GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / net / ethernet / marvell / pxa168_eth.c
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *              Sachin Sanap <ssanap@marvell.com>
7  *              Zhangfei Gao <zgao6@marvell.com>
8  *              Philip Rakity <prakity@marvell.com>
9  *              Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49
50 #define DRIVER_NAME     "pxa168-eth"
51 #define DRIVER_VERSION  "0.3"
52
53 /*
54  * Registers
55  */
56
57 #define PHY_ADDRESS             0x0000
58 #define SMI                     0x0010
59 #define PORT_CONFIG             0x0400
60 #define PORT_CONFIG_EXT         0x0408
61 #define PORT_COMMAND            0x0410
62 #define PORT_STATUS             0x0418
63 #define HTPR                    0x0428
64 #define MAC_ADDR_LOW            0x0430
65 #define MAC_ADDR_HIGH           0x0438
66 #define SDMA_CONFIG             0x0440
67 #define SDMA_CMD                0x0448
68 #define INT_CAUSE               0x0450
69 #define INT_W_CLEAR             0x0454
70 #define INT_MASK                0x0458
71 #define ETH_F_RX_DESC_0         0x0480
72 #define ETH_C_RX_DESC_0         0x04A0
73 #define ETH_C_TX_DESC_1         0x04E4
74
75 /* smi register */
76 #define SMI_BUSY                (1 << 28)       /* 0 - Write, 1 - Read  */
77 #define SMI_R_VALID             (1 << 27)       /* 0 - Write, 1 - Read  */
78 #define SMI_OP_W                (0 << 26)       /* Write operation      */
79 #define SMI_OP_R                (1 << 26)       /* Read operation */
80
81 #define PHY_WAIT_ITERATIONS     10
82
83 #define PXA168_ETH_PHY_ADDR_DEFAULT     0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA        (1 << 31)
86
87 /* RX descriptor status */
88 #define RX_EN_INT               (1 << 23)
89 #define RX_FIRST_DESC           (1 << 17)
90 #define RX_LAST_DESC            (1 << 16)
91 #define RX_ERROR                (1 << 15)
92
93 /* TX descriptor command */
94 #define TX_EN_INT               (1 << 23)
95 #define TX_GEN_CRC              (1 << 22)
96 #define TX_ZERO_PADDING         (1 << 18)
97 #define TX_FIRST_DESC           (1 << 17)
98 #define TX_LAST_DESC            (1 << 16)
99 #define TX_ERROR                (1 << 15)
100
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT             (1 << 31)
103 #define SDMA_CMD_TXDL           (1 << 24)
104 #define SDMA_CMD_TXDH           (1 << 23)
105 #define SDMA_CMD_AR             (1 << 15)
106 #define SDMA_CMD_ERD            (1 << 7)
107
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_DUPLEX_FULL         (1 << 15)
110 #define PCR_HS                  (1 << 12)
111 #define PCR_EN                  (1 << 7)
112 #define PCR_PM                  (1 << 0)
113
114 /* Bit definitions of the Port Config Extend Reg */
115 #define PCXR_2BSM               (1 << 28)
116 #define PCXR_DSCP_EN            (1 << 21)
117 #define PCXR_RMII_EN            (1 << 20)
118 #define PCXR_AN_SPEED_DIS       (1 << 19)
119 #define PCXR_SPEED_100          (1 << 18)
120 #define PCXR_MFL_1518           (0 << 14)
121 #define PCXR_MFL_1536           (1 << 14)
122 #define PCXR_MFL_2048           (2 << 14)
123 #define PCXR_MFL_64K            (3 << 14)
124 #define PCXR_FLOWCTL_DIS        (1 << 12)
125 #define PCXR_FLP                (1 << 11)
126 #define PCXR_AN_FLOWCTL_DIS     (1 << 10)
127 #define PCXR_AN_DUPLEX_DIS      (1 << 9)
128 #define PCXR_PRIO_TX_OFF        3
129 #define PCXR_TX_HIGH_PRI        (7 << PCXR_PRIO_TX_OFF)
130
131 /* Bit definitions of the SDMA Config Reg */
132 #define SDCR_BSZ_OFF            12
133 #define SDCR_BSZ8               (3 << SDCR_BSZ_OFF)
134 #define SDCR_BSZ4               (2 << SDCR_BSZ_OFF)
135 #define SDCR_BSZ2               (1 << SDCR_BSZ_OFF)
136 #define SDCR_BSZ1               (0 << SDCR_BSZ_OFF)
137 #define SDCR_BLMR               (1 << 6)
138 #define SDCR_BLMT               (1 << 7)
139 #define SDCR_RIFB               (1 << 9)
140 #define SDCR_RC_OFF             2
141 #define SDCR_RC_MAX_RETRANS     (0xf << SDCR_RC_OFF)
142
143 /*
144  * Bit definitions of the Interrupt Cause Reg
145  * and Interrupt MASK Reg is the same
146  */
147 #define ICR_RXBUF               (1 << 0)
148 #define ICR_TXBUF_H             (1 << 2)
149 #define ICR_TXBUF_L             (1 << 3)
150 #define ICR_TXEND_H             (1 << 6)
151 #define ICR_TXEND_L             (1 << 7)
152 #define ICR_RXERR               (1 << 8)
153 #define ICR_TXERR_H             (1 << 10)
154 #define ICR_TXERR_L             (1 << 11)
155 #define ICR_TX_UDR              (1 << 13)
156 #define ICR_MII_CH              (1 << 28)
157
158 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
159                                 ICR_TXERR_H  | ICR_TXERR_L |\
160                                 ICR_TXEND_H  | ICR_TXEND_L |\
161                                 ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
162
163 #define ETH_HW_IP_ALIGN         2       /* hw aligns IP header */
164
165 #define NUM_RX_DESCS            64
166 #define NUM_TX_DESCS            64
167
168 #define HASH_ADD                0
169 #define HASH_DELETE             1
170 #define HASH_ADDR_TABLE_SIZE    0x4000  /* 16K (1/2K address - PCR_HS == 1) */
171 #define HOP_NUMBER              12
172
173 /* Bit definitions for Port status */
174 #define PORT_SPEED_100          (1 << 0)
175 #define FULL_DUPLEX             (1 << 1)
176 #define FLOW_CONTROL_DISABLED   (1 << 2)
177 #define LINK_UP                 (1 << 3)
178
179 /* Bit definitions for work to be done */
180 #define WORK_TX_DONE            (1 << 1)
181
182 /*
183  * Misc definitions.
