GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK           0x7fffffff
12 #define ISGN                    0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter
57  * needs to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, so we aim for 8
59  * minutes to be sure the actual interval is shorter than 9.16 minutes.
60  */
61
62 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 8)
63 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
64 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
65 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
66 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
67 #define IGB_NBITS_82580                 40
68
69 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
70
71 /* SYSTIM read access for the 82576 */
72 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
73 {
74         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
75         struct e1000_hw *hw = &igb->hw;
76         u64 val;
77         u32 lo, hi;
78
79         lo = rd32(E1000_SYSTIML);
80         hi = rd32(E1000_SYSTIMH);
81
82         val = ((u64) hi) << 32;
83         val |= lo;
84
85         return val;
86 }
87
88 /* SYSTIM read access for the 82580 */
89 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
90 {
91         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
92         struct e1000_hw *hw = &igb->hw;
93         u32 lo, hi;
94         u64 val;
95
96         /* The timestamp latches on lowest register read. For the 82580
97          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
98          * need to provide nanosecond resolution, so we just ignore it.
99          */
100         rd32(E1000_SYSTIMR);
101         lo = rd32(E1000_SYSTIML);
102         hi = rd32(E1000_SYSTIMH);
103
104         val = ((u64) hi) << 32;
105         val |= lo;
106
107         return val;
108 }
109
110 /* SYSTIM read access for I210/I211 */
111 static void igb_ptp_read_i210(struct igb_adapter *adapter,
112                               struct timespec64 *ts)
113 {
114         struct e1000_hw *hw = &adapter->hw;
115         u32 sec, nsec;
116
117         /* The timestamp latches on lowest register read. For I210/I211, the
118          * lowest register is SYSTIMR. Since we only need to provide nanosecond
119          * resolution, we can ignore it.
120          */
121         rd32(E1000_SYSTIMR);
122         nsec = rd32(E1000_SYSTIML);
123         sec = rd32(E1000_SYSTIMH);
124
125         ts->tv_sec = sec;
126         ts->tv_nsec = nsec;
127 }
128
129 static void igb_ptp_write_i210(struct igb_adapter *adapter,
130                                const struct timespec64 *ts)
131 {
132         struct e1000_hw *hw = &adapter->hw;
133
134         /* Writing the SYSTIMR register is not necessary as it only provides
135          * sub-nanosecond resolution.
136          */
137         wr32(E1000_SYSTIML, ts->tv_nsec);
138         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
139 }
140
141 /**
142  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
143  * @adapter: board private structure
144  * @hwtstamps: timestamp structure to update
145  * @systim: unsigned 64bit system time value.
146  *
147  * We need to convert the system time value stored in the RX/TXSTMP registers
148  * into a hwtstamp which can be used by the upper level timestamping functions.
149  *
150  * The 'tmreg_lock' spinlock is used to protect the consistency of the
151  * system time value. This is needed because reading the 64 bit time
152  * value involves reading two (or three) 32 bit registers. The first
153  * read latches the value. Ditto for writing.
154  *
155  * In addition, here have extended the system time with an overflow
156  * counter in software.
157  **/
158 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
159                                        struct skb_shared_hwtstamps *hwtstamps,
160                                        u64 systim)
161 {
162         unsigned long flags;
163         u64 ns;
164
165         switch (adapter->hw.mac.type) {
166         case e1000_82576:
167         case e1000_82580:
168         case e1000_i354:
169         case e1000_i350:
170                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
171
172                 ns = timecounter_cyc2time(&adapter->tc, systim);
173
174                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
175
176                 memset(hwtstamps, 0, sizeof(*hwtstamps));
177                 hwtstamps->hwtstamp = ns_to_ktime(ns);
178                 break;
179         case e1000_i210:
180         case e1000_i211:
181                 memset(hwtstamps, 0, sizeof(*hwtstamps));
182                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
183                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
184                                                 systim & 0xFFFFFFFF);
185                 break;
186         default:
187                 break;
188         }
189 }
190
191 /* PTP clock operations */
192 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
193 {
194         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
195                                                ptp_caps);
196         struct e1000_hw *hw = &igb->hw;
197         int neg_adj = 0;
198         u64 rate;
199         u32 incvalue;
200
201         if (ppb < 0) {
202                 neg_adj = 1;
203                 ppb = -ppb;
204         }
205         rate = ppb;
206         rate <<= 14;
207         rate = div_u64(rate, 1953125);
208
209         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
210
211         if (neg_adj)
212                 incvalue -= rate;
213         else
214                 incvalue += rate;
215
216         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
217
218         return 0;
219 }
220
221 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
