GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / net / ethernet / natsemi / sonic.c
1 /*
2  * sonic.c
3  *
4  * (C) 2005 Finn Thain
5  *
6  * Converted to DMA API, added zero-copy buffer handling, and
7  * (from the mac68k project) introduced dhd's support for 16-bit cards.
8  *
9  * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
10  *
11  * This driver is based on work from Andreas Busse, but most of
12  * the code is rewritten.
13  *
14  * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
15  *
16  *    Core code included by system sonic drivers
17  *
18  * And... partially rewritten again by David Huggins-Daines in order
19  * to cope with screwed up Macintosh NICs that may or may not use
20  * 16-bit DMA.
21  *
22  * (C) 1999 David Huggins-Daines <dhd@debian.org>
23  *
24  */
25
26 /*
27  * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
28  * National Semiconductors data sheet for the DP83932B Sonic Ethernet
29  * controller, and the files "8390.c" and "skeleton.c" in this directory.
30  *
31  * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
32  * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
33  * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
34  */
35
36 static unsigned int version_printed;
37
38 static int sonic_debug = -1;
39 module_param(sonic_debug, int, 0);
40 MODULE_PARM_DESC(sonic_debug, "debug message level");
41
42 static void sonic_msg_init(struct net_device *dev)
43 {
44         struct sonic_local *lp = netdev_priv(dev);
45
46         lp->msg_enable = netif_msg_init(sonic_debug, 0);
47
48         if (version_printed++ == 0)
49                 netif_dbg(lp, drv, dev, "%s", version);
50 }
51
52 /*
53  * Open/initialize the SONIC controller.
54  *
55  * This routine should set everything up anew at each open, even
56  *  registers that "should" only need to be set once at boot, so that
57  *  there is non-reboot way to recover if something goes wrong.
58  */
59 static int sonic_open(struct net_device *dev)
60 {
61         struct sonic_local *lp = netdev_priv(dev);
62         int i;
63
64         netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
65
66         spin_lock_init(&lp->lock);
67
68         for (i = 0; i < SONIC_NUM_RRS; i++) {
69                 struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
70                 if (skb == NULL) {
71                         while(i > 0) { /* free any that were allocated successfully */
72                                 i--;
73                                 dev_kfree_skb(lp->rx_skb[i]);
74                                 lp->rx_skb[i] = NULL;
75                         }
76                         printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
77                                dev->name);
78                         return -ENOMEM;
79                 }
80                 /* align IP header unless DMA requires otherwise */
81                 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
82                         skb_reserve(skb, 2);
83                 lp->rx_skb[i] = skb;
84         }
85
86         for (i = 0; i < SONIC_NUM_RRS; i++) {
87                 dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
88                                                   SONIC_RBSIZE, DMA_FROM_DEVICE);
89                 if (dma_mapping_error(lp->device, laddr)) {
90                         while(i > 0) { /* free any that were mapped successfully */
91                                 i--;
92                                 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
93                                 lp->rx_laddr[i] = (dma_addr_t)0;
94                         }
95                         for (i = 0; i < SONIC_NUM_RRS; i++) {
96                                 dev_kfree_skb(lp->rx_skb[i]);
97                                 lp->rx_skb[i] = NULL;
98                         }
99                         printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
100                                dev->name);
101                         return -ENOMEM;
102                 }
103                 lp->rx_laddr[i] = laddr;
104         }
105
106         /*
107          * Initialize the SONIC
108          */
109         sonic_init(dev);
110
111         netif_start_queue(dev);
112
113         netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