184  */
185 #define SKB_DMA_REALIGN         ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
186
187 struct rx_desc {
188         u32 cmd_sts;            /* Descriptor command status            */
189         u16 byte_cnt;           /* Descriptor buffer byte count         */
190         u16 buf_size;           /* Buffer size                          */
191         u32 buf_ptr;            /* Descriptor buffer pointer            */
192         u32 next_desc_ptr;      /* Next descriptor pointer              */
193 };
194
195 struct tx_desc {
196         u32 cmd_sts;            /* Command/status field                 */
197         u16 reserved;
198         u16 byte_cnt;           /* buffer byte count                    */
199         u32 buf_ptr;            /* pointer to buffer for this descriptor */
200         u32 next_desc_ptr;      /* Pointer to next descriptor           */
201 };
202
203 struct pxa168_eth_private {
204         int port_num;           /* User Ethernet port number    */
205         int phy_addr;
206         int phy_speed;
207         int phy_duplex;
208         phy_interface_t phy_intf;
209
210         int rx_resource_err;    /* Rx ring resource error flag */
211
212         /* Next available and first returning Rx resource */
213         int rx_curr_desc_q, rx_used_desc_q;
214
215         /* Next available and first returning Tx resource */
216         int tx_curr_desc_q, tx_used_desc_q;
217
218         struct rx_desc *p_rx_desc_area;
219         dma_addr_t rx_desc_dma;
220         int rx_desc_area_size;
221         struct sk_buff **rx_skb;
222
223         struct tx_desc *p_tx_desc_area;
224         dma_addr_t tx_desc_dma;
225         int tx_desc_area_size;
226         struct sk_buff **tx_skb;
227
228         struct work_struct tx_timeout_task;
229
230         struct net_device *dev;
231         struct napi_struct napi;
232         u8 work_todo;
233         int skb_size;
234
235         /* Size of Tx Ring per queue */
236         int tx_ring_size;
237         /* Number of tx descriptors in use */
238         int tx_desc_count;
239         /* Size of Rx Ring per queue */
240         int rx_ring_size;
241         /* Number of rx descriptors in use */
242         int rx_desc_count;
243
244         /*
245          * Used in case RX Ring is empty, which can occur when
246          * system does not have resources (skb's)
247          */
248         struct timer_list timeout;
249         struct mii_bus *smi_bus;
250
251         /* clock */
252         struct clk *clk;
253         struct pxa168_eth_platform_data *pd;
254         /*
255          * Ethernet controller base address.
256          */
257         void __iomem *base;
258
259         /* Pointer to the hardware address filter table */
260         void *htpr;
261         dma_addr_t htpr_dma;
262 };
263
264 struct addr_table_entry {
265         __le32 lo;
266         __le32 hi;
267 };
268
269 /* Bit fields of a Hash Table Entry */
270 enum hash_table_entry {
271         HASH_ENTRY_VALID = 1,
272         SKIP = 2,
273         HASH_ENTRY_RECEIVE_DISCARD = 4,
274         HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
275 };
276
277 static int pxa168_get_link_ksettings(struct net_device *dev,
278                                      struct ethtool_link_ksettings *cmd);
279 static int pxa168_init_hw(struct pxa168_eth_private *pep);
280 static int pxa168_init_phy(struct net_device *dev);
281 static void eth_port_reset(struct net_device *dev);
282 static void eth_port_start(struct net_device *dev);
283 static int pxa168_eth_open(struct net_device *dev);
284 static int pxa168_eth_stop(struct net_device *dev);
285
286 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
287 {
288         return readl_relaxed(pep->base + offset);
289 }
290
291 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
292 {
293         writel_relaxed(data, pep->base + offset);
294 }
295
296 static void abort_dma(struct pxa168_eth_private *pep)
297 {
298         int delay;
299         int max_retries = 40;
300
301         do {
302                 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
303                 udelay(100);
304
305                 delay = 10;
306                 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
307                        && delay-- > 0) {
308                         udelay(10);
309                 }
310         } while (max_retries-- > 0 && delay <= 0);
311
312         if (max_retries <= 0)
313                 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
314 }
315
316 static void rxq_refill(struct net_device *dev)
317 {
318         struct pxa168_eth_private *pep = netdev_priv(dev);
319         struct sk_buff *skb;
320         struct rx_desc *p_used_rx_desc;
321         int used_rx_desc;
322
323         while (pep->rx_desc_count < pep->rx_ring_size) {
324                 int size;
325
326                 skb = netdev_alloc_skb(dev, pep->skb_size);
327                 if (!skb)
328                         break;
329                 if (SKB_DMA_REALIGN)
330                         skb_reserve(skb, SKB_DMA_REALIGN);
331                 pep->rx_desc_count++;
332                 /* Get 'used' Rx descriptor */
333                 used_rx_desc = pep->rx_used_desc_q;
334                 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
335                 size = skb_end_pointer(skb) - skb->data;
336                 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
337                                                          skb->data,
338                                                          size,
339                                                          DMA_FROM_DEVICE);
340                 p_used_rx_desc->buf_size = size;
341                 pep->rx_skb[used_rx_desc] = skb;
342
343                 /* Return the descriptor to DMA ownership */
344                 dma_wmb();
345                 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
346                 dma_wmb();
347
348                 /* Move the used descriptor pointer to the next descriptor */
349                 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
350
351                 /* Any Rx return cancels the Rx resource error status */
352                 pep->rx_resource_err = 0;
353
354                 skb_reserve(skb, ETH_HW_IP_ALIGN);
355         }
356
357         /*
358          * If RX ring is empty of SKB, set a timer to try allocating
359          * again at a later time.
360          */
361         if (pep->rx_desc_count == 0) {
362                 pep->timeout.expires = jiffies + (HZ / 10);
363                 add_timer(&pep->timeout);
364         }
365 }
366
367 static inline void rxq_refill_timer_wrapper(unsigned long data)
368 {
369         struct pxa168_eth_private *pep = (void *)data;
370         napi_schedule(&pep->napi);
371 }
372
373 static inline u8 flip_8_bits(u8 x)
374 {
375         return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
376             | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
377             | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
378             | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
379 }
380
381 static void nibble_swap_every_byte(unsigned char *mac_addr)
382 {
383         int i;
384         for (i = 0; i < ETH_ALEN; i++) {
385                 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
386                                 ((mac_addr[i] & 0xf0) >> 4);
387         }
388 }
389
390 static void inverse_every_nibble(unsigned char *mac_addr)
391 {
392         int i;
393         for (i = 0; i < ETH_ALEN; i++)
394                 mac_addr[i] = flip_8_bits(mac_addr[i]);
395 }
396
397 /*
398  * ----------------------------------------------------------------------------
399  * This function will calculate the hash function of the address.
400  * Inputs
401  * mac_addr_orig    - MAC address.
402  * Outputs
403  * return the calculated entry.