222 {
223         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
224                                                ptp_caps);
225         struct e1000_hw *hw = &igb->hw;
226         int neg_adj = 0;
227         u64 rate;
228         u32 inca;
229
230         if (scaled_ppm < 0) {
231                 neg_adj = 1;
232                 scaled_ppm = -scaled_ppm;
233         }
234         rate = scaled_ppm;
235         rate <<= 13;
236         rate = div_u64(rate, 15625);
237
238         inca = rate & INCVALUE_MASK;
239         if (neg_adj)
240                 inca |= ISGN;
241
242         wr32(E1000_TIMINCA, inca);
243
244         return 0;
245 }
246
247 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
248 {
249         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
250                                                ptp_caps);
251         unsigned long flags;
252
253         spin_lock_irqsave(&igb->tmreg_lock, flags);
254         timecounter_adjtime(&igb->tc, delta);
255         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
256
257         return 0;
258 }
259
260 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
261 {
262         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
263                                                ptp_caps);
264         unsigned long flags;
265         struct timespec64 now, then = ns_to_timespec64(delta);
266
267         spin_lock_irqsave(&igb->tmreg_lock, flags);
268
269         igb_ptp_read_i210(igb, &now);
270         now = timespec64_add(now, then);
271         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
272
273         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
274
275         return 0;
276 }
277
278 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
279                                  struct timespec64 *ts)
280 {
281         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
282                                                ptp_caps);
283         unsigned long flags;
284         u64 ns;
285
286         spin_lock_irqsave(&igb->tmreg_lock, flags);
287
288         ns = timecounter_read(&igb->tc);
289
290         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
291
292         *ts = ns_to_timespec64(ns);
293
294         return 0;
295 }
296
297 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
298                                 struct timespec64 *ts)
299 {
300         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
301                                                ptp_caps);
302         unsigned long flags;
303
304         spin_lock_irqsave(&igb->tmreg_lock, flags);
305
306         igb_ptp_read_i210(igb, ts);
307
308         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
309
310         return 0;
311 }
312
313 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
314                                  const struct timespec64 *ts)
315 {
316         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
317                                                ptp_caps);
318         unsigned long flags;
319         u64 ns;
320
321         ns = timespec64_to_ns(ts);
322
323         spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325         timecounter_init(&igb->tc, &igb->cc, ns);
326
327         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
328
329         return 0;
330 }
331
332 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
333                                 const struct timespec64 *ts)
334 {
335         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
336                                                ptp_caps);
337         unsigned long flags;
338
339         spin_lock_irqsave(&igb->tmreg_lock, flags);
340
341         igb_ptp_write_i210(igb, ts);
342
343         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
344
345         return 0;
346 }
347
348 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
349 {
350         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
351         static const u32 mask[IGB_N_SDP] = {
352                 E1000_CTRL_SDP0_DIR,
353                 E1000_CTRL_SDP1_DIR,
354                 E1000_CTRL_EXT_SDP2_DIR,
355                 E1000_CTRL_EXT_SDP3_DIR,
356         };
357
358         if (input)
359                 *ptr &= ~mask[pin];
360         else
361                 *ptr |= mask[pin];
362 }
363
364 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
365 {
366         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
367                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
368         };
369         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
370                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
371         };
372         static const u32 ts_sdp_en[IGB_N_SDP] = {
373                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
374         };
375         struct e1000_hw *hw = &igb->hw;
376         u32 ctrl, ctrl_ext, tssdp = 0;
377
378         ctrl = rd32(E1000_CTRL);
379         ctrl_ext = rd32(E1000_CTRL_EXT);
380         tssdp = rd32(E1000_TSSDP);
381
382         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
383
384         /* Make sure this pin is not enabled as an output. */
385         tssdp &= ~ts_sdp_en[pin];
386
387         if (chan == 1) {
388                 tssdp &= ~AUX1_SEL_SDP3;
389                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
390         } else {
391                 tssdp &= ~AUX0_SEL_SDP3;
392                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
393         }
394
395         wr32(E1000_TSSDP, tssdp);
396         wr32(E1000_CTRL, ctrl);
397         wr32(E1000_CTRL_EXT, ctrl_ext);
398 }
399
400 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
401 {
402         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
