /* MDI-X => 2; MDI => 1; Auto => 3 */
331         if (ecmd->eth_tp_mdix_ctrl) {
332                 /* fix up the value for auto (3 => 0) as zero is mapped
333                  * internally to auto
334                  */
335                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336                         hw->phy.mdix = AUTO_ALL_MODES;
337                 else
338                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
339         }
340
341         /* reset the link */
342         if (netif_running(adapter->netdev)) {
343                 igb_down(adapter);
344                 igb_up(adapter);
345         } else
346                 igb_reset(adapter);
347
348         clear_bit(__IGB_RESETTING, &adapter->state);
349         return 0;
350 }
351
352 static u32 igb_get_link(struct net_device *netdev)
353 {
354         struct igb_adapter *adapter = netdev_priv(netdev);
355         struct e1000_mac_info *mac = &adapter->hw.mac;
356
357         /* If the link is not reported up to netdev, interrupts are disabled,
358          * and so the physical link state may have changed since we last
359          * looked. Set get_link_status to make sure that the true link
360          * state is interrogated, rather than pulling a cached and possibly
361          * stale link state from the driver.
362          */
363         if (!netif_carrier_ok(netdev))
364                 mac->get_link_status = 1;
365
366         return igb_has_link(adapter);
367 }
368
369 static void igb_get_pauseparam(struct net_device *netdev,
370                                struct ethtool_pauseparam *pause)
371 {
372         struct igb_adapter *adapter = netdev_priv(netdev);
373         struct e1000_hw *hw = &adapter->hw;
374
375         pause->autoneg =
376                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
377
378         if (hw->fc.current_mode == e1000_fc_rx_pause)
379                 pause->rx_pause = 1;
380         else if (hw->fc.current_mode == e1000_fc_tx_pause)
381                 pause->tx_pause = 1;
382         else if (hw->fc.current_mode == e1000_fc_full) {
383                 pause->rx_pause = 1;
384                 pause->tx_pause = 1;
385         }
386 }
387
388 static int igb_set_pauseparam(struct net_device *netdev,
389                               struct ethtool_pauseparam *pause)
390 {
391         struct igb_adapter *adapter = netdev_priv(netdev);
392         struct e1000_hw *hw = &adapter->hw;
393         int retval = 0;
394
395         /* 100basefx does not support setting link flow control */
396         if (hw->dev_spec._82575.eth_flags.e100_base_fx)
397                 return -EINVAL;
398
399         adapter->fc_autoneg = pause->autoneg;
400
401         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
402                 usleep_range(1000, 2000);
403
404         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
405                 hw->fc.requested_mode = e1000_fc_default;
406                 if (netif_running(adapter->netdev)) {
407                         igb_down(adapter);
408                         igb_up(adapter);
409                 } else {
410                         igb_reset(adapter);
411                 }
412         } else {
413                 if (pause->rx_pause && pause->tx_pause)
414                         hw->fc.requested_mode = e1000_fc_full;
415                 else if (pause->rx_pause && !pause->tx_pause)
416                         hw->fc.requested_mode = e1000_fc_rx_pause;
417                 else if (!pause->rx_pause && pause->tx_pause)
418                         hw->fc.requested_mode = e1000_fc_tx_pause;
419                 else if (!pause->rx_pause && !pause->tx_pause)
420                         hw->fc.requested_mode = e1000_fc_none;
421
422                 hw->fc.current_mode = hw->fc.requested_mode;
423
424                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
425                           igb_force_mac_fc(hw) : igb_setup_link(hw));
426         }
427
428         clear_bit(__IGB_RESETTING, &adapter->state);
429         return retval;
430 }
431
432 static u32 igb_get_msglevel(struct net_device *netdev)
433 {
434         struct igb_adapter *adapter = netdev_priv(netdev);
435         return adapter->msg_enable;
436 }
437
438 static void igb_set_msglevel(struct net_device *netdev, u32 data)
439 {
440         struct igb_adapter *adapter = netdev_priv(netdev);
441         adapter->msg_enable = data;
442 }
443
444 static int igb_get_regs_len(struct net_device *netdev)
445 {
446 #define IGB_REGS_LEN 739
447         return IGB_REGS_LEN * sizeof(u32);
448 }
449
450 static void igb_get_regs(struct net_device *netdev,
451                          struct ethtool_regs *regs, void *p)
452 {
453         struct igb_adapter *adapter = netdev_priv(netdev);
454         struct e1000_hw *hw = &adapter->hw;
455         u32 *regs_buff = p;
456         u8 i;
457
458         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
459
460         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
461
462         /* General Registers */
463         regs_buff[0] = rd32(E1000_CTRL);
464         regs_buff[1] = rd32(E1000_STATUS);
465         regs_buff[2] = rd32(E1000_CTRL_EXT);
466         regs_buff[3] = rd32(E1000_MDIC);
467         regs_buff[4] = rd32(E1000_SCTL);
468         regs_buff[5] = rd32(E1000_CONNSW);
469         regs_buff[6] = rd32(E1000_VET);
470         regs_buff[7] = rd32(E1000_LEDCTL);
471         regs_buff[8] = rd32(E1000_PBA);
472         regs_buff[9] = rd32(E1000_PBS);
473         regs_buff[10] = rd32(E1000_FRTIMER);
474         regs_buff[11] = rd32(E1000_TCPTIMER);
475
476         /* NVM Register */
477         regs_buff[12] = rd32(E1000_EECD);
478
479         /* Interrupt */
480         /* Reading EICS for EICR because they read the
481          * same but EICS does not clear on read
482          */
483         regs_buff[13] = rd32(E1000_EICS);
484         regs_buff[14] = rd32(E1000_EICS);
485         regs_buff[15] = rd32(E1000_EIMS);
486         regs_buff[16] = rd32(E1000_EIMC);
487         regs_buff[17] = rd32(E1000_EIAC);
488         regs_buff[18] = rd32(E1000_EIAM);
489         /* Reading ICS for ICR because they read the
490          * same but ICS does not clear on read
491          */
492         regs_buff[19] = rd32(E1000_ICS);
493         regs_buff[20] = rd32(E1000_ICS);
494         regs_buff[21] = rd32(E1000_IMS);
495         regs_buff[22] = rd32(E1000_IMC);
496         regs_buff[23] = rd32(E1000_IAC);
497         regs_buff[24] = rd32(E1000_IAM);
498         regs_buff[25] = rd32(E1000_IMIRVP);
499
500         /* Flow Control */
501         regs_buff[26] = rd32(E1000_FCAL);
502         regs_buff[27] = rd32(E1000_FCAH);
503         regs_buff[28] = rd32(E1000_FCTTV);
504         regs_buff[29] = rd32(E1000_FCRTL);
505         regs_buff[30] = rd32(E1000_FCRTH);
506         regs_buff[31] = rd32(E1000_FCRTV);
507
508         /* Receive */
509         regs_buff[32] = rd32(E1000_RCTL);
510         regs_buff[33] = rd32(E1000_RXCSUM);
511         regs_buff[34] = rd32(E1000_RLPML);
512         regs_buff[35] = rd32(E1000_RFCTL);
513         regs_buff[36] = rd32(E1000_MRQC);
514         regs_buff[37] = rd32(E1000_VT_CTL);
515
516         /* Transmit */
517         regs_buff[38] = rd32(E1000_TCTL);
518         regs_buff[39] = rd32(E1000_TCTL_EXT);
519         regs_buff[40] = rd32(E1000_TIPG);
520         regs_buff[41] = rd32(E1000_DTXCTL);
521
522         /* Wake Up */
523         regs_buff[42] = rd32(E1000_WUC);
524         regs_buff[43] = rd32(E1000_WUFC);
525         regs_buff[44] = rd32(E1000_WUS);
526         regs_buff[45] = rd32(E1000_IPAV);
527         regs_buff[46] = rd32(E1000_WUPL);
528
529         /* MAC */
530         regs_buff[47] = rd32(E1000_PCS_CFG0);
531         regs_buff[48] = rd32(E1000_PCS_LCTL);
532         regs_buff[49] = rd32(E1000_PCS_LSTAT);
533         regs_buff[50] = rd32(E1000_PCS_ANADV);
534         regs_buff[51] = rd32(E1000_PCS_LPAB);
535         regs_buff[52] = rd32(E1000_PCS_NPTX);
536         regs_buff[53] = rd32(E1000_PCS_LPABNP);
537
538         /* Statistics */
539         regs_buff[54] = adapter->stats.crcerrs;
540         regs_buff[55] = adapter->stats.algnerrc;
541         regs_buff[56] = adapter->stats.symerrs;
542         regs_buff[57] = adapter->stats.rxerrc;
543         regs_buff[58] = adapter->stats.mpc;
544         regs_buff[59] = adapter->stats.scc;
545         regs_buff[60] = adapter->stats.ecol;
546         regs_buff[61] = adapter->stats.mcc;
547         regs_buff[62] = adapter->stats.latecol;
548         regs_buff[63] = adapter->stats.colc;
549         regs_buff[64] = adapter->stats.dc;
550         regs_buff[65] = adapter->stats.tncrs;
551         regs_buff[66] = adapter->stats.sec;
552         regs_buff[67] = adapter->stats.htdpmc;
553         regs_buff[68] = adapter->stats.rlec;
554         regs_buff[69] = adapter->stats.xonrxc;
555         regs_buff[70] = adapter->stats.xontxc;
556         regs_buff[71] = adapter->stats.xoffrxc;
557         regs_buff[72] = adapter->stats.xofftxc;
558         regs_buff[73] = adapter->stats.fcruc;
559         regs_buff[74] = adapter->stats.prc64;
560         regs_buff[75] = adapter->stats.prc127;
561         regs_buff[76] = adapter->stats.prc255;
562         regs_buff[77] = adapter->stats.prc511;
563         regs_buff[78] = adapter->stats.prc1023;
564         regs_buff[79] = adapter->stats.prc1522;
565         regs_buff[80] = adapter->stats.gprc;
566         regs_buff[81] = adapter->stats.bprc;
567         regs_buff[82] = adapter->stats.mprc;
568         regs_buff[83] = adapter->stats.gptc;
569         regs_buff[84] = adapter->stats.gorc;
570         regs_buff[86] = adapter->stats.gotc;
571         regs_buff[88] = adapter->stats.rnbc;
572         regs_buff[89] = adapter->stats.ruc;
573         regs_buff[90] = adapter->stats.rfc;
574         regs_buff[91] = adapter->stats.roc;
575         regs_buff[92] = adapter->stats.rjc;
576         regs_buff[93] = adapter->stats.mgprc;
577         regs_buff[94] = adapter->stats.mgpdc;
578         regs_buff[95] = adapter->stats.mgptc;
579         regs_buff[96] = adapter->stats.tor;
580         regs_buff[98] = adapter->stats.tot;
581         regs_buff[100] = adapter->stats.tpr;
582         regs_buff[101] = adapter->stats.tpt;
583         regs_buff[102] = adapter->stats.ptc64;
584         regs_buff[103] = adapter->stats.ptc127;
585         regs_buff[104] = adapter->stats.ptc255;
586         regs_buff[105] = adapter->stats.ptc511;
587         regs_buff[106] = adapter->stats.ptc1023;
588         regs_buff[107] = adapter->stats.ptc1522;
589         regs_buff[108] = adapter->stats.mptc;
590         regs_buff[109] = adapter->stats.bptc;
591         regs_buff[110] = adapter->stats.tsctc;
592         regs_buff[111] = adapter->stats.iac;
593         regs_buff[112] = adapter->stats.rpthc;
594         regs_buff[113] = adapter->stats.hgptc;
595         regs_buff[114] = adapter->stats.hgorc;
596         regs_buff[116] = adapter->stats.hgotc;
597         regs_buff[118] = adapter->stats.lenerrs;
598         regs_buff[119] = adapter->stats.scvpc;
599         regs_buff[120] = adapter->stats.hrmpc;
600
601         for (i = 0; i < 4; i++)
602                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
603         for (i = 0; i < 4; i++)
604                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
605         for (i = 0; i < 4; i++)
606                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
607         for (i = 0; i < 4; i++)
608                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
609         for (i = 0; i < 4; i++)
610                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
611         for (i = 0; i < 4; i++)
612                 regs_buff[141 + i] = rd32(E1000_RDH(i));
613         for (i = 0; i < 4; i++)
614                 regs_buff[145 + i] = rd32(E1000_RDT(i));
615         for (i = 0; i < 4; i++)
616                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
617
618         for (i = 0; i < 10; i++)
619                 regs_buff[153 + i] = rd32(E1000_EITR(i));
620         for (i = 0; i < 8; i++)
621                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
622         for (i = 0; i < 8; i++)