404  */
405 static u32 hash_function(unsigned char *mac_addr_orig)
406 {
407         u32 hash_result;
408         u32 addr0;
409         u32 addr1;
410         u32 addr2;
411         u32 addr3;
412         unsigned char mac_addr[ETH_ALEN];
413
414         /* Make a copy of MAC address since we are going to performe bit
415          * operations on it
416          */
417         memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
418
419         nibble_swap_every_byte(mac_addr);
420         inverse_every_nibble(mac_addr);
421
422         addr0 = (mac_addr[5] >> 2) & 0x3f;
423         addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
424         addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
425         addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
426
427         hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
428         hash_result = hash_result & 0x07ff;
429         return hash_result;
430 }
431
432 /*
433  * ----------------------------------------------------------------------------
434  * This function will add/del an entry to the address table.
435  * Inputs
436  * pep - ETHERNET .
437  * mac_addr - MAC address.
438  * skip - if 1, skip this address.Used in case of deleting an entry which is a
439  *        part of chain in the hash table.We can't just delete the entry since
440  *        that will break the chain.We need to defragment the tables time to
441  *        time.
442  * rd   - 0 Discard packet upon match.
443  *      - 1 Receive packet upon match.
444  * Outputs
445  * address table entry is added/deleted.
446  * 0 if success.
447  * -ENOSPC if table full
448  */
449 static int add_del_hash_entry(struct pxa168_eth_private *pep,
450                               unsigned char *mac_addr,
451                               u32 rd, u32 skip, int del)
452 {
453         struct addr_table_entry *entry, *start;
454         u32 new_high;
455         u32 new_low;
456         u32 i;
457
458         new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
459             | (((mac_addr[1] >> 0) & 0xf) << 11)
460             | (((mac_addr[0] >> 4) & 0xf) << 7)
461             | (((mac_addr[0] >> 0) & 0xf) << 3)
462             | (((mac_addr[3] >> 4) & 0x1) << 31)
463             | (((mac_addr[3] >> 0) & 0xf) << 27)
464             | (((mac_addr[2] >> 4) & 0xf) << 23)
465             | (((mac_addr[2] >> 0) & 0xf) << 19)
466             | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
467             | HASH_ENTRY_VALID;
468
469         new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
470             | (((mac_addr[5] >> 0) & 0xf) << 11)
471             | (((mac_addr[4] >> 4) & 0xf) << 7)
472             | (((mac_addr[4] >> 0) & 0xf) << 3)
473             | (((mac_addr[3] >> 5) & 0x7) << 0);
474
475         /*
476          * Pick the appropriate table, start scanning for free/reusable
477          * entries at the index obtained by hashing the specified MAC address
478          */
479         start = pep->htpr;
480         entry = start + hash_function(mac_addr);
481         for (i = 0; i < HOP_NUMBER; i++) {
482                 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
483                         break;
484                 } else {
485                         /* if same address put in same position */
486                         if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
487                                 (new_low & 0xfffffff8)) &&
488                                 (le32_to_cpu(entry->hi) == new_high)) {
489                                 break;
490                         }
491                 }
492                 if (entry == start + 0x7ff)
493                         entry = start;
494                 else
495                         entry++;
496         }
497
498         if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
499             (le32_to_cpu(entry->hi) != new_high) && del)
500                 return 0;
501
502         if (i == HOP_NUMBER) {
503                 if (!del) {
504                         netdev_info(pep->dev,
505                                     "%s: table section is full, need to "
506                                     "move to 16kB implementation?\n",
507                                     __FILE__);
508                         return -ENOSPC;
509                 } else
510                         return 0;
511         }
512
513         /*
514          * Update the selected entry
515          */
516         if (del) {
517                 entry->hi = 0;
518                 entry->lo = 0;
519         } else {
520                 entry->hi = cpu_to_le32(new_high);
521                 entry->lo = cpu_to_le32(new_low);
522         }
523
524         return 0;
525 }
526
527 /*
528  * ----------------------------------------------------------------------------
529  *  Create an addressTable entry from MAC address info
530  *  found in the specifed net_device struct
531  *
532  *  Input : pointer to ethernet interface network device structure
533  *  Output : N/A
534  */
535 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
536                                           unsigned char *oaddr,
537                                           unsigned char *addr)
538 {
539         /* Delete old entry */
540         if (oaddr)
541                 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
542         /* Add new entry */
543         add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
544 }
545
546 static int init_hash_table(struct pxa168_eth_private *pep)
547 {
548         /*
549          * Hardware expects CPU to build a hash table based on a predefined
550          * hash function and populate it based on hardware address. The
551          * location of the hash table is identified by 32-bit pointer stored
552          * in HTPR internal register. Two possible sizes exists for the hash
553          * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
554          * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
555          * 1/2kB.
556          */
557         /* TODO: Add support for 8kB hash table and alternative hash
558          * function.Driver can dynamically switch to them if the 1/2kB hash
559          * table is full.
560          */
561         if (pep->htpr == NULL) {
562                 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
563                                                 HASH_ADDR_TABLE_SIZE,
564                                                 &pep->htpr_dma, GFP_KERNEL);
565                 if (pep->htpr == NULL)
566                         return -ENOMEM;
567         } else {
568                 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
569         }
570         wrl(pep, HTPR, pep->htpr_dma);
571         return 0;
572 }
573
574 static void pxa168_eth_set_rx_mode(struct net_device *dev)
575 {
576         struct pxa168_eth_private *pep = netdev_priv(dev);
577         struct netdev_hw_addr *ha;
578         u32 val;
579
580         val = rdl(pep, PORT_CONFIG);
581         if (dev->flags & IFF_PROMISC)
582                 val |= PCR_PM;
583         else
584                 val &= ~PCR_PM;
585         wrl(pep, PORT_CONFIG, val);
586
587         /*
588          * Remove the old list of MAC address and add dev->addr
589          * and multicast address.
