GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52
53 #include "ixgbevf.h"
54
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58
59 #define DRV_VERSION "3.2.2-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62         "Copyright (c) 2009 - 2015 Intel Corporation.";
63
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65         [board_82599_vf]        = &ixgbevf_82599_vf_info,
66         [board_82599_vf_hv]     = &ixgbevf_82599_vf_hv_info,
67         [board_X540_vf]         = &ixgbevf_X540_vf_info,
68         [board_X540_vf_hv]      = &ixgbevf_X540_vf_hv_info,
69         [board_X550_vf]         = &ixgbevf_X550_vf_info,
70         [board_X550_vf_hv]      = &ixgbevf_X550_vf_hv_info,
71         [board_X550EM_x_vf]     = &ixgbevf_X550EM_x_vf_info,
72         [board_X550EM_x_vf_hv]  = &ixgbevf_X550EM_x_vf_hv_info,
73         [board_x550em_a_vf]     = &ixgbevf_x550em_a_vf_info,
74 };
75
76 /* ixgbevf_pci_tbl - PCI Device ID Table
77  *
78  * Wildcard entries (PCI_ANY_ID) should come last
79  * Last entry must be all 0s
80  *
81  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
82  *   Class, Class Mask, private data (not used) }
83  */
84 static const struct pci_device_id ixgbevf_pci_tbl[] = {
85         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
86         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
87         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
88         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
89         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
90         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
91         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
92         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
93         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
94         /* required last entry */
95         {0, }
96 };
97 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
98
99 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
100 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
101 MODULE_LICENSE("GPL");
102 MODULE_VERSION(DRV_VERSION);
103
104 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
105 static int debug = -1;
106 module_param(debug, int, 0);
107 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
108
109 static struct workqueue_struct *ixgbevf_wq;
110
111 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
112 {
113         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
114             !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
115             !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
116                 queue_work(ixgbevf_wq, &adapter->service_task);
117 }
118
119 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
120 {
121         BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
122
123         /* flush memory to make sure state is correct before next watchdog */
124         smp_mb__before_atomic();
125         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
126 }
127
128 /* forward decls */
129 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
130 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
131 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
132
133 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
134 {
135         struct ixgbevf_adapter *adapter = hw->back;
136
137         if (!hw->hw_addr)
138                 return;
139         hw->hw_addr = NULL;
140         dev_err(&adapter->pdev->dev, "Adapter removed\n");
141         if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
142                 ixgbevf_service_event_schedule(adapter);
143 }
144
145 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
146 {
147         u32 value;
148
149         /* The following check not only optimizes a bit by not
150          * performing a read on the status register when the
151          * register just read was a status register read that
152          * returned IXGBE_FAILED_READ_REG. It also blocks any
153          * potential recursion.
154          */
155         if (reg == IXGBE_VFSTATUS) {
156                 ixgbevf_remove_adapter(hw);
157                 return;
158         }
159         value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
160         if (value == IXGBE_FAILED_READ_REG)
161                 ixgbevf_remove_adapter(hw);
162 }
163
164 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
165 {
166         u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
167         u32 value;
168
169         if (IXGBE_REMOVED(reg_addr))
170                 return IXGBE_FAILED_READ_REG;
171         value = readl(reg_addr + reg);
172         if (unlikely(value == IXGBE_FAILED_READ_REG))
173                 ixgbevf_check_remove(hw, reg);
174         return value;
175 }
176
177 /**
178  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
179  * @adapter: pointer to adapter struct
180  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
181  * @queue: queue to map the corresponding interrupt to
182  * @msix_vector: the vector to map to the corresponding queue
183  **/
184 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
185                              u8 queue, u8 msix_vector)
186 {
187         u32 ivar, index;
188         struct ixgbe_hw *hw = &adapter->hw;
189
190         if (direction == -1) {
191                 /* other causes */
192                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
193                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
194                 ivar &= ~0xFF;
195                 ivar |= msix_vector;
196                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
197         } else {
198                 /* Tx or Rx causes */
199                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
200                 index = ((16 * (queue & 1)) + (8 * direction));
201                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
202                 ivar &= ~(0xFF << index);
203                 ivar |= (msix_vector << index);
204                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
205         }
206 }
207
208 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
209                                         struct ixgbevf_tx_buffer *tx_buffer)
210 {
211         if (tx_buffer->skb) {
212                 dev_kfree_skb_any(tx_buffer->skb);
213                 if (dma_unmap_len(tx_buffer, len))
214                         dma_unmap_single(tx_ring->dev,
215                                          dma_unmap_addr(tx_buffer, dma),
216                                          dma_unmap_len(tx_buffer, len),
217                                          DMA_TO_DEVICE);
218         } else if (dma_unmap_len(tx_buffer, len)) {
219                 dma_unmap_page(tx_ring->dev,
220                                dma_unmap_addr(tx_buffer, dma),
221                                dma_unmap_len(tx_buffer, len),
222                                DMA_TO_DEVICE);
223         }
224         tx_buffer->next_to_watch = NULL;
225         tx_buffer->skb = NULL;
226         dma_unmap_len_set(tx_buffer, len, 0);
227         /* tx_buffer must be completely set up in the transmit path */
228 }
229
230 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
231 {
232         return ring->stats.packets;
233 }
234
235 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
236 {
237         struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
238         struct ixgbe_hw *hw = &adapter->hw;
239
240         u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
241         u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
242
243         if (head != tail)
244                 return (head < tail) ?
245                         tail - head : (tail + ring->count - head);
246
247         return 0;
248 }
249
250 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
251 {
252         u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
253         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
254         u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
255
256         clear_check_for_tx_hang(tx_ring);
257
258         /* Check for a hung queue, but be thorough. This verifies
259          * that a transmit has been completed since the previous
260          * check AND there is at least one packet pending. The
261          * ARMED bit is set to indicate a potential hang.
262          */
263         if ((tx_done_old == tx_done) && tx_pending) {
264                 /* make sure it is true for two checks in a row */
265                 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
266                                         &tx_ring->state);
267         }
268         /* reset the countdown */
269         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
270
271         /* update completed stats and continue */
272         tx_ring->tx_stats.tx_done_old = tx_done;
273
274         return false;
275 }
276
277 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
278 {
279         /* Do the reset outside of interrupt context */
280         if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
281                 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
282                 ixgbevf_service_event_schedule(adapter);
283         }
284 }
285
286 /**
287  * ixgbevf_tx_timeout - Respond to a Tx Hang
288  * @netdev: network interface device structure
289  **/
290 static void ixgbevf_tx_timeout(struct net_device *netdev)
291 {
292         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
293
294         ixgbevf_tx_timeout_reset(adapter);
295 }
296
297 /**
298  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
299  * @q_vector: board private structure
300  * @tx_ring: tx ring to clean
301  * @napi_budget: Used to determine if we are in netpoll
302  **/
303 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
304                                  struct ixgbevf_ring *tx_ring, int napi_budget)
305 {
306         struct ixgbevf_adapter *adapter = q_vector->adapter;
307         struct ixgbevf_tx_buffer *tx_buffer;
308         union ixgbe_adv_tx_desc *tx_desc;
309         unsigned int total_bytes = 0, total_packets = 0;
310         unsigned int budget = tx_ring->count / 2;
311         unsigned int i = tx_ring->next_to_clean;
312
313         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
314                 return true;
315
316         tx_buffer = &tx_ring->tx_buffer_info[i];
317         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
318         i -= tx_ring->count;
319
320         do {
321                 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
322
323                 /* if next_to_watch is not set then there is no work pending */
324                 if (!eop_desc)
325                         break;
326
327                 /* prevent any other reads prior to eop_desc */
328                 smp_rmb();
329
330                 /* if DD is not set pending work has not been completed */
331                 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
332                         break;
333
334                 /* clear next_to_watch to prevent false hangs */
335                 tx_buffer->next_to_watch = NULL;
336
337                 /* update the statistics for this packet */
338                 total_bytes += tx_buffer->bytecount;
339                 total_packets += tx_buffer->gso_segs;
340
341                 /* free the skb */
342                 napi_consume_skb(tx_buffer->skb, napi_budget);
343
344                 /* unmap skb header data */
345                 dma_unmap_single(tx_ring->dev,
346                                  dma_unmap_addr(tx_buffer, dma),
347                                  dma_unmap_len(tx_buffer, len),
348                                  DMA_TO_DEVICE);
349
350                 /* clear tx_buffer data */
351                 tx_buffer->skb = NULL;
352                 dma_unmap_len_set(tx_buffer, len, 0);
353
354                 /* unmap remaining buffers */
355                 while (tx_desc != eop_desc) {
356                         tx_buffer++;
357                         tx_desc++;
358                         i++;
359                         if (unlikely(!i)) {
360                                 i -= tx_ring->count;
361                                 tx_buffer = tx_ring->tx_buffer_info;
362                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
363                         }
364
365                         /* unmap any remaining paged data */
366                         if (dma_unmap_len(tx_buffer, len)) {
367                                 dma_unmap_page(tx_ring->dev,
368                                                dma_unmap_addr(tx_buffer, dma),
369                                                dma_unmap_len(tx_buffer, len),
370                                                DMA_TO_DEVICE);
371                                 dma_unmap_len_set(tx_buffer, len, 0);
372                         }
373                 }
374
375                 /* move us one more past the eop_desc for start of next pkt */
376                 tx_buffer++;
377                 tx_desc++;
378                 i++;
379                 if (unlikely(!i)) {
380                         i -= tx_ring->count;
381                         tx_buffer = tx_ring->tx_buffer_info;
382                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
383                 }
384
385                 /* issue prefetch for next Tx descriptor */
386                 prefetch(tx_desc);
387
388                 /* update budget accounting */
389                 budget--;
390         } while (likely(budget));
391
392         i += tx_ring->count;
393         tx_ring->next_to_clean = i;
394         u64_stats_update_begin(&tx_ring->syncp);
395         tx_ring->stats.bytes += total_bytes;
396         tx_ring->stats.packets += total_packets;
397         u64_stats_update_end(&tx_ring->syncp);
398         q_vector->tx.total_bytes += total_bytes;
399         q_vector->tx.total_packets += total_packets;
400
401         if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
402                 struct ixgbe_hw *hw = &adapter->hw;
403                 union ixgbe_adv_tx_desc *eop_desc;
404
405                 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
406
407                 pr_err("Detected Tx Unit Hang\n"
408                        "  Tx Queue             <%d>\n"
409                        "  TDH, TDT             <%x>, <%x>\n"
410                        "  next_to_use          <%x>\n"
411                        "  next_to_clean        <%x>\n"
412                        "tx_buffer_info[next_to_clean]\n"
413                        "  next_to_watch        <%p>\n"
414                        "  eop_desc->wb.status  <%x>\n"
415                        "  time_stamp           <%lx>\n"
416                        "  jiffies              <%lx>\n",
417                        tx_ring->queue_index,
418                        IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
419                        IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
420                        tx_ring->next_to_use, i,
421                        eop_desc, (eop_desc ? eop_desc->wb.status : 0),
422                        tx_ring->tx_buffer_info[i].time_stamp, jiffies);
423
424                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
425
426                 /* schedule immediate reset if we believe we hung */
427                 ixgbevf_tx_timeout_reset(adapter);
428
429                 return true;
430         }
431
432 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
433         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
434                      (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
435                 /* Make sure that anybody stopping the queue after this
436                  * sees the new next_to_clean.
437                  */
438                 smp_mb();
439
440                 if (__netif_subqueue_stopped(tx_ring->netdev,
441                                              tx_ring->queue_index) &&
442                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
443                         netif_wake_subqueue(tx_ring->netdev,
444                                             tx_ring->queue_index);
445                         ++tx_ring->tx_stats.restart_queue;
446                 }
447         }
448
449         return !!budget;
450 }
451
452 /**
453  * ixgbevf_rx_skb - Helper function to determine proper Rx method
454  * @q_vector: structure containing interrupt and ring information
455  * @skb: packet to send up
456  **/
457 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
458                            struct sk_buff *skb)
459 {
460 #ifdef CONFIG_NET_RX_BUSY_POLL
461         skb_mark_napi_id(skb, &q_vector->napi);
462
463         if (ixgbevf_qv_busy_polling(q_vector)) {
464                 netif_receive_skb(skb);
465                 /* exit early if we busy polled */
466                 return;
467         }
468 #endif /* CONFIG_NET_RX_BUSY_POLL */
469
470         napi_gro_receive(&q_vector->napi, skb);
471 }
472
473 #define IXGBE_RSS_L4_TYPES_MASK \
474         ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
475          (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
476          (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
477          (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
478
479 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
480                                    union ixgbe_adv_rx_desc *rx_desc,
481                                    struct sk_buff *skb)
482 {
483         u16 rss_type;
484
485         if (!(ring->netdev->features & NETIF_F_RXHASH))
486                 return;
487
488         rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
489                    IXGBE_RXDADV_RSSTYPE_MASK;
490
491         if (!rss_type)
492                 return;
493
494         skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
495                      (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
496                      PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
497 }
498
499 /**
500  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
501  * @ring: structure containig ring specific data
502  * @rx_desc: current Rx descriptor being processed
503  * @skb: skb currently being received and modified
504  **/
505 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
506                                        union ixgbe_adv_rx_desc *rx_desc,
507                                        struct sk_buff *skb)
508 {
509         skb_checksum_none_assert(skb);
510
511         /* Rx csum disabled */
512         if (!(ring->netdev->features & NETIF_F_RXCSUM))
513                 return;
514
515         /* if IP and error */
516         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
517             ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
518                 ring->rx_stats.csum_err++;
519                 return;
520         }
521
522         if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
523                 return;
524
525         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
526                 ring->rx_stats.csum_err++;
527                 return;
528         }
529
530         /* It must be a TCP or UDP packet with a valid checksum */
531         skb->ip_summed = CHECKSUM_UNNECESSARY;
532 }
533
534 /**
535  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
536  * @rx_ring: rx descriptor ring packet is being transacted on
537  * @rx_desc: pointer to the EOP Rx descriptor
538  * @skb: pointer to current skb being populated
539  *
540  * This function checks the ring, descriptor, and packet information in
541  * order to populate the checksum, VLAN, protocol, and other fields within
542  * the skb.
543  **/
544 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
545                                        union ixgbe_adv_rx_desc *rx_desc,
546                                        struct sk_buff *skb)
547 {
548         ixgbevf_rx_hash(rx_ring, rx_desc, skb);
549         ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
550
551         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
552                 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
553                 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
554
555                 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
556                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
557         }
558
559         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
560 }
561
562 /**
563  * ixgbevf_is_non_eop - process handling of non-EOP buffers
564  * @rx_ring: Rx ring being processed
565  * @rx_desc: Rx descriptor for current buffer
566  * @skb: current socket buffer containing buffer in progress
567  *
568  * This function updates next to clean.  If the buffer is an EOP buffer
569  * this function exits returning false, otherwise it will place the
570  * sk_buff in the next buffer to be chained and return true indicating
571  * that this is in fact a non-EOP buffer.