403                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
404         };
405         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
406                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
407         };
408         static const u32 ts_sdp_en[IGB_N_SDP] = {
409                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
410         };
411         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
412                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
413                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
414         };
415         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
416                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
417                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
418         };
419         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
420                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
421                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
422         };
423         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
424                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
425                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
426         };
427         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
428                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
429                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
430         };
431         struct e1000_hw *hw = &igb->hw;
432         u32 ctrl, ctrl_ext, tssdp = 0;
433
434         ctrl = rd32(E1000_CTRL);
435         ctrl_ext = rd32(E1000_CTRL_EXT);
436         tssdp = rd32(E1000_TSSDP);
437
438         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
439
440         /* Make sure this pin is not enabled as an input. */
441         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
442                 tssdp &= ~AUX0_TS_SDP_EN;
443
444         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
445                 tssdp &= ~AUX1_TS_SDP_EN;
446
447         tssdp &= ~ts_sdp_sel_clr[pin];
448         if (freq) {
449                 if (chan == 1)
450                         tssdp |= ts_sdp_sel_fc1[pin];
451                 else
452                         tssdp |= ts_sdp_sel_fc0[pin];
453         } else {
454                 if (chan == 1)
455                         tssdp |= ts_sdp_sel_tt1[pin];
456                 else
457                         tssdp |= ts_sdp_sel_tt0[pin];
458         }
459         tssdp |= ts_sdp_en[pin];
460
461         wr32(E1000_TSSDP, tssdp);
462         wr32(E1000_CTRL, ctrl);
463         wr32(E1000_CTRL_EXT, ctrl_ext);
464 }
465
466 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
467                                        struct ptp_clock_request *rq, int on)
468 {
469         struct igb_adapter *igb =
470                 container_of(ptp, struct igb_adapter, ptp_caps);
471         struct e1000_hw *hw = &igb->hw;
472         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
473         unsigned long flags;
474         struct timespec64 ts;
475         int use_freq = 0, pin = -1;
476         s64 ns;
477
478         switch (rq->type) {
479         case PTP_CLK_REQ_EXTTS:
480                 if (on) {
481                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
482                                            rq->extts.index);
483                         if (pin < 0)
484                                 return -EBUSY;
485                 }
486                 if (rq->extts.index == 1) {
487                         tsauxc_mask = TSAUXC_EN_TS1;
488                         tsim_mask = TSINTR_AUTT1;
489                 } else {
490                         tsauxc_mask = TSAUXC_EN_TS0;
491                         tsim_mask = TSINTR_AUTT0;
492                 }
493                 spin_lock_irqsave(&igb->tmreg_lock, flags);
494                 tsauxc = rd32(E1000_TSAUXC);
495                 tsim = rd32(E1000_TSIM);
496                 if (on) {
497                         igb_pin_extts(igb, rq->extts.index, pin);
498                         tsauxc |= tsauxc_mask;
499                         tsim |= tsim_mask;
500                 } else {
501                         tsauxc &= ~tsauxc_mask;
502                         tsim &= ~tsim_mask;
503                 }
504                 wr32(E1000_TSAUXC, tsauxc);
505                 wr32(E1000_TSIM, tsim);
506                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
507                 return 0;
508
509         case PTP_CLK_REQ_PEROUT:
510                 if (on) {
511                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
512                                            rq->perout.index);
513                         if (pin < 0)
514                                 return -EBUSY;
515                 }
516                 ts.tv_sec = rq->perout.period.sec;
517                 ts.tv_nsec = rq->perout.period.nsec;
518                 ns = timespec64_to_ns(&ts);
519                 ns = ns >> 1;
520                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
521                            (ns == 250000000LL) || (ns == 500000000LL))) {
522                         if (ns < 8LL)
523                                 return -EINVAL;
524                         use_freq = 1;
525                 }
526                 ts = ns_to_timespec64(ns);
527                 if (rq->perout.index == 1) {
528                         if (use_freq) {
529                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
530                                 tsim_mask = 0;
531                         } else {
532                                 tsauxc_mask = TSAUXC_EN_TT1;
533                                 tsim_mask = TSINTR_TT1;