590          */
591         memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
592         update_hash_table_mac_address(pep, NULL, dev->dev_addr);
593
594         netdev_for_each_mc_addr(ha, dev)
595                 update_hash_table_mac_address(pep, NULL, ha->addr);
596 }
597
598 static void pxa168_eth_get_mac_address(struct net_device *dev,
599                                        unsigned char *addr)
600 {
601         struct pxa168_eth_private *pep = netdev_priv(dev);
602         unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
603         unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
604
605         addr[0] = (mac_h >> 24) & 0xff;
606         addr[1] = (mac_h >> 16) & 0xff;
607         addr[2] = (mac_h >> 8) & 0xff;
608         addr[3] = mac_h & 0xff;
609         addr[4] = (mac_l >> 8) & 0xff;
610         addr[5] = mac_l & 0xff;
611 }
612
613 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
614 {
615         struct sockaddr *sa = addr;
616         struct pxa168_eth_private *pep = netdev_priv(dev);
617         unsigned char oldMac[ETH_ALEN];
618         u32 mac_h, mac_l;
619
620         if (!is_valid_ether_addr(sa->sa_data))
621                 return -EADDRNOTAVAIL;
622         memcpy(oldMac, dev->dev_addr, ETH_ALEN);
623         memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
624
625         mac_h = dev->dev_addr[0] << 24;
626         mac_h |= dev->dev_addr[1] << 16;
627         mac_h |= dev->dev_addr[2] << 8;
628         mac_h |= dev->dev_addr[3];
629         mac_l = dev->dev_addr[4] << 8;
630         mac_l |= dev->dev_addr[5];
631         wrl(pep, MAC_ADDR_HIGH, mac_h);
632         wrl(pep, MAC_ADDR_LOW, mac_l);
633
634         netif_addr_lock_bh(dev);
635         update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
636         netif_addr_unlock_bh(dev);
637         return 0;
638 }
639
640 static void eth_port_start(struct net_device *dev)
641 {
642         unsigned int val = 0;
643         struct pxa168_eth_private *pep = netdev_priv(dev);
644         int tx_curr_desc, rx_curr_desc;
645
646         phy_start(dev->phydev);
647
648         /* Assignment of Tx CTRP of given queue */
649         tx_curr_desc = pep->tx_curr_desc_q;
650         wrl(pep, ETH_C_TX_DESC_1,
651             (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
652
653         /* Assignment of Rx CRDP of given queue */
654         rx_curr_desc = pep->rx_curr_desc_q;
655         wrl(pep, ETH_C_RX_DESC_0,
656             (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
657
658         wrl(pep, ETH_F_RX_DESC_0,
659             (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
660
661         /* Clear all interrupts */
662         wrl(pep, INT_CAUSE, 0);
663
664         /* Enable all interrupts for receive, transmit and error. */
665         wrl(pep, INT_MASK, ALL_INTS);
666
667         val = rdl(pep, PORT_CONFIG);
668         val |= PCR_EN;
669         wrl(pep, PORT_CONFIG, val);
670
671         /* Start RX DMA engine */
672         val = rdl(pep, SDMA_CMD);
673         val |= SDMA_CMD_ERD;
674         wrl(pep, SDMA_CMD, val);
675 }
676
677 static void eth_port_reset(struct net_device *dev)
678 {
679         struct pxa168_eth_private *pep = netdev_priv(dev);
680         unsigned int val = 0;
681
682         /* Stop all interrupts for receive, transmit and error. */
683         wrl(pep, INT_MASK, 0);
684
685         /* Clear all interrupts */
686         wrl(pep, INT_CAUSE, 0);
687
688         /* Stop RX DMA */
689         val = rdl(pep, SDMA_CMD);
690         val &= ~SDMA_CMD_ERD;   /* abort dma command */
691
692         /* Abort any transmit and receive operations and put DMA
693          * in idle state.
694          */
695         abort_dma(pep);
696
697         /* Disable port */
698         val = rdl(pep, PORT_CONFIG);
699         val &= ~PCR_EN;
700         wrl(pep, PORT_CONFIG, val);
701
702         phy_stop(dev->phydev);
703 }
704
705 /*
706  * txq_reclaim - Free the tx desc data for completed descriptors
707  * If force is non-zero, frees uncompleted descriptors as well
708  */
709 static int txq_reclaim(struct net_device *dev, int force)
710 {
711         struct pxa168_eth_private *pep = netdev_priv(dev);
712         struct tx_desc *desc;
713         u32 cmd_sts;
714         struct sk_buff *skb;
715         int tx_index;
716         dma_addr_t addr;
717         int count;
718         int released = 0;
719
720         netif_tx_lock(dev);
721
722         pep->work_todo &= ~WORK_TX_DONE;
723         while (pep->tx_desc_count > 0) {
724                 tx_index = pep->tx_used_desc_q;
725                 desc = &pep->p_tx_desc_area[tx_index];
726                 cmd_sts = desc->cmd_sts;
727                 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
728                         if (released > 0) {
729                                 goto txq_reclaim_end;
730                         } else {
731                                 released = -1;
732                                 goto txq_reclaim_end;
733                         }
734                 }
735                 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
736                 pep->tx_desc_count--;
737                 addr = desc->buf_ptr;
738                 count = desc->byte_cnt;
739                 skb = pep->tx_skb[tx_index];
740                 if (skb)
741                         pep->tx_skb[tx_index] = NULL;
742
743                 if (cmd_sts & TX_ERROR) {
744                         if (net_ratelimit())
745                                 netdev_err(dev, "Error in TX\n");
746                         dev->stats.tx_errors++;
747                 }
748                 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
749                 if (skb)
750                         dev_kfree_skb_irq(skb);
751                 released++;
752         }
753 txq_reclaim_end:
754         netif_tx_unlock(dev);
755         return released;
756 }
757
758 static void pxa168_eth_tx_timeout(struct net_device *dev)
759 {
760         struct pxa168_eth_private *pep = netdev_priv(dev);
761
762         netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
763
764         schedule_work(&pep->tx_timeout_task);
765 }
766
767 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
768 {
769         struct pxa168_eth_private *pep = container_of(work,
770                                                  struct pxa168_eth_private,
771                                                  tx_timeout_task);
772         struct net_device *dev = pep->dev;
773         pxa168_eth_stop(dev);
774         pxa168_eth_open(dev);
775 }
776
777 static int rxq_process(struct net_device *dev, int budget)
778 {
779         struct pxa168_eth_private *pep = netdev_priv(dev);
780         struct net_device_stats *stats = &dev->stats;
781         unsigned int received_packets = 0;
782         struct sk_buff *skb;
783
784         while (budget-- > 0) {
785                 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
786                 struct rx_desc *rx_desc;
787                 unsigned int cmd_sts;
788
789                 /* Do not process Rx ring in case of Rx ring resource error */
790                 if (pep->rx_resource_err)
791                         break;
792                 rx_curr_desc = pep->rx_curr_desc_q;
793                 rx_used_desc = pep->rx_used_desc_q;
794                 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
795                 cmd_sts = rx_desc->cmd_sts;
796                 dma_rmb();
797                 if (cmd_sts & (BUF_OWNED_BY_DMA))
798                         break;
799                 skb = pep->rx_skb[rx_curr_desc];
800                 pep->rx_skb[rx_curr_desc] = NULL;
801
802                 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
803                 pep->rx_curr_desc_q = rx_next_curr_desc;
804
805                 /* Rx descriptors exhausted. */
806                 /* Set the Rx ring resource error flag */
807                 if (rx_next_curr_desc == rx_used_desc)
808                         pep->rx_resource_err = 1;
809                 pep->rx_desc_count--;
810                 dma_unmap_single(NULL, rx_desc->buf_ptr,
811                                  rx_desc->buf_size,
812                                  DMA_FROM_DEVICE);
813                 received_packets++;
814                 /*
815                  * Update statistics.
816                  * Note byte count includes 4 byte CRC count
817                  */
818                 stats->rx_packets++;
819                 stats->rx_bytes += rx_desc->byte_cnt;
820                 /*
821                  * In case received a packet without first / last bits on OR
822                  * the error summary bit is on, the packets needs to be droped.