572  **/
573 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
574                                union ixgbe_adv_rx_desc *rx_desc)
575 {
576         u32 ntc = rx_ring->next_to_clean + 1;
577
578         /* fetch, update, and store next to clean */
579         ntc = (ntc < rx_ring->count) ? ntc : 0;
580         rx_ring->next_to_clean = ntc;
581
582         prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
583
584         if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
585                 return false;
586
587         return true;
588 }
589
590 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
591                                       struct ixgbevf_rx_buffer *bi)
592 {
593         struct page *page = bi->page;
594         dma_addr_t dma = bi->dma;
595
596         /* since we are recycling buffers we should seldom need to alloc */
597         if (likely(page))
598                 return true;
599
600         /* alloc new page for storage */
601         page = dev_alloc_page();
602         if (unlikely(!page)) {
603                 rx_ring->rx_stats.alloc_rx_page_failed++;
604                 return false;
605         }
606
607         /* map page for use */
608         dma = dma_map_page(rx_ring->dev, page, 0,
609                            PAGE_SIZE, DMA_FROM_DEVICE);
610
611         /* if mapping failed free memory back to system since
612          * there isn't much point in holding memory we can't use
613          */
614         if (dma_mapping_error(rx_ring->dev, dma)) {
615                 __free_page(page);
616
617                 rx_ring->rx_stats.alloc_rx_buff_failed++;
618                 return false;
619         }
620
621         bi->dma = dma;
622         bi->page = page;
623         bi->page_offset = 0;
624
625         return true;
626 }
627
628 /**
629  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
630  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
631  * @cleaned_count: number of buffers to replace
632  **/
633 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
634                                      u16 cleaned_count)
635 {
636         union ixgbe_adv_rx_desc *rx_desc;
637         struct ixgbevf_rx_buffer *bi;
638         unsigned int i = rx_ring->next_to_use;
639
640         /* nothing to do or no valid netdev defined */
641         if (!cleaned_count || !rx_ring->netdev)
642                 return;
643
644         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
645         bi = &rx_ring->rx_buffer_info[i];
646         i -= rx_ring->count;
647
648         do {
649                 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
650                         break;
651
652                 /* Refresh the desc even if pkt_addr didn't change
653                  * because each write-back erases this info.
654                  */
655                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
656
657                 rx_desc++;
658                 bi++;
659                 i++;
660                 if (unlikely(!i)) {
661                         rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
662                         bi = rx_ring->rx_buffer_info;
663                         i -= rx_ring->count;
664                 }
665
666                 /* clear the hdr_addr for the next_to_use descriptor */
667                 rx_desc->read.hdr_addr = 0;
668
669                 cleaned_count--;
670         } while (cleaned_count);
671
672         i += rx_ring->count;
673
674         if (rx_ring->next_to_use != i) {
675                 /* record the next descriptor to use */
676                 rx_ring->next_to_use = i;
677
678                 /* update next to alloc since we have filled the ring */
679                 rx_ring->next_to_alloc = i;
680
681                 /* Force memory writes to complete before letting h/w
682                  * know there are new descriptors to fetch.  (Only
683                  * applicable for weak-ordered memory model archs,
684                  * such as IA-64).
685                  */
686                 wmb();
687                 ixgbevf_write_tail(rx_ring, i);
688         }
689 }
690
691 /**
692  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
693  * @rx_ring: rx descriptor ring packet is being transacted on
694  * @rx_desc: pointer to the EOP Rx descriptor
695  * @skb: pointer to current skb being fixed
696  *
697  * Check for corrupted packet headers caused by senders on the local L2
698  * embedded NIC switch not setting up their Tx Descriptors right.  These
699  * should be very rare.
700  *
701  * Also address the case where we are pulling data in on pages only
702  * and as such no data is present in the skb header.
703  *
704  * In addition if skb is not at least 60 bytes we need to pad it so that
705  * it is large enough to qualify as a valid Ethernet frame.
706  *
707  * Returns true if an error was encountered and skb was freed.
708  **/
709 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
710                                     union ixgbe_adv_rx_desc *rx_desc,
711                                     struct sk_buff *skb)
712 {
713         /* verify that the packet does not have any known errors */
714         if (unlikely(ixgbevf_test_staterr(rx_desc,
715                                           IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
716                 struct net_device *netdev = rx_ring->netdev;
717
718                 if (!(netdev->features & NETIF_F_RXALL)) {
719                         dev_kfree_skb_any(skb);
720                         return true;
721                 }
722         }
723
724         /* if eth_skb_pad returns an error the skb was freed */
725         if (eth_skb_pad(skb))
726                 return true;
727
728         return false;
729 }
730
731 /**
732  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
733  * @rx_ring: rx descriptor ring to store buffers on
734  * @old_buff: donor buffer to have page reused
735  *
736  * Synchronizes page for reuse by the adapter
737  **/
738 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
739                                   struct ixgbevf_rx_buffer *old_buff)
740 {
741         struct ixgbevf_rx_buffer *new_buff;
742         u16 nta = rx_ring->next_to_alloc;
743
744         new_buff = &rx_ring->rx_buffer_info[nta];
745
746         /* update, and store next to alloc */
747         nta++;
748         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
749
750         /* transfer page from old buffer to new buffer */
751         new_buff->page = old_buff->page;
752         new_buff->dma = old_buff->dma;
753         new_buff->page_offset = old_buff->page_offset;
754
755         /* sync the buffer for use by the device */
756         dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
757                                          new_buff->page_offset,
758                                          IXGBEVF_RX_BUFSZ,
759                                          DMA_FROM_DEVICE);
760 }
761
762 static inline bool ixgbevf_page_is_reserved(struct page *page)
763 {
764         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
765 }
766
767 /**
768  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
769  * @rx_ring: rx descriptor ring to transact packets on
770  * @rx_buffer: buffer containing page to add
771  * @rx_desc: descriptor containing length of buffer written by hardware
772  * @skb: sk_buff to place the data into
773  *
774  * This function will add the data contained in rx_buffer->page to the skb.
775  * This is done either through a direct copy if the data in the buffer is
776  * less than the skb header size, otherwise it will just attach the page as
777  * a frag to the skb.
778  *
779  * The function will then update the page offset if necessary and return
780  * true if the buffer can be reused by the adapter.
781  **/
782 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
783                                 struct ixgbevf_rx_buffer *rx_buffer,
784                                 union ixgbe_adv_rx_desc *rx_desc,
785                                 struct sk_buff *skb)
786 {
787         struct page *page = rx_buffer->page;
788         unsigned char *va = page_address(page) + rx_buffer->page_offset;
789         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
790 #if (PAGE_SIZE < 8192)
791         unsigned int truesize = IXGBEVF_RX_BUFSZ;
792 #else
793         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
794 #endif
795         unsigned int pull_len;
796
797         if (unlikely(skb_is_nonlinear(skb)))
798                 goto add_tail_frag;
799
800         if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
801                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
802
803                 /* page is not reserved, we can reuse buffer as is */
804                 if (likely(!ixgbevf_page_is_reserved(page)))
805                         return true;
806
807                 /* this page cannot be reused so discard it */
808                 put_page(page);
809                 return false;
810         }
811
812         /* we need the header to contain the greater of either ETH_HLEN or
813          * 60 bytes if the skb->len is less than 60 for skb_pad.
814          */
815         pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
816
817         /* align pull length to size of long to optimize memcpy performance */
818         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
819
820         /* update all of the pointers */
821         va += pull_len;
822         size -= pull_len;
823
824 add_tail_frag:
825         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
826                         (unsigned long)va & ~PAGE_MASK, size, truesize);
827
828         /* avoid re-using remote pages */
829         if (unlikely(ixgbevf_page_is_reserved(page)))
830                 return false;
831
832 #if (PAGE_SIZE < 8192)
833         /* if we are only owner of page we can reuse it */
834         if (unlikely(page_count(page) != 1))
835                 return false;
836
837         /* flip page offset to other buffer */
838         rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
839
840 #else
841         /* move offset up to the next cache line */
842         rx_buffer->page_offset += truesize;
843
844         if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
845                 return false;
846
847 #endif
848         /* Even if we own the page, we are not allowed to use atomic_set()
849          * This would break get_page_unless_zero() users.
850          */
851         page_ref_inc(page);
852
853         return true;
854 }
855
856 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
857                                                union ixgbe_adv_rx_desc *rx_desc,
858                                                struct sk_buff *skb)
859 {
860         struct ixgbevf_rx_buffer *rx_buffer;
861         struct page *page;
862
863         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
864         page = rx_buffer->page;
865         prefetchw(page);
866
867         if (likely(!skb)) {
868                 void *page_addr = page_address(page) +
869                                   rx_buffer->page_offset;
870
871                 /* prefetch first cache line of first page */
872                 prefetch(page_addr);
873 #if L1_CACHE_BYTES < 128
874                 prefetch(page_addr + L1_CACHE_BYTES);
875 #endif
876
877                 /* allocate a skb to store the frags */
878                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
879                                                 IXGBEVF_RX_HDR_SIZE);
880                 if (unlikely(!skb)) {
881                         rx_ring->rx_stats.alloc_rx_buff_failed++;
882                         return NULL;
883                 }
884
885                 /* we will be copying header into skb->data in
886                  * pskb_may_pull so it is in our interest to prefetch
887                  * it now to avoid a possible cache miss
888                  */
889                 prefetchw(skb->data);
890         }
891
892         /* we are reusing so sync this buffer for CPU use */
893         dma_sync_single_range_for_cpu(rx_ring->dev,
894                                       rx_buffer->dma,
895                                       rx_buffer->page_offset,
896                                       IXGBEVF_RX_BUFSZ,
897                                       DMA_FROM_DEVICE);
898
899         /* pull page into skb */
900         if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
901                 /* hand second half of page back to the ring */
902                 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
903         } else {
904                 /* we are not reusing the buffer so unmap it */
905                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
906                                PAGE_SIZE, DMA_FROM_DEVICE);
907         }
908
909         /* clear contents of buffer_info */
910         rx_buffer->dma = 0;
911         rx_buffer->page = NULL;
912
913         return skb;
914 }
915
916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
917                                              u32 qmask)
918 {
919         struct ixgbe_hw *hw = &adapter->hw;
920
921         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
922 }
923
924 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
925                                 struct ixgbevf_ring *rx_ring,
926                                 int budget)
927 {
928         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
929         u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
930         struct sk_buff *skb = rx_ring->skb;
931
932         while (likely(total_rx_packets < budget)) {
933                 union ixgbe_adv_rx_desc *rx_desc;
934
935                 /* return some buffers to hardware, one at a time is too slow */
936                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
937                         ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
938                         cleaned_count = 0;
939                 }
940
941                 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
942
943                 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
944                         break;
945
946                 /* This memory barrier is needed to keep us from reading
947                  * any other fields out of the rx_desc until we know the
948                  * RXD_STAT_DD bit is set
949                  */
950                 rmb();
951
952                 /* retrieve a buffer from the ring */
953                 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
954
955                 /* exit if we failed to retrieve a buffer */
956                 if (!skb)
957                         break;
958
959                 cleaned_count++;
960
961                 /* fetch next buffer in frame if non-eop */
962                 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
963                         continue;
964
965                 /* verify the packet layout is correct */
966                 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
967                         skb = NULL;
968                         continue;
969                 }
970
971                 /* probably a little skewed due to removing CRC */
972                 total_rx_bytes += skb->len;
973
974                 /* Workaround hardware that can't do proper VEPA multicast
975                  * source pruning.
976                  */
977                 if ((skb->pkt_type == PACKET_BROADCAST ||
978                      skb->pkt_type == PACKET_MULTICAST) &&
979                     ether_addr_equal(rx_ring->netdev->dev_addr,
980                                      eth_hdr(skb)->h_source)) {
981                         dev_kfree_skb_irq(skb);
982                         continue;
983                 }
984
985                 /* populate checksum, VLAN, and protocol */
986                 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
987
988                 ixgbevf_rx_skb(q_vector, skb);
989
990                 /* reset skb pointer */
991                 skb = NULL;
992
993                 /* update budget accounting */
994                 total_rx_packets++;
995         }
996
997         /* place incomplete frames back on ring for completion */
998         rx_ring->skb = skb;
999
1000         u64_stats_update_begin(&rx_ring->syncp);
1001         rx_ring->stats.packets += total_rx_packets;
1002         rx_ring->stats.bytes += total_rx_bytes;
1003         u64_stats_update_end(&rx_ring->syncp);
1004         q_vector->rx.total_packets += total_rx_packets;
1005         q_vector->rx.total_bytes += total_rx_bytes;
1006
1007         return total_rx_packets;
1008 }
1009
1010 /**
1011  * ixgbevf_poll - NAPI polling calback
1012  * @napi: napi struct with our devices info in it
1013  * @budget: amount of work driver is allowed to do this pass, in packets
1014  *
1015  * This function will clean more than one or more rings associated with a
1016  * q_vector.
1017  **/
1018 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1019 {
1020         struct ixgbevf_q_vector *q_vector =
1021                 container_of(napi, struct ixgbevf_q_vector, napi);
1022         struct ixgbevf_adapter *adapter = q_vector->adapter;
1023         struct ixgbevf_ring *ring;
1024         int per_ring_budget, work_done = 0;
1025         bool clean_complete = true;
1026
1027         ixgbevf_for_each_ring(ring, q_vector->tx) {
1028                 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1029                         clean_complete = false;
1030         }
1031
1032         if (budget <= 0)
1033                 return budget;
1034 #ifdef CONFIG_NET_RX_BUSY_POLL
1035         if (!ixgbevf_qv_lock_napi(q_vector))
1036                 return budget;
1037 #endif
1038
1039         /* attempt to distribute budget to each queue fairly, but don't allow
1040          * the budget to go below 1 because we'll exit polling
1041          */
1042         if (q_vector->rx.count > 1)
1043                 per_ring_budget = max(budget/q_vector->rx.count, 1);
1044         else
1045                 per_ring_budget = budget;
1046
1047         ixgbevf_for_each_ring(ring, q_vector->rx) {
1048                 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1049                                                    per_ring_budget);
1050                 work_done += cleaned;
1051                 if (cleaned >= per_ring_budget)
1052                         clean_complete = false;
1053         }
1054
1055 #ifdef CONFIG_NET_RX_BUSY_POLL
1056         ixgbevf_qv_unlock_napi(q_vector);
1057 #endif
1058
1059         /* If all work not completed, return budget and keep polling */
1060         if (!clean_complete)
1061                 return budget;
1062         /* all work done, exit the polling mode */
1063         napi_complete_done(napi, work_done);
1064         if (adapter->rx_itr_setting == 1)
1065                 ixgbevf_set_itr(q_vector);
1066         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1067             !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1068                 ixgbevf_irq_enable_queues(adapter,
1069                                           BIT(q_vector->v_idx));
1070
1071         return 0;
1072 }
1073
1074 /**
1075  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1076  * @q_vector: structure containing interrupt and ring information
1077  **/
1078 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1079 {
1080         struct ixgbevf_adapter *adapter = q_vector->adapter;
1081         struct ixgbe_hw *hw = &adapter->hw;
1082         int v_idx = q_vector->v_idx;
1083         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1084
1085         /* set the WDIS bit to not clear the timer bits and cause an
1086          * immediate assertion of the interrupt
1087          */
1088         itr_reg |= IXGBE_EITR_CNT_WDIS;
1089
1090         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1091 }
1092
1093 #ifdef CONFIG_NET_RX_BUSY_POLL
1094 /* must be called with local_bh_disable()d */
1095 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1096 {
1097         struct ixgbevf_q_vector *q_vector =
1098                         container_of(napi, struct ixgbevf_q_vector, napi);
1099         struct ixgbevf_adapter *adapter = q_vector->adapter;
1100         struct ixgbevf_ring  *ring;
1101         int found = 0;
1102
1103         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1104                 return LL_FLUSH_FAILED;
1105
1106         if (!ixgbevf_qv_lock_poll(q_vector))
1107                 return LL_FLUSH_BUSY;
1108
1109         ixgbevf_for_each_ring(ring, q_vector->rx) {
1110                 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1111 #ifdef BP_EXTENDED_STATS
1112                 if (found)
1113                         ring->stats.cleaned += found;
1114                 else
1115                         ring->stats.misses++;
1116 #endif
1117                 if (found)
1118                         break;
1119         }
1120
1121         ixgbevf_qv_unlock_poll(q_vector);
1122
1123         return found;
1124 }
1125 #endif /* CONFIG_NET_RX_BUSY_POLL */
1126
1127 /**
1128  * ixgbevf_configure_msix - Configure MSI-X hardware
1129  * @adapter: board private structure
1130  *
1131  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1132  * interrupts.