114
115         return 0;
116 }
117
118 /* Wait for the SONIC to become idle. */
119 static void sonic_quiesce(struct net_device *dev, u16 mask)
120 {
121         struct sonic_local * __maybe_unused lp = netdev_priv(dev);
122         int i;
123         u16 bits;
124
125         for (i = 0; i < 1000; ++i) {
126                 bits = SONIC_READ(SONIC_CMD) & mask;
127                 if (!bits)
128                         return;
129                 if (irqs_disabled() || in_interrupt())
130                         udelay(20);
131                 else
132                         usleep_range(100, 200);
133         }
134         WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
135 }
136
137 /*
138  * Close the SONIC device
139  */
140 static int sonic_close(struct net_device *dev)
141 {
142         struct sonic_local *lp = netdev_priv(dev);
143         int i;
144
145         netif_dbg(lp, ifdown, dev, "%s\n", __func__);
146
147         netif_stop_queue(dev);
148
149         /*
150          * stop the SONIC, disable interrupts
151          */
152         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
153         sonic_quiesce(dev, SONIC_CR_ALL);
154
155         SONIC_WRITE(SONIC_IMR, 0);
156         SONIC_WRITE(SONIC_ISR, 0x7fff);
157         SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
158
159         /* unmap and free skbs that haven't been transmitted */
160         for (i = 0; i < SONIC_NUM_TDS; i++) {
161                 if(lp->tx_laddr[i]) {
162                         dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
163                         lp->tx_laddr[i] = (dma_addr_t)0;
164                 }
165                 if(lp->tx_skb[i]) {
166                         dev_kfree_skb(lp->tx_skb[i]);
167                         lp->tx_skb[i] = NULL;
168                 }
169         }
170
171         /* unmap and free the receive buffers */
172         for (i = 0; i < SONIC_NUM_RRS; i++) {
173                 if(lp->rx_laddr[i]) {
174                         dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
175                         lp->rx_laddr[i] = (dma_addr_t)0;
176                 }
177                 if(lp->rx_skb[i]) {
178                         dev_kfree_skb(lp->rx_skb[i]);
179                         lp->rx_skb[i] = NULL;
180                 }
181         }
182
183         return 0;
184 }
185
186 static void sonic_tx_timeout(struct net_device *dev)
187 {
188         struct sonic_local *lp = netdev_priv(dev);
189         int i;
190         /*
191          * put the Sonic into software-reset mode and
192          * disable all interrupts before releasing DMA buffers
193          */
194         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
195         sonic_quiesce(dev, SONIC_CR_ALL);
196
197         SONIC_WRITE(SONIC_IMR, 0);
198         SONIC_WRITE(SONIC_ISR, 0x7fff);
199         SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
200         /* We could resend the original skbs. Easier to re-initialise. */
201         for (i = 0; i < SONIC_NUM_TDS; i++) {
202                 if(lp->tx_laddr[i]) {
203                         dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
204                         lp->tx_laddr[i] = (dma_addr_t)0;
205                 }
206                 if(lp->tx_skb[i]) {
207                         dev_kfree_skb(lp->tx_skb[i]);
208                         lp->tx_skb[i] = NULL;
209                 }
210         }
211         /* Try to restart the adaptor. */
212         sonic_init(dev);
213         lp->stats.tx_errors++;
214         netif_trans_update(dev); /* prevent tx timeout */
215         netif_wake_queue(dev);
216 }
217
218 /*
219  * transmit packet
220  *
221  * Appends new TD during transmission thus avoiding any TX interrupts
222  * until we run out of TDs.
223  * This routine interacts closely with the ISR in that it may,
224  *   set tx_skb[i]
225  *   reset the status flags of the new TD
226  *   set and reset EOL flags
227  *   stop the tx queue
228  * The ISR interacts with this routine in various ways. It may,
229  *   reset tx_skb[i]
230  *   test the EOL and status flags of the TDs
231  *   wake the tx queue
232  * Concurrently with all of this, the SONIC is potentially writing to
233  * the status flags of the TDs.