823                  */
824                 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
825                      (RX_FIRST_DESC | RX_LAST_DESC))
826                     || (cmd_sts & RX_ERROR)) {
827
828                         stats->rx_dropped++;
829                         if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
830                             (RX_FIRST_DESC | RX_LAST_DESC)) {
831                                 if (net_ratelimit())
832                                         netdev_err(dev,
833                                                    "Rx pkt on multiple desc\n");
834                         }
835                         if (cmd_sts & RX_ERROR)
836                                 stats->rx_errors++;
837                         dev_kfree_skb_irq(skb);
838                 } else {
839                         /*
840                          * The -4 is for the CRC in the trailer of the
841                          * received packet
842                          */
843                         skb_put(skb, rx_desc->byte_cnt - 4);
844                         skb->protocol = eth_type_trans(skb, dev);
845                         netif_receive_skb(skb);
846                 }
847         }
848         /* Fill RX ring with skb's */
849         rxq_refill(dev);
850         return received_packets;
851 }
852
853 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
854                                      struct net_device *dev)
855 {
856         u32 icr;
857         int ret = 0;
858
859         icr = rdl(pep, INT_CAUSE);
860         if (icr == 0)
861                 return IRQ_NONE;
862
863         wrl(pep, INT_CAUSE, ~icr);
864         if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
865                 pep->work_todo |= WORK_TX_DONE;
866                 ret = 1;
867         }
868         if (icr & ICR_RXBUF)
869                 ret = 1;
870         return ret;
871 }
872
873 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
874 {
875         struct net_device *dev = (struct net_device *)dev_id;
876         struct pxa168_eth_private *pep = netdev_priv(dev);
877
878         if (unlikely(!pxa168_eth_collect_events(pep, dev)))
879                 return IRQ_NONE;
880         /* Disable interrupts */
881         wrl(pep, INT_MASK, 0);
882         napi_schedule(&pep->napi);
883         return IRQ_HANDLED;
884 }
885
886 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
887 {
888         int skb_size;
889
890         /*
891          * Reserve 2+14 bytes for an ethernet header (the hardware
892          * automatically prepends 2 bytes of dummy data to each
893          * received packet), 16 bytes for up to four VLAN tags, and
894          * 4 bytes for the trailing FCS -- 36 bytes total.
895          */
896         skb_size = pep->dev->mtu + 36;
897
898         /*
899          * Make sure that the skb size is a multiple of 8 bytes, as
900          * the lower three bits of the receive descriptor's buffer
901          * size field are ignored by the hardware.
902          */
903         pep->skb_size = (skb_size + 7) & ~7;
904
905         /*
906          * If NET_SKB_PAD is smaller than a cache line,
907          * netdev_alloc_skb() will cause skb->data to be misaligned
908          * to a cache line boundary.  If this is the case, include
909          * some extra space to allow re-aligning the data area.
910          */
911         pep->skb_size += SKB_DMA_REALIGN;
912
913 }
914
915 static int set_port_config_ext(struct pxa168_eth_private *pep)
916 {
917         int skb_size;
918
919         pxa168_eth_recalc_skb_size(pep);
920         if  (pep->skb_size <= 1518)
921                 skb_size = PCXR_MFL_1518;
922         else if (pep->skb_size <= 1536)
923                 skb_size = PCXR_MFL_1536;
924         else if (pep->skb_size <= 2048)
925                 skb_size = PCXR_MFL_2048;
926         else
927                 skb_size = PCXR_MFL_64K;
928
929         /* Extended Port Configuration */
930         wrl(pep, PORT_CONFIG_EXT,
931             PCXR_AN_SPEED_DIS |          /* Disable HW AN */
932             PCXR_AN_DUPLEX_DIS |
933             PCXR_AN_FLOWCTL_DIS |
934             PCXR_2BSM |                  /* Two byte prefix aligns IP hdr */
935             PCXR_DSCP_EN |               /* Enable DSCP in IP */
936             skb_size | PCXR_FLP |        /* do not force link pass */
937             PCXR_TX_HIGH_PRI);           /* Transmit - high priority queue */
938
939         return 0;
940 }
941
942 static void pxa168_eth_adjust_link(struct net_device *dev)
943 {
944         struct pxa168_eth_private *pep = netdev_priv(dev);
945         struct phy_device *phy = dev->phydev;
946         u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
947         u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
948
949         cfg = cfg_o & ~PCR_DUPLEX_FULL;
950         cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
951
952         if (phy->interface == PHY_INTERFACE_MODE_RMII)
953                 cfgext |= PCXR_RMII_EN;
954         if (phy->speed == SPEED_100)
955                 cfgext |= PCXR_SPEED_100;
956         if (phy->duplex)
957                 cfg |= PCR_DUPLEX_FULL;
958         if (!phy->pause)
959                 cfgext |= PCXR_FLOWCTL_DIS;
960
961         /* Bail out if there has nothing changed */
962         if (cfg == cfg_o && cfgext == cfgext_o)
963                 return;
964
965         wrl(pep, PORT_CONFIG, cfg);
966         wrl(pep, PORT_CONFIG_EXT, cfgext);
967
968         phy_print_status(phy);
969 }
970
971 static int pxa168_init_phy(struct net_device *dev)
972 {
973         struct pxa168_eth_private *pep = netdev_priv(dev);
974         struct ethtool_link_ksettings cmd;
975         struct phy_device *phy = NULL;
976         int err;
977
978         if (dev->phydev)
979                 return 0;
980
981         phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
982         if (IS_ERR(phy))
983                 return PTR_ERR(phy);
984
985         err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link,
986                                  pep->phy_intf);
987         if (err)
988                 return err;
989
990         err = pxa168_get_link_ksettings(dev, &cmd);
991         if (err)
992                 return err;
993
994         cmd.base.phy_address = pep->phy_addr;
995         cmd.base.speed = pep->phy_speed;
996         cmd.base.duplex = pep->phy_duplex;
997         ethtool_convert_legacy_u32_to_link_mode(cmd.link_modes.advertising,
998                                                 PHY_BASIC_FEATURES);
999         cmd.base.autoneg = AUTONEG_ENABLE;
1000
1001         if (cmd.base.speed != 0)
1002                 cmd.base.autoneg = AUTONEG_DISABLE;
1003
1004         return phy_ethtool_set_link_ksettings(dev, &cmd);
1005 }
1006
1007 static int pxa168_init_hw(struct pxa168_eth_private *pep)
1008 {
1009         int err = 0;
1010
1011         /* Disable interrupts */
1012         wrl(pep, INT_MASK, 0);
1013         wrl(pep, INT_CAUSE, 0);
1014         /* Write to ICR to clear interrupts. */
1015         wrl(pep, INT_W_CLEAR, 0);
1016         /* Abort any transmit and receive operations and put DMA
1017          * in idle state.