1133  **/
1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1135 {
1136         struct ixgbevf_q_vector *q_vector;
1137         int q_vectors, v_idx;
1138
1139         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1140         adapter->eims_enable_mask = 0;
1141
1142         /* Populate the IVAR table and set the ITR values to the
1143          * corresponding register.
1144          */
1145         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1146                 struct ixgbevf_ring *ring;
1147
1148                 q_vector = adapter->q_vector[v_idx];
1149
1150                 ixgbevf_for_each_ring(ring, q_vector->rx)
1151                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1152
1153                 ixgbevf_for_each_ring(ring, q_vector->tx)
1154                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1155
1156                 if (q_vector->tx.ring && !q_vector->rx.ring) {
1157                         /* Tx only vector */
1158                         if (adapter->tx_itr_setting == 1)
1159                                 q_vector->itr = IXGBE_12K_ITR;
1160                         else
1161                                 q_vector->itr = adapter->tx_itr_setting;
1162                 } else {
1163                         /* Rx or Rx/Tx vector */
1164                         if (adapter->rx_itr_setting == 1)
1165                                 q_vector->itr = IXGBE_20K_ITR;
1166                         else
1167                                 q_vector->itr = adapter->rx_itr_setting;
1168                 }
1169
1170                 /* add q_vector eims value to global eims_enable_mask */
1171                 adapter->eims_enable_mask |= BIT(v_idx);
1172
1173                 ixgbevf_write_eitr(q_vector);
1174         }
1175
1176         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1177         /* setup eims_other and add value to global eims_enable_mask */
1178         adapter->eims_other = BIT(v_idx);
1179         adapter->eims_enable_mask |= adapter->eims_other;
1180 }
1181
1182 enum latency_range {
1183         lowest_latency = 0,
1184         low_latency = 1,
1185         bulk_latency = 2,
1186         latency_invalid = 255
1187 };
1188
1189 /**
1190  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1191  * @q_vector: structure containing interrupt and ring information
1192  * @ring_container: structure containing ring performance data
1193  *
1194  * Stores a new ITR value based on packets and byte
1195  * counts during the last interrupt.  The advantage of per interrupt
1196  * computation is faster updates and more accurate ITR for the current
1197  * traffic pattern.  Constants in this function were computed
1198  * based on theoretical maximum wire speed and thresholds were set based
1199  * on testing data as well as attempting to minimize response time
1200  * while increasing bulk throughput.
1201  **/
1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1203                                struct ixgbevf_ring_container *ring_container)
1204 {
1205         int bytes = ring_container->total_bytes;
1206         int packets = ring_container->total_packets;
1207         u32 timepassed_us;
1208         u64 bytes_perint;
1209         u8 itr_setting = ring_container->itr;
1210
1211         if (packets == 0)
1212                 return;
1213
1214         /* simple throttle rate management
1215          *    0-20MB/s lowest (100000 ints/s)
1216          *   20-100MB/s low   (20000 ints/s)
1217          *  100-1249MB/s bulk (12000 ints/s)
1218          */
1219         /* what was last interrupt timeslice? */
1220         timepassed_us = q_vector->itr >> 2;
1221         bytes_perint = bytes / timepassed_us; /* bytes/usec */
1222
1223         switch (itr_setting) {
1224         case lowest_latency:
1225                 if (bytes_perint > 10)
1226                         itr_setting = low_latency;
1227                 break;
1228         case low_latency:
1229                 if (bytes_perint > 20)
1230                         itr_setting = bulk_latency;
1231                 else if (bytes_perint <= 10)
1232                         itr_setting = lowest_latency;
1233                 break;
1234         case bulk_latency:
1235                 if (bytes_perint <= 20)
1236                         itr_setting = low_latency;
1237                 break;
1238         }
1239
1240         /* clear work counters since we have the values we need */
1241         ring_container->total_bytes = 0;
1242         ring_container->total_packets = 0;
1243
1244         /* write updated itr to ring container */
1245         ring_container->itr = itr_setting;
1246 }
1247
1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1249 {
1250         u32 new_itr = q_vector->itr;
1251         u8 current_itr;
1252
1253         ixgbevf_update_itr(q_vector, &q_vector->tx);
1254         ixgbevf_update_itr(q_vector, &q_vector->rx);
1255
1256         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1257
1258         switch (current_itr) {
1259         /* counts and packets in update_itr are dependent on these numbers */
1260         case lowest_latency:
1261                 new_itr = IXGBE_100K_ITR;
1262                 break;
1263         case low_latency:
1264                 new_itr = IXGBE_20K_ITR;
1265                 break;
1266         case bulk_latency:
1267                 new_itr = IXGBE_12K_ITR;
1268                 break;
1269         default:
1270                 break;
1271         }
1272
1273         if (new_itr != q_vector->itr) {
1274                 /* do an exponential smoothing */
1275                 new_itr = (10 * new_itr * q_vector->itr) /
1276                           ((9 * new_itr) + q_vector->itr);
1277
1278                 /* save the algorithm value here */
1279                 q_vector->itr = new_itr;
1280
1281                 ixgbevf_write_eitr(q_vector);
1282         }
1283 }
1284
1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1286 {
1287         struct ixgbevf_adapter *adapter = data;
1288         struct ixgbe_hw *hw = &adapter->hw;
1289
1290         hw->mac.get_link_status = 1;
1291
1292         ixgbevf_service_event_schedule(adapter);
1293
1294         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1295
1296         return IRQ_HANDLED;
1297 }
1298
1299 /**
1300  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1301  * @irq: unused
1302  * @data: pointer to our q_vector struct for this interrupt vector
1303  **/
1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1305 {
1306         struct ixgbevf_q_vector *q_vector = data;
1307
1308         /* EIAM disabled interrupts (on this vector) for us */
1309         if (q_vector->rx.ring || q_vector->tx.ring)
1310                 napi_schedule_irqoff(&q_vector->napi);
1311
1312         return IRQ_HANDLED;
1313 }
1314
1315 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1316                                      int r_idx)
1317 {
1318         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1319
1320         a->rx_ring[r_idx]->next = q_vector->rx.ring;
1321         q_vector->rx.ring = a->rx_ring[r_idx];
1322         q_vector->rx.count++;
1323 }
1324
1325 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1326                                      int t_idx)
1327 {
1328         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1329
1330         a->tx_ring[t_idx]->next = q_vector->tx.ring;
1331         q_vector->tx.ring = a->tx_ring[t_idx];
1332         q_vector->tx.count++;
1333 }
1334
1335 /**
1336  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1337  * @adapter: board private structure to initialize
1338  *
1339  * This function maps descriptor rings to the queue-specific vectors
1340  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1341  * one vector per ring/queue, but on a constrained vector budget, we
1342  * group the rings as "efficiently" as possible.  You would add new
1343  * mapping configurations in here.
1344  **/
1345 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1346 {
1347         int q_vectors;
1348         int v_start = 0;
1349         int rxr_idx = 0, txr_idx = 0;
1350         int rxr_remaining = adapter->num_rx_queues;
1351         int txr_remaining = adapter->num_tx_queues;
1352         int i, j;
1353         int rqpv, tqpv;
1354
1355         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1356
1357         /* The ideal configuration...
1358          * We have enough vectors to map one per queue.
1359          */
1360         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1361                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1362                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1363
1364                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1365                         map_vector_to_txq(adapter, v_start, txr_idx);
1366                 return 0;
1367         }
1368
1369         /* If we don't have enough vectors for a 1-to-1
1370          * mapping, we'll have to group them so there are
1371          * multiple queues per vector.
1372          */
1373         /* Re-adjusting *qpv takes care of the remainder. */
1374         for (i = v_start; i < q_vectors; i++) {
1375                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1376                 for (j = 0; j < rqpv; j++) {
1377                         map_vector_to_rxq(adapter, i, rxr_idx);
1378                         rxr_idx++;
1379                         rxr_remaining--;
1380                 }
1381         }
1382         for (i = v_start; i < q_vectors; i++) {
1383                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1384                 for (j = 0; j < tqpv; j++) {
1385                         map_vector_to_txq(adapter, i, txr_idx);
1386                         txr_idx++;
1387                         txr_remaining--;
1388                 }
1389         }
1390
1391         return 0;
1392 }
1393
1394 /**
1395  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1396  * @adapter: board private structure
1397  *
1398  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1399  * interrupts from the kernel.
1400  **/
1401 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1402 {
1403         struct net_device *netdev = adapter->netdev;
1404         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1405         int vector, err;
1406         int ri = 0, ti = 0;
1407
1408         for (vector = 0; vector < q_vectors; vector++) {
1409                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1410                 struct msix_entry *entry = &adapter->msix_entries[vector];
1411
1412                 if (q_vector->tx.ring && q_vector->rx.ring) {
1413                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1414                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
1415                         ti++;
1416                 } else if (q_vector->rx.ring) {
1417                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1418                                  "%s-%s-%d", netdev->name, "rx", ri++);
1419                 } else if (q_vector->tx.ring) {
1420                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1421                                  "%s-%s-%d", netdev->name, "tx", ti++);
1422                 } else {
1423                         /* skip this unused q_vector */
1424                         continue;
1425                 }
1426                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1427                                   q_vector->name, q_vector);
1428                 if (err) {
1429                         hw_dbg(&adapter->hw,
1430                                "request_irq failed for MSIX interrupt Error: %d\n",
1431                                err);
1432                         goto free_queue_irqs;
1433                 }
1434         }
1435
1436         err = request_irq(adapter->msix_entries[vector].vector,
1437                           &ixgbevf_msix_other, 0, netdev->name, adapter);
1438         if (err) {
1439                 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1440                        err);
1441                 goto free_queue_irqs;
1442         }
1443
1444         return 0;
1445
1446 free_queue_irqs:
1447         while (vector) {
1448                 vector--;
1449                 free_irq(adapter->msix_entries[vector].vector,
1450                          adapter->q_vector[vector]);
1451         }
1452         /* This failure is non-recoverable - it indicates the system is
1453          * out of MSIX vector resources and the VF driver cannot run
1454          * without them.  Set the number of msix vectors to zero
1455          * indicating that not enough can be allocated.  The error
1456          * will be returned to the user indicating device open failed.
1457          * Any further attempts to force the driver to open will also
1458          * fail.  The only way to recover is to unload the driver and
1459          * reload it again.  If the system has recovered some MSIX
1460          * vectors then it may succeed.
1461          */
1462         adapter->num_msix_vectors = 0;
1463         return err;
1464 }
1465
1466 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1467 {
1468         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1469
1470         for (i = 0; i < q_vectors; i++) {
1471                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1472
1473                 q_vector->rx.ring = NULL;
1474                 q_vector->tx.ring = NULL;
1475                 q_vector->rx.count = 0;
1476                 q_vector->tx.count = 0;
1477         }
1478 }
1479
1480 /**
1481  * ixgbevf_request_irq - initialize interrupts
1482  * @adapter: board private structure
1483  *
1484  * Attempts to configure interrupts using the best available
1485  * capabilities of the hardware and kernel.
1486  **/
1487 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1488 {
1489         int err = ixgbevf_request_msix_irqs(adapter);
1490
1491         if (err)
1492                 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1493
1494         return err;
1495 }
1496
1497 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1498 {
1499         int i, q_vectors;
1500
1501         q_vectors = adapter->num_msix_vectors;
1502         i = q_vectors - 1;
1503
1504         free_irq(adapter->msix_entries[i].vector, adapter);
1505         i--;
1506
1507         for (; i >= 0; i--) {
1508                 /* free only the irqs that were actually requested */
1509                 if (!adapter->q_vector[i]->rx.ring &&
1510                     !adapter->q_vector[i]->tx.ring)
1511                         continue;
1512
1513                 free_irq(adapter->msix_entries[i].vector,
1514                          adapter->q_vector[i]);
1515         }
1516
1517         ixgbevf_reset_q_vectors(adapter);
1518 }
1519
1520 /**
1521  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1522  * @adapter: board private structure
1523  **/
1524 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1525 {
1526         struct ixgbe_hw *hw = &adapter->hw;
1527         int i;
1528
1529         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1530         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1531         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1532
1533         IXGBE_WRITE_FLUSH(hw);
1534
1535         for (i = 0; i < adapter->num_msix_vectors; i++)
1536                 synchronize_irq(adapter->msix_entries[i].vector);
1537 }
1538
1539 /**
1540  * ixgbevf_irq_enable - Enable default interrupt generation settings
1541  * @adapter: board private structure
1542  **/
1543 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1544 {
1545         struct ixgbe_hw *hw = &adapter->hw;
1546
1547         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1548         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1549         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1550 }
1551
1552 /**
1553  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1554  * @adapter: board private structure
1555  * @ring: structure containing ring specific data
1556  *
1557  * Configure the Tx descriptor ring after a reset.
1558  **/
1559 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1560                                       struct ixgbevf_ring *ring)
1561 {
1562         struct ixgbe_hw *hw = &adapter->hw;
1563         u64 tdba = ring->dma;
1564         int wait_loop = 10;
1565         u32 txdctl = IXGBE_TXDCTL_ENABLE;
1566         u8 reg_idx = ring->reg_idx;
1567
1568         /* disable queue to avoid issues while updating state */
1569         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1570         IXGBE_WRITE_FLUSH(hw);
1571
1572         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1573         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1574         IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1575                         ring->count * sizeof(union ixgbe_adv_tx_desc));
1576
1577         /* disable head writeback */
1578         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1579         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1580
1581         /* enable relaxed ordering */
1582         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1583                         (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1584                          IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1585
1586         /* reset head and tail pointers */
1587         IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1588         IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1589         ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1590
1591         /* reset ntu and ntc to place SW in sync with hardwdare */
1592         ring->next_to_clean = 0;
1593         ring->next_to_use = 0;
1594
1595         /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1596          * to or less than the number of on chip descriptors, which is
1597          * currently 40.
1598          */
1599         txdctl |= (8 << 16);    /* WTHRESH = 8 */
1600
1601         /* Setting PTHRESH to 32 both improves performance */
1602         txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1603                    32;           /* PTHRESH = 32 */
1604
1605         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1606
1607         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1608
1609         /* poll to verify queue is enabled */
1610         do {
1611                 usleep_range(1000, 2000);
1612                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1613         }  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1614         if (!wait_loop)
1615                 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1616 }
1617
1618 /**
1619  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1620  * @adapter: board private structure
1621  *
1622  * Configure the Tx unit of the MAC after a reset.