623                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
624         for (i = 0; i < 16; i++)
625                 regs_buff[179 + i] = rd32(E1000_RAL(i));
626         for (i = 0; i < 16; i++)
627                 regs_buff[195 + i] = rd32(E1000_RAH(i));
628
629         for (i = 0; i < 4; i++)
630                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
631         for (i = 0; i < 4; i++)
632                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
633         for (i = 0; i < 4; i++)
634                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
635         for (i = 0; i < 4; i++)
636                 regs_buff[223 + i] = rd32(E1000_TDH(i));
637         for (i = 0; i < 4; i++)
638                 regs_buff[227 + i] = rd32(E1000_TDT(i));
639         for (i = 0; i < 4; i++)
640                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
641         for (i = 0; i < 4; i++)
642                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
643         for (i = 0; i < 4; i++)
644                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
645         for (i = 0; i < 4; i++)
646                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
647
648         for (i = 0; i < 4; i++)
649                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
650         for (i = 0; i < 4; i++)
651                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
652         for (i = 0; i < 32; i++)
653                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
654         for (i = 0; i < 128; i++)
655                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
656         for (i = 0; i < 128; i++)
657                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
658         for (i = 0; i < 4; i++)
659                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
660
661         regs_buff[547] = rd32(E1000_TDFH);
662         regs_buff[548] = rd32(E1000_TDFT);
663         regs_buff[549] = rd32(E1000_TDFHS);
664         regs_buff[550] = rd32(E1000_TDFPC);
665
666         if (hw->mac.type > e1000_82580) {
667                 regs_buff[551] = adapter->stats.o2bgptc;
668                 regs_buff[552] = adapter->stats.b2ospc;
669                 regs_buff[553] = adapter->stats.o2bspc;
670                 regs_buff[554] = adapter->stats.b2ogprc;
671         }
672
673         if (hw->mac.type != e1000_82576)
674                 return;
675         for (i = 0; i < 12; i++)
676                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
677         for (i = 0; i < 4; i++)
678                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
679         for (i = 0; i < 12; i++)
680                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
681         for (i = 0; i < 12; i++)
682                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
683         for (i = 0; i < 12; i++)
684                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
685         for (i = 0; i < 12; i++)
686                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
687         for (i = 0; i < 12; i++)
688                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
689         for (i = 0; i < 12; i++)
690                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
691
692         for (i = 0; i < 12; i++)
693                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
694         for (i = 0; i < 12; i++)
695                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
696         for (i = 0; i < 12; i++)
697                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
698         for (i = 0; i < 12; i++)
699                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
700         for (i = 0; i < 12; i++)
701                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
702         for (i = 0; i < 12; i++)
703                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
704         for (i = 0; i < 12; i++)
705                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
706         for (i = 0; i < 12; i++)
707                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
708 }
709
710 static int igb_get_eeprom_len(struct net_device *netdev)
711 {
712         struct igb_adapter *adapter = netdev_priv(netdev);
713         return adapter->hw.nvm.word_size * 2;
714 }
715
716 static int igb_get_eeprom(struct net_device *netdev,
717                           struct ethtool_eeprom *eeprom, u8 *bytes)
718 {
719         struct igb_adapter *adapter = netdev_priv(netdev);
720         struct e1000_hw *hw = &adapter->hw;
721         u16 *eeprom_buff;
722         int first_word, last_word;
723         int ret_val = 0;
724         u16 i;
725
726         if (eeprom->len == 0)
727                 return -EINVAL;
728
729         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
730
731         first_word = eeprom->offset >> 1;
732         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
733
734         eeprom_buff = kmalloc(sizeof(u16) *
735                         (last_word - first_word + 1), GFP_KERNEL);
736         if (!eeprom_buff)
737                 return -ENOMEM;
738
739         if (hw->nvm.type == e1000_nvm_eeprom_spi)
740                 ret_val = hw->nvm.ops.read(hw, first_word,
741                                            last_word - first_word + 1,
742                                            eeprom_buff);
743         else {
744                 for (i = 0; i < last_word - first_word + 1; i++) {
745                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
746                                                    &eeprom_buff[i]);
747                         if (ret_val)
748                                 break;
749                 }
750         }
751
752         /* Device's eeprom is always little-endian, word addressable */
753         for (i = 0; i < last_word - first_word + 1; i++)
754                 le16_to_cpus(&eeprom_buff[i]);
755
756         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
757                         eeprom->len);
758         kfree(eeprom_buff);
759
760         return ret_val;
761 }
762
763 static int igb_set_eeprom(struct net_device *netdev,
764                           struct ethtool_eeprom *eeprom, u8 *bytes)
765 {
766         struct igb_adapter *adapter = netdev_priv(netdev);
767         struct e1000_hw *hw = &adapter->hw;
768         u16 *eeprom_buff;
769         void *ptr;
770         int max_len, first_word, last_word, ret_val = 0;
771         u16 i;
772
773         if (eeprom->len == 0)
774                 return -EOPNOTSUPP;
775
776         if ((hw->mac.type >= e1000_i210) &&
777             !igb_get_flash_presence_i210(hw)) {
778                 return -EOPNOTSUPP;
779         }
780
781         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
782                 return -EFAULT;
783
784         max_len = hw->nvm.word_size * 2;
785
786         first_word = eeprom->offset >> 1;
787         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
788         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
789         if (!eeprom_buff)
790                 return -ENOMEM;
791
792         ptr = (void *)eeprom_buff;
793
794         if (eeprom->offset & 1) {
795                 /* need read/modify/write of first changed EEPROM word
796                  * only the second byte of the word is being modified
797                  */
798                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
799                                             &eeprom_buff[0]);
800                 ptr++;
801         }
802         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
803                 /* need read/modify/write of last changed EEPROM word
804                  * only the first byte of the word is being modified
805                  */
806                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
807                                    &eeprom_buff[last_word - first_word]);
808         }
809
810         /* Device's eeprom is always little-endian, word addressable */
811         for (i = 0; i < last_word - first_word + 1; i++)
812                 le16_to_cpus(&eeprom_buff[i]);
813
814         memcpy(ptr, bytes, eeprom->len);
815
816         for (i = 0; i < last_word - first_word + 1; i++)
817                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
818
819         ret_val = hw->nvm.ops.write(hw, first_word,
820                                     last_word - first_word + 1, eeprom_buff);
821
822         /* Update the checksum if nvm write succeeded */
823         if (ret_val == 0)
824                 hw->nvm.ops.update(hw);
825
826         igb_set_fw_version(adapter);
827         kfree(eeprom_buff);
828         return ret_val;
829 }
830
831 static void igb_get_drvinfo(struct net_device *netdev,
832                             struct ethtool_drvinfo *drvinfo)
833 {
834         struct igb_adapter *adapter = netdev_priv(netdev);
835
836         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
837         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
838
839         /* EEPROM image version # is reported as firmware version # for
840          * 82575 controllers
841          */
842         strlcpy(drvinfo->fw_version, adapter->fw_version,
843                 sizeof(drvinfo->fw_version));
844         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
845                 sizeof(drvinfo->bus_info));
846 }
847
848 static void igb_get_ringparam(struct net_device *netdev,
849                               struct ethtool_ringparam *ring)
850 {
851         struct igb_adapter *adapter = netdev_priv(netdev);
852
853         ring->rx_max_pending = IGB_MAX_RXD;
854         ring->tx_max_pending = IGB_MAX_TXD;
855         ring->rx_pending = adapter->rx_ring_count;
856         ring->tx_pending = adapter->tx_ring_count;
857 }
858
859 static int igb_set_ringparam(struct net_device *netdev,
860                              struct ethtool_ringparam *ring)
861 {
862         struct igb_adapter *adapter = netdev_priv(netdev);
863         struct igb_ring *temp_ring;
864         int i, err = 0;
865         u16 new_rx_count, new_tx_count;
866
867         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
868                 return -EINVAL;
869
870         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
871         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
872         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
873
874         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
875         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
876         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
877
878         if ((new_tx_count == adapter->tx_ring_count) &&
879             (new_rx_count == adapter->rx_ring_count)) {
880                 /* nothing to do */
881                 return 0;
882         }
883
884         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
885                 usleep_range(1000, 2000);
886
887         if (!netif_running(adapter->netdev)) {
888                 for (i = 0; i < adapter->num_tx_queues; i++)
889                         adapter->tx_ring[i]->count = new_tx_count;
890                 for (i = 0; i < adapter->num_rx_queues; i++)
891                         adapter->rx_ring[i]->count = new_rx_count;
892                 adapter->tx_ring_count = new_tx_count;
893                 adapter->rx_ring_count = new_rx_count;
894                 goto clear_reset;
895         }
896
897         if (adapter->num_tx_queues > adapter->num_rx_queues)
898                 temp_ring = vmalloc(adapter->num_tx_queues *
899                                     sizeof(struct igb_ring));
900         else
901                 temp_ring = vmalloc(adapter->num_rx_queues *
902                                     sizeof(struct igb_ring));
903
904         if (!temp_ring) {
905                 err = -ENOMEM;
906                 goto clear_reset;
907         }
908
909         igb_down(adapter);
910
911         /* We can't just free everything and then setup again,
912          * because the ISRs in MSI-X mode get passed pointers
913          * to the Tx and Rx ring structs.