1018          */
1019         abort_dma(pep);
1020         /* Initialize address hash table */
1021         err = init_hash_table(pep);
1022         if (err)
1023                 return err;
1024         /* SDMA configuration */
1025         wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |       /* Burst size = 32 bytes */
1026             SDCR_RIFB |                         /* Rx interrupt on frame */
1027             SDCR_BLMT |                         /* Little endian transmit */
1028             SDCR_BLMR |                         /* Little endian receive */
1029             SDCR_RC_MAX_RETRANS);               /* Max retransmit count */
1030         /* Port Configuration */
1031         wrl(pep, PORT_CONFIG, PCR_HS);          /* Hash size is 1/2kb */
1032         set_port_config_ext(pep);
1033
1034         return err;
1035 }
1036
1037 static int rxq_init(struct net_device *dev)
1038 {
1039         struct pxa168_eth_private *pep = netdev_priv(dev);
1040         struct rx_desc *p_rx_desc;
1041         int size = 0, i = 0;
1042         int rx_desc_num = pep->rx_ring_size;
1043
1044         /* Allocate RX skb rings */
1045         pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1046                              GFP_KERNEL);
1047         if (!pep->rx_skb)
1048                 return -ENOMEM;
1049
1050         /* Allocate RX ring */
1051         pep->rx_desc_count = 0;
1052         size = pep->rx_ring_size * sizeof(struct rx_desc);
1053         pep->rx_desc_area_size = size;
1054         pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1055                                                   &pep->rx_desc_dma,
1056                                                   GFP_KERNEL);
1057         if (!pep->p_rx_desc_area)
1058                 goto out;
1059
1060         /* initialize the next_desc_ptr links in the Rx descriptors ring */
1061         p_rx_desc = pep->p_rx_desc_area;
1062         for (i = 0; i < rx_desc_num; i++) {
1063                 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1064                     ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1065         }
1066         /* Save Rx desc pointer to driver struct. */
1067         pep->rx_curr_desc_q = 0;
1068         pep->rx_used_desc_q = 0;
1069         pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1070         return 0;
1071 out:
1072         kfree(pep->rx_skb);
1073         return -ENOMEM;
1074 }
1075
1076 static void rxq_deinit(struct net_device *dev)
1077 {
1078         struct pxa168_eth_private *pep = netdev_priv(dev);
1079         int curr;
1080
1081         /* Free preallocated skb's on RX rings */
1082         for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1083                 if (pep->rx_skb[curr]) {
1084                         dev_kfree_skb(pep->rx_skb[curr]);
1085                         pep->rx_desc_count--;
1086                 }
1087         }
1088         if (pep->rx_desc_count)
1089                 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1090                            pep->rx_desc_count);
1091         /* Free RX ring */
1092         if (pep->p_rx_desc_area)
1093                 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1094                                   pep->p_rx_desc_area, pep->rx_desc_dma);
1095         kfree(pep->rx_skb);
1096 }
1097
1098 static int txq_init(struct net_device *dev)
1099 {
1100         struct pxa168_eth_private *pep = netdev_priv(dev);
1101         struct tx_desc *p_tx_desc;
1102         int size = 0, i = 0;
1103         int tx_desc_num = pep->tx_ring_size;
1104
1105         pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1106                              GFP_KERNEL);
1107         if (!pep->tx_skb)
1108                 return -ENOMEM;
1109
1110         /* Allocate TX ring */
1111         pep->tx_desc_count = 0;
1112         size = pep->tx_ring_size * sizeof(struct tx_desc);
1113         pep->tx_desc_area_size = size;
1114         pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1115                                                   &pep->tx_desc_dma,
1116                                                   GFP_KERNEL);
1117         if (!pep->p_tx_desc_area)
1118                 goto out;
1119         /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1120         p_tx_desc = pep->p_tx_desc_area;
1121         for (i = 0; i < tx_desc_num; i++) {
1122                 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1123                     ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1124         }
1125         pep->tx_curr_desc_q = 0;
1126         pep->tx_used_desc_q = 0;
1127         pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1128         return 0;
1129 out:
1130         kfree(pep->tx_skb);
1131         return -ENOMEM;
1132 }
1133
1134 static void txq_deinit(struct net_device *dev)
1135 {
1136         struct pxa168_eth_private *pep = netdev_priv(dev);
1137
1138         /* Free outstanding skb's on TX ring */
1139         txq_reclaim(dev, 1);
1140         BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1141         /* Free TX ring */
1142         if (pep->p_tx_desc_area)
1143                 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1144                                   pep->p_tx_desc_area, pep->tx_desc_dma);
1145         kfree(pep->tx_skb);
1146 }
1147
1148 static int pxa168_eth_open(struct net_device *dev)
1149 {
1150         struct pxa168_eth_private *pep = netdev_priv(dev);
1151         int err;
1152
1153         err = pxa168_init_phy(dev);
1154         if (err)
1155                 return err;
1156
1157         err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1158         if (err) {
1159                 dev_err(&dev->dev, "can't assign irq\n");
1160                 return -EAGAIN;
1161         }
1162         pep->rx_resource_err = 0;
1163         err = rxq_init(dev);
1164         if (err != 0)
1165                 goto out_free_irq;
1166         err = txq_init(dev);
1167         if (err != 0)
1168                 goto out_free_rx_skb;
1169         pep->rx_used_desc_q = 0;
1170         pep->rx_curr_desc_q = 0;
1171
1172         /* Fill RX ring with skb's */
1173         rxq_refill(dev);
1174         pep->rx_used_desc_q = 0;
1175         pep->rx_curr_desc_q = 0;
1176         netif_carrier_off(dev);
1177         napi_enable(&pep->napi);
1178         eth_port_start(dev);
1179         return 0;
1180 out_free_rx_skb:
1181         rxq_deinit(dev);
1182 out_free_irq:
1183         free_irq(dev->irq, dev);
1184         return err;
1185 }
1186
1187 static int pxa168_eth_stop(struct net_device *dev)
1188 {
1189         struct pxa168_eth_private *pep = netdev_priv(dev);
1190         eth_port_reset(dev);
1191
1192         /* Disable interrupts */
1193         wrl(pep, INT_MASK, 0);
1194         wrl(pep, INT_CAUSE, 0);
1195         /* Write to ICR to clear interrupts. */
1196         wrl(pep, INT_W_CLEAR, 0);
1197         napi_disable(&pep->napi);
1198         del_timer_sync(&pep->timeout);
1199         netif_carrier_off(dev);
1200         free_irq(dev->irq, dev);
1201         rxq_deinit(dev);
1202         txq_deinit(dev);
1203
1204         return 0;
1205 }
1206
1207 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1208 {
1209         int retval;
1210         struct pxa168_eth_private *pep = netdev_priv(dev);
1211
1212         if ((mtu > 9500) || (mtu < 68))
1213                 return -EINVAL;
1214
1215         dev->mtu = mtu;
1216         retval = set_port_config_ext(pep);
1217
1218         if (!netif_running(dev))
1219                 return 0;
1220
1221         /*
1222          * Stop and then re-open the interface. This will allocate RX
1223          * skbs of the new MTU.