1623  **/
1624 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1625 {
1626         u32 i;
1627
1628         /* Setup the HW Tx Head and Tail descriptor pointers */
1629         for (i = 0; i < adapter->num_tx_queues; i++)
1630                 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1631 }
1632
1633 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1634
1635 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1636 {
1637         struct ixgbe_hw *hw = &adapter->hw;
1638         u32 srrctl;
1639
1640         srrctl = IXGBE_SRRCTL_DROP_EN;
1641
1642         srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1643         srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1644         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1645
1646         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1647 }
1648
1649 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1650 {
1651         struct ixgbe_hw *hw = &adapter->hw;
1652
1653         /* PSRTYPE must be initialized in 82599 */
1654         u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1655                       IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1656                       IXGBE_PSRTYPE_L2HDR;
1657
1658         if (adapter->num_rx_queues > 1)
1659                 psrtype |= BIT(29);
1660
1661         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1662 }
1663
1664 #define IXGBEVF_MAX_RX_DESC_POLL 10
1665 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1666                                      struct ixgbevf_ring *ring)
1667 {
1668         struct ixgbe_hw *hw = &adapter->hw;
1669         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1670         u32 rxdctl;
1671         u8 reg_idx = ring->reg_idx;
1672
1673         if (IXGBE_REMOVED(hw->hw_addr))
1674                 return;
1675         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1676         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1677
1678         /* write value back with RXDCTL.ENABLE bit cleared */
1679         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1680
1681         /* the hardware may take up to 100us to really disable the Rx queue */
1682         do {
1683                 udelay(10);
1684                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1685         } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1686
1687         if (!wait_loop)
1688                 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1689                        reg_idx);
1690 }
1691
1692 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1693                                          struct ixgbevf_ring *ring)
1694 {
1695         struct ixgbe_hw *hw = &adapter->hw;
1696         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1697         u32 rxdctl;
1698         u8 reg_idx = ring->reg_idx;
1699
1700         if (IXGBE_REMOVED(hw->hw_addr))
1701                 return;
1702         do {
1703                 usleep_range(1000, 2000);
1704                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1705         } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1706
1707         if (!wait_loop)
1708                 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1709                        reg_idx);
1710 }
1711
1712 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1713 {
1714         struct ixgbe_hw *hw = &adapter->hw;
1715         u32 vfmrqc = 0, vfreta = 0;
1716         u16 rss_i = adapter->num_rx_queues;
1717         u8 i, j;
1718
1719         /* Fill out hash function seeds */
1720         netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1721         for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1722                 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1723
1724         for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1725                 if (j == rss_i)
1726                         j = 0;
1727
1728                 adapter->rss_indir_tbl[i] = j;
1729
1730                 vfreta |= j << (i & 0x3) * 8;
1731                 if ((i & 3) == 3) {
1732                         IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1733                         vfreta = 0;
1734                 }
1735         }
1736
1737         /* Perform hash on these packet types */
1738         vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1739                 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1740                 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1741                 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1742
1743         vfmrqc |= IXGBE_VFMRQC_RSSEN;
1744
1745         IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1746 }
1747
1748 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1749                                       struct ixgbevf_ring *ring)
1750 {
1751         struct ixgbe_hw *hw = &adapter->hw;
1752         u64 rdba = ring->dma;
1753         u32 rxdctl;
1754         u8 reg_idx = ring->reg_idx;
1755
1756         /* disable queue to avoid issues while updating state */
1757         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1758         ixgbevf_disable_rx_queue(adapter, ring);
1759
1760         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1761         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1762         IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1763                         ring->count * sizeof(union ixgbe_adv_rx_desc));
1764
1765 #ifndef CONFIG_SPARC
1766         /* enable relaxed ordering */
1767         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1768                         IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1769 #else
1770         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1771                         IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1772                         IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1773 #endif
1774
1775         /* reset head and tail pointers */
1776         IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1777         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1778         ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1779
1780         /* reset ntu and ntc to place SW in sync with hardwdare */
1781         ring->next_to_clean = 0;
1782         ring->next_to_use = 0;
1783         ring->next_to_alloc = 0;
1784
1785         ixgbevf_configure_srrctl(adapter, reg_idx);
1786
1787         /* allow any size packet since we can handle overflow */
1788         rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1789
1790         rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1791         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1792
1793         ixgbevf_rx_desc_queue_enable(adapter, ring);
1794         ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1795 }
1796
1797 /**
1798  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1799  * @adapter: board private structure
1800  *
1801  * Configure the Rx unit of the MAC after a reset.
1802  **/
1803 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1804 {
1805         struct ixgbe_hw *hw = &adapter->hw;
1806         struct net_device *netdev = adapter->netdev;
1807         int i, ret;
1808
1809         ixgbevf_setup_psrtype(adapter);
1810         if (hw->mac.type >= ixgbe_mac_X550_vf)
1811                 ixgbevf_setup_vfmrqc(adapter);
1812
1813         spin_lock_bh(&adapter->mbx_lock);
1814         /* notify the PF of our intent to use this size of frame */
1815         ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1816         spin_unlock_bh(&adapter->mbx_lock);
1817         if (ret)
1818                 dev_err(&adapter->pdev->dev,
1819                         "Failed to set MTU at %d\n", netdev->mtu);
1820
1821         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1822          * the Base and Length of the Rx Descriptor Ring
1823          */
1824         for (i = 0; i < adapter->num_rx_queues; i++)
1825                 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1826 }
1827
1828 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1829                                    __be16 proto, u16 vid)
1830 {
1831         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1832         struct ixgbe_hw *hw = &adapter->hw;
1833         int err;
1834
1835         spin_lock_bh(&adapter->mbx_lock);
1836
1837         /* add VID to filter table */
1838         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1839
1840         spin_unlock_bh(&adapter->mbx_lock);
1841
1842         /* translate error return types so error makes sense */
1843         if (err == IXGBE_ERR_MBX)
1844                 return -EIO;
1845
1846         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1847                 return -EACCES;
1848
1849         set_bit(vid, adapter->active_vlans);
1850
1851         return err;
1852 }
1853
1854 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1855                                     __be16 proto, u16 vid)
1856 {
1857         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1858         struct ixgbe_hw *hw = &adapter->hw;
1859         int err;
1860
1861         spin_lock_bh(&adapter->mbx_lock);
1862
1863         /* remove VID from filter table */
1864         err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1865
1866         spin_unlock_bh(&adapter->mbx_lock);
1867
1868         clear_bit(vid, adapter->active_vlans);
1869
1870         return err;
1871 }
1872
1873 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1874 {
1875         u16 vid;
1876
1877         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1878                 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1879                                         htons(ETH_P_8021Q), vid);
1880 }
1881
1882 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1883 {
1884         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1885         struct ixgbe_hw *hw = &adapter->hw;
1886         int count = 0;
1887
1888         if (!netdev_uc_empty(netdev)) {
1889                 struct netdev_hw_addr *ha;
1890
1891                 netdev_for_each_uc_addr(ha, netdev) {
1892                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1893                         udelay(200);
1894                 }
1895         } else {
1896                 /* If the list is empty then send message to PF driver to
1897                  * clear all MAC VLANs on this VF.
1898                  */
1899                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1900         }
1901
1902         return count;
1903 }
1904
1905 /**
1906  * ixgbevf_set_rx_mode - Multicast and unicast set
1907  * @netdev: network interface device structure
1908  *
1909  * The set_rx_method entry point is called whenever the multicast address
1910  * list, unicast address list or the network interface flags are updated.
1911  * This routine is responsible for configuring the hardware for proper
1912  * multicast mode and configuring requested unicast filters.
1913  **/
1914 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1915 {
1916         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1917         struct ixgbe_hw *hw = &adapter->hw;
1918         unsigned int flags = netdev->flags;
1919         int xcast_mode;
1920
1921         xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1922                      (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1923                      IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1924
1925         spin_lock_bh(&adapter->mbx_lock);
1926
1927         hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1928
1929         /* reprogram multicast list */
1930         hw->mac.ops.update_mc_addr_list(hw, netdev);
1931
1932         ixgbevf_write_uc_addr_list(netdev);
1933
1934         spin_unlock_bh(&adapter->mbx_lock);
1935 }
1936
1937 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1938 {
1939         int q_idx;
1940         struct ixgbevf_q_vector *q_vector;
1941         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1942
1943         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1944                 q_vector = adapter->q_vector[q_idx];
1945 #ifdef CONFIG_NET_RX_BUSY_POLL
1946                 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1947 #endif
1948                 napi_enable(&q_vector->napi);
1949         }
1950 }
1951
1952 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1953 {
1954         int q_idx;
1955         struct ixgbevf_q_vector *q_vector;
1956         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1957
1958         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1959                 q_vector = adapter->q_vector[q_idx];
1960                 napi_disable(&q_vector->napi);
1961 #ifdef CONFIG_NET_RX_BUSY_POLL
1962                 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1963                         pr_info("QV %d locked\n", q_idx);
1964                         usleep_range(1000, 20000);
1965                 }
1966 #endif /* CONFIG_NET_RX_BUSY_POLL */
1967         }
1968 }
1969
1970 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1971 {
1972         struct ixgbe_hw *hw = &adapter->hw;
1973         unsigned int def_q = 0;
1974         unsigned int num_tcs = 0;
1975         unsigned int num_rx_queues = adapter->num_rx_queues;
1976         unsigned int num_tx_queues = adapter->num_tx_queues;
1977         int err;
1978
1979         spin_lock_bh(&adapter->mbx_lock);
1980
1981         /* fetch queue configuration from the PF */
1982         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1983
1984         spin_unlock_bh(&adapter->mbx_lock);
1985
1986         if (err)
1987                 return err;
1988
1989         if (num_tcs > 1) {
1990                 /* we need only one Tx queue */
1991                 num_tx_queues = 1;
1992
1993                 /* update default Tx ring register index */
1994                 adapter->tx_ring[0]->reg_idx = def_q;
1995
1996                 /* we need as many queues as traffic classes */
1997                 num_rx_queues = num_tcs;
1998         }
1999
2000         /* if we have a bad config abort request queue reset */
2001         if ((adapter->num_rx_queues != num_rx_queues) ||
2002             (adapter->num_tx_queues != num_tx_queues)) {
2003                 /* force mailbox timeout to prevent further messages */
2004                 hw->mbx.timeout = 0;
2005
2006                 /* wait for watchdog to come around and bail us out */
2007                 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2008         }
2009
2010         return 0;
2011 }
2012
2013 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2014 {
2015         ixgbevf_configure_dcb(adapter);
2016
2017         ixgbevf_set_rx_mode(adapter->netdev);
2018
2019         ixgbevf_restore_vlan(adapter);
2020
2021         ixgbevf_configure_tx(adapter);
2022         ixgbevf_configure_rx(adapter);
2023 }
2024
2025 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2026 {
2027         /* Only save pre-reset stats if there are some */
2028         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2029                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2030                         adapter->stats.base_vfgprc;
2031                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2032                         adapter->stats.base_vfgptc;
2033                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2034                         adapter->stats.base_vfgorc;
2035                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2036                         adapter->stats.base_vfgotc;
2037                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2038                         adapter->stats.base_vfmprc;
2039         }
2040 }
2041
2042 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2043 {
2044         struct ixgbe_hw *hw = &adapter->hw;
2045
2046         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2047         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2048         adapter->stats.last_vfgorc |=
2049                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2050         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2051         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2052         adapter->stats.last_vfgotc |=
2053                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2054         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2055
2056         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2057         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2058         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2059         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2060         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2061 }
2062
2063 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2064 {
2065         struct ixgbe_hw *hw = &adapter->hw;
2066         int api[] = { ixgbe_mbox_api_12,
2067                       ixgbe_mbox_api_11,
2068                       ixgbe_mbox_api_10,
2069                       ixgbe_mbox_api_unknown };
2070         int err, idx = 0;
2071
2072         spin_lock_bh(&adapter->mbx_lock);
2073
2074         while (api[idx] != ixgbe_mbox_api_unknown) {
2075                 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2076                 if (!err)
2077                         break;
2078                 idx++;
2079         }
2080
2081         spin_unlock_bh(&adapter->mbx_lock);
2082 }
2083
2084 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2085 {
2086         struct net_device *netdev = adapter->netdev;
2087         struct ixgbe_hw *hw = &adapter->hw;
2088
2089         ixgbevf_configure_msix(adapter);
2090
2091         spin_lock_bh(&adapter->mbx_lock);
2092
2093         if (is_valid_ether_addr(hw->mac.addr))
2094                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2095         else
2096                 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2097
2098         spin_unlock_bh(&adapter->mbx_lock);
2099
2100         smp_mb__before_atomic();
2101         clear_bit(__IXGBEVF_DOWN, &adapter->state);
2102         ixgbevf_napi_enable_all(adapter);
2103
2104         /* clear any pending interrupts, may auto mask */
2105         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2106         ixgbevf_irq_enable(adapter);
2107
2108         /* enable transmits */
2109         netif_tx_start_all_queues(netdev);
2110
2111         ixgbevf_save_reset_stats(adapter);
2112         ixgbevf_init_last_counter_stats(adapter);
2113
2114         hw->mac.get_link_status = 1;
2115         mod_timer(&adapter->service_timer, jiffies);
2116 }
2117
2118 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2119 {
2120         ixgbevf_configure(adapter);
2121
2122         ixgbevf_up_complete(adapter);
2123 }
2124
2125 /**
2126  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2127  * @rx_ring: ring to free buffers from
2128  **/
2129 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2130 {
2131         struct device *dev = rx_ring->dev;
2132         unsigned long size;
2133         unsigned int i;
2134
2135         /* Free Rx ring sk_buff */
2136         if (rx_ring->skb) {
2137                 dev_kfree_skb(rx_ring->skb);
2138                 rx_ring->skb = NULL;
2139         }
2140
2141         /* ring already cleared, nothing to do */
2142         if (!rx_ring->rx_buffer_info)
2143                 return;
2144
2145         /* Free all the Rx ring pages */
2146         for (i = 0; i < rx_ring->count; i++) {
2147                 struct ixgbevf_rx_buffer *rx_buffer;
2148
2149                 rx_buffer = &rx_ring->rx_buffer_info[i];
2150                 if (rx_buffer->dma)
2151                         dma_unmap_page(dev, rx_buffer->dma,
2152                                        PAGE_SIZE, DMA_FROM_DEVICE);
2153                 rx_buffer->dma = 0;
2154                 if (rx_buffer->page)
2155                         __free_page(rx_buffer->page);
2156                 rx_buffer->page = NULL;
2157         }
2158
2159         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2160         memset(rx_ring->rx_buffer_info, 0, size);
2161
2162         /* Zero out the descriptor ring */
2163         memset(rx_ring->desc, 0, rx_ring->size);
2164 }
2165
2166 /**
2167  * ixgbevf_clean_tx_ring - Free Tx Buffers
2168  * @tx_ring: ring to be cleaned
2169  **/
2170 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2171 {
2172         struct ixgbevf_tx_buffer *tx_buffer_info;
2173         unsigned long size;
2174         unsigned int i;
2175
2176         if (!tx_ring->tx_buffer_info)
2177                 return;
2178
2179         /* Free all the Tx ring sk_buffs */
2180         for (i = 0; i < tx_ring->count; i++) {
2181                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2182                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2183         }
2184
2185         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2186         memset(tx_ring->tx_buffer_info, 0, size);
2187
2188         memset(tx_ring->desc, 0, tx_ring->size);
2189 }
2190
2191 /**
2192  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2193  * @adapter: board private structure
2194  **/
2195 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2196 {
2197         int i;
2198
2199         for (i = 0; i < adapter->num_rx_queues; i++)
2200                 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2201 }
2202
2203 /**
2204  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2205  * @adapter: board private structure
2206  **/
2207 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2208 {
2209         int i;
2210
2211         for (i = 0; i < adapter->num_tx_queues; i++)
2212                 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2213 }
2214
2215 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2216 {
2217         struct net_device *netdev = adapter->netdev;
2218         struct ixgbe_hw *hw = &adapter->hw;
2219         int i;
2220
2221         /* signal that we are down to the interrupt handler */
2222         if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2223                 return; /* do nothing if already down */
2224
2225         /* disable all enabled Rx queues */
2226         for (i = 0; i < adapter->num_rx_queues; i++)
2227                 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2228
2229         usleep_range(10000, 20000);
2230
2231         netif_tx_stop_all_queues(netdev);
2232
2233         /* call carrier off first to avoid false dev_watchdog timeouts */
2234         netif_carrier_off(netdev);
2235         netif_tx_disable(netdev);
2236
2237         ixgbevf_irq_disable(adapter);
2238
2239         ixgbevf_napi_disable_all(adapter);
2240
2241         del_timer_sync(&adapter->service_timer);
2242
2243         /* disable transmits in the hardware now that interrupts are off */
2244         for (i = 0; i < adapter->num_tx_queues; i++) {
2245                 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2246
2247                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2248                                 IXGBE_TXDCTL_SWFLSH);
2249         }
2250
2251         if (!pci_channel_offline(adapter->pdev))
2252                 ixgbevf_reset(adapter);
2253
2254         ixgbevf_clean_all_tx_rings(adapter);
2255         ixgbevf_clean_all_rx_rings(adapter);
2256 }
2257
2258 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2259 {
2260         WARN_ON(in_interrupt());
2261
2262         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2263                 msleep(1);
2264
2265         ixgbevf_down(adapter);
2266         ixgbevf_up(adapter);
2267
2268         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2269 }
2270
2271 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2272 {
2273         struct ixgbe_hw *hw = &adapter->hw;
2274         struct net_device *netdev = adapter->netdev;
2275
2276         if (hw->mac.ops.reset_hw(hw)) {
2277                 hw_dbg(hw, "PF still resetting\n");
2278         } else {
2279                 hw->mac.ops.init_hw(hw);
2280                 ixgbevf_negotiate_api(adapter);
2281         }
2282
2283         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2284                 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2285                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2286         }
2287
2288         adapter->last_reset = jiffies;
2289 }
2290
2291 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2292                                         int vectors)
2293 {
2294         int vector_threshold;
2295
2296         /* We'll want at least 2 (vector_threshold):
2297          * 1) TxQ[0] + RxQ[0] handler
2298          * 2) Other (Link Status Change, etc.)