914          */
915         if (new_tx_count != adapter->tx_ring_count) {
916                 for (i = 0; i < adapter->num_tx_queues; i++) {
917                         memcpy(&temp_ring[i], adapter->tx_ring[i],
918                                sizeof(struct igb_ring));
919
920                         temp_ring[i].count = new_tx_count;
921                         err = igb_setup_tx_resources(&temp_ring[i]);
922                         if (err) {
923                                 while (i) {
924                                         i--;
925                                         igb_free_tx_resources(&temp_ring[i]);
926                                 }
927                                 goto err_setup;
928                         }
929                 }
930
931                 for (i = 0; i < adapter->num_tx_queues; i++) {
932                         igb_free_tx_resources(adapter->tx_ring[i]);
933
934                         memcpy(adapter->tx_ring[i], &temp_ring[i],
935                                sizeof(struct igb_ring));
936                 }
937
938                 adapter->tx_ring_count = new_tx_count;
939         }
940
941         if (new_rx_count != adapter->rx_ring_count) {
942                 for (i = 0; i < adapter->num_rx_queues; i++) {
943                         memcpy(&temp_ring[i], adapter->rx_ring[i],
944                                sizeof(struct igb_ring));
945
946                         temp_ring[i].count = new_rx_count;
947                         err = igb_setup_rx_resources(&temp_ring[i]);
948                         if (err) {
949                                 while (i) {
950                                         i--;
951                                         igb_free_rx_resources(&temp_ring[i]);
952                                 }
953                                 goto err_setup;
954                         }
955
956                 }
957
958                 for (i = 0; i < adapter->num_rx_queues; i++) {
959                         igb_free_rx_resources(adapter->rx_ring[i]);
960
961                         memcpy(adapter->rx_ring[i], &temp_ring[i],
962                                sizeof(struct igb_ring));
963                 }
964
965                 adapter->rx_ring_count = new_rx_count;
966         }
967 err_setup:
968         igb_up(adapter);
969         vfree(temp_ring);
970 clear_reset:
971         clear_bit(__IGB_RESETTING, &adapter->state);
972         return err;
973 }
974
975 /* ethtool register test data */
976 struct igb_reg_test {
977         u16 reg;
978         u16 reg_offset;
979         u16 array_len;
980         u16 test_type;
981         u32 mask;
982         u32 write;
983 };
984
985 /* In the hardware, registers are laid out either singly, in arrays
986  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
987  * most tests take place on arrays or single registers (handled
988  * as a single-element array) and special-case the tables.
989  * Table tests are always pattern tests.
990  *
991  * We also make provision for some required setup steps by specifying
992  * registers to be written without any read-back testing.
993  */
994
995 #define PATTERN_TEST    1
996 #define SET_READ_TEST   2
997 #define WRITE_NO_TEST   3
998 #define TABLE32_TEST    4
999 #define TABLE64_TEST_LO 5
1000 #define TABLE64_TEST_HI 6
1001
1002 /* i210 reg test */
1003 static struct igb_reg_test reg_test_i210[] = {
1004         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1008         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1010         /* RDH is read-only for i210, only test RDT. */
1011         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1020         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1021         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1022         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1024                                                 0xFFFFFFFF, 0xFFFFFFFF },
1025         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1026                                                 0x900FFFFF, 0xFFFFFFFF },
1027         { E1000_MTA,       0, 128, TABLE32_TEST,
1028                                                 0xFFFFFFFF, 0xFFFFFFFF },
1029         { 0, 0, 0, 0, 0 }
1030 };
1031
1032 /* i350 reg test */
1033 static struct igb_reg_test reg_test_i350[] = {
1034         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1038         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044         /* RDH is read-only for i350, only test RDT. */
1045         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1059         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1060         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1061         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1063                                                 0xFFFFFFFF, 0xFFFFFFFF },
1064         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1065                                                 0xC3FFFFFF, 0xFFFFFFFF },
1066         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1067                                                 0xFFFFFFFF, 0xFFFFFFFF },
1068         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1069                                                 0xC3FFFFFF, 0xFFFFFFFF },
1070         { E1000_MTA,       0, 128, TABLE32_TEST,
1071                                                 0xFFFFFFFF, 0xFFFFFFFF },
1072         { 0, 0, 0, 0 }
1073 };
1074
1075 /* 82580 reg test */
1076 static struct igb_reg_test reg_test_82580[] = {
1077         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1084         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087         /* RDH is read-only for 82580, only test RDT. */
1088         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1091         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1093         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1103         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1104         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1106                                                 0xFFFFFFFF, 0xFFFFFFFF },
1107         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1108                                                 0x83FFFFFF, 0xFFFFFFFF },
1109         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1110                                                 0xFFFFFFFF, 0xFFFFFFFF },
1111         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1112                                                 0x83FFFFFF, 0xFFFFFFFF },
1113         { E1000_MTA,       0, 128, TABLE32_TEST,
1114                                                 0xFFFFFFFF, 0xFFFFFFFF },
1115         { 0, 0, 0, 0 }
1116 };
1117
1118 /* 82576 reg test */
1119 static struct igb_reg_test reg_test_82576[] = {
1120         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130         /* Enable all RX queues before testing. */
1131         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1132           E1000_RXDCTL_QUEUE_ENABLE },
1133         { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1134           E1000_RXDCTL_QUEUE_ENABLE },
1135         /* RDH is read-only for 82576, only test RDT. */
1136         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1137         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1138         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1139         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1140         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1141         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1142         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1143         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1144         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1145         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1146         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1150         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1151         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1152         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1154         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1155         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1156         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1157         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158         { 0, 0, 0, 0 }
1159 };
1160
1161 /* 82575 register test */
1162 static struct igb_reg_test reg_test_82575[] = {
1163         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1164         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1165         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1166         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1168         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1169         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1170         /* Enable all four RX queues before testing. */
1171         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1172           E1000_RXDCTL_QUEUE_ENABLE },
1173         /* RDH is read-only for 82575, only test RDT. */
1174         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1175         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1176         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1177         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1178         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1179         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1180         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1181         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1182         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1183         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1184         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1185         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1186         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1187         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1188         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1189         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1190         { 0, 0, 0, 0 }
1191 };
1192
1193 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1194                              int reg, u32 mask, u32 write)
1195 {
1196         struct e1000_hw *hw = &adapter->hw;
1197         u32 pat, val;
1198         static const u32 _test[] = {
1199                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1200         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1201                 wr32(reg, (_test[pat] & write));
1202                 val = rd32(reg) & mask;
1203                 if (val != (_test[pat] & write & mask)) {
1204                         dev_err(&adapter->pdev->dev,
1205                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1206                                 reg, val, (_test[pat] & write & mask));
1207                         *data = reg;
1208                         return true;
1209                 }
1210         }
1211
1212         return false;
1213 }
1214
1215 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1216                               int reg, u32 mask, u32 write)
1217 {
1218         struct e1000_hw *hw = &adapter->hw;
1219         u32 val;
1220
1221         wr32(reg, write & mask);
1222         val = rd32(reg);
1223         if ((write & mask) != (val & mask)) {
1224                 dev_err(&adapter->pdev->dev,
1225                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1226                         reg, (val & mask), (write & mask));
1227                 *data = reg;
1228                 return true;
1229         }
1230
1231         return false;
1232 }
1233
1234 #define REG_PATTERN_TEST(reg, mask, write) \
1235         do { \
1236                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1237                         return 1; \
1238         } while (0)
1239
1240 #define REG_SET_AND_CHECK(reg, mask, write) \
1241         do { \
1242                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1243                         return 1; \
1244         } while (0)
1245
1246 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1247 {
1248         struct e1000_hw *hw = &adapter->hw;
1249         struct igb_reg_test *test;
1250         u32 value, before, after;
1251         u32 i, toggle;
1252
1253         switch (adapter->hw.mac.type) {
1254         case e1000_i350:
1255         case e1000_i354:
1256                 test = reg_test_i350;
1257                 toggle = 0x7FEFF3FF;
1258                 break;
1259         case e1000_i210:
1260         case e1000_i211:
1261                 test = reg_test_i210;
1262                 toggle = 0x7FEFF3FF;
1263                 break;
1264         case e1000_82580:
1265                 test = reg_test_82580;
1266                 toggle = 0x7FEFF3FF;
1267                 break;
1268         case e1000_82576:
1269                 test = reg_test_82576;
1270                 toggle = 0x7FFFF3FF;
1271                 break;
1272         default:
1273                 test = reg_test_82575;
1274                 toggle = 0x7FFFF3FF;
1275                 break;
1276         }
1277
1278         /* Because the status register is such a special case,
1279          * we handle it separately from the rest of the register
1280          * tests.  Some bits are read-only, some toggle, and some
1281          * are writable on newer MACs.
1282          */
1283         before = rd32(E1000_STATUS);
1284         value = (rd32(E1000_STATUS) & toggle);
1285         wr32(E1000_STATUS, toggle);
1286         after = rd32(E1000_STATUS) & toggle;
1287         if (value != after) {
1288                 dev_err(&adapter->pdev->dev,
1289                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1290                         after, value);
1291                 *data = 1;
1292                 return 1;
1293         }
1294         /* restore previous status */
1295         wr32(E1000_STATUS, before);
1296
1297         /* Perform the remainder of the register test, looping through
1298          * the test table until we either fail or reach the null entry.