1224          * There is a possible danger that the open will not succeed,
1225          * due to memory being full.
1226          */
1227         pxa168_eth_stop(dev);
1228         if (pxa168_eth_open(dev)) {
1229                 dev_err(&dev->dev,
1230                         "fatal error on re-opening device after MTU change\n");
1231         }
1232
1233         return 0;
1234 }
1235
1236 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1237 {
1238         int tx_desc_curr;
1239
1240         tx_desc_curr = pep->tx_curr_desc_q;
1241         pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1242         BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1243         pep->tx_desc_count++;
1244
1245         return tx_desc_curr;
1246 }
1247
1248 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1249 {
1250         struct pxa168_eth_private *pep =
1251             container_of(napi, struct pxa168_eth_private, napi);
1252         struct net_device *dev = pep->dev;
1253         int work_done = 0;
1254
1255         /*
1256          * We call txq_reclaim every time since in NAPI interupts are disabled
1257          * and due to this we miss the TX_DONE interrupt,which is not updated in
1258          * interrupt status register.
1259          */
1260         txq_reclaim(dev, 0);
1261         if (netif_queue_stopped(dev)
1262             && pep->tx_ring_size - pep->tx_desc_count > 1) {
1263                 netif_wake_queue(dev);
1264         }
1265         work_done = rxq_process(dev, budget);
1266         if (work_done < budget) {
1267                 napi_complete(napi);
1268                 wrl(pep, INT_MASK, ALL_INTS);
1269         }
1270
1271         return work_done;
1272 }
1273
1274 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1275 {
1276         struct pxa168_eth_private *pep = netdev_priv(dev);
1277         struct net_device_stats *stats = &dev->stats;
1278         struct tx_desc *desc;
1279         int tx_index;
1280         int length;
1281
1282         tx_index = eth_alloc_tx_desc_index(pep);
1283         desc = &pep->p_tx_desc_area[tx_index];
1284         length = skb->len;
1285         pep->tx_skb[tx_index] = skb;
1286         desc->byte_cnt = length;
1287         desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1288
1289         skb_tx_timestamp(skb);
1290
1291         dma_wmb();
1292         desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1293                         TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1294         wmb();
1295         wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1296
1297         stats->tx_bytes += length;
1298         stats->tx_packets++;
1299         netif_trans_update(dev);
1300         if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1301                 /* We handled the current skb, but now we are out of space.*/
1302                 netif_stop_queue(dev);
1303         }
1304
1305         return NETDEV_TX_OK;
1306 }
1307
1308 static int smi_wait_ready(struct pxa168_eth_private *pep)
1309 {
1310         int i = 0;
1311
1312         /* wait for the SMI register to become available */
1313         for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1314                 if (i == PHY_WAIT_ITERATIONS)
1315                         return -ETIMEDOUT;
1316                 msleep(10);
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1323 {
1324         struct pxa168_eth_private *pep = bus->priv;
1325         int i = 0;
1326         int val;
1327
1328         if (smi_wait_ready(pep)) {
1329                 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1330                 return -ETIMEDOUT;
1331         }
1332         wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1333         /* now wait for the data to be valid */
1334         for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1335                 if (i == PHY_WAIT_ITERATIONS) {
1336                         netdev_warn(pep->dev,
1337                                     "pxa168_eth: SMI bus read not valid\n");
1338                         return -ENODEV;
1339                 }
1340                 msleep(10);
1341         }
1342
1343         return val & 0xffff;
1344 }
1345
1346 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1347                             u16 value)
1348 {
1349         struct pxa168_eth_private *pep = bus->priv;
1350
1351         if (smi_wait_ready(pep)) {
1352                 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1353                 return -ETIMEDOUT;
1354         }
1355
1356         wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1357             SMI_OP_W | (value & 0xffff));
1358
1359         if (smi_wait_ready(pep)) {
1360                 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1361                 return -ETIMEDOUT;
1362         }
1363
1364         return 0;
1365 }
1366
1367 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1368                                int cmd)
1369 {
1370         if (dev->phydev != NULL)
1371                 return phy_mii_ioctl(dev->phydev, ifr, cmd);
1372
1373         return -EOPNOTSUPP;
1374 }
1375
1376 static int pxa168_get_link_ksettings(struct net_device *dev,
1377                                      struct ethtool_link_ksettings *cmd)
1378 {
1379         int err;
1380
1381         err = phy_read_status(dev->phydev);
1382         if (err == 0)
1383                 err = phy_ethtool_ksettings_get(dev->phydev, cmd);
1384
1385         return err;
1386 }
1387
1388 static void pxa168_get_drvinfo(struct net_device *dev,
1389                                struct ethtool_drvinfo *info)
1390 {
1391         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1392         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1393         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1394         strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1395 }
1396
1397 static const struct ethtool_ops pxa168_ethtool_ops = {
1398         .get_drvinfo    = pxa168_get_drvinfo,
1399         .get_link       = ethtool_op_get_link,
1400         .get_ts_info    = ethtool_op_get_ts_info,
1401         .get_link_ksettings = pxa168_get_link_ksettings,
1402         .set_link_ksettings = phy_ethtool_set_link_ksettings,
1403 };
1404
1405 static const struct net_device_ops pxa168_eth_netdev_ops = {
1406         .ndo_open               = pxa168_eth_open,
1407         .ndo_stop               = pxa168_eth_stop,
1408         .ndo_start_xmit         = pxa168_eth_start_xmit,
1409         .ndo_set_rx_mode        = pxa168_eth_set_rx_mode,
1410         .ndo_set_mac_address    = pxa168_eth_set_mac_address,
1411         .ndo_validate_addr      = eth_validate_addr,
1412         .ndo_do_ioctl           = pxa168_eth_do_ioctl,
1413         .ndo_change_mtu         = pxa168_eth_change_mtu,
1414         .ndo_tx_timeout         = pxa168_eth_tx_timeout,
1415 };
1416
1417 static int pxa168_eth_probe(struct platform_device *pdev)
1418 {
1419         struct pxa168_eth_private *pep = NULL;
1420         struct net_device *dev = NULL;
1421         struct resource *res;
1422         struct clk *clk;
1423         struct device_node *np;
1424         const unsigned char *mac_addr = NULL;