2299          */
2300         vector_threshold = MIN_MSIX_COUNT;
2301
2302         /* The more we get, the more we will assign to Tx/Rx Cleanup
2303          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2304          * Right now, we simply care about how many we'll get; we'll
2305          * set them up later while requesting irq's.
2306          */
2307         vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2308                                         vector_threshold, vectors);
2309
2310         if (vectors < 0) {
2311                 dev_err(&adapter->pdev->dev,
2312                         "Unable to allocate MSI-X interrupts\n");
2313                 kfree(adapter->msix_entries);
2314                 adapter->msix_entries = NULL;
2315                 return vectors;
2316         }
2317
2318         /* Adjust for only the vectors we'll use, which is minimum
2319          * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2320          * vectors we were allocated.
2321          */
2322         adapter->num_msix_vectors = vectors;
2323
2324         return 0;
2325 }
2326
2327 /**
2328  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2329  * @adapter: board private structure to initialize
2330  *
2331  * This is the top level queue allocation routine.  The order here is very
2332  * important, starting with the "most" number of features turned on at once,
2333  * and ending with the smallest set of features.  This way large combinations
2334  * can be allocated if they're turned on, and smaller combinations are the
2335  * fallthrough conditions.
2336  *
2337  **/
2338 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2339 {
2340         struct ixgbe_hw *hw = &adapter->hw;
2341         unsigned int def_q = 0;
2342         unsigned int num_tcs = 0;
2343         int err;
2344
2345         /* Start with base case */
2346         adapter->num_rx_queues = 1;
2347         adapter->num_tx_queues = 1;
2348
2349         spin_lock_bh(&adapter->mbx_lock);
2350
2351         /* fetch queue configuration from the PF */
2352         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2353
2354         spin_unlock_bh(&adapter->mbx_lock);
2355
2356         if (err)
2357                 return;
2358
2359         /* we need as many queues as traffic classes */
2360         if (num_tcs > 1) {
2361                 adapter->num_rx_queues = num_tcs;
2362         } else {
2363                 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2364
2365                 switch (hw->api_version) {
2366                 case ixgbe_mbox_api_11:
2367                 case ixgbe_mbox_api_12:
2368                         adapter->num_rx_queues = rss;
2369                         adapter->num_tx_queues = rss;
2370                 default:
2371                         break;
2372                 }
2373         }
2374 }
2375
2376 /**
2377  * ixgbevf_alloc_queues - Allocate memory for all rings
2378  * @adapter: board private structure to initialize
2379  *
2380  * We allocate one ring per queue at run-time since we don't know the
2381  * number of queues at compile-time.  The polling_netdev array is
2382  * intended for Multiqueue, but should work fine with a single queue.
2383  **/
2384 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2385 {
2386         struct ixgbevf_ring *ring;
2387         int rx = 0, tx = 0;
2388
2389         for (; tx < adapter->num_tx_queues; tx++) {
2390                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2391                 if (!ring)
2392                         goto err_allocation;
2393
2394                 ring->dev = &adapter->pdev->dev;
2395                 ring->netdev = adapter->netdev;
2396                 ring->count = adapter->tx_ring_count;
2397                 ring->queue_index = tx;
2398                 ring->reg_idx = tx;
2399
2400                 adapter->tx_ring[tx] = ring;
2401         }
2402
2403         for (; rx < adapter->num_rx_queues; rx++) {
2404                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2405                 if (!ring)
2406                         goto err_allocation;
2407
2408                 ring->dev = &adapter->pdev->dev;
2409                 ring->netdev = adapter->netdev;
2410
2411                 ring->count = adapter->rx_ring_count;
2412                 ring->queue_index = rx;
2413                 ring->reg_idx = rx;
2414
2415                 adapter->rx_ring[rx] = ring;
2416         }
2417
2418         return 0;
2419
2420 err_allocation:
2421         while (tx) {
2422                 kfree(adapter->tx_ring[--tx]);
2423                 adapter->tx_ring[tx] = NULL;
2424         }
2425
2426         while (rx) {
2427                 kfree(adapter->rx_ring[--rx]);
2428                 adapter->rx_ring[rx] = NULL;
2429         }
2430         return -ENOMEM;
2431 }
2432
2433 /**
2434  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2435  * @adapter: board private structure to initialize
2436  *
2437  * Attempt to configure the interrupts using the best available
2438  * capabilities of the hardware and the kernel.
2439  **/
2440 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2441 {
2442         struct net_device *netdev = adapter->netdev;
2443         int err;
2444         int vector, v_budget;
2445
2446         /* It's easy to be greedy for MSI-X vectors, but it really
2447          * doesn't do us much good if we have a lot more vectors
2448          * than CPU's.  So let's be conservative and only ask for
2449          * (roughly) the same number of vectors as there are CPU's.
2450          * The default is to use pairs of vectors.
2451          */
2452         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2453         v_budget = min_t(int, v_budget, num_online_cpus());
2454         v_budget += NON_Q_VECTORS;
2455
2456         /* A failure in MSI-X entry allocation isn't fatal, but it does
2457          * mean we disable MSI-X capabilities of the adapter.
2458          */
2459         adapter->msix_entries = kcalloc(v_budget,
2460                                         sizeof(struct msix_entry), GFP_KERNEL);
2461         if (!adapter->msix_entries)
2462                 return -ENOMEM;
2463
2464         for (vector = 0; vector < v_budget; vector++)
2465                 adapter->msix_entries[vector].entry = vector;
2466
2467         err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2468         if (err)
2469                 return err;
2470
2471         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2472         if (err)
2473                 return err;
2474
2475         return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2476 }
2477
2478 /**
2479  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2480  * @adapter: board private structure to initialize
2481  *
2482  * We allocate one q_vector per queue interrupt.  If allocation fails we
2483  * return -ENOMEM.
2484  **/
2485 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2486 {
2487         int q_idx, num_q_vectors;
2488         struct ixgbevf_q_vector *q_vector;
2489
2490         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2491
2492         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2493                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2494                 if (!q_vector)
2495                         goto err_out;
2496                 q_vector->adapter = adapter;
2497                 q_vector->v_idx = q_idx;
2498                 netif_napi_add(adapter->netdev, &q_vector->napi,
2499                                ixgbevf_poll, 64);
2500                 adapter->q_vector[q_idx] = q_vector;
2501         }
2502
2503         return 0;
2504
2505 err_out:
2506         while (q_idx) {
2507                 q_idx--;
2508                 q_vector = adapter->q_vector[q_idx];
2509 #ifdef CONFIG_NET_RX_BUSY_POLL
2510                 napi_hash_del(&q_vector->napi);
2511 #endif
2512                 netif_napi_del(&q_vector->napi);
2513                 kfree(q_vector);
2514                 adapter->q_vector[q_idx] = NULL;
2515         }
2516         return -ENOMEM;
2517 }
2518
2519 /**
2520  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2521  * @adapter: board private structure to initialize
2522  *
2523  * This function frees the memory allocated to the q_vectors.  In addition if
2524  * NAPI is enabled it will delete any references to the NAPI struct prior
2525  * to freeing the q_vector.
2526  **/
2527 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2528 {
2529         int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2530
2531         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2532                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2533
2534                 adapter->q_vector[q_idx] = NULL;
2535 #ifdef CONFIG_NET_RX_BUSY_POLL
2536                 napi_hash_del(&q_vector->napi);
2537 #endif
2538                 netif_napi_del(&q_vector->napi);
2539                 kfree(q_vector);
2540         }
2541 }
2542
2543 /**
2544  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2545  * @adapter: board private structure
2546  *
2547  **/
2548 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2549 {
2550         pci_disable_msix(adapter->pdev);
2551         kfree(adapter->msix_entries);
2552         adapter->msix_entries = NULL;
2553 }
2554
2555 /**
2556  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2557  * @adapter: board private structure to initialize
2558  *
2559  **/
2560 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2561 {
2562         int err;
2563
2564         /* Number of supported queues */
2565         ixgbevf_set_num_queues(adapter);
2566
2567         err = ixgbevf_set_interrupt_capability(adapter);
2568         if (err) {
2569                 hw_dbg(&adapter->hw,
2570                        "Unable to setup interrupt capabilities\n");
2571                 goto err_set_interrupt;
2572         }
2573
2574         err = ixgbevf_alloc_q_vectors(adapter);
2575         if (err) {
2576                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2577                 goto err_alloc_q_vectors;
2578         }
2579
2580         err = ixgbevf_alloc_queues(adapter);
2581         if (err) {
2582                 pr_err("Unable to allocate memory for queues\n");
2583                 goto err_alloc_queues;
2584         }
2585
2586         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2587                (adapter->num_rx_queues > 1) ? "Enabled" :
2588                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2589
2590         set_bit(__IXGBEVF_DOWN, &adapter->state);
2591
2592         return 0;
2593 err_alloc_queues:
2594         ixgbevf_free_q_vectors(adapter);
2595 err_alloc_q_vectors:
2596         ixgbevf_reset_interrupt_capability(adapter);
2597 err_set_interrupt:
2598         return err;
2599 }
2600
2601 /**
2602  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2603  * @adapter: board private structure to clear interrupt scheme on
2604  *
2605  * We go through and clear interrupt specific resources and reset the structure
2606  * to pre-load conditions
2607  **/
2608 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2609 {
2610         int i;
2611
2612         for (i = 0; i < adapter->num_tx_queues; i++) {
2613                 kfree(adapter->tx_ring[i]);
2614                 adapter->tx_ring[i] = NULL;
2615         }
2616         for (i = 0; i < adapter->num_rx_queues; i++) {
2617                 kfree(adapter->rx_ring[i]);
2618                 adapter->rx_ring[i] = NULL;
2619         }
2620
2621         adapter->num_tx_queues = 0;
2622         adapter->num_rx_queues = 0;
2623
2624         ixgbevf_free_q_vectors(adapter);
2625         ixgbevf_reset_interrupt_capability(adapter);
2626 }
2627
2628 /**
2629  * ixgbevf_sw_init - Initialize general software structures
2630  * @adapter: board private structure to initialize
2631  *
2632  * ixgbevf_sw_init initializes the Adapter private data structure.
2633  * Fields are initialized based on PCI device information and
2634  * OS network device settings (MTU size).
2635  **/
2636 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2637 {
2638         struct ixgbe_hw *hw = &adapter->hw;
2639         struct pci_dev *pdev = adapter->pdev;
2640         struct net_device *netdev = adapter->netdev;
2641         int err;
2642
2643         /* PCI config space info */
2644         hw->vendor_id = pdev->vendor;
2645         hw->device_id = pdev->device;
2646         hw->revision_id = pdev->revision;
2647         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2648         hw->subsystem_device_id = pdev->subsystem_device;
2649
2650         hw->mbx.ops.init_params(hw);
2651
2652         /* assume legacy case in which PF would only give VF 2 queues */
2653         hw->mac.max_tx_queues = 2;
2654         hw->mac.max_rx_queues = 2;
2655
2656         /* lock to protect mailbox accesses */
2657         spin_lock_init(&adapter->mbx_lock);
2658
2659         err = hw->mac.ops.reset_hw(hw);
2660         if (err) {
2661                 dev_info(&pdev->dev,
2662                          "PF still in reset state.  Is the PF interface up?\n");
2663         } else {
2664                 err = hw->mac.ops.init_hw(hw);
2665                 if (err) {
2666                         pr_err("init_shared_code failed: %d\n", err);
2667                         goto out;
2668                 }
2669                 ixgbevf_negotiate_api(adapter);
2670                 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2671                 if (err)
2672                         dev_info(&pdev->dev, "Error reading MAC address\n");
2673                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2674                         dev_info(&pdev->dev,
2675                                  "MAC address not assigned by administrator.\n");
2676                 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2677         }
2678
2679         if (!is_valid_ether_addr(netdev->dev_addr)) {
2680                 dev_info(&pdev->dev, "Assigning random MAC address\n");
2681                 eth_hw_addr_random(netdev);
2682                 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2683                 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2684         }
2685
2686         /* Enable dynamic interrupt throttling rates */
2687         adapter->rx_itr_setting = 1;
2688         adapter->tx_itr_setting = 1;
2689
2690         /* set default ring sizes */
2691         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2692         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2693
2694         set_bit(__IXGBEVF_DOWN, &adapter->state);
2695         return 0;
2696
2697 out:
2698         return err;
2699 }
2700
2701 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2702         {                                                       \
2703                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2704                 if (current_counter < last_counter)             \
2705                         counter += 0x100000000LL;               \
2706                 last_counter = current_counter;                 \
2707                 counter &= 0xFFFFFFFF00000000LL;                \
2708                 counter |= current_counter;                     \
2709         }
2710
2711 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2712         {                                                                \
2713                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2714                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2715                 u64 current_counter = (current_counter_msb << 32) |      \
2716                         current_counter_lsb;                             \
2717                 if (current_counter < last_counter)                      \
2718                         counter += 0x1000000000LL;                       \
2719                 last_counter = current_counter;                          \
2720                 counter &= 0xFFFFFFF000000000LL;                         \
2721                 counter |= current_counter;                              \
2722         }
2723 /**
2724  * ixgbevf_update_stats - Update the board statistics counters.