234  */
235
236 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
237 {
238         struct sonic_local *lp = netdev_priv(dev);
239         dma_addr_t laddr;
240         int length;
241         int entry;
242         unsigned long flags;
243
244         netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
245
246         length = skb->len;
247         if (length < ETH_ZLEN) {
248                 if (skb_padto(skb, ETH_ZLEN))
249                         return NETDEV_TX_OK;
250                 length = ETH_ZLEN;
251         }
252
253         /*
254          * Map the packet data into the logical DMA address space
255          */
256
257         laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
258         if (dma_mapping_error(lp->device, laddr)) {
259                 pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
260                 dev_kfree_skb_any(skb);
261                 return NETDEV_TX_OK;
262         }
263
264         spin_lock_irqsave(&lp->lock, flags);
265
266         entry = lp->next_tx;
267
268         sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
269         sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
270         sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
271         sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
272         sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
273         sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
274         sonic_tda_put(dev, entry, SONIC_TD_LINK,
275                 sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
276
277         wmb();
278         lp->tx_len[entry] = length;
279         lp->tx_laddr[entry] = laddr;
280         lp->tx_skb[entry] = skb;
281
282         wmb();
283         sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
284                                   sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
285         lp->eol_tx = entry;
286
287         lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
288         if (lp->tx_skb[lp->next_tx] != NULL) {
289                 /* The ring is full, the ISR has yet to process the next TD. */
290                 netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
291                 netif_stop_queue(dev);
292                 /* after this packet, wait for ISR to free up some TDAs */
293         } else netif_start_queue(dev);
294
295         netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
296
297         SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
298
299         spin_unlock_irqrestore(&lp->lock, flags);
300
301         return NETDEV_TX_OK;
302 }
303
304 /*
305  * The typical workload of the driver:
306  * Handle the network interface interrupts.
307  */
308 static irqreturn_t sonic_interrupt(int irq, void *dev_id)
309 {
310         struct net_device *dev = dev_id;
311         struct sonic_local *lp = netdev_priv(dev);
312         int status;
313         unsigned long flags;
314
315         /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
316          * with sonic_send_packet() so that the two functions can share state.
317          * Secondly, it makes sonic_interrupt() re-entrant, as that is required
318          * by macsonic which must use two IRQs with different priority levels.
319          */
320         spin_lock_irqsave(&lp->lock, flags);
321
322         status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
323         if (!status) {
324                 spin_unlock_irqrestore(&lp->lock, flags);
325
326                 return IRQ_NONE;
327         }
328
329         do {
330                 SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
331
332                 if (status & SONIC_INT_PKTRX) {
333                         netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
334                         sonic_rx(dev);  /* got packet(s) */
335                 }
336
337                 if (status & SONIC_INT_TXDN) {
338                         int entry = lp->cur_tx;
339                         int td_status;
340                         int freed_some = 0;
341
342                         /* The state of a Transmit Descriptor may be inferred
343                          * from { tx_skb[entry], td_status } as follows.
344                          * { clear, clear } => the TD has never been used
345                          * { set,   clear } => the TD was handed to SONIC
346                          * { set,   set   } => the TD was handed back
347                          * { clear, set   } => the TD is available for re-use
348                          */
349
350                         netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
351
352                         while (lp->tx_skb[entry] != NULL) {
353                                 if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
354                                         break;
355
356                                 if (td_status & SONIC_TCR_PTX) {
357                                         lp->stats.tx_packets++;
358                                         lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
359                                 } else {
360                                         if (td_status & (SONIC_TCR_EXD |
361                                             SONIC_TCR_EXC | SONIC_TCR_BCM))
362                                                 lp->stats.tx_aborted_errors++;
363                                         if (td_status &
364                                             (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
365                                                 lp->stats.tx_carrier_errors++;
366                                         if (td_status & SONIC_TCR_OWC)
367                                                 lp->stats.tx_window_errors++;
368                                         if (td_status & SONIC_TCR_FU)
369                                                 lp->stats.tx_fifo_errors++;
370                                 }
371
372                                 /* We must free the original skb */
373                                 dev_kfree_skb_irq(lp->tx_skb[entry]);