1425         int err;
1426
1427         printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1428
1429         clk = devm_clk_get(&pdev->dev, NULL);
1430         if (IS_ERR(clk)) {
1431                 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1432                 return -ENODEV;
1433         }
1434         clk_prepare_enable(clk);
1435
1436         dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1437         if (!dev) {
1438                 err = -ENOMEM;
1439                 goto err_clk;
1440         }
1441
1442         platform_set_drvdata(pdev, dev);
1443         pep = netdev_priv(dev);
1444         pep->dev = dev;
1445         pep->clk = clk;
1446
1447         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1448         pep->base = devm_ioremap_resource(&pdev->dev, res);
1449         if (IS_ERR(pep->base)) {
1450                 err = -ENOMEM;
1451                 goto err_netdev;
1452         }
1453
1454         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1455         BUG_ON(!res);
1456         dev->irq = res->start;
1457         dev->netdev_ops = &pxa168_eth_netdev_ops;
1458         dev->watchdog_timeo = 2 * HZ;
1459         dev->base_addr = 0;
1460         dev->ethtool_ops = &pxa168_ethtool_ops;
1461
1462         INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1463
1464         if (pdev->dev.of_node)
1465                 mac_addr = of_get_mac_address(pdev->dev.of_node);
1466
1467         if (mac_addr && is_valid_ether_addr(mac_addr)) {
1468                 ether_addr_copy(dev->dev_addr, mac_addr);
1469         } else {
1470                 /* try reading the mac address, if set by the bootloader */
1471                 pxa168_eth_get_mac_address(dev, dev->dev_addr);
1472                 if (!is_valid_ether_addr(dev->dev_addr)) {
1473                         dev_info(&pdev->dev, "Using random mac address\n");
1474                         eth_hw_addr_random(dev);
1475                 }
1476         }
1477
1478         pep->rx_ring_size = NUM_RX_DESCS;
1479         pep->tx_ring_size = NUM_TX_DESCS;
1480
1481         pep->pd = dev_get_platdata(&pdev->dev);
1482         if (pep->pd) {
1483                 if (pep->pd->rx_queue_size)
1484                         pep->rx_ring_size = pep->pd->rx_queue_size;
1485
1486                 if (pep->pd->tx_queue_size)
1487                         pep->tx_ring_size = pep->pd->tx_queue_size;
1488
1489                 pep->port_num = pep->pd->port_number;
1490                 pep->phy_addr = pep->pd->phy_addr;
1491                 pep->phy_speed = pep->pd->speed;
1492                 pep->phy_duplex = pep->pd->duplex;
1493                 pep->phy_intf = pep->pd->intf;
1494
1495                 if (pep->pd->init)
1496                         pep->pd->init();
1497         } else if (pdev->dev.of_node) {
1498                 of_property_read_u32(pdev->dev.of_node, "port-id",
1499                                      &pep->port_num);
1500
1501                 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1502                 if (!np) {
1503                         dev_err(&pdev->dev, "missing phy-handle\n");
1504                         err = -EINVAL;
1505                         goto err_netdev;
1506                 }
1507                 of_property_read_u32(np, "reg", &pep->phy_addr);
1508                 pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1509                 of_node_put(np);
1510         }
1511
1512         /* Hardware supports only 3 ports */
1513         BUG_ON(pep->port_num > 2);
1514         netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1515
1516         memset(&pep->timeout, 0, sizeof(struct timer_list));
1517         init_timer(&pep->timeout);
1518         pep->timeout.function = rxq_refill_timer_wrapper;
1519         pep->timeout.data = (unsigned long)pep;
1520
1521         pep->smi_bus = mdiobus_alloc();
1522         if (pep->smi_bus == NULL) {
1523                 err = -ENOMEM;
1524                 goto err_netdev;
1525         }
1526         pep->smi_bus->priv = pep;
1527         pep->smi_bus->name = "pxa168_eth smi";
1528         pep->smi_bus->read = pxa168_smi_read;
1529         pep->smi_bus->write = pxa168_smi_write;
1530         snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1531                 pdev->name, pdev->id);
1532         pep->smi_bus->parent = &pdev->dev;
1533         pep->smi_bus->phy_mask = 0xffffffff;
1534         err = mdiobus_register(pep->smi_bus);
1535         if (err)
1536                 goto err_free_mdio;
1537
1538         SET_NETDEV_DEV(dev, &pdev->dev);
1539         pxa168_init_hw(pep);
1540         err = register_netdev(dev);
1541         if (err)
1542                 goto err_mdiobus;
1543         return 0;
1544
1545 err_mdiobus:
1546         mdiobus_unregister(pep->smi_bus);
1547 err_free_mdio:
1548         mdiobus_free(pep->smi_bus);
1549 err_netdev:
1550         free_netdev(dev);
1551 err_clk:
1552         clk_disable_unprepare(clk);
1553         return err;
1554 }
1555
1556 static int pxa168_eth_remove(struct platform_device *pdev)
1557 {
1558         struct net_device *dev = platform_get_drvdata(pdev);
1559         struct pxa168_eth_private *pep = netdev_priv(dev);
1560
1561         if (pep->htpr) {
1562                 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1563                                   pep->htpr, pep->htpr_dma);
1564                 pep->htpr = NULL;
1565         }
1566         if (dev->phydev)
1567                 phy_disconnect(dev->phydev);
1568         if (pep->clk) {
1569                 clk_disable_unprepare(pep->clk);
1570         }
1571
1572         mdiobus_unregister(pep->smi_bus);
1573         mdiobus_free(pep->smi_bus);
1574         unregister_netdev(dev);
1575         cancel_work_sync(&pep->tx_timeout_task);
1576         free_netdev(dev);
1577         return 0;
1578 }
1579
1580 static void pxa168_eth_shutdown(struct platform_device *pdev)
1581 {
1582         struct net_device *dev = platform_get_drvdata(pdev);
1583         eth_port_reset(dev);
1584 }
1585
1586 #ifdef CONFIG_PM
1587 static int pxa168_eth_resume(struct platform_device *pdev)
1588 {
1589         return -ENOSYS;
1590 }
1591
1592 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1593 {
1594         return -ENOSYS;
1595 }
1596
1597 #else
1598 #define pxa168_eth_resume NULL
1599 #define pxa168_eth_suspend NULL
1600 #endif
1601
1602 static const struct of_device_id pxa168_eth_of_match[] = {
1603         { .compatible = "marvell,pxa168-eth" },
1604         { },
1605 };
1606 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1607
1608 static struct platform_driver pxa168_eth_driver = {
1609         .probe = pxa168_eth_probe,
1610         .remove = pxa168_eth_remove,
1611         .shutdown = pxa168_eth_shutdown,
1612         .resume = pxa168_eth_resume,
1613         .suspend = pxa168_eth_suspend,
1614         .driver = {
1615                 .name           = DRIVER_NAME,
1616                 .of_match_table = of_match_ptr(pxa168_eth_of_match),
1617         },
1618 };
1619
1620 module_platform_driver(pxa168_eth_driver);
1621
1622 MODULE_LICENSE("GPL");
1623 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1624 MODULE_ALIAS("platform:pxa168_eth");