2725  * @adapter: board private structure
2726  **/
2727 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2728 {
2729         struct ixgbe_hw *hw = &adapter->hw;
2730         int i;
2731
2732         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2733             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2734                 return;
2735
2736         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2737                                 adapter->stats.vfgprc);
2738         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2739                                 adapter->stats.vfgptc);
2740         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2741                                 adapter->stats.last_vfgorc,
2742                                 adapter->stats.vfgorc);
2743         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2744                                 adapter->stats.last_vfgotc,
2745                                 adapter->stats.vfgotc);
2746         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2747                                 adapter->stats.vfmprc);
2748
2749         for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2750                 adapter->hw_csum_rx_error +=
2751                         adapter->rx_ring[i]->hw_csum_rx_error;
2752                 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2753         }
2754 }
2755
2756 /**
2757  * ixgbevf_service_timer - Timer Call-back
2758  * @data: pointer to adapter cast into an unsigned long
2759  **/
2760 static void ixgbevf_service_timer(unsigned long data)
2761 {
2762         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2763
2764         /* Reset the timer */
2765         mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2766
2767         ixgbevf_service_event_schedule(adapter);
2768 }
2769
2770 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2771 {
2772         if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2773                 return;
2774
2775         /* If we're already down or resetting, just bail */
2776         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2777             test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2778             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2779                 return;
2780
2781         adapter->tx_timeout_count++;
2782
2783         rtnl_lock();
2784         ixgbevf_reinit_locked(adapter);
2785         rtnl_unlock();
2786 }
2787
2788 /**
2789  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2790  * @adapter: pointer to the device adapter structure
2791  *
2792  * This function serves two purposes.  First it strobes the interrupt lines
2793  * in order to make certain interrupts are occurring.  Secondly it sets the
2794  * bits needed to check for TX hangs.  As a result we should immediately
2795  * determine if a hang has occurred.
2796  **/
2797 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2798 {
2799         struct ixgbe_hw *hw = &adapter->hw;
2800         u32 eics = 0;
2801         int i;
2802
2803         /* If we're down or resetting, just bail */
2804         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2805             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2806                 return;
2807
2808         /* Force detection of hung controller */
2809         if (netif_carrier_ok(adapter->netdev)) {
2810                 for (i = 0; i < adapter->num_tx_queues; i++)
2811                         set_check_for_tx_hang(adapter->tx_ring[i]);
2812         }
2813
2814         /* get one bit for every active Tx/Rx interrupt vector */
2815         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2816                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2817
2818                 if (qv->rx.ring || qv->tx.ring)
2819                         eics |= BIT(i);
2820         }
2821
2822         /* Cause software interrupt to ensure rings are cleaned */
2823         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2824 }
2825
2826 /**
2827  * ixgbevf_watchdog_update_link - update the link status
2828  * @adapter: pointer to the device adapter structure
2829  **/
2830 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2831 {
2832         struct ixgbe_hw *hw = &adapter->hw;
2833         u32 link_speed = adapter->link_speed;
2834         bool link_up = adapter->link_up;
2835         s32 err;
2836
2837         spin_lock_bh(&adapter->mbx_lock);
2838
2839         err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2840
2841         spin_unlock_bh(&adapter->mbx_lock);
2842
2843         /* if check for link returns error we will need to reset */
2844         if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2845                 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2846                 link_up = false;
2847         }
2848
2849         adapter->link_up = link_up;
2850         adapter->link_speed = link_speed;
2851 }
2852
2853 /**
2854  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2855  *                               print link up message
2856  * @adapter: pointer to the device adapter structure
2857  **/
2858 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2859 {
2860         struct net_device *netdev = adapter->netdev;
2861
2862         /* only continue if link was previously down */
2863         if (netif_carrier_ok(netdev))
2864                 return;
2865
2866         dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2867                  (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2868                  "10 Gbps" :
2869                  (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2870                  "1 Gbps" :
2871                  (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2872                  "100 Mbps" :
2873                  "unknown speed");
2874
2875         netif_carrier_on(netdev);
2876 }
2877
2878 /**
2879  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2880  *                                 print link down message
2881  * @adapter: pointer to the adapter structure
2882  **/
2883 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2884 {
2885         struct net_device *netdev = adapter->netdev;
2886
2887         adapter->link_speed = 0;
2888
2889         /* only continue if link was up previously */
2890         if (!netif_carrier_ok(netdev))
2891                 return;
2892
2893         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2894
2895         netif_carrier_off(netdev);
2896 }
2897
2898 /**
2899  * ixgbevf_watchdog_subtask - worker thread to bring link up
2900  * @work: pointer to work_struct containing our data
2901  **/
2902 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2903 {
2904         /* if interface is down do nothing */
2905         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2906             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2907                 return;
2908
2909         ixgbevf_watchdog_update_link(adapter);
2910
2911         if (adapter->link_up)
2912                 ixgbevf_watchdog_link_is_up(adapter);
2913         else
2914                 ixgbevf_watchdog_link_is_down(adapter);
2915
2916         ixgbevf_update_stats(adapter);
2917 }
2918
2919 /**
2920  * ixgbevf_service_task - manages and runs subtasks
2921  * @work: pointer to work_struct containing our data
2922  **/
2923 static void ixgbevf_service_task(struct work_struct *work)
2924 {
2925         struct ixgbevf_adapter *adapter = container_of(work,
2926                                                        struct ixgbevf_adapter,
2927                                                        service_task);
2928         struct ixgbe_hw *hw = &adapter->hw;
2929
2930         if (IXGBE_REMOVED(hw->hw_addr)) {
2931                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2932                         rtnl_lock();
2933                         ixgbevf_down(adapter);
2934                         rtnl_unlock();
2935                 }
2936                 return;
2937         }
2938
2939         ixgbevf_queue_reset_subtask(adapter);
2940         ixgbevf_reset_subtask(adapter);
2941         ixgbevf_watchdog_subtask(adapter);
2942         ixgbevf_check_hang_subtask(adapter);
2943
2944         ixgbevf_service_event_complete(adapter);
2945 }
2946
2947 /**
2948  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2949  * @tx_ring: Tx descriptor ring for a specific queue
2950  *
2951  * Free all transmit software resources
2952  **/
2953 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2954 {
2955         ixgbevf_clean_tx_ring(tx_ring);
2956
2957         vfree(tx_ring->tx_buffer_info);
2958         tx_ring->tx_buffer_info = NULL;
2959
2960         /* if not set, then don't free */
2961         if (!tx_ring->desc)
2962                 return;
2963
2964         dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2965                           tx_ring->dma);
2966
2967         tx_ring->desc = NULL;
2968 }
2969
2970 /**
2971  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2972  * @adapter: board private structure
2973  *
2974  * Free all transmit software resources
2975  **/
2976 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2977 {
2978         int i;
2979
2980         for (i = 0; i < adapter->num_tx_queues; i++)
2981                 if (adapter->tx_ring[i]->desc)
2982                         ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2983 }
2984
2985 /**
2986  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2987  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2988  *
2989  * Return 0 on success, negative on failure
2990  **/
2991 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2992 {
2993         struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
2994         int size;
2995
2996         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2997         tx_ring->tx_buffer_info = vzalloc(size);
2998         if (!tx_ring->tx_buffer_info)
2999                 goto err;
3000
3001         /* round up to nearest 4K */
3002         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3003         tx_ring->size = ALIGN(tx_ring->size, 4096);
3004
3005         tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3006                                            &tx_ring->dma, GFP_KERNEL);
3007         if (!tx_ring->desc)
3008                 goto err;
3009
3010         return 0;
3011
3012 err:
3013         vfree(tx_ring->tx_buffer_info);
3014         tx_ring->tx_buffer_info = NULL;
3015         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3016         return -ENOMEM;
3017 }
3018
3019 /**
3020  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3021  * @adapter: board private structure
3022  *
3023  * If this function returns with an error, then it's possible one or
3024  * more of the rings is populated (while the rest are not).  It is the
3025  * callers duty to clean those orphaned rings.
3026  *
3027  * Return 0 on success, negative on failure
3028  **/
3029 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3030 {
3031         int i, err = 0;
3032
3033         for (i = 0; i < adapter->num_tx_queues; i++) {
3034                 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3035                 if (!err)
3036                         continue;
3037                 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3038                 break;
3039         }
3040
3041         return err;
3042 }
3043
3044 /**
3045  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3046  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3047  *
3048  * Returns 0 on success, negative on failure
3049  **/
3050 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3051 {
3052         int size;
3053
3054         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3055         rx_ring->rx_buffer_info = vzalloc(size);
3056         if (!rx_ring->rx_buffer_info)
3057                 goto err;
3058
3059         /* Round up to nearest 4K */
3060         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3061         rx_ring->size = ALIGN(rx_ring->size, 4096);
3062
3063         rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3064                                            &rx_ring->dma, GFP_KERNEL);
3065
3066         if (!rx_ring->desc)
3067                 goto err;
3068
3069         return 0;
3070 err:
3071         vfree(rx_ring->rx_buffer_info);
3072         rx_ring->rx_buffer_info = NULL;
3073         dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3074         return -ENOMEM;
3075 }
3076
3077 /**
3078  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3079  * @adapter: board private structure
3080  *
3081  * If this function returns with an error, then it's possible one or
3082  * more of the rings is populated (while the rest are not).  It is the
3083  * callers duty to clean those orphaned rings.
3084  *
3085  * Return 0 on success, negative on failure
3086  **/
3087 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3088 {
3089         int i, err = 0;
3090
3091         for (i = 0; i < adapter->num_rx_queues; i++) {
3092                 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3093                 if (!err)
3094                         continue;
3095                 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3096                 break;
3097         }
3098         return err;
3099 }
3100
3101 /**
3102  * ixgbevf_free_rx_resources - Free Rx Resources
3103  * @rx_ring: ring to clean the resources from
3104  *
3105  * Free all receive software resources
3106  **/
3107 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3108 {
3109         ixgbevf_clean_rx_ring(rx_ring);
3110
3111         vfree(rx_ring->rx_buffer_info);
3112         rx_ring->rx_buffer_info = NULL;
3113
3114         dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3115                           rx_ring->dma);
3116
3117         rx_ring->desc = NULL;
3118 }
3119
3120 /**
3121  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3122  * @adapter: board private structure
3123  *
3124  * Free all receive software resources
3125  **/
3126 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3127 {
3128         int i;
3129
3130         for (i = 0; i < adapter->num_rx_queues; i++)
3131                 if (adapter->rx_ring[i]->desc)
3132                         ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3133 }
3134
3135 /**
3136  * ixgbevf_open - Called when a network interface is made active
3137  * @netdev: network interface device structure
3138  *
3139  * Returns 0 on success, negative value on failure
3140  *
3141  * The open entry point is called when a network interface is made
3142  * active by the system (IFF_UP).  At this point all resources needed
3143  * for transmit and receive operations are allocated, the interrupt
3144  * handler is registered with the OS, the watchdog timer is started,
3145  * and the stack is notified that the interface is ready.
3146  **/
3147 int ixgbevf_open(struct net_device *netdev)
3148 {
3149         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3150         struct ixgbe_hw *hw = &adapter->hw;
3151         int err;
3152
3153         /* A previous failure to open the device because of a lack of
3154          * available MSIX vector resources may have reset the number
3155          * of msix vectors variable to zero.  The only way to recover
3156          * is to unload/reload the driver and hope that the system has
3157          * been able to recover some MSIX vector resources.
3158          */
3159         if (!adapter->num_msix_vectors)
3160                 return -ENOMEM;
3161
3162         if (hw->adapter_stopped) {
3163                 ixgbevf_reset(adapter);
3164                 /* if adapter is still stopped then PF isn't up and
3165                  * the VF can't start.
3166                  */
3167                 if (hw->adapter_stopped) {
3168                         err = IXGBE_ERR_MBX;
3169                         pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3170                         goto err_setup_reset;
3171                 }
3172         }
3173
3174         /* disallow open during test */
3175         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3176                 return -EBUSY;
3177
3178         netif_carrier_off(netdev);
3179
3180         /* allocate transmit descriptors */
3181         err = ixgbevf_setup_all_tx_resources(adapter);
3182         if (err)
3183                 goto err_setup_tx;
3184
3185         /* allocate receive descriptors */
3186         err = ixgbevf_setup_all_rx_resources(adapter);
3187         if (err)
3188                 goto err_setup_rx;
3189
3190         ixgbevf_configure(adapter);
3191
3192         /* Map the Tx/Rx rings to the vectors we were allotted.
3193          * if request_irq will be called in this function map_rings
3194          * must be called *before* up_complete
3195          */
3196         ixgbevf_map_rings_to_vectors(adapter);
3197
3198         err = ixgbevf_request_irq(adapter);
3199         if (err)
3200                 goto err_req_irq;
3201
3202         ixgbevf_up_complete(adapter);
3203
3204         return 0;
3205
3206 err_req_irq:
3207         ixgbevf_down(adapter);
3208 err_setup_rx:
3209         ixgbevf_free_all_rx_resources(adapter);
3210 err_setup_tx:
3211         ixgbevf_free_all_tx_resources(adapter);
3212         ixgbevf_reset(adapter);
3213
3214 err_setup_reset:
3215
3216         return err;
3217 }
3218
3219 /**
3220  * ixgbevf_close - Disables a network interface
3221  * @netdev: network interface device structure
3222  *
3223  * Returns 0, this is not allowed to fail
3224  *
3225  * The close entry point is called when an interface is de-activated
3226  * by the OS.  The hardware is still under the drivers control, but
3227  * needs to be disabled.  A global MAC reset is issued to stop the
3228  * hardware, and all transmit and receive resources are freed.
3229  **/
3230 int ixgbevf_close(struct net_device *netdev)
3231 {
3232         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3233
3234         ixgbevf_down(adapter);
3235         ixgbevf_free_irq(adapter);
3236
3237         ixgbevf_free_all_tx_resources(adapter);
3238         ixgbevf_free_all_rx_resources(adapter);
3239
3240         return 0;
3241 }
3242
3243 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3244 {
3245         struct net_device *dev = adapter->netdev;
3246
3247         if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3248                                 &adapter->state))
3249                 return;
3250
3251         /* if interface is down do nothing */
3252         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3253             test_bit(__IXGBEVF_RESETTING, &adapter->state))
3254                 return;
3255
3256         /* Hardware has to reinitialize queues and interrupts to
3257          * match packet buffer alignment. Unfortunately, the
3258          * hardware is not flexible enough to do this dynamically.