1299          */
1300         while (test->reg) {
1301                 for (i = 0; i < test->array_len; i++) {
1302                         switch (test->test_type) {
1303                         case PATTERN_TEST:
1304                                 REG_PATTERN_TEST(test->reg +
1305                                                 (i * test->reg_offset),
1306                                                 test->mask,
1307                                                 test->write);
1308                                 break;
1309                         case SET_READ_TEST:
1310                                 REG_SET_AND_CHECK(test->reg +
1311                                                 (i * test->reg_offset),
1312                                                 test->mask,
1313                                                 test->write);
1314                                 break;
1315                         case WRITE_NO_TEST:
1316                                 writel(test->write,
1317                                     (adapter->hw.hw_addr + test->reg)
1318                                         + (i * test->reg_offset));
1319                                 break;
1320                         case TABLE32_TEST:
1321                                 REG_PATTERN_TEST(test->reg + (i * 4),
1322                                                 test->mask,
1323                                                 test->write);
1324                                 break;
1325                         case TABLE64_TEST_LO:
1326                                 REG_PATTERN_TEST(test->reg + (i * 8),
1327                                                 test->mask,
1328                                                 test->write);
1329                                 break;
1330                         case TABLE64_TEST_HI:
1331                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1332                                                 test->mask,
1333                                                 test->write);
1334                                 break;
1335                         }
1336                 }
1337                 test++;
1338         }
1339
1340         *data = 0;
1341         return 0;
1342 }
1343
1344 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1345 {
1346         struct e1000_hw *hw = &adapter->hw;
1347
1348         *data = 0;
1349
1350         /* Validate eeprom on all parts but flashless */
1351         switch (hw->mac.type) {
1352         case e1000_i210:
1353         case e1000_i211:
1354                 if (igb_get_flash_presence_i210(hw)) {
1355                         if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1356                                 *data = 2;
1357                 }
1358                 break;
1359         default:
1360                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1361                         *data = 2;
1362                 break;
1363         }
1364
1365         return *data;
1366 }
1367
1368 static irqreturn_t igb_test_intr(int irq, void *data)
1369 {
1370         struct igb_adapter *adapter = (struct igb_adapter *) data;
1371         struct e1000_hw *hw = &adapter->hw;
1372
1373         adapter->test_icr |= rd32(E1000_ICR);
1374
1375         return IRQ_HANDLED;
1376 }
1377
1378 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1379 {
1380         struct e1000_hw *hw = &adapter->hw;
1381         struct net_device *netdev = adapter->netdev;
1382         u32 mask, ics_mask, i = 0, shared_int = true;
1383         u32 irq = adapter->pdev->irq;
1384
1385         *data = 0;
1386
1387         /* Hook up test interrupt handler just for this test */
1388         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1389                 if (request_irq(adapter->msix_entries[0].vector,
1390                                 igb_test_intr, 0, netdev->name, adapter)) {
1391                         *data = 1;
1392                         return -1;
1393                 }
1394         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1395                 shared_int = false;
1396                 if (request_irq(irq,
1397                                 igb_test_intr, 0, netdev->name, adapter)) {
1398                         *data = 1;
1399                         return -1;
1400                 }
1401         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1402                                 netdev->name, adapter)) {
1403                 shared_int = false;
1404         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1405                  netdev->name, adapter)) {
1406                 *data = 1;
1407                 return -1;
1408         }
1409         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1410                 (shared_int ? "shared" : "unshared"));
1411
1412         /* Disable all the interrupts */
1413         wr32(E1000_IMC, ~0);
1414         wrfl();
1415         usleep_range(10000, 11000);
1416
1417         /* Define all writable bits for ICS */
1418         switch (hw->mac.type) {
1419         case e1000_82575:
1420                 ics_mask = 0x37F47EDD;
1421                 break;
1422         case e1000_82576:
1423                 ics_mask = 0x77D4FBFD;
1424                 break;
1425         case e1000_82580:
1426                 ics_mask = 0x77DCFED5;
1427                 break;
1428         case e1000_i350:
1429         case e1000_i354:
1430         case e1000_i210:
1431         case e1000_i211:
1432                 ics_mask = 0x77DCFED5;
1433                 break;
1434         default:
1435                 ics_mask = 0x7FFFFFFF;
1436                 break;
1437         }
1438
1439         /* Test each interrupt */
1440         for (; i < 31; i++) {
1441                 /* Interrupt to test */
1442                 mask = 1 << i;
1443
1444                 if (!(mask & ics_mask))
1445                         continue;
1446
1447                 if (!shared_int) {
1448                         /* Disable the interrupt to be reported in
1449                          * the cause register and then force the same
1450                          * interrupt and see if one gets posted.  If
1451                          * an interrupt was posted to the bus, the
1452                          * test failed.
1453                          */
1454                         adapter->test_icr = 0;
1455
1456                         /* Flush any pending interrupts */
1457                         wr32(E1000_ICR, ~0);
1458
1459                         wr32(E1000_IMC, mask);
1460                         wr32(E1000_ICS, mask);
1461                         wrfl();
1462                         usleep_range(10000, 11000);
1463
1464                         if (adapter->test_icr & mask) {
1465                                 *data = 3;
1466                                 break;
1467                         }
1468                 }
1469
1470                 /* Enable the interrupt to be reported in
1471                  * the cause register and then force the same
1472                  * interrupt and see if one gets posted.  If
1473                  * an interrupt was not posted to the bus, the
1474                  * test failed.
1475                  */
1476                 adapter->test_icr = 0;
1477
1478                 /* Flush any pending interrupts */
1479                 wr32(E1000_ICR, ~0);
1480
1481                 wr32(E1000_IMS, mask);
1482                 wr32(E1000_ICS, mask);
1483                 wrfl();
1484                 usleep_range(10000, 11000);
1485
1486                 if (!(adapter->test_icr & mask)) {
1487                         *data = 4;
1488                         break;
1489                 }
1490
1491                 if (!shared_int) {
1492                         /* Disable the other interrupts to be reported in
1493                          * the cause register and then force the other
1494                          * interrupts and see if any get posted.  If
1495                          * an interrupt was posted to the bus, the
1496                          * test failed.
1497                          */
1498                         adapter->test_icr = 0;
1499
1500                         /* Flush any pending interrupts */
1501                         wr32(E1000_ICR, ~0);
1502
1503                         wr32(E1000_IMC, ~mask);
1504                         wr32(E1000_ICS, ~mask);
1505                         wrfl();
1506                         usleep_range(10000, 11000);
1507
1508                         if (adapter->test_icr & mask) {
1509                                 *data = 5;
1510                                 break;
1511                         }
1512                 }
1513         }
1514
1515         /* Disable all the interrupts */
1516         wr32(E1000_IMC, ~0);
1517         wrfl();
1518         usleep_range(10000, 11000);
1519
1520         /* Unhook test interrupt handler */
1521         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1522                 free_irq(adapter->msix_entries[0].vector, adapter);
1523         else
1524                 free_irq(irq, adapter);
1525
1526         return *data;
1527 }
1528
1529 static void igb_free_desc_rings(struct igb_adapter *adapter)
1530 {
1531         igb_free_tx_resources(&adapter->test_tx_ring);
1532         igb_free_rx_resources(&adapter->test_rx_ring);
1533 }
1534
1535 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1536 {
1537         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1538         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1539         struct e1000_hw *hw = &adapter->hw;
1540         int ret_val;
1541
1542         /* Setup Tx descriptor ring and Tx buffers */
1543         tx_ring->count = IGB_DEFAULT_TXD;
1544         tx_ring->dev = &adapter->pdev->dev;
1545         tx_ring->netdev = adapter->netdev;
1546         tx_ring->reg_idx = adapter->vfs_allocated_count;
1547
1548         if (igb_setup_tx_resources(tx_ring)) {
1549                 ret_val = 1;
1550                 goto err_nomem;
1551         }
1552
1553         igb_setup_tctl(adapter);
1554         igb_configure_tx_ring(adapter, tx_ring);
1555
1556         /* Setup Rx descriptor ring and Rx buffers */
1557         rx_ring->count = IGB_DEFAULT_RXD;
1558         rx_ring->dev = &adapter->pdev->dev;
1559         rx_ring->netdev = adapter->netdev;
1560         rx_ring->reg_idx = adapter->vfs_allocated_count;
1561
1562         if (igb_setup_rx_resources(rx_ring)) {
1563                 ret_val = 3;
1564                 goto err_nomem;
1565         }
1566
1567         /* set the default queue to queue 0 of PF */
1568         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1569
1570         /* enable receive ring */
1571         igb_setup_rctl(adapter);
1572         igb_configure_rx_ring(adapter, rx_ring);
1573
1574         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1575
1576         return 0;
1577
1578 err_nomem:
1579         igb_free_desc_rings(adapter);
1580         return ret_val;
1581 }
1582
1583 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1584 {
1585         struct e1000_hw *hw = &adapter->hw;
1586
1587         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1588         igb_write_phy_reg(hw, 29, 0x001F);
1589         igb_write_phy_reg(hw, 30, 0x8FFC);
1590         igb_write_phy_reg(hw, 29, 0x001A);
1591         igb_write_phy_reg(hw, 30, 0x8FF0);
1592 }
1593
1594 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1595 {
1596         struct e1000_hw *hw = &adapter->hw;
1597         u32 ctrl_reg = 0;
1598
1599         hw->mac.autoneg = false;
1600
1601         if (hw->phy.type == e1000_phy_m88) {
1602                 if (hw->phy.id != I210_I_PHY_ID) {
1603                         /* Auto-MDI/MDIX Off */
1604                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1605                         /* reset to update Auto-MDI/MDIX */
1606                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1607                         /* autoneg off */
1608                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1609                 } else {
1610                         /* force 1000, set loopback  */
1611                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1612                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613                 }
1614         } else if (hw->phy.type == e1000_phy_82580) {
1615                 /* enable MII loopback */
1616                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1617         }
1618
1619         /* add small delay to avoid loopback test failure */
1620         msleep(50);
1621
1622         /* force 1000, set loopback */
1623         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1624
1625         /* Now set up the MAC to the same speed/duplex as the PHY. */
1626         ctrl_reg = rd32(E1000_CTRL);
1627         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1628         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1629                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1630                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1631                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1632                      E1000_CTRL_SLU);    /* Set link up enable bit */
1633
1634         if (hw->phy.type == e1000_phy_m88)
1635                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1636
1637         wr32(E1000_CTRL, ctrl_reg);
1638
1639         /* Disable the receiver on the PHY so when a cable is plugged in, the
1640          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1641          */
1642         if (hw->phy.type == e1000_phy_m88)
1643                 igb_phy_disable_receiver(adapter);
1644
1645         mdelay(500);
1646         return 0;
1647 }
1648
1649 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1650 {
1651         return igb_integrated_phy_loopback(adapter);
1652 }
1653
1654 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1655 {
1656         struct e1000_hw *hw = &adapter->hw;
1657         u32 reg;
1658
1659         reg = rd32(E1000_CTRL_EXT);
1660
1661         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1662         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1664                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1665                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1666                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1667                 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1668                 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1669                         /* Enable DH89xxCC MPHY for near end loopback */
1670                         reg = rd32(E1000_MPHY_ADDR_CTL);
1671                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1672                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1673                         wr32(E1000_MPHY_ADDR_CTL, reg);
1674
1675                         reg = rd32(E1000_MPHY_DATA);
1676                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1677                         wr32(E1000_MPHY_DATA, reg);
1678                 }
1679
1680                 reg = rd32(E1000_RCTL);
1681                 reg |= E1000_RCTL_LBM_TCVR;
1682                 wr32(E1000_RCTL, reg);
1683
1684                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1685
1686                 reg = rd32(E1000_CTRL);
1687                 reg &= ~(E1000_CTRL_RFCE |
1688                          E1000_CTRL_TFCE |
1689                          E1000_CTRL_LRST);
1690                 reg |= E1000_CTRL_SLU |
1691                        E1000_CTRL_FD;
1692                 wr32(E1000_CTRL, reg);
1693
1694                 /* Unset switch control to serdes energy detect */
1695                 reg = rd32(E1000_CONNSW);
1696                 reg &= ~E1000_CONNSW_ENRGSRC;
1697                 wr32(E1000_CONNSW, reg);
1698
1699                 /* Unset sigdetect for SERDES loopback on
1700                  * 82580 and newer devices.