534                         }
535                         trgttiml = E1000_TRGTTIML1;
536                         trgttimh = E1000_TRGTTIMH1;
537                         freqout = E1000_FREQOUT1;
538                 } else {
539                         if (use_freq) {
540                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
541                                 tsim_mask = 0;
542                         } else {
543                                 tsauxc_mask = TSAUXC_EN_TT0;
544                                 tsim_mask = TSINTR_TT0;
545                         }
546                         trgttiml = E1000_TRGTTIML0;
547                         trgttimh = E1000_TRGTTIMH0;
548                         freqout = E1000_FREQOUT0;
549                 }
550                 spin_lock_irqsave(&igb->tmreg_lock, flags);
551                 tsauxc = rd32(E1000_TSAUXC);
552                 tsim = rd32(E1000_TSIM);
553                 if (rq->perout.index == 1) {
554                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
555                         tsim &= ~TSINTR_TT1;
556                 } else {
557                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
558                         tsim &= ~TSINTR_TT0;
559                 }
560                 if (on) {
561                         int i = rq->perout.index;
562                         igb_pin_perout(igb, i, pin, use_freq);
563                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
564                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
565                         igb->perout[i].period.tv_sec = ts.tv_sec;
566                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
567                         wr32(trgttimh, rq->perout.start.sec);
568                         wr32(trgttiml, rq->perout.start.nsec);
569                         if (use_freq)
570                                 wr32(freqout, ns);
571                         tsauxc |= tsauxc_mask;
572                         tsim |= tsim_mask;
573                 }
574                 wr32(E1000_TSAUXC, tsauxc);
575                 wr32(E1000_TSIM, tsim);
576                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
577                 return 0;
578
579         case PTP_CLK_REQ_PPS:
580                 spin_lock_irqsave(&igb->tmreg_lock, flags);
581                 tsim = rd32(E1000_TSIM);
582                 if (on)
583                         tsim |= TSINTR_SYS_WRAP;
584                 else
585                         tsim &= ~TSINTR_SYS_WRAP;
586                 igb->pps_sys_wrap_on = !!on;
587                 wr32(E1000_TSIM, tsim);
588                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
589                 return 0;
590         }
591
592         return -EOPNOTSUPP;
593 }
594
595 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
596                                   struct ptp_clock_request *rq, int on)
597 {
598         return -EOPNOTSUPP;
599 }
600
601 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
602                               enum ptp_pin_function func, unsigned int chan)
603 {
604         switch (func) {
605         case PTP_PF_NONE:
606         case PTP_PF_EXTTS:
607         case PTP_PF_PEROUT:
608                 break;
609         case PTP_PF_PHYSYNC:
610                 return -1;
611         }
612         return 0;
613 }
614
615 /**
616  * igb_ptp_tx_work
617  * @work: pointer to work struct
618  *
619  * This work function polls the TSYNCTXCTL valid bit to determine when a
620  * timestamp has been taken for the current stored skb.
621  **/
622 static void igb_ptp_tx_work(struct work_struct *work)
623 {
624         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
625                                                    ptp_tx_work);
626         struct e1000_hw *hw = &adapter->hw;
627         u32 tsynctxctl;
628
629         if (!adapter->ptp_tx_skb)
630                 return;
631
632         if (time_is_before_jiffies(adapter->ptp_tx_start +
633                                    IGB_PTP_TX_TIMEOUT)) {
634                 dev_kfree_skb_any(adapter->ptp_tx_skb);
635                 adapter->ptp_tx_skb = NULL;
636                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
637                 adapter->tx_hwtstamp_timeouts++;
638                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
639                  * interrupt
640                  */
641                 rd32(E1000_TXSTMPH);
642                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
643                 return;
644         }
645
646         tsynctxctl = rd32(E1000_TSYNCTXCTL);
647         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
648                 igb_ptp_tx_hwtstamp(adapter);
649         else
650                 /* reschedule to check later */
651                 schedule_work(&adapter->ptp_tx_work);
652 }
653
654 static void igb_ptp_overflow_check(struct work_struct *work)
655 {
656         struct igb_adapter *igb =
657                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
658         struct timespec64 ts;
659
660         igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
661
662         pr_debug("igb overflow check at %lld.%09lu\n",
663                  (long long) ts.tv_sec, ts.tv_nsec);
664
665         schedule_delayed_work(&igb->ptp_overflow_work,
666                               IGB_SYSTIM_OVERFLOW_PERIOD);
667 }
668
669 /**
670  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
671  * @adapter: private network adapter structure
672  *
673  * This watchdog task is scheduled to detect error case where hardware has
674  * dropped an Rx packet that was timestamped when the ring is full. The
675  * particular error is rare but leaves the device in a state unable to timestamp
676  * any future packets.