374                                 lp->tx_skb[entry] = NULL;
375                                 /* and unmap DMA buffer */
376                                 dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
377                                 lp->tx_laddr[entry] = (dma_addr_t)0;
378                                 freed_some = 1;
379
380                                 if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
381                                         entry = (entry + 1) & SONIC_TDS_MASK;
382                                         break;
383                                 }
384                                 entry = (entry + 1) & SONIC_TDS_MASK;
385                         }
386
387                         if (freed_some || lp->tx_skb[entry] == NULL)
388                                 netif_wake_queue(dev);  /* The ring is no longer full */
389                         lp->cur_tx = entry;
390                 }
391
392                 /*
393                  * check error conditions
394                  */
395                 if (status & SONIC_INT_RFO) {
396                         netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
397                                   __func__);
398                 }
399                 if (status & SONIC_INT_RDE) {
400                         netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
401                                   __func__);
402                 }
403                 if (status & SONIC_INT_RBAE) {
404                         netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
405                                   __func__);
406                 }
407
408                 /* counter overruns; all counters are 16bit wide */
409                 if (status & SONIC_INT_FAE)
410                         lp->stats.rx_frame_errors += 65536;
411                 if (status & SONIC_INT_CRC)
412                         lp->stats.rx_crc_errors += 65536;
413                 if (status & SONIC_INT_MP)
414                         lp->stats.rx_missed_errors += 65536;
415
416                 /* transmit error */
417                 if (status & SONIC_INT_TXER) {
418                         u16 tcr = SONIC_READ(SONIC_TCR);
419
420                         netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
421                                   __func__, tcr);
422
423                         if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
424                                    SONIC_TCR_FU | SONIC_TCR_BCM)) {
425                                 /* Aborted transmission. Try again. */
426                                 netif_stop_queue(dev);
427                                 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
428                         }
429                 }
430
431                 /* bus retry */
432                 if (status & SONIC_INT_BR) {
433                         printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
434                                 dev->name);
435                         /* ... to help debug DMA problems causing endless interrupts. */
436                         /* Bounce the eth interface to turn on the interrupt again. */
437                         SONIC_WRITE(SONIC_IMR, 0);
438                 }
439
440                 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
441         } while (status);
442
443         spin_unlock_irqrestore(&lp->lock, flags);
444
445         return IRQ_HANDLED;
446 }
447
448 /* Return the array index corresponding to a given Receive Buffer pointer. */
449 static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
450                            unsigned int last)
451 {
452         unsigned int i = last;
453
454         do {
455                 i = (i + 1) & SONIC_RRS_MASK;
456                 if (addr == lp->rx_laddr[i])
457                         return i;
458         } while (i != last);
459
460         return -ENOENT;
461 }
462
463 /* Allocate and map a new skb to be used as a receive buffer. */
464 static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
465                            struct sk_buff **new_skb, dma_addr_t *new_addr)
466 {
467         *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
468         if (!*new_skb)
469                 return false;
470
471         if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
472                 skb_reserve(*new_skb, 2);
473
474         *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
475                                    SONIC_RBSIZE, DMA_FROM_DEVICE);
476         if (dma_mapping_error(lp->device, *new_addr)) {
477                 dev_kfree_skb(*new_skb);
478                 *new_skb = NULL;
479                 return false;
480         }
481
482         return true;
483 }
484
485 /* Place a new receive resource in the Receive Resource Area and update RWP. */
486 static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
487                              dma_addr_t old_addr, dma_addr_t new_addr)
488 {
489         unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
490         unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
491         u32 buf;
492
493         /* The resources in the range [RRP, RWP) belong to the SONIC. This loop
494          * scans the other resources in the RRA, those in the range [RWP, RRP).
495          */
496         do {
497                 buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
498                       sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
499
500                 if (buf == old_addr)
501                         break;
502
503                 entry = (entry + 1) & SONIC_RRS_MASK;
504         } while (entry != end);
505
506         WARN_ONCE(buf != old_addr, "failed to find resource!\n");
507
508         sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
509         sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
510
511         entry = (entry + 1) & SONIC_RRS_MASK;
512
513         SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
514 }
515
516 /*
517  * We have a good packet(s), pass it/them up the network stack.