1701                  */
1702                 if (hw->mac.type >= e1000_82580) {
1703                         reg = rd32(E1000_PCS_CFG0);
1704                         reg |= E1000_PCS_CFG_IGN_SD;
1705                         wr32(E1000_PCS_CFG0, reg);
1706                 }
1707
1708                 /* Set PCS register for forced speed */
1709                 reg = rd32(E1000_PCS_LCTL);
1710                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1711                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1712                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1713                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1714                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1715                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1716                 wr32(E1000_PCS_LCTL, reg);
1717
1718                 return 0;
1719         }
1720
1721         return igb_set_phy_loopback(adapter);
1722 }
1723
1724 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1725 {
1726         struct e1000_hw *hw = &adapter->hw;
1727         u32 rctl;
1728         u16 phy_reg;
1729
1730         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1731         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1732         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1733         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1734         (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1735                 u32 reg;
1736
1737                 /* Disable near end loopback on DH89xxCC */
1738                 reg = rd32(E1000_MPHY_ADDR_CTL);
1739                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1740                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1741                 wr32(E1000_MPHY_ADDR_CTL, reg);
1742
1743                 reg = rd32(E1000_MPHY_DATA);
1744                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1745                 wr32(E1000_MPHY_DATA, reg);
1746         }
1747
1748         rctl = rd32(E1000_RCTL);
1749         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1750         wr32(E1000_RCTL, rctl);
1751
1752         hw->mac.autoneg = true;
1753         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1754         if (phy_reg & MII_CR_LOOPBACK) {
1755                 phy_reg &= ~MII_CR_LOOPBACK;
1756                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1757                 igb_phy_sw_reset(hw);
1758         }
1759 }
1760
1761 static void igb_create_lbtest_frame(struct sk_buff *skb,
1762                                     unsigned int frame_size)
1763 {
1764         memset(skb->data, 0xFF, frame_size);
1765         frame_size /= 2;
1766         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1767         memset(&skb->data[frame_size + 10], 0xBE, 1);
1768         memset(&skb->data[frame_size + 12], 0xAF, 1);
1769 }
1770
1771 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1772                                   unsigned int frame_size)
1773 {
1774         unsigned char *data;
1775         bool match = true;
1776
1777         frame_size >>= 1;
1778
1779         data = kmap(rx_buffer->page);
1780
1781         if (data[3] != 0xFF ||
1782             data[frame_size + 10] != 0xBE ||
1783             data[frame_size + 12] != 0xAF)
1784                 match = false;
1785
1786         kunmap(rx_buffer->page);
1787
1788         return match;
1789 }
1790
1791 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1792                                 struct igb_ring *tx_ring,
1793                                 unsigned int size)
1794 {
1795         union e1000_adv_rx_desc *rx_desc;
1796         struct igb_rx_buffer *rx_buffer_info;
1797         struct igb_tx_buffer *tx_buffer_info;
1798         u16 rx_ntc, tx_ntc, count = 0;
1799
1800         /* initialize next to clean and descriptor values */
1801         rx_ntc = rx_ring->next_to_clean;
1802         tx_ntc = tx_ring->next_to_clean;
1803         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1804
1805         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1806                 /* check Rx buffer */
1807                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1808
1809                 /* sync Rx buffer for CPU read */
1810                 dma_sync_single_for_cpu(rx_ring->dev,
1811                                         rx_buffer_info->dma,
1812                                         IGB_RX_BUFSZ,
1813                                         DMA_FROM_DEVICE);
1814
1815                 /* verify contents of skb */
1816                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1817                         count++;
1818
1819                 /* sync Rx buffer for device write */
1820                 dma_sync_single_for_device(rx_ring->dev,
1821                                            rx_buffer_info->dma,
1822                                            IGB_RX_BUFSZ,
1823                                            DMA_FROM_DEVICE);
1824
1825                 /* unmap buffer on Tx side */
1826                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1827                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1828
1829                 /* increment Rx/Tx next to clean counters */
1830                 rx_ntc++;
1831                 if (rx_ntc == rx_ring->count)
1832                         rx_ntc = 0;
1833                 tx_ntc++;
1834                 if (tx_ntc == tx_ring->count)
1835                         tx_ntc = 0;
1836
1837                 /* fetch next descriptor */
1838                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1839         }
1840
1841         netdev_tx_reset_queue(txring_txq(tx_ring));
1842
1843         /* re-map buffers to ring, store next to clean values */
1844         igb_alloc_rx_buffers(rx_ring, count);
1845         rx_ring->next_to_clean = rx_ntc;
1846         tx_ring->next_to_clean = tx_ntc;
1847
1848         return count;
1849 }
1850
1851 static int igb_run_loopback_test(struct igb_adapter *adapter)
1852 {
1853         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1854         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1855         u16 i, j, lc, good_cnt;
1856         int ret_val = 0;
1857         unsigned int size = IGB_RX_HDR_LEN;
1858         netdev_tx_t tx_ret_val;
1859         struct sk_buff *skb;
1860
1861         /* allocate test skb */
1862         skb = alloc_skb(size, GFP_KERNEL);
1863         if (!skb)
1864                 return 11;
1865
1866         /* place data into test skb */
1867         igb_create_lbtest_frame(skb, size);
1868         skb_put(skb, size);
1869
1870         /* Calculate the loop count based on the largest descriptor ring
1871          * The idea is to wrap the largest ring a number of times using 64
1872          * send/receive pairs during each loop
1873          */
1874
1875         if (rx_ring->count <= tx_ring->count)
1876                 lc = ((tx_ring->count / 64) * 2) + 1;
1877         else
1878                 lc = ((rx_ring->count / 64) * 2) + 1;
1879
1880         for (j = 0; j <= lc; j++) { /* loop count loop */
1881                 /* reset count of good packets */
1882                 good_cnt = 0;
1883
1884                 /* place 64 packets on the transmit queue*/
1885                 for (i = 0; i < 64; i++) {
1886                         skb_get(skb);
1887                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1888                         if (tx_ret_val == NETDEV_TX_OK)
1889                                 good_cnt++;
1890                 }
1891
1892                 if (good_cnt != 64) {
1893                         ret_val = 12;
1894                         break;
1895                 }
1896
1897                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1898                 msleep(200);
1899
1900                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1901                 if (good_cnt != 64) {
1902                         ret_val = 13;
1903                         break;
1904                 }
1905         } /* end loop count loop */
1906
1907         /* free the original skb */
1908         kfree_skb(skb);
1909
1910         return ret_val;
1911 }
1912
1913 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1914 {
1915         /* PHY loopback cannot be performed if SoL/IDER
1916          * sessions are active
1917          */
1918         if (igb_check_reset_block(&adapter->hw)) {
1919                 dev_err(&adapter->pdev->dev,
1920                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1921                 *data = 0;
1922                 goto out;
1923         }
1924
1925         if (adapter->hw.mac.type == e1000_i354) {
1926                 dev_info(&adapter->pdev->dev,
1927                         "Loopback test not supported on i354.\n");
1928                 *data = 0;
1929                 goto out;
1930         }
1931         *data = igb_setup_desc_rings(adapter);
1932         if (*data)
1933                 goto out;
1934         *data = igb_setup_loopback_test(adapter);
1935         if (*data)
1936                 goto err_loopback;
1937         *data = igb_run_loopback_test(adapter);
1938         igb_loopback_cleanup(adapter);
1939
1940 err_loopback:
1941         igb_free_desc_rings(adapter);
1942 out:
1943         return *data;
1944 }
1945
1946 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1947 {
1948         struct e1000_hw *hw = &adapter->hw;
1949         *data = 0;
1950         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1951                 int i = 0;
1952
1953                 hw->mac.serdes_has_link = false;
1954
1955                 /* On some blade server designs, link establishment
1956                  * could take as long as 2-3 minutes
1957                  */
1958                 do {
1959                         hw->mac.ops.check_for_link(&adapter->hw);
1960                         if (hw->mac.serdes_has_link)
1961                                 return *data;
1962                         msleep(20);
1963                 } while (i++ < 3750);
1964
1965                 *data = 1;
1966         } else {
1967                 hw->mac.ops.check_for_link(&adapter->hw);
1968                 if (hw->mac.autoneg)
1969                         msleep(5000);
1970
1971                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1972                         *data = 1;
1973         }
1974         return *data;
1975 }
1976
1977 static void igb_diag_test(struct net_device *netdev,
1978                           struct ethtool_test *eth_test, u64 *data)
1979 {
1980         struct igb_adapter *adapter = netdev_priv(netdev);
1981         u16 autoneg_advertised;
1982         u8 forced_speed_duplex, autoneg;
1983         bool if_running = netif_running(netdev);
1984
1985         set_bit(__IGB_TESTING, &adapter->state);
1986
1987         /* can't do offline tests on media switching devices */
1988         if (adapter->hw.dev_spec._82575.mas_capable)
1989                 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1990         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1991                 /* Offline tests */
1992
1993                 /* save speed, duplex, autoneg settings */
1994                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1995                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1996                 autoneg = adapter->hw.mac.autoneg;
1997
1998                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1999
2000                 /* power up link for link test */
2001                 igb_power_up_link(adapter);
2002
2003                 /* Link test performed before hardware reset so autoneg doesn't
2004                  * interfere with test result
2005                  */
2006                 if (igb_link_test(adapter, &data[4]))
2007                         eth_test->flags |= ETH_TEST_FL_FAILED;
2008
2009                 if (if_running)
2010                         /* indicate we're in test mode */
2011                         dev_close(netdev);
2012                 else
2013                         igb_reset(adapter);
2014
2015                 if (igb_reg_test(adapter, &data[0]))
2016                         eth_test->flags |= ETH_TEST_FL_FAILED;
2017
2018                 igb_reset(adapter);
2019                 if (igb_eeprom_test(adapter, &data[1]))
2020                         eth_test->flags |= ETH_TEST_FL_FAILED;
2021
2022                 igb_reset(adapter);
2023                 if (igb_intr_test(adapter, &data[2]))
2024                         eth_test->flags |= ETH_TEST_FL_FAILED;
2025
2026                 igb_reset(adapter);
2027                 /* power up link for loopback test */
2028                 igb_power_up_link(adapter);
2029                 if (igb_loopback_test(adapter, &data[3]))
2030                         eth_test->flags |= ETH_TEST_FL_FAILED;
2031
2032                 /* restore speed, duplex, autoneg settings */
2033                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2034                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2035                 adapter->hw.mac.autoneg = autoneg;
2036
2037                 /* force this routine to wait until autoneg complete/timeout */
2038                 adapter->hw.phy.autoneg_wait_to_complete = true;
2039                 igb_reset(adapter);
2040                 adapter->hw.phy.autoneg_wait_to_complete = false;
2041
2042                 clear_bit(__IGB_TESTING, &adapter->state);