3259          */
3260         if (netif_running(dev))
3261                 ixgbevf_close(dev);
3262
3263         ixgbevf_clear_interrupt_scheme(adapter);
3264         ixgbevf_init_interrupt_scheme(adapter);
3265
3266         if (netif_running(dev))
3267                 ixgbevf_open(dev);
3268 }
3269
3270 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3271                                 u32 vlan_macip_lens, u32 type_tucmd,
3272                                 u32 mss_l4len_idx)
3273 {
3274         struct ixgbe_adv_tx_context_desc *context_desc;
3275         u16 i = tx_ring->next_to_use;
3276
3277         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3278
3279         i++;
3280         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3281
3282         /* set bits to identify this as an advanced context descriptor */
3283         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3284
3285         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
3286         context_desc->seqnum_seed       = 0;
3287         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
3288         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
3289 }
3290
3291 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3292                        struct ixgbevf_tx_buffer *first,
3293                        u8 *hdr_len)
3294 {
3295         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3296         struct sk_buff *skb = first->skb;
3297         union {
3298                 struct iphdr *v4;
3299                 struct ipv6hdr *v6;
3300                 unsigned char *hdr;
3301         } ip;
3302         union {
3303                 struct tcphdr *tcp;
3304                 unsigned char *hdr;
3305         } l4;
3306         u32 paylen, l4_offset;
3307         int err;
3308
3309         if (skb->ip_summed != CHECKSUM_PARTIAL)
3310                 return 0;
3311
3312         if (!skb_is_gso(skb))
3313                 return 0;
3314
3315         err = skb_cow_head(skb, 0);
3316         if (err < 0)
3317                 return err;
3318
3319         ip.hdr = skb_network_header(skb);
3320         l4.hdr = skb_checksum_start(skb);
3321
3322         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3323         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3324
3325         /* initialize outer IP header fields */
3326         if (ip.v4->version == 4) {
3327                 unsigned char *csum_start = skb_checksum_start(skb);
3328                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3329
3330                 /* IP header will have to cancel out any data that
3331                  * is not a part of the outer IP header
3332                  */
3333                 ip.v4->check = csum_fold(csum_partial(trans_start,
3334                                                       csum_start - trans_start,
3335                                                       0));
3336                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3337
3338                 ip.v4->tot_len = 0;
3339                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3340                                    IXGBE_TX_FLAGS_CSUM |
3341                                    IXGBE_TX_FLAGS_IPV4;
3342         } else {
3343                 ip.v6->payload_len = 0;
3344                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3345                                    IXGBE_TX_FLAGS_CSUM;
3346         }
3347
3348         /* determine offset of inner transport header */
3349         l4_offset = l4.hdr - skb->data;
3350
3351         /* compute length of segmentation header */
3352         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3353
3354         /* remove payload length from inner checksum */
3355         paylen = skb->len - l4_offset;
3356         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3357
3358         /* update gso size and bytecount with header size */
3359         first->gso_segs = skb_shinfo(skb)->gso_segs;
3360         first->bytecount += (first->gso_segs - 1) * *hdr_len;
3361
3362         /* mss_l4len_id: use 1 as index for TSO */
3363         mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3364         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3365         mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3366
3367         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3368         vlan_macip_lens = l4.hdr - ip.hdr;
3369         vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3370         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3371
3372         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3373                             type_tucmd, mss_l4len_idx);
3374
3375         return 1;
3376 }
3377
3378 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3379 {
3380         unsigned int offset = 0;
3381
3382         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3383
3384         return offset == skb_checksum_start_offset(skb);
3385 }
3386
3387 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3388                             struct ixgbevf_tx_buffer *first)
3389 {
3390         struct sk_buff *skb = first->skb;
3391         u32 vlan_macip_lens = 0;
3392         u32 type_tucmd = 0;
3393
3394         if (skb->ip_summed != CHECKSUM_PARTIAL)
3395                 goto no_csum;
3396
3397         switch (skb->csum_offset) {
3398         case offsetof(struct tcphdr, check):
3399                 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3400                 /* fall through */
3401         case offsetof(struct udphdr, check):
3402                 break;
3403         case offsetof(struct sctphdr, checksum):
3404                 /* validate that this is actually an SCTP request */
3405                 if (((first->protocol == htons(ETH_P_IP)) &&
3406                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3407                     ((first->protocol == htons(ETH_P_IPV6)) &&
3408                      ixgbevf_ipv6_csum_is_sctp(skb))) {
3409                         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3410                         break;
3411                 }
3412                 /* fall through */
3413         default:
3414                 skb_checksum_help(skb);
3415                 goto no_csum;
3416         }
3417
3418         if (first->protocol == htons(ETH_P_IP))
3419                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3420
3421         /* update TX checksum flag */
3422         first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3423         vlan_macip_lens = skb_checksum_start_offset(skb) -
3424                           skb_network_offset(skb);
3425 no_csum:
3426         /* vlan_macip_lens: MACLEN, VLAN tag */
3427         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3428         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3429
3430         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3431 }
3432
3433 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3434 {
3435         /* set type for advanced descriptor with frame checksum insertion */
3436         __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3437                                       IXGBE_ADVTXD_DCMD_IFCS |
3438                                       IXGBE_ADVTXD_DCMD_DEXT);
3439
3440         /* set HW VLAN bit if VLAN is present */
3441         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3442                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3443
3444         /* set segmentation enable bits for TSO/FSO */
3445         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3446                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3447
3448         return cmd_type;
3449 }
3450
3451 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3452                                      u32 tx_flags, unsigned int paylen)
3453 {
3454         __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3455
3456         /* enable L4 checksum for TSO and TX checksum offload */
3457         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3458                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3459
3460         /* enble IPv4 checksum for TSO */
3461         if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3462                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3463
3464         /* use index 1 context for TSO/FSO/FCOE */
3465         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3466                 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3467
3468         /* Check Context must be set if Tx switch is enabled, which it
3469          * always is for case where virtual functions are running
3470          */
3471         olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3472
3473         tx_desc->read.olinfo_status = olinfo_status;
3474 }
3475
3476 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3477                            struct ixgbevf_tx_buffer *first,
3478                            const u8 hdr_len)
3479 {
3480         dma_addr_t dma;
3481         struct sk_buff *skb = first->skb;
3482         struct ixgbevf_tx_buffer *tx_buffer;
3483         union ixgbe_adv_tx_desc *tx_desc;
3484         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3485         unsigned int data_len = skb->data_len;
3486         unsigned int size = skb_headlen(skb);
3487         unsigned int paylen = skb->len - hdr_len;
3488         u32 tx_flags = first->tx_flags;
3489         __le32 cmd_type;
3490         u16 i = tx_ring->next_to_use;
3491
3492         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3493
3494         ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3495         cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3496
3497         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3498         if (dma_mapping_error(tx_ring->dev, dma))
3499                 goto dma_error;
3500
3501         /* record length, and DMA address */
3502         dma_unmap_len_set(first, len, size);
3503         dma_unmap_addr_set(first, dma, dma);
3504
3505         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3506
3507         for (;;) {
3508                 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3509                         tx_desc->read.cmd_type_len =
3510                                 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3511
3512                         i++;
3513                         tx_desc++;
3514                         if (i == tx_ring->count) {
3515                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3516                                 i = 0;
3517                         }
3518
3519                         dma += IXGBE_MAX_DATA_PER_TXD;
3520                         size -= IXGBE_MAX_DATA_PER_TXD;
3521
3522                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3523                         tx_desc->read.olinfo_status = 0;
3524                 }
3525
3526                 if (likely(!data_len))
3527                         break;
3528
3529                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3530
3531                 i++;
3532                 tx_desc++;
3533                 if (i == tx_ring->count) {
3534                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3535                         i = 0;
3536                 }
3537
3538                 size = skb_frag_size(frag);
3539                 data_len -= size;
3540
3541                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3542                                        DMA_TO_DEVICE);
3543                 if (dma_mapping_error(tx_ring->dev, dma))
3544                         goto dma_error;
3545
3546                 tx_buffer = &tx_ring->tx_buffer_info[i];
3547                 dma_unmap_len_set(tx_buffer, len, size);
3548                 dma_unmap_addr_set(tx_buffer, dma, dma);
3549
3550                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3551                 tx_desc->read.olinfo_status = 0;
3552
3553                 frag++;
3554         }
3555
3556         /* write last descriptor with RS and EOP bits */
3557         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3558         tx_desc->read.cmd_type_len = cmd_type;
3559
3560         /* set the timestamp */
3561         first->time_stamp = jiffies;
3562
3563         /* Force memory writes to complete before letting h/w know there
3564          * are new descriptors to fetch.  (Only applicable for weak-ordered
3565          * memory model archs, such as IA-64).
3566          *
3567          * We also need this memory barrier (wmb) to make certain all of the
3568          * status bits have been updated before next_to_watch is written.
3569          */
3570         wmb();
3571
3572         /* set next_to_watch value indicating a packet is present */
3573         first->next_to_watch = tx_desc;
3574
3575         i++;
3576         if (i == tx_ring->count)
3577                 i = 0;
3578
3579         tx_ring->next_to_use = i;
3580
3581         /* notify HW of packet */
3582         ixgbevf_write_tail(tx_ring, i);
3583
3584         return;
3585 dma_error:
3586         dev_err(tx_ring->dev, "TX DMA map failed\n");
3587
3588         /* clear dma mappings for failed tx_buffer_info map */
3589         for (;;) {
3590                 tx_buffer = &tx_ring->tx_buffer_info[i];
3591                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3592                 if (tx_buffer == first)
3593                         break;
3594                 if (i == 0)
3595                         i = tx_ring->count;
3596                 i--;
3597         }
3598
3599         tx_ring->next_to_use = i;
3600 }
3601
3602 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3603 {
3604         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3605         /* Herbert's original patch had:
3606          *  smp_mb__after_netif_stop_queue();
3607          * but since that doesn't exist yet, just open code it.
3608          */
3609         smp_mb();
3610
3611         /* We need to check again in a case another CPU has just
3612          * made room available.
3613          */
3614         if (likely(ixgbevf_desc_unused(tx_ring) < size))
3615                 return -EBUSY;
3616
3617         /* A reprieve! - use start_queue because it doesn't call schedule */
3618         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3619         ++tx_ring->tx_stats.restart_queue;
3620
3621         return 0;
3622 }
3623
3624 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3625 {
3626         if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3627                 return 0;
3628         return __ixgbevf_maybe_stop_tx(tx_ring, size);
3629 }
3630
3631 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3632 {
3633         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3634         struct ixgbevf_tx_buffer *first;
3635         struct ixgbevf_ring *tx_ring;
3636         int tso;
3637         u32 tx_flags = 0;
3638         u16 count = TXD_USE_COUNT(skb_headlen(skb));
3639 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3640         unsigned short f;
3641 #endif
3642         u8 hdr_len = 0;
3643         u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3644
3645         if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3646                 dev_kfree_skb_any(skb);
3647                 return NETDEV_TX_OK;
3648         }
3649
3650         tx_ring = adapter->tx_ring[skb->queue_mapping];
3651
3652         /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3653          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3654          *       + 2 desc gap to keep tail from touching head,
3655          *       + 1 desc for context descriptor,
3656          * otherwise try next time
3657          */
3658 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3659         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3660                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3661 #else
3662         count += skb_shinfo(skb)->nr_frags;
3663 #endif
3664         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3665                 tx_ring->tx_stats.tx_busy++;
3666                 return NETDEV_TX_BUSY;
3667         }
3668
3669         /* record the location of the first descriptor for this packet */
3670         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3671         first->skb = skb;
3672         first->bytecount = skb->len;
3673         first->gso_segs = 1;
3674
3675         if (skb_vlan_tag_present(skb)) {
3676                 tx_flags |= skb_vlan_tag_get(skb);
3677                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3678                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3679         }
3680
3681         /* record initial flags and protocol */
3682         first->tx_flags = tx_flags;
3683         first->protocol = vlan_get_protocol(skb);
3684
3685         tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3686         if (tso < 0)
3687                 goto out_drop;
3688         else if (!tso)
3689                 ixgbevf_tx_csum(tx_ring, first);
3690
3691         ixgbevf_tx_map(tx_ring, first, hdr_len);
3692
3693         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3694
3695         return NETDEV_TX_OK;
3696
3697 out_drop:
3698         dev_kfree_skb_any(first->skb);
3699         first->skb = NULL;
3700
3701         return NETDEV_TX_OK;
3702 }
3703
3704 /**
3705  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3706  * @netdev: network interface device structure
3707  * @p: pointer to an address structure
3708  *
3709  * Returns 0 on success, negative on failure
3710  **/
3711 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3712 {
3713         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3714         struct ixgbe_hw *hw = &adapter->hw;
3715         struct sockaddr *addr = p;
3716         int err;
3717
3718         if (!is_valid_ether_addr(addr->sa_data))
3719                 return -EADDRNOTAVAIL;
3720
3721         spin_lock_bh(&adapter->mbx_lock);
3722
3723         err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3724
3725         spin_unlock_bh(&adapter->mbx_lock);
3726
3727         if (err)
3728                 return -EPERM;
3729
3730         ether_addr_copy(hw->mac.addr, addr->sa_data);
3731         ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
3732         ether_addr_copy(netdev->dev_addr, addr->sa_data);
3733
3734         return 0;
3735 }
3736
3737 /**
3738  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3739  * @netdev: network interface device structure
3740  * @new_mtu: new value for maximum frame size
3741  *
3742  * Returns 0 on success, negative on failure
3743  **/
3744 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3745 {
3746         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3747         struct ixgbe_hw *hw = &adapter->hw;
3748         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3749         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3750         int ret;
3751
3752         switch (adapter->hw.api_version) {
3753         case ixgbe_mbox_api_11:
3754         case ixgbe_mbox_api_12:
3755                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3756                 break;
3757         default:
3758                 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3759                         max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3760                 break;
3761         }
3762
3763         /* MTU < 68 is an error and causes problems on some kernels */
3764         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3765                 return -EINVAL;
3766
3767         spin_lock_bh(&adapter->mbx_lock);
3768         /* notify the PF of our intent to use this size of frame */
3769         ret = hw->mac.ops.set_rlpml(hw, max_frame);
3770         spin_unlock_bh(&adapter->mbx_lock);
3771         if (ret)
3772                 return -EINVAL;
3773
3774         hw_dbg(hw, "changing MTU from %d to %d\n",
3775                netdev->mtu, new_mtu);
3776
3777         /* must set new MTU before calling down or up */
3778         netdev->mtu = new_mtu;
3779
3780         return 0;
3781 }
3782
3783 #ifdef CONFIG_NET_POLL_CONTROLLER
3784 /* Polling 'interrupt' - used by things like netconsole to send skbs
3785  * without having to re-enable interrupts. It's not called while
3786  * the interrupt routine is executing.
3787  */
3788 static void ixgbevf_netpoll(struct net_device *netdev)
3789 {
3790         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3791         int i;
3792
3793         /* if interface is down do nothing */
3794         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3795                 return;
3796         for (i = 0; i < adapter->num_rx_queues; i++)
3797                 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3798 }
3799 #endif /* CONFIG_NET_POLL_CONTROLLER */
3800
3801 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3802 {
3803         struct net_device *netdev = pci_get_drvdata(pdev);
3804         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3805 #ifdef CONFIG_PM
3806         int retval = 0;
3807 #endif
3808
3809         netif_device_detach(netdev);
3810
3811         if (netif_running(netdev)) {
3812                 rtnl_lock();
3813                 ixgbevf_down(adapter);
3814                 ixgbevf_free_irq(adapter);
3815                 ixgbevf_free_all_tx_resources(adapter);
3816                 ixgbevf_free_all_rx_resources(adapter);
3817                 rtnl_unlock();
3818         }
3819
3820         ixgbevf_clear_interrupt_scheme(adapter);
3821
3822 #ifdef CONFIG_PM
3823         retval = pci_save_state(pdev);
3824         if (retval)
3825                 return retval;
3826
3827 #endif
3828         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3829                 pci_disable_device(pdev);
3830
3831         return 0;
3832 }
3833
3834 #ifdef CONFIG_PM
3835 static int ixgbevf_resume(struct pci_dev *pdev)
3836 {
3837         struct net_device *netdev = pci_get_drvdata(pdev);
3838         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3839         u32 err;
3840
3841         pci_restore_state(pdev);
3842         /* pci_restore_state clears dev->state_saved so call
3843          * pci_save_state to restore it.