677  **/
678 void igb_ptp_rx_hang(struct igb_adapter *adapter)
679 {
680         struct e1000_hw *hw = &adapter->hw;
681         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
682         unsigned long rx_event;
683
684         /* Other hardware uses per-packet timestamps */
685         if (hw->mac.type != e1000_82576)
686                 return;
687
688         /* If we don't have a valid timestamp in the registers, just update the
689          * timeout counter and exit
690          */
691         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
692                 adapter->last_rx_ptp_check = jiffies;
693                 return;
694         }
695
696         /* Determine the most recent watchdog or rx_timestamp event */
697         rx_event = adapter->last_rx_ptp_check;
698         if (time_after(adapter->last_rx_timestamp, rx_event))
699                 rx_event = adapter->last_rx_timestamp;
700
701         /* Only need to read the high RXSTMP register to clear the lock */
702         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
703                 rd32(E1000_RXSTMPH);
704                 adapter->last_rx_ptp_check = jiffies;
705                 adapter->rx_hwtstamp_cleared++;
706                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
707         }
708 }
709
710 /**
711  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
712  * @adapter: private network adapter structure
713  */
714 void igb_ptp_tx_hang(struct igb_adapter *adapter)
715 {
716         struct e1000_hw *hw = &adapter->hw;
717         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
718                                               IGB_PTP_TX_TIMEOUT);
719
720         if (!adapter->ptp_tx_skb)
721                 return;
722
723         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
724                 return;
725
726         /* If we haven't received a timestamp within the timeout, it is
727          * reasonable to assume that it will never occur, so we can unlock the
728          * timestamp bit when this occurs.
729          */
730         if (timeout) {
731                 cancel_work_sync(&adapter->ptp_tx_work);
732                 dev_kfree_skb_any(adapter->ptp_tx_skb);
733                 adapter->ptp_tx_skb = NULL;
734                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
735                 adapter->tx_hwtstamp_timeouts++;
736                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
737                  * interrupt
738                  */
739                 rd32(E1000_TXSTMPH);
740                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
741         }
742 }
743
744 /**
745  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
746  * @adapter: Board private structure.
747  *
748  * If we were asked to do hardware stamping and such a time stamp is
749  * available, then it must have been for this skb here because we only
750  * allow only one such packet into the queue.
751  **/
752 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
753 {
754         struct sk_buff *skb = adapter->ptp_tx_skb;
755         struct e1000_hw *hw = &adapter->hw;
756         struct skb_shared_hwtstamps shhwtstamps;
757         u64 regval;
758         int adjust = 0;
759
760         regval = rd32(E1000_TXSTMPL);
761         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
762
763         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
764         /* adjust timestamp for the TX latency based on link speed */
765         if (adapter->hw.mac.type == e1000_i210) {
766                 switch (adapter->link_speed) {
767                 case SPEED_10:
768                         adjust = IGB_I210_TX_LATENCY_10;
769                         break;
770                 case SPEED_100:
771                         adjust = IGB_I210_TX_LATENCY_100;
772                         break;
773                 case SPEED_1000:
774                         adjust = IGB_I210_TX_LATENCY_1000;
775                         break;
776                 }
777         }
778
779         shhwtstamps.hwtstamp =
780                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
781
782         /* Clear the lock early before calling skb_tstamp_tx so that
783          * applications are not woken up before the lock bit is clear. We use
784          * a copy of the skb pointer to ensure other threads can't change it
785          * while we're notifying the stack.
786          */
787         adapter->ptp_tx_skb = NULL;
788         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
789
790         /* Notify the stack and free the skb after we've unlocked */
791         skb_tstamp_tx(skb, &shhwtstamps);
792         dev_kfree_skb_any(skb);
793 }
794
795 /**
796  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
797  * @q_vector: Pointer to interrupt specific structure
798  * @va: Pointer to address containing Rx buffer
799  * @skb: Buffer containing timestamp and packet
800  *
801  * This function is meant to retrieve a timestamp from the first buffer of an
802  * incoming frame.  The value is stored in little endian format starting on
803  * byte 8.
804  **/
805 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
806                          struct sk_buff *skb)
807 {
808         __le64 *regval = (__le64 *)va;
809         struct igb_adapter *adapter = q_vector->adapter;
810         int adjust = 0;
811
812         /* The timestamp is recorded in little endian format.
813          * DWORD: 0        1        2        3
814          * Field: Reserved Reserved SYSTIML  SYSTIMH
815          */
816         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
817                                    le64_to_cpu(regval[1]));
818
819         /* adjust timestamp for the RX latency based on link speed */
820         if (adapter->hw.mac.type == e1000_i210) {
821                 switch (adapter->link_speed) {
822                 case SPEED_10:
823                         adjust = IGB_I210_RX_LATENCY_10;
824                         break;
825                 case SPEED_100:
826                         adjust = IGB_I210_RX_LATENCY_100;
827                         break;
828                 case SPEED_1000:
829                         adjust = IGB_I210_RX_LATENCY_1000;
830                         break;
831                 }
832         }
833         skb_hwtstamps(skb)->hwtstamp =
834                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
835 }
836
837 /**
838  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
839  * @q_vector: Pointer to interrupt specific structure
840  * @skb: Buffer containing timestamp and packet
841  *
842  * This function is meant to retrieve a timestamp from the internal registers
843  * of the adapter and store it in the skb.