2043                 if (if_running)
2044                         dev_open(netdev);
2045         } else {
2046                 dev_info(&adapter->pdev->dev, "online testing starting\n");
2047
2048                 /* PHY is powered down when interface is down */
2049                 if (if_running && igb_link_test(adapter, &data[4]))
2050                         eth_test->flags |= ETH_TEST_FL_FAILED;
2051                 else
2052                         data[4] = 0;
2053
2054                 /* Online tests aren't run; pass by default */
2055                 data[0] = 0;
2056                 data[1] = 0;
2057                 data[2] = 0;
2058                 data[3] = 0;
2059
2060                 clear_bit(__IGB_TESTING, &adapter->state);
2061         }
2062         msleep_interruptible(4 * 1000);
2063 }
2064
2065 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2066 {
2067         struct igb_adapter *adapter = netdev_priv(netdev);
2068
2069         wol->wolopts = 0;
2070
2071         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2072                 return;
2073
2074         wol->supported = WAKE_UCAST | WAKE_MCAST |
2075                          WAKE_BCAST | WAKE_MAGIC |
2076                          WAKE_PHY;
2077
2078         /* apply any specific unsupported masks here */
2079         switch (adapter->hw.device_id) {
2080         default:
2081                 break;
2082         }
2083
2084         if (adapter->wol & E1000_WUFC_EX)
2085                 wol->wolopts |= WAKE_UCAST;
2086         if (adapter->wol & E1000_WUFC_MC)
2087                 wol->wolopts |= WAKE_MCAST;
2088         if (adapter->wol & E1000_WUFC_BC)
2089                 wol->wolopts |= WAKE_BCAST;
2090         if (adapter->wol & E1000_WUFC_MAG)
2091                 wol->wolopts |= WAKE_MAGIC;
2092         if (adapter->wol & E1000_WUFC_LNKC)
2093                 wol->wolopts |= WAKE_PHY;
2094 }
2095
2096 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2097 {
2098         struct igb_adapter *adapter = netdev_priv(netdev);
2099
2100         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2101                 return -EOPNOTSUPP;
2102
2103         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2104                 return wol->wolopts ? -EOPNOTSUPP : 0;
2105
2106         /* these settings will always override what we currently have */
2107         adapter->wol = 0;
2108
2109         if (wol->wolopts & WAKE_UCAST)
2110                 adapter->wol |= E1000_WUFC_EX;
2111         if (wol->wolopts & WAKE_MCAST)
2112                 adapter->wol |= E1000_WUFC_MC;
2113         if (wol->wolopts & WAKE_BCAST)
2114                 adapter->wol |= E1000_WUFC_BC;
2115         if (wol->wolopts & WAKE_MAGIC)
2116                 adapter->wol |= E1000_WUFC_MAG;
2117         if (wol->wolopts & WAKE_PHY)
2118                 adapter->wol |= E1000_WUFC_LNKC;
2119         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2120
2121         return 0;
2122 }
2123
2124 /* bit defines for adapter->led_status */
2125 #define IGB_LED_ON              0
2126
2127 static int igb_set_phys_id(struct net_device *netdev,
2128                            enum ethtool_phys_id_state state)
2129 {
2130         struct igb_adapter *adapter = netdev_priv(netdev);
2131         struct e1000_hw *hw = &adapter->hw;
2132
2133         switch (state) {
2134         case ETHTOOL_ID_ACTIVE:
2135                 igb_blink_led(hw);
2136                 return 2;
2137         case ETHTOOL_ID_ON:
2138                 igb_blink_led(hw);
2139                 break;
2140         case ETHTOOL_ID_OFF:
2141                 igb_led_off(hw);
2142                 break;
2143         case ETHTOOL_ID_INACTIVE:
2144                 igb_led_off(hw);
2145                 clear_bit(IGB_LED_ON, &adapter->led_status);
2146                 igb_cleanup_led(hw);
2147                 break;
2148         }
2149
2150         return 0;
2151 }
2152
2153 static int igb_set_coalesce(struct net_device *netdev,
2154                             struct ethtool_coalesce *ec)
2155 {
2156         struct igb_adapter *adapter = netdev_priv(netdev);
2157         int i;
2158
2159         if (ec->rx_max_coalesced_frames ||
2160             ec->rx_coalesce_usecs_irq ||
2161             ec->rx_max_coalesced_frames_irq ||
2162             ec->tx_max_coalesced_frames ||
2163             ec->tx_coalesce_usecs_irq ||
2164             ec->stats_block_coalesce_usecs ||
2165             ec->use_adaptive_rx_coalesce ||
2166             ec->use_adaptive_tx_coalesce ||
2167             ec->pkt_rate_low ||
2168             ec->rx_coalesce_usecs_low ||
2169             ec->rx_max_coalesced_frames_low ||
2170             ec->tx_coalesce_usecs_low ||
2171             ec->tx_max_coalesced_frames_low ||
2172             ec->pkt_rate_high ||
2173             ec->rx_coalesce_usecs_high ||
2174             ec->rx_max_coalesced_frames_high ||
2175             ec->tx_coalesce_usecs_high ||
2176             ec->tx_max_coalesced_frames_high ||
2177             ec->rate_sample_interval)
2178                 return -ENOTSUPP;
2179
2180         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2181             ((ec->rx_coalesce_usecs > 3) &&
2182              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2183             (ec->rx_coalesce_usecs == 2))
2184                 return -EINVAL;
2185
2186         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2187             ((ec->tx_coalesce_usecs > 3) &&
2188              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2189             (ec->tx_coalesce_usecs == 2))
2190                 return -EINVAL;
2191
2192         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2193                 return -EINVAL;
2194
2195         /* If ITR is disabled, disable DMAC */
2196         if (ec->rx_coalesce_usecs == 0) {
2197                 if (adapter->flags & IGB_FLAG_DMAC)
2198                         adapter->flags &= ~IGB_FLAG_DMAC;
2199         }
2200
2201         /* convert to rate of irq's per second */
2202         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2203                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2204         else
2205                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2206
2207         /* convert to rate of irq's per second */
2208         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2209                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2210         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2211                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2212         else
2213                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2214
2215         for (i = 0; i < adapter->num_q_vectors; i++) {
2216                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2217                 q_vector->tx.work_limit = adapter->tx_work_limit;
2218                 if (q_vector->rx.ring)
2219                         q_vector->itr_val = adapter->rx_itr_setting;
2220                 else
2221                         q_vector->itr_val = adapter->tx_itr_setting;
2222                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2223                         q_vector->itr_val = IGB_START_ITR;
2224                 q_vector->set_itr = 1;
2225         }
2226
2227         return 0;
2228 }
2229
2230 static int igb_get_coalesce(struct net_device *netdev,
2231                             struct ethtool_coalesce *ec)
2232 {
2233         struct igb_adapter *adapter = netdev_priv(netdev);
2234
2235         if (adapter->rx_itr_setting <= 3)
2236                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2237         else
2238                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2239
2240         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2241                 if (adapter->tx_itr_setting <= 3)
2242                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2243                 else
2244                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2245         }
2246
2247         return 0;
2248 }
2249
2250 static int igb_nway_reset(struct net_device *netdev)
2251 {
2252         struct igb_adapter *adapter = netdev_priv(netdev);
2253         if (netif_running(netdev))
2254                 igb_reinit_locked(adapter);
2255         return 0;
2256 }
2257
2258 static int igb_get_sset_count(struct net_device *netdev, int sset)
2259 {
2260         switch (sset) {
2261         case ETH_SS_STATS:
2262                 return IGB_STATS_LEN;
2263         case ETH_SS_TEST:
2264                 return IGB_TEST_LEN;
2265         default:
2266                 return -ENOTSUPP;
2267         }
2268 }
2269
2270 static void igb_get_ethtool_stats(struct net_device *netdev,
2271                                   struct ethtool_stats *stats, u64 *data)
2272 {
2273         struct igb_adapter *adapter = netdev_priv(netdev);
2274         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2275         unsigned int start;
2276         struct igb_ring *ring;
2277         int i, j;
2278         char *p;
2279
2280         spin_lock(&adapter->stats64_lock);
2281         igb_update_stats(adapter, net_stats);
2282
2283         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2284                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2285                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2286                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2287         }
2288         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2289                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2290                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2291                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2292         }
2293         for (j = 0; j < adapter->num_tx_queues; j++) {
2294                 u64     restart2;
2295
2296                 ring = adapter->tx_ring[j];
2297                 do {
2298                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2299                         data[i]   = ring->tx_stats.packets;
2300                         data[i+1] = ring->tx_stats.bytes;
2301                         data[i+2] = ring->tx_stats.restart_queue;
2302                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2303                 do {
2304                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2305                         restart2  = ring->tx_stats.restart_queue2;
2306                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2307                 data[i+2] += restart2;
2308
2309                 i += IGB_TX_QUEUE_STATS_LEN;
2310         }
2311         for (j = 0; j < adapter->num_rx_queues; j++) {
2312                 ring = adapter->rx_ring[j];
2313                 do {
2314                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2315                         data[i]   = ring->rx_stats.packets;
2316                         data[i+1] = ring->rx_stats.bytes;
2317                         data[i+2] = ring->rx_stats.drops;
2318                         data[i+3] = ring->rx_stats.csum_err;
2319                         data[i+4] = ring->rx_stats.alloc_failed;
2320                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2321                 i += IGB_RX_QUEUE_STATS_LEN;
2322         }
2323         spin_unlock(&adapter->stats64_lock);
2324 }
2325
2326 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2327 {
2328         struct igb_adapter *adapter = netdev_priv(netdev);
2329         u8 *p = data;
2330         int i;
2331
2332         switch (stringset) {
2333         case ETH_SS_TEST:
2334                 memcpy(data, *igb_gstrings_test,
2335                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2336                 break;
2337         case ETH_SS_STATS:
2338                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2339                         memcpy(p, igb_gstrings_stats[i].stat_string,
2340                                ETH_GSTRING_LEN);
2341                         p += ETH_GSTRING_LEN;
2342                 }
2343                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2344                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2345                                ETH_GSTRING_LEN);
2346                         p += ETH_GSTRING_LEN;
2347                 }
2348                 for (i = 0; i < adapter->num_tx_queues; i++) {
2349                         sprintf(p, "tx_queue_%u_packets", i);
2350                         p += ETH_GSTRING_LEN;
2351                         sprintf(p, "tx_queue_%u_bytes", i);
2352                         p += ETH_GSTRING_LEN;
2353                         sprintf(p, "tx_queue_%u_restart", i);
2354                         p += ETH_GSTRING_LEN;
2355                 }
2356                 for (i = 0; i < adapter->num_rx_queues; i++) {
2357                         sprintf(p, "rx_queue_%u_packets", i);
2358                         p += ETH_GSTRING_LEN;
2359                         sprintf(p, "rx_queue_%u_bytes", i);
2360                         p += ETH_GSTRING_LEN;
2361                         sprintf(p, "rx_queue_%u_drops", i);
2362                         p += ETH_GSTRING_LEN;
2363                         sprintf(p, "rx_queue_%u_csum_err", i);
2364                         p += ETH_GSTRING_LEN;
2365                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2366                         p += ETH_GSTRING_LEN;
2367                 }
2368                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2369                 break;