3844          */
3845         pci_save_state(pdev);
3846
3847         err = pci_enable_device_mem(pdev);
3848         if (err) {
3849                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3850                 return err;
3851         }
3852         smp_mb__before_atomic();
3853         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3854         pci_set_master(pdev);
3855
3856         ixgbevf_reset(adapter);
3857
3858         rtnl_lock();
3859         err = ixgbevf_init_interrupt_scheme(adapter);
3860         rtnl_unlock();
3861         if (err) {
3862                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3863                 return err;
3864         }
3865
3866         if (netif_running(netdev)) {
3867                 err = ixgbevf_open(netdev);
3868                 if (err)
3869                         return err;
3870         }
3871
3872         netif_device_attach(netdev);
3873
3874         return err;
3875 }
3876
3877 #endif /* CONFIG_PM */
3878 static void ixgbevf_shutdown(struct pci_dev *pdev)
3879 {
3880         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3881 }
3882
3883 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3884                                                 struct rtnl_link_stats64 *stats)
3885 {
3886         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3887         unsigned int start;
3888         u64 bytes, packets;
3889         const struct ixgbevf_ring *ring;
3890         int i;
3891
3892         ixgbevf_update_stats(adapter);
3893
3894         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3895
3896         for (i = 0; i < adapter->num_rx_queues; i++) {
3897                 ring = adapter->rx_ring[i];
3898                 do {
3899                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3900                         bytes = ring->stats.bytes;
3901                         packets = ring->stats.packets;
3902                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3903                 stats->rx_bytes += bytes;
3904                 stats->rx_packets += packets;
3905         }
3906
3907         for (i = 0; i < adapter->num_tx_queues; i++) {
3908                 ring = adapter->tx_ring[i];
3909                 do {
3910                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3911                         bytes = ring->stats.bytes;
3912                         packets = ring->stats.packets;
3913                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3914                 stats->tx_bytes += bytes;
3915                 stats->tx_packets += packets;
3916         }
3917
3918         return stats;
3919 }
3920
3921 #define IXGBEVF_MAX_MAC_HDR_LEN         127
3922 #define IXGBEVF_MAX_NETWORK_HDR_LEN     511
3923
3924 static netdev_features_t
3925 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3926                        netdev_features_t features)
3927 {
3928         unsigned int network_hdr_len, mac_hdr_len;
3929
3930         /* Make certain the headers can be described by a context descriptor */
3931         mac_hdr_len = skb_network_header(skb) - skb->data;
3932         if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3933                 return features & ~(NETIF_F_HW_CSUM |
3934                                     NETIF_F_SCTP_CRC |
3935                                     NETIF_F_HW_VLAN_CTAG_TX |
3936                                     NETIF_F_TSO |
3937                                     NETIF_F_TSO6);
3938
3939         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3940         if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
3941                 return features & ~(NETIF_F_HW_CSUM |
3942                                     NETIF_F_SCTP_CRC |
3943                                     NETIF_F_TSO |
3944                                     NETIF_F_TSO6);
3945
3946         /* We can only support IPV4 TSO in tunnels if we can mangle the
3947          * inner IP ID field, so strip TSO if MANGLEID is not supported.
3948          */
3949         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3950                 features &= ~NETIF_F_TSO;
3951
3952         return features;
3953 }
3954
3955 static const struct net_device_ops ixgbevf_netdev_ops = {
3956         .ndo_open               = ixgbevf_open,
3957         .ndo_stop               = ixgbevf_close,
3958         .ndo_start_xmit         = ixgbevf_xmit_frame,
3959         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3960         .ndo_get_stats64        = ixgbevf_get_stats,
3961         .ndo_validate_addr      = eth_validate_addr,
3962         .ndo_set_mac_address    = ixgbevf_set_mac,
3963         .ndo_change_mtu         = ixgbevf_change_mtu,
3964         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3965         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3966         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3967 #ifdef CONFIG_NET_RX_BUSY_POLL
3968         .ndo_busy_poll          = ixgbevf_busy_poll_recv,
3969 #endif
3970 #ifdef CONFIG_NET_POLL_CONTROLLER
3971         .ndo_poll_controller    = ixgbevf_netpoll,
3972 #endif
3973         .ndo_features_check     = ixgbevf_features_check,
3974 };
3975
3976 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3977 {
3978         dev->netdev_ops = &ixgbevf_netdev_ops;
3979         ixgbevf_set_ethtool_ops(dev);
3980         dev->watchdog_timeo = 5 * HZ;
3981 }
3982
3983 /**
3984  * ixgbevf_probe - Device Initialization Routine
3985  * @pdev: PCI device information struct
3986  * @ent: entry in ixgbevf_pci_tbl
3987  *
3988  * Returns 0 on success, negative on failure
3989  *
3990  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3991  * The OS initialization, configuring of the adapter private structure,
3992  * and a hardware reset occur.
3993  **/
3994 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3995 {
3996         struct net_device *netdev;
3997         struct ixgbevf_adapter *adapter = NULL;
3998         struct ixgbe_hw *hw = NULL;
3999         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4000         int err, pci_using_dac;
4001         bool disable_dev = false;
4002
4003         err = pci_enable_device(pdev);
4004         if (err)
4005                 return err;
4006
4007         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4008                 pci_using_dac = 1;
4009         } else {
4010                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4011                 if (err) {
4012                         dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4013                         goto err_dma;
4014                 }
4015                 pci_using_dac = 0;
4016         }
4017
4018         err = pci_request_regions(pdev, ixgbevf_driver_name);
4019         if (err) {
4020                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4021                 goto err_pci_reg;
4022         }
4023
4024         pci_set_master(pdev);
4025
4026         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4027                                    MAX_TX_QUEUES);
4028         if (!netdev) {
4029                 err = -ENOMEM;
4030                 goto err_alloc_etherdev;
4031         }
4032
4033         SET_NETDEV_DEV(netdev, &pdev->dev);
4034
4035         adapter = netdev_priv(netdev);
4036
4037         adapter->netdev = netdev;
4038         adapter->pdev = pdev;
4039         hw = &adapter->hw;
4040         hw->back = adapter;
4041         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4042
4043         /* call save state here in standalone driver because it relies on
4044          * adapter struct to exist, and needs to call netdev_priv
4045          */
4046         pci_save_state(pdev);
4047
4048         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4049                               pci_resource_len(pdev, 0));
4050         adapter->io_addr = hw->hw_addr;
4051         if (!hw->hw_addr) {
4052                 err = -EIO;
4053                 goto err_ioremap;
4054         }
4055
4056         ixgbevf_assign_netdev_ops(netdev);
4057
4058         /* Setup HW API */
4059         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4060         hw->mac.type  = ii->mac;
4061
4062         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4063                sizeof(struct ixgbe_mbx_operations));
4064
4065         /* setup the private structure */
4066         err = ixgbevf_sw_init(adapter);
4067         if (err)
4068                 goto err_sw_init;
4069
4070         /* The HW MAC address was set and/or determined in sw_init */
4071         if (!is_valid_ether_addr(netdev->dev_addr)) {
4072                 pr_err("invalid MAC address\n");
4073                 err = -EIO;
4074                 goto err_sw_init;
4075         }
4076
4077         netdev->hw_features = NETIF_F_SG |
4078                               NETIF_F_TSO |
4079                               NETIF_F_TSO6 |
4080                               NETIF_F_RXCSUM |
4081                               NETIF_F_HW_CSUM |
4082                               NETIF_F_SCTP_CRC;
4083
4084 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4085                                       NETIF_F_GSO_GRE_CSUM | \
4086                                       NETIF_F_GSO_IPXIP4 | \
4087                                       NETIF_F_GSO_IPXIP6 | \
4088                                       NETIF_F_GSO_UDP_TUNNEL | \
4089                                       NETIF_F_GSO_UDP_TUNNEL_CSUM)
4090
4091         netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4092         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4093                                IXGBEVF_GSO_PARTIAL_FEATURES;
4094
4095         netdev->features = netdev->hw_features;
4096
4097         if (pci_using_dac)
4098                 netdev->features |= NETIF_F_HIGHDMA;
4099
4100         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4101         netdev->mpls_features |= NETIF_F_HW_CSUM;
4102         netdev->hw_enc_features |= netdev->vlan_features;
4103
4104         /* set this bit last since it cannot be part of vlan_features */
4105         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4106                             NETIF_F_HW_VLAN_CTAG_RX |
4107                             NETIF_F_HW_VLAN_CTAG_TX;
4108
4109         netdev->priv_flags |= IFF_UNICAST_FLT;
4110
4111         if (IXGBE_REMOVED(hw->hw_addr)) {
4112                 err = -EIO;
4113                 goto err_sw_init;
4114         }
4115
4116         setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4117                     (unsigned long)adapter);
4118
4119         INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4120         set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4121         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4122
4123         err = ixgbevf_init_interrupt_scheme(adapter);
4124         if (err)
4125                 goto err_sw_init;
4126
4127         strcpy(netdev->name, "eth%d");
4128
4129         err = register_netdev(netdev);
4130         if (err)
4131                 goto err_register;
4132
4133         pci_set_drvdata(pdev, netdev);
4134         netif_carrier_off(netdev);
4135
4136         ixgbevf_init_last_counter_stats(adapter);
4137
4138         /* print the VF info */
4139         dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4140         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4141
4142         switch (hw->mac.type) {
4143         case ixgbe_mac_X550_vf:
4144                 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4145                 break;
4146         case ixgbe_mac_X540_vf:
4147                 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4148                 break;
4149         case ixgbe_mac_82599_vf:
4150         default:
4151                 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4152                 break;
4153         }
4154
4155         return 0;
4156
4157 err_register:
4158         ixgbevf_clear_interrupt_scheme(adapter);
4159 err_sw_init:
4160         ixgbevf_reset_interrupt_capability(adapter);
4161         iounmap(adapter->io_addr);
4162 err_ioremap:
4163         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4164         free_netdev(netdev);
4165 err_alloc_etherdev:
4166         pci_release_regions(pdev);
4167 err_pci_reg:
4168 err_dma:
4169         if (!adapter || disable_dev)
4170                 pci_disable_device(pdev);
4171         return err;
4172 }
4173
4174 /**
4175  * ixgbevf_remove - Device Removal Routine
4176  * @pdev: PCI device information struct
4177  *
4178  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4179  * that it should release a PCI device.  The could be caused by a
4180  * Hot-Plug event, or because the driver is going to be removed from
4181  * memory.
4182  **/
4183 static void ixgbevf_remove(struct pci_dev *pdev)
4184 {
4185         struct net_device *netdev = pci_get_drvdata(pdev);
4186         struct ixgbevf_adapter *adapter;
4187         bool disable_dev;
4188
4189         if (!netdev)
4190                 return;
4191
4192         adapter = netdev_priv(netdev);
4193
4194         set_bit(__IXGBEVF_REMOVING, &adapter->state);
4195         cancel_work_sync(&adapter->service_task);
4196
4197         if (netdev->reg_state == NETREG_REGISTERED)
4198                 unregister_netdev(netdev);
4199
4200         ixgbevf_clear_interrupt_scheme(adapter);
4201         ixgbevf_reset_interrupt_capability(adapter);
4202
4203         iounmap(adapter->io_addr);
4204         pci_release_regions(pdev);
4205
4206         hw_dbg(&adapter->hw, "Remove complete\n");
4207
4208         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4209         free_netdev(netdev);
4210
4211         if (disable_dev)
4212                 pci_disable_device(pdev);
4213 }
4214
4215 /**
4216  * ixgbevf_io_error_detected - called when PCI error is detected
4217  * @pdev: Pointer to PCI device
4218  * @state: The current pci connection state
4219  *
4220  * This function is called after a PCI bus error affecting
4221  * this device has been detected.
4222  **/
4223 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4224                                                   pci_channel_state_t state)
4225 {
4226         struct net_device *netdev = pci_get_drvdata(pdev);
4227         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4228
4229         if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4230                 return PCI_ERS_RESULT_DISCONNECT;
4231
4232         rtnl_lock();
4233         netif_device_detach(netdev);
4234
4235         if (state == pci_channel_io_perm_failure) {
4236                 rtnl_unlock();
4237                 return PCI_ERS_RESULT_DISCONNECT;
4238         }
4239
4240         if (netif_running(netdev))
4241                 ixgbevf_down(adapter);
4242
4243         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4244                 pci_disable_device(pdev);
4245         rtnl_unlock();
4246
4247         /* Request a slot slot reset. */
4248         return PCI_ERS_RESULT_NEED_RESET;
4249 }
4250
4251 /**
4252  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4253  * @pdev: Pointer to PCI device
4254  *
4255  * Restart the card from scratch, as if from a cold-boot. Implementation
4256  * resembles the first-half of the ixgbevf_resume routine.
4257  **/
4258 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4259 {
4260         struct net_device *netdev = pci_get_drvdata(pdev);
4261         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4262
4263         if (pci_enable_device_mem(pdev)) {
4264                 dev_err(&pdev->dev,
4265                         "Cannot re-enable PCI device after reset.\n");
4266                 return PCI_ERS_RESULT_DISCONNECT;
4267         }
4268
4269         smp_mb__before_atomic();
4270         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4271         pci_set_master(pdev);
4272
4273         ixgbevf_reset(adapter);
4274
4275         return PCI_ERS_RESULT_RECOVERED;
4276 }
4277
4278 /**
4279  * ixgbevf_io_resume - called when traffic can start flowing again.
4280  * @pdev: Pointer to PCI device
4281  *
4282  * This callback is called when the error recovery driver tells us that
4283  * its OK to resume normal operation. Implementation resembles the
4284  * second-half of the ixgbevf_resume routine.
4285  **/
4286 static void ixgbevf_io_resume(struct pci_dev *pdev)
4287 {
4288         struct net_device *netdev = pci_get_drvdata(pdev);
4289         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4290
4291         if (netif_running(netdev))
4292                 ixgbevf_up(adapter);
4293
4294         netif_device_attach(netdev);
4295 }
4296
4297 /* PCI Error Recovery (ERS) */
4298 static const struct pci_error_handlers ixgbevf_err_handler = {
4299         .error_detected = ixgbevf_io_error_detected,
4300         .slot_reset = ixgbevf_io_slot_reset,
4301         .resume = ixgbevf_io_resume,
4302 };
4303
4304 static struct pci_driver ixgbevf_driver = {
4305         .name           = ixgbevf_driver_name,
4306         .id_table       = ixgbevf_pci_tbl,
4307         .probe          = ixgbevf_probe,
4308         .remove         = ixgbevf_remove,
4309 #ifdef CONFIG_PM
4310         /* Power Management Hooks */
4311         .suspend        = ixgbevf_suspend,
4312         .resume         = ixgbevf_resume,
4313 #endif
4314         .shutdown       = ixgbevf_shutdown,
4315         .err_handler    = &ixgbevf_err_handler
4316 };
4317
4318 /**
4319  * ixgbevf_init_module - Driver Registration Routine
4320  *
4321  * ixgbevf_init_module is the first routine called when the driver is
4322  * loaded. All it does is register with the PCI subsystem.
4323  **/
4324 static int __init ixgbevf_init_module(void)
4325 {
4326         pr_info("%s - version %s\n", ixgbevf_driver_string,
4327                 ixgbevf_driver_version);
4328
4329         pr_info("%s\n", ixgbevf_copyright);
4330         ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4331         if (!ixgbevf_wq) {
4332                 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4333                 return -ENOMEM;
4334         }
4335
4336         return pci_register_driver(&ixgbevf_driver);
4337 }
4338
4339 module_init(ixgbevf_init_module);
4340
4341 /**
4342  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4343  *
4344  * ixgbevf_exit_module is called just before the driver is removed
4345  * from memory.
4346  **/
4347 static void __exit ixgbevf_exit_module(void)
4348 {
4349         pci_unregister_driver(&ixgbevf_driver);
4350         if (ixgbevf_wq) {
4351                 destroy_workqueue(ixgbevf_wq);
4352                 ixgbevf_wq = NULL;
4353         }
4354 }
4355
4356 #ifdef DEBUG
4357 /**
4358  * ixgbevf_get_hw_dev_name - return device name string
4359  * used by hardware layer to print debugging information
4360  **/
4361 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4362 {
4363         struct ixgbevf_adapter *adapter = hw->back;
4364
4365         return adapter->netdev->name;
4366 }
4367
4368 #endif
4369 module_exit(ixgbevf_exit_module);
4370
4371 /* ixgbevf_main.c */