844  **/
845 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
846                          struct sk_buff *skb)
847 {
848         struct igb_adapter *adapter = q_vector->adapter;
849         struct e1000_hw *hw = &adapter->hw;
850         u64 regval;
851         int adjust = 0;
852
853         /* If this bit is set, then the RX registers contain the time stamp. No
854          * other packet will be time stamped until we read these registers, so
855          * read the registers to make them available again. Because only one
856          * packet can be time stamped at a time, we know that the register
857          * values must belong to this one here and therefore we don't need to
858          * compare any of the additional attributes stored for it.
859          *
860          * If nothing went wrong, then it should have a shared tx_flags that we
861          * can turn into a skb_shared_hwtstamps.
862          */
863         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
864                 return;
865
866         regval = rd32(E1000_RXSTMPL);
867         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
868
869         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
870
871         /* adjust timestamp for the RX latency based on link speed */
872         if (adapter->hw.mac.type == e1000_i210) {
873                 switch (adapter->link_speed) {
874                 case SPEED_10:
875                         adjust = IGB_I210_RX_LATENCY_10;
876                         break;
877                 case SPEED_100:
878                         adjust = IGB_I210_RX_LATENCY_100;
879                         break;
880                 case SPEED_1000:
881                         adjust = IGB_I210_RX_LATENCY_1000;
882                         break;
883                 }
884         }
885         skb_hwtstamps(skb)->hwtstamp =
886                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
887
888         /* Update the last_rx_timestamp timer in order to enable watchdog check
889          * for error case of latched timestamp on a dropped packet.
890          */
891         adapter->last_rx_timestamp = jiffies;
892 }
893
894 /**
895  * igb_ptp_get_ts_config - get hardware time stamping config
896  * @netdev:
897  * @ifreq:
898  *
899  * Get the hwtstamp_config settings to return to the user. Rather than attempt
900  * to deconstruct the settings from the registers, just return a shadow copy
901  * of the last known settings.
902  **/
903 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
904 {
905         struct igb_adapter *adapter = netdev_priv(netdev);
906         struct hwtstamp_config *config = &adapter->tstamp_config;
907
908         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
909                 -EFAULT : 0;
910 }
911
912 /**
913  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
914  * @adapter: networking device structure
915  * @config: hwtstamp configuration
916  *
917  * Outgoing time stamping can be enabled and disabled. Play nice and
918  * disable it when requested, although it shouldn't case any overhead
919  * when no packet needs it. At most one packet in the queue may be
920  * marked for time stamping, otherwise it would be impossible to tell
921  * for sure to which packet the hardware time stamp belongs.
922  *
923  * Incoming time stamping has to be configured via the hardware
924  * filters. Not all combinations are supported, in particular event
925  * type has to be specified. Matching the kind of event packet is
926  * not supported, with the exception of "all V2 events regardless of
927  * level 2 or 4".
928  */
929 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
930                                       struct hwtstamp_config *config)
931 {
932         struct e1000_hw *hw = &adapter->hw;
933         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
934         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
935         u32 tsync_rx_cfg = 0;
936         bool is_l4 = false;
937         bool is_l2 = false;
938         u32 regval;
939
940         /* reserved for future extensions */
941         if (config->flags)
942                 return -EINVAL;
943
944         switch (config->tx_type) {
945         case HWTSTAMP_TX_OFF:
946                 tsync_tx_ctl = 0;
947         case HWTSTAMP_TX_ON:
948                 break;
949         default:
950                 return -ERANGE;
951         }
952
953         switch (config->rx_filter) {
954         case HWTSTAMP_FILTER_NONE:
955                 tsync_rx_ctl = 0;
956                 break;
957         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
958                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
959                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
960                 is_l4 = true;
961                 break;
962         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
963                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
964                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
965                 is_l4 = true;
966                 break;
967         case HWTSTAMP_FILTER_PTP_V2_EVENT:
968         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
969         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
970         case HWTSTAMP_FILTER_PTP_V2_SYNC:
971         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
972         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
973         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
974         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
975         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
976                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
977                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
978                 is_l2 = true;
979                 is_l4 = true;
980                 break;
981         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
982         case HWTSTAMP_FILTER_NTP_ALL:
983         case HWTSTAMP_FILTER_ALL:
984                 /* 82576 cannot timestamp all packets, which it needs to do to
985                  * support both V1 Sync and Delay_Req messages
986                  */
987                 if (hw->mac.type != e1000_82576) {
988                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
989                         config->rx_filter = HWTSTAMP_FILTER_ALL;
990                         break;
991                 }
992                 /* fall through */
993         default:
994                 config->rx_filter = HWTSTAMP_FILTER_NONE;
995                 return -ERANGE;
996         }
997
998         if (hw->mac.type == e1000_82575) {
999                 if (tsync_rx_ctl | tsync_tx_ctl)
1000                         return -EINVAL;
1001                 return 0;
1002         }
1003
1004         /* Per-packet timestamping only works if all packets are
1005          * timestamped, so enable timestamping in all packets as
1006          * long as one Rx filter was configured.