2370         }
2371 }
2372
2373 static int igb_get_ts_info(struct net_device *dev,
2374                            struct ethtool_ts_info *info)
2375 {
2376         struct igb_adapter *adapter = netdev_priv(dev);
2377
2378         if (adapter->ptp_clock)
2379                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2380         else
2381                 info->phc_index = -1;
2382
2383         switch (adapter->hw.mac.type) {
2384         case e1000_82575:
2385                 info->so_timestamping =
2386                         SOF_TIMESTAMPING_TX_SOFTWARE |
2387                         SOF_TIMESTAMPING_RX_SOFTWARE |
2388                         SOF_TIMESTAMPING_SOFTWARE;
2389                 return 0;
2390         case e1000_82576:
2391         case e1000_82580:
2392         case e1000_i350:
2393         case e1000_i354:
2394         case e1000_i210:
2395         case e1000_i211:
2396                 info->so_timestamping =
2397                         SOF_TIMESTAMPING_TX_SOFTWARE |
2398                         SOF_TIMESTAMPING_RX_SOFTWARE |
2399                         SOF_TIMESTAMPING_SOFTWARE |
2400                         SOF_TIMESTAMPING_TX_HARDWARE |
2401                         SOF_TIMESTAMPING_RX_HARDWARE |
2402                         SOF_TIMESTAMPING_RAW_HARDWARE;
2403
2404                 info->tx_types =
2405                         (1 << HWTSTAMP_TX_OFF) |
2406                         (1 << HWTSTAMP_TX_ON);
2407
2408                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2409
2410                 /* 82576 does not support timestamping all packets. */
2411                 if (adapter->hw.mac.type >= e1000_82580)
2412                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2413                 else
2414                         info->rx_filters |=
2415                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2416                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2417                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2418
2419                 return 0;
2420         default:
2421                 return -EOPNOTSUPP;
2422         }
2423 }
2424
2425 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2426                                  struct ethtool_rxnfc *cmd)
2427 {
2428         cmd->data = 0;
2429
2430         /* Report default options for RSS on igb */
2431         switch (cmd->flow_type) {
2432         case TCP_V4_FLOW:
2433                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2434                 /* Fall through */
2435         case UDP_V4_FLOW:
2436                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2437                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2438                 /* Fall through */
2439         case SCTP_V4_FLOW:
2440         case AH_ESP_V4_FLOW:
2441         case AH_V4_FLOW:
2442         case ESP_V4_FLOW:
2443         case IPV4_FLOW:
2444                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2445                 break;
2446         case TCP_V6_FLOW:
2447                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2448                 /* Fall through */
2449         case UDP_V6_FLOW:
2450                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2451                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2452                 /* Fall through */
2453         case SCTP_V6_FLOW:
2454         case AH_ESP_V6_FLOW:
2455         case AH_V6_FLOW:
2456         case ESP_V6_FLOW:
2457         case IPV6_FLOW:
2458                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2459                 break;
2460         default:
2461                 return -EINVAL;
2462         }
2463
2464         return 0;
2465 }
2466
2467 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2468                          u32 *rule_locs)
2469 {
2470         struct igb_adapter *adapter = netdev_priv(dev);
2471         int ret = -EOPNOTSUPP;
2472
2473         switch (cmd->cmd) {
2474         case ETHTOOL_GRXRINGS:
2475                 cmd->data = adapter->num_rx_queues;
2476                 ret = 0;
2477                 break;
2478         case ETHTOOL_GRXFH:
2479                 ret = igb_get_rss_hash_opts(adapter, cmd);
2480                 break;
2481         default:
2482                 break;
2483         }
2484
2485         return ret;
2486 }
2487
2488 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2489                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2490 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2491                                 struct ethtool_rxnfc *nfc)
2492 {
2493         u32 flags = adapter->flags;
2494
2495         /* RSS does not support anything other than hashing
2496          * to queues on src and dst IPs and ports
2497          */
2498         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2499                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2500                 return -EINVAL;
2501
2502         switch (nfc->flow_type) {
2503         case TCP_V4_FLOW:
2504         case TCP_V6_FLOW:
2505                 if (!(nfc->data & RXH_IP_SRC) ||
2506                     !(nfc->data & RXH_IP_DST) ||
2507                     !(nfc->data & RXH_L4_B_0_1) ||
2508                     !(nfc->data & RXH_L4_B_2_3))
2509                         return -EINVAL;
2510                 break;
2511         case UDP_V4_FLOW:
2512                 if (!(nfc->data & RXH_IP_SRC) ||
2513                     !(nfc->data & RXH_IP_DST))
2514                         return -EINVAL;
2515                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2516                 case 0:
2517                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2518                         break;
2519                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2520                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2521                         break;
2522                 default:
2523                         return -EINVAL;
2524                 }
2525                 break;
2526         case UDP_V6_FLOW:
2527                 if (!(nfc->data & RXH_IP_SRC) ||
2528                     !(nfc->data & RXH_IP_DST))
2529                         return -EINVAL;
2530                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2531                 case 0:
2532                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2533                         break;
2534                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2535                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2536                         break;
2537                 default:
2538                         return -EINVAL;
2539                 }
2540                 break;
2541         case AH_ESP_V4_FLOW:
2542         case AH_V4_FLOW:
2543         case ESP_V4_FLOW:
2544         case SCTP_V4_FLOW:
2545         case AH_ESP_V6_FLOW:
2546         case AH_V6_FLOW:
2547         case ESP_V6_FLOW:
2548         case SCTP_V6_FLOW:
2549                 if (!(nfc->data & RXH_IP_SRC) ||
2550                     !(nfc->data & RXH_IP_DST) ||
2551                     (nfc->data & RXH_L4_B_0_1) ||
2552                     (nfc->data & RXH_L4_B_2_3))
2553                         return -EINVAL;
2554                 break;
2555         default:
2556                 return -EINVAL;
2557         }
2558
2559         /* if we changed something we need to update flags */
2560         if (flags != adapter->flags) {
2561                 struct e1000_hw *hw = &adapter->hw;
2562                 u32 mrqc = rd32(E1000_MRQC);
2563
2564                 if ((flags & UDP_RSS_FLAGS) &&
2565                     !(adapter->flags & UDP_RSS_FLAGS))
2566                         dev_err(&adapter->pdev->dev,
2567                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2568
2569                 adapter->flags = flags;
2570
2571                 /* Perform hash on these packet types */
2572                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2573                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2574                         E1000_MRQC_RSS_FIELD_IPV6 |
2575                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2576
2577                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2578                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2579
2580                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2581                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2582
2583                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2584                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2585
2586                 wr32(E1000_MRQC, mrqc);
2587         }
2588
2589         return 0;
2590 }
2591
2592 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2593 {
2594         struct igb_adapter *adapter = netdev_priv(dev);
2595         int ret = -EOPNOTSUPP;
2596
2597         switch (cmd->cmd) {
2598         case ETHTOOL_SRXFH:
2599                 ret = igb_set_rss_hash_opt(adapter, cmd);
2600                 break;
2601         default:
2602                 break;
2603         }
2604
2605         return ret;
2606 }
2607
2608 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2609 {
2610         struct igb_adapter *adapter = netdev_priv(netdev);
2611         struct e1000_hw *hw = &adapter->hw;
2612         u32 ret_val;
2613         u16 phy_data;
2614
2615         if ((hw->mac.type < e1000_i350) ||
2616             (hw->phy.media_type != e1000_media_type_copper))
2617                 return -EOPNOTSUPP;
2618
2619         edata->supported = (SUPPORTED_1000baseT_Full |
2620                             SUPPORTED_100baseT_Full);
2621         if (!hw->dev_spec._82575.eee_disable)
2622                 edata->advertised =
2623                         mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2624
2625         /* The IPCNFG and EEER registers are not supported on I354. */
2626         if (hw->mac.type == e1000_i354) {
2627                 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2628         } else {
2629                 u32 eeer;
2630
2631                 eeer = rd32(E1000_EEER);
2632
2633                 /* EEE status on negotiated link */
2634                 if (eeer & E1000_EEER_EEE_NEG)
2635                         edata->eee_active = true;
2636
2637                 if (eeer & E1000_EEER_TX_LPI_EN)
2638                         edata->tx_lpi_enabled = true;
2639         }
2640
2641         /* EEE Link Partner Advertised */
2642         switch (hw->mac.type) {
2643         case e1000_i350:
2644                 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2645                                            &phy_data);
2646                 if (ret_val)
2647                         return -ENODATA;
2648
2649                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2650                 break;
2651         case e1000_i354:
2652         case e1000_i210:
2653         case e1000_i211:
2654                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2655                                              E1000_EEE_LP_ADV_DEV_I210,
2656                                              &phy_data);
2657                 if (ret_val)
2658                         return -ENODATA;
2659
2660                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2661
2662                 break;
2663         default:
2664                 break;
2665         }
2666
2667         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2668
2669         if ((hw->mac.type == e1000_i354) &&
2670             (edata->eee_enabled))
2671                 edata->tx_lpi_enabled = true;
2672
2673         /* Report correct negotiated EEE status for devices that
2674          * wrongly report EEE at half-duplex
2675          */
2676         if (adapter->link_duplex == HALF_DUPLEX) {
2677                 edata->eee_enabled = false;
2678                 edata->eee_active = false;
2679                 edata->tx_lpi_enabled = false;
2680                 edata->advertised &= ~edata->advertised;
2681         }
2682
2683         return 0;
2684 }
2685
2686 static int igb_set_eee(struct net_device *netdev,
2687                        struct ethtool_eee *edata)
2688 {
2689         struct igb_adapter *adapter = netdev_priv(netdev);
2690         struct e1000_hw *hw = &adapter->hw;
2691         struct ethtool_eee eee_curr;
2692         bool adv1g_eee = true, adv100m_eee = true;
2693         s32 ret_val;
2694
2695         if ((hw->mac.type < e1000_i350) ||
2696             (hw->phy.media_type != e1000_media_type_copper))
2697                 return -EOPNOTSUPP;
2698
2699         memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2700
2701         ret_val = igb_get_eee(netdev, &eee_curr);
2702         if (ret_val)
2703                 return ret_val;
2704
2705         if (eee_curr.eee_enabled) {
2706                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2707                         dev_err(&adapter->pdev->dev,
2708                                 "Setting EEE tx-lpi is not supported\n");
2709                         return -EINVAL;
2710                 }
2711
2712                 /* Tx LPI timer is not implemented currently */
2713                 if (edata->tx_lpi_timer) {
2714                         dev_err(&adapter->pdev->dev,
2715                                 "Setting EEE Tx LPI timer is not supported\n");
2716                         return -EINVAL;
2717                 }
2718