1007          */
1008         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1009                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1010                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1011                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1012                 is_l2 = true;
1013                 is_l4 = true;
1014
1015                 if ((hw->mac.type == e1000_i210) ||
1016                     (hw->mac.type == e1000_i211)) {
1017                         regval = rd32(E1000_RXPBS);
1018                         regval |= E1000_RXPBS_CFG_TS_EN;
1019                         wr32(E1000_RXPBS, regval);
1020                 }
1021         }
1022
1023         /* enable/disable TX */
1024         regval = rd32(E1000_TSYNCTXCTL);
1025         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1026         regval |= tsync_tx_ctl;
1027         wr32(E1000_TSYNCTXCTL, regval);
1028
1029         /* enable/disable RX */
1030         regval = rd32(E1000_TSYNCRXCTL);
1031         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1032         regval |= tsync_rx_ctl;
1033         wr32(E1000_TSYNCRXCTL, regval);
1034
1035         /* define which PTP packets are time stamped */
1036         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1037
1038         /* define ethertype filter for timestamped packets */
1039         if (is_l2)
1040                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1041                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1042                       E1000_ETQF_1588 | /* enable timestamping */
1043                       ETH_P_1588));     /* 1588 eth protocol type */
1044         else
1045                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1046
1047         /* L4 Queue Filter[3]: filter by destination port and protocol */
1048         if (is_l4) {
1049                 u32 ftqf = (IPPROTO_UDP /* UDP */
1050                         | E1000_FTQF_VF_BP /* VF not compared */
1051                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1052                         | E1000_FTQF_MASK); /* mask all inputs */
1053                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1054
1055                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1056                 wr32(E1000_IMIREXT(3),
1057                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1058                 if (hw->mac.type == e1000_82576) {
1059                         /* enable source port check */
1060                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1061                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1062                 }
1063                 wr32(E1000_FTQF(3), ftqf);
1064         } else {
1065                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1066         }
1067         wrfl();
1068
1069         /* clear TX/RX time stamp registers, just to be sure */
1070         regval = rd32(E1000_TXSTMPL);
1071         regval = rd32(E1000_TXSTMPH);
1072         regval = rd32(E1000_RXSTMPL);
1073         regval = rd32(E1000_RXSTMPH);
1074
1075         return 0;
1076 }
1077
1078 /**
1079  * igb_ptp_set_ts_config - set hardware time stamping config
1080  * @netdev:
1081  * @ifreq:
1082  *
1083  **/
1084 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1085 {
1086         struct igb_adapter *adapter = netdev_priv(netdev);
1087         struct hwtstamp_config config;
1088         int err;
1089
1090         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1091                 return -EFAULT;
1092
1093         err = igb_ptp_set_timestamp_mode(adapter, &config);
1094         if (err)
1095                 return err;
1096
1097         /* save these settings for future reference */
1098         memcpy(&adapter->tstamp_config, &config,
1099                sizeof(adapter->tstamp_config));
1100
1101         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1102                 -EFAULT : 0;
1103 }
1104
1105 /**
1106  * igb_ptp_init - Initialize PTP functionality
1107  * @adapter: Board private structure
1108  *
1109  * This function is called at device probe to initialize the PTP
1110  * functionality.