2719                 if (!edata->advertised || (edata->advertised &
2720                     ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
2721                         dev_err(&adapter->pdev->dev,
2722                                 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
2723                         return -EINVAL;
2724                 }
2725                 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
2726                 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
2727
2728         } else if (!edata->eee_enabled) {
2729                 dev_err(&adapter->pdev->dev,
2730                         "Setting EEE options are not supported with EEE disabled\n");
2731                         return -EINVAL;
2732                 }
2733
2734         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2735         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2736                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2737                 adapter->flags |= IGB_FLAG_EEE;
2738
2739                 /* reset link */
2740                 if (netif_running(netdev))
2741                         igb_reinit_locked(adapter);
2742                 else
2743                         igb_reset(adapter);
2744         }
2745
2746         if (hw->mac.type == e1000_i354)
2747                 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
2748         else
2749                 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
2750
2751         if (ret_val) {
2752                 dev_err(&adapter->pdev->dev,
2753                         "Problem setting EEE advertisement options\n");
2754                 return -EINVAL;
2755         }
2756
2757         return 0;
2758 }
2759
2760 static int igb_get_module_info(struct net_device *netdev,
2761                                struct ethtool_modinfo *modinfo)
2762 {
2763         struct igb_adapter *adapter = netdev_priv(netdev);
2764         struct e1000_hw *hw = &adapter->hw;
2765         u32 status = 0;
2766         u16 sff8472_rev, addr_mode;
2767         bool page_swap = false;
2768
2769         if ((hw->phy.media_type == e1000_media_type_copper) ||
2770             (hw->phy.media_type == e1000_media_type_unknown))
2771                 return -EOPNOTSUPP;
2772
2773         /* Check whether we support SFF-8472 or not */
2774         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2775         if (status)
2776                 return -EIO;
2777
2778         /* addressing mode is not supported */
2779         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2780         if (status)
2781                 return -EIO;
2782
2783         /* addressing mode is not supported */
2784         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2785                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2786                 page_swap = true;
2787         }
2788
2789         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2790                 /* We have an SFP, but it does not support SFF-8472 */
2791                 modinfo->type = ETH_MODULE_SFF_8079;
2792                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2793         } else {
2794                 /* We have an SFP which supports a revision of SFF-8472 */
2795                 modinfo->type = ETH_MODULE_SFF_8472;
2796                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2797         }
2798
2799         return 0;
2800 }
2801
2802 static int igb_get_module_eeprom(struct net_device *netdev,
2803                                  struct ethtool_eeprom *ee, u8 *data)
2804 {
2805         struct igb_adapter *adapter = netdev_priv(netdev);
2806         struct e1000_hw *hw = &adapter->hw;
2807         u32 status = 0;
2808         u16 *dataword;
2809         u16 first_word, last_word;
2810         int i = 0;
2811
2812         if (ee->len == 0)
2813                 return -EINVAL;
2814
2815         first_word = ee->offset >> 1;
2816         last_word = (ee->offset + ee->len - 1) >> 1;
2817
2818         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2819                            GFP_KERNEL);
2820         if (!dataword)
2821                 return -ENOMEM;
2822
2823         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2824         for (i = 0; i < last_word - first_word + 1; i++) {
2825                 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2826                 if (status) {
2827                         /* Error occurred while reading module */
2828                         kfree(dataword);
2829                         return -EIO;
2830                 }
2831
2832                 be16_to_cpus(&dataword[i]);
2833         }
2834
2835         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2836         kfree(dataword);
2837
2838         return 0;
2839 }
2840
2841 static int igb_ethtool_begin(struct net_device *netdev)
2842 {
2843         struct igb_adapter *adapter = netdev_priv(netdev);
2844         pm_runtime_get_sync(&adapter->pdev->dev);
2845         return 0;
2846 }
2847
2848 static void igb_ethtool_complete(struct net_device *netdev)
2849 {
2850         struct igb_adapter *adapter = netdev_priv(netdev);
2851         pm_runtime_put(&adapter->pdev->dev);
2852 }
2853
2854 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2855 {
2856         return IGB_RETA_SIZE;
2857 }
2858
2859 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
2860                         u8 *hfunc)
2861 {
2862         struct igb_adapter *adapter = netdev_priv(netdev);
2863         int i;
2864
2865         if (hfunc)
2866                 *hfunc = ETH_RSS_HASH_TOP;
2867         if (!indir)
2868                 return 0;
2869         for (i = 0; i < IGB_RETA_SIZE; i++)
2870                 indir[i] = adapter->rss_indir_tbl[i];
2871
2872         return 0;
2873 }
2874
2875 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2876 {
2877         struct e1000_hw *hw = &adapter->hw;
2878         u32 reg = E1000_RETA(0);
2879         u32 shift = 0;
2880         int i = 0;
2881
2882         switch (hw->mac.type) {
2883         case e1000_82575:
2884                 shift = 6;
2885                 break;
2886         case e1000_82576:
2887                 /* 82576 supports 2 RSS queues for SR-IOV */
2888                 if (adapter->vfs_allocated_count)
2889                         shift = 3;
2890                 break;
2891         default:
2892                 break;
2893         }
2894
2895         while (i < IGB_RETA_SIZE) {
2896                 u32 val = 0;
2897                 int j;
2898
2899                 for (j = 3; j >= 0; j--) {
2900                         val <<= 8;
2901                         val |= adapter->rss_indir_tbl[i + j];
2902                 }
2903
2904                 wr32(reg, val << shift);
2905                 reg += 4;
2906                 i += 4;
2907         }
2908 }
2909
2910 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
2911                         const u8 *key, const u8 hfunc)
2912 {
2913         struct igb_adapter *adapter = netdev_priv(netdev);
2914         struct e1000_hw *hw = &adapter->hw;
2915         int i;
2916         u32 num_queues;
2917
2918         /* We do not allow change in unsupported parameters */
2919         if (key ||
2920             (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2921                 return -EOPNOTSUPP;
2922         if (!indir)
2923                 return 0;
2924
2925         num_queues = adapter->rss_queues;
2926
2927         switch (hw->mac.type) {
2928         case e1000_82576:
2929                 /* 82576 supports 2 RSS queues for SR-IOV */
2930                 if (adapter->vfs_allocated_count)
2931                         num_queues = 2;
2932                 break;
2933         default:
2934                 break;
2935         }
2936
2937         /* Verify user input. */
2938         for (i = 0; i < IGB_RETA_SIZE; i++)
2939                 if (indir[i] >= num_queues)
2940                         return -EINVAL;
2941
2942
2943         for (i = 0; i < IGB_RETA_SIZE; i++)
2944                 adapter->rss_indir_tbl[i] = indir[i];
2945
2946         igb_write_rss_indir_tbl(adapter);
2947
2948         return 0;
2949 }
2950
2951 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2952 {
2953         struct e1000_hw *hw = &adapter->hw;
2954         unsigned int max_combined = 0;
2955
2956         switch (hw->mac.type) {
2957         case e1000_i211:
2958                 max_combined = IGB_MAX_RX_QUEUES_I211;
2959                 break;
2960         case e1000_82575:
2961         case e1000_i210:
2962                 max_combined = IGB_MAX_RX_QUEUES_82575;
2963                 break;
2964         case e1000_i350:
2965                 if (!!adapter->vfs_allocated_count) {
2966                         max_combined = 1;
2967                         break;
2968                 }
2969                 /* fall through */
2970         case e1000_82576:
2971                 if (!!adapter->vfs_allocated_count) {
2972                         max_combined = 2;
2973                         break;
2974                 }
2975                 /* fall through */
2976         case e1000_82580:
2977         case e1000_i354:
2978         default:
2979                 max_combined = IGB_MAX_RX_QUEUES;
2980                 break;
2981         }
2982
2983         return max_combined;
2984 }
2985
2986 static void igb_get_channels(struct net_device *netdev,
2987                              struct ethtool_channels *ch)
2988 {
2989         struct igb_adapter *adapter = netdev_priv(netdev);
2990
2991         /* Report maximum channels */
2992         ch->max_combined = igb_max_channels(adapter);
2993
2994         /* Report info for other vector */
2995         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2996                 ch->max_other = NON_Q_VECTORS;
2997                 ch->other_count = NON_Q_VECTORS;
2998         }
2999
3000         ch->combined_count = adapter->rss_queues;
3001 }
3002
3003 static int igb_set_channels(struct net_device *netdev,
3004                             struct ethtool_channels *ch)
3005 {
3006         struct igb_adapter *adapter = netdev_priv(netdev);
3007         unsigned int count = ch->combined_count;
3008         unsigned int max_combined = 0;
3009
3010         /* Verify they are not requesting separate vectors */
3011         if (!count || ch->rx_count || ch->tx_count)
3012                 return -EINVAL;
3013
3014         /* Verify other_count is valid and has not been changed */
3015         if (ch->other_count != NON_Q_VECTORS)
3016                 return -EINVAL;
3017
3018         /* Verify the number of channels doesn't exceed hw limits */
3019         max_combined = igb_max_channels(adapter);
3020         if (count > max_combined)
3021                 return -EINVAL;
3022
3023         if (count != adapter->rss_queues) {
3024                 adapter->rss_queues = count;
3025                 igb_set_flag_queue_pairs(adapter, max_combined);
3026
3027                 /* Hardware has to reinitialize queues and interrupts to
3028                  * match the new configuration.
3029                  */
3030                 return igb_reinit_queues(adapter);
3031         }
3032
3033         return 0;
3034 }
3035
3036 static const struct ethtool_ops igb_ethtool_ops = {
3037         .get_settings           = igb_get_settings,
3038         .set_settings           = igb_set_settings,
3039         .get_drvinfo            = igb_get_drvinfo,
3040         .get_regs_len           = igb_get_regs_len,
3041         .get_regs               = igb_get_regs,
3042         .get_wol                = igb_get_wol,
3043         .set_wol                = igb_set_wol,
3044         .get_msglevel           = igb_get_msglevel,
3045         .set_msglevel           = igb_set_msglevel,
3046         .nway_reset             = igb_nway_reset,
3047         .get_link               = igb_get_link,
3048         .get_eeprom_len         = igb_get_eeprom_len,
3049         .get_eeprom             = igb_get_eeprom,
3050         .set_eeprom             = igb_set_eeprom,
3051         .get_ringparam          = igb_get_ringparam,
3052         .set_ringparam          = igb_set_ringparam,
3053         .get_pauseparam         = igb_get_pauseparam,
3054         .set_pauseparam         = igb_set_pauseparam,
3055         .self_test              = igb_diag_test,
3056         .get_strings            = igb_get_strings,
3057         .set_phys_id            = igb_set_phys_id,
3058         .get_sset_count         = igb_get_sset_count,
3059         .get_ethtool_stats      = igb_get_ethtool_stats,
3060         .get_coalesce           = igb_get_coalesce,
3061         .set_coalesce           = igb_set_coalesce,
3062         .get_ts_info            = igb_get_ts_info,
3063         .get_rxnfc              = igb_get_rxnfc,
3064         .set_rxnfc              = igb_set_rxnfc,
3065         .get_eee                = igb_get_eee,
3066         .set_eee                = igb_set_eee,
3067         .get_module_info        = igb_get_module_info,
3068         .get_module_eeprom      = igb_get_module_eeprom,
3069         .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3070         .get_rxfh               = igb_get_rxfh,
3071         .set_rxfh               = igb_set_rxfh,
3072         .get_channels           = igb_get_channels,
3073         .set_channels           = igb_set_channels,
3074         .begin                  = igb_ethtool_begin,
3075         .complete               = igb_ethtool_complete,
3076 };
3077
3078 void igb_set_ethtool_ops(struct net_device *netdev)
3079 {
3080         netdev->ethtool_ops = &igb_ethtool_ops;
3081 }