1111  */
1112 void igb_ptp_init(struct igb_adapter *adapter)
1113 {
1114         struct e1000_hw *hw = &adapter->hw;
1115         struct net_device *netdev = adapter->netdev;
1116         int i;
1117
1118         switch (hw->mac.type) {
1119         case e1000_82576:
1120                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1121                 adapter->ptp_caps.owner = THIS_MODULE;
1122                 adapter->ptp_caps.max_adj = 999999881;
1123                 adapter->ptp_caps.n_ext_ts = 0;
1124                 adapter->ptp_caps.pps = 0;
1125                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1126                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1127                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1128                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1129                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1130                 adapter->cc.read = igb_ptp_read_82576;
1131                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1132                 adapter->cc.mult = 1;
1133                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1134                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1135                 break;
1136         case e1000_82580:
1137         case e1000_i354:
1138         case e1000_i350:
1139                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1140                 adapter->ptp_caps.owner = THIS_MODULE;
1141                 adapter->ptp_caps.max_adj = 62499999;
1142                 adapter->ptp_caps.n_ext_ts = 0;
1143                 adapter->ptp_caps.pps = 0;
1144                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1145                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1146                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1147                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1148                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1149                 adapter->cc.read = igb_ptp_read_82580;
1150                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1151                 adapter->cc.mult = 1;
1152                 adapter->cc.shift = 0;
1153                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1154                 break;
1155         case e1000_i210:
1156         case e1000_i211:
1157                 for (i = 0; i < IGB_N_SDP; i++) {
1158                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1159
1160                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1161                         ppd->index = i;
1162                         ppd->func = PTP_PF_NONE;
1163                 }
1164                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1165                 adapter->ptp_caps.owner = THIS_MODULE;
1166                 adapter->ptp_caps.max_adj = 62499999;
1167                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1168                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1169                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1170                 adapter->ptp_caps.pps = 1;
1171                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1172                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1173                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1174                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1175                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1176                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1177                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1178                 break;
1179         default:
1180                 adapter->ptp_clock = NULL;
1181                 return;
1182         }
1183
1184         spin_lock_init(&adapter->tmreg_lock);
1185         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1186
1187         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1188                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1189                                   igb_ptp_overflow_check);
1190
1191         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1192         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1193
1194         igb_ptp_reset(adapter);
1195
1196         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1197                                                 &adapter->pdev->dev);
1198         if (IS_ERR(adapter->ptp_clock)) {
1199                 adapter->ptp_clock = NULL;
1200                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1201         } else if (adapter->ptp_clock) {
1202                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1203                          adapter->netdev->name);
1204                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1205         }
1206 }
1207
1208 /**
1209  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1210  * @adapter: Board private structure
1211  *
1212  * This function stops the overflow check work and PTP Tx timestamp work, and
1213  * will prepare the device for OS suspend.
1214  */
1215 void igb_ptp_suspend(struct igb_adapter *adapter)
1216 {
1217         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1218                 return;
1219
1220         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1221                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1222
1223         cancel_work_sync(&adapter->ptp_tx_work);
1224         if (adapter->ptp_tx_skb) {
1225                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1226                 adapter->ptp_tx_skb = NULL;
1227                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1228         }
1229 }
1230
1231 /**
1232  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1233  * @adapter: Board private structure.
1234  *
1235  * This function stops the PTP support and cancels the delayed work.
1236  **/
1237 void igb_ptp_stop(struct igb_adapter *adapter)
1238 {
1239         igb_ptp_suspend(adapter);
1240
1241         if (adapter->ptp_clock) {
1242                 ptp_clock_unregister(adapter->ptp_clock);
1243                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1244                          adapter->netdev->name);
1245                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1246         }
1247 }
1248
1249 /**
1250  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1251  * @adapter: Board private structure.
1252  *
1253  * This function handles the reset work required to re-enable the PTP device.
1254  **/
1255 void igb_ptp_reset(struct igb_adapter *adapter)
1256 {
1257         struct e1000_hw *hw = &adapter->hw;
1258         unsigned long flags;
1259
1260         /* reset the tstamp_config */
1261         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1262
1263         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264
1265         switch (adapter->hw.mac.type) {
1266         case e1000_82576:
1267                 /* Dial the nominal frequency. */
1268                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1269                 break;
1270         case e1000_82580:
1271         case e1000_i354:
1272         case e1000_i350:
1273         case e1000_i210:
1274         case e1000_i211:
1275                 wr32(E1000_TSAUXC, 0x0);
1276                 wr32(E1000_TSSDP, 0x0);
1277                 wr32(E1000_TSIM,
1278                      TSYNC_INTERRUPTS |
1279                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1280                 wr32(E1000_IMS, E1000_IMS_TS);
1281                 break;
1282         default:
1283                 /* No work to do. */
1284                 goto out;
1285         }
1286
1287         /* Re-initialize the timer. */
1288         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1289                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1290
1291                 igb_ptp_write_i210(adapter, &ts);
1292         } else {
1293                 timecounter_init(&adapter->tc, &adapter->cc,
1294                                  ktime_to_ns(ktime_get_real()));
1295         }
1296 out:
1297         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1298
1299         wrfl();
1300
1301         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1302                 schedule_delayed_work(&adapter->ptp_overflow_work,
1303                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1304 }