518  */
519 static void sonic_rx(struct net_device *dev)
520 {
521         struct sonic_local *lp = netdev_priv(dev);
522         int entry = lp->cur_rx;
523         int prev_entry = lp->eol_rx;
524         bool rbe = false;
525
526         while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
527                 u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
528
529                 /* If the RD has LPKT set, the chip has finished with the RB */
530                 if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
531                         struct sk_buff *new_skb;
532                         dma_addr_t new_laddr;
533                         u32 addr = (sonic_rda_get(dev, entry,
534                                                   SONIC_RD_PKTPTR_H) << 16) |
535                                    sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
536                         int i = index_from_addr(lp, addr, entry);
537
538                         if (i < 0) {
539                                 WARN_ONCE(1, "failed to find buffer!\n");
540                                 break;
541                         }
542
543                         if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
544                                 struct sk_buff *used_skb = lp->rx_skb[i];
545                                 int pkt_len;
546
547                                 /* Pass the used buffer up the stack */
548                                 dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
549                                                  DMA_FROM_DEVICE);
550
551                                 pkt_len = sonic_rda_get(dev, entry,
552                                                         SONIC_RD_PKTLEN);
553                                 skb_trim(used_skb, pkt_len);
554                                 used_skb->protocol = eth_type_trans(used_skb,
555                                                                     dev);
556                                 netif_rx(used_skb);
557                                 lp->stats.rx_packets++;
558                                 lp->stats.rx_bytes += pkt_len;
559
560                                 lp->rx_skb[i] = new_skb;
561                                 lp->rx_laddr[i] = new_laddr;
562                         } else {
563                                 /* Failed to obtain a new buffer so re-use it */
564                                 new_laddr = addr;
565                                 lp->stats.rx_dropped++;
566                         }
567                         /* If RBE is already asserted when RWP advances then
568                          * it's safe to clear RBE after processing this packet.
569                          */
570                         rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
571                         sonic_update_rra(dev, lp, addr, new_laddr);
572                 }
573                 /*
574                  * give back the descriptor
575                  */
576                 sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
577                 sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
578
579                 prev_entry = entry;
580                 entry = (entry + 1) & SONIC_RDS_MASK;
581         }
582
583         lp->cur_rx = entry;
584
585         if (prev_entry != lp->eol_rx) {
586                 /* Advance the EOL flag to put descriptors back into service */
587                 sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
588                               sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
589                 sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
590                               sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
591                 lp->eol_rx = prev_entry;
592         }
593
594         if (rbe)
595                 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
596         /*
597          * If any worth-while packets have been received, netif_rx()
598          * has done a mark_bh(NET_BH) for us and will work on them
599          * when we get to the bottom-half routine.
600          */
601 }
602
603
604 /*
605  * Get the current statistics.
606  * This may be called with the device open or closed.
607  */
608 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
609 {
610         struct sonic_local *lp = netdev_priv(dev);
611
612         /* read the tally counter from the SONIC and reset them */
613         lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
614         SONIC_WRITE(SONIC_CRCT, 0xffff);
615         lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
616         SONIC_WRITE(SONIC_FAET, 0xffff);
617         lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
618         SONIC_WRITE(SONIC_MPT, 0xffff);
619
620         return &lp->stats;
621 }
622
623
624 /*
625  * Set or clear the multicast filter for this adaptor.
626  */
627 static void sonic_multicast_list(struct net_device *dev)
628 {
629         struct sonic_local *lp = netdev_priv(dev);
630         unsigned int rcr;
631         struct netdev_hw_addr *ha;
632         unsigned char *addr;
633         int i;
634
635         rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
636         rcr |= SONIC_RCR_BRD;   /* accept broadcast packets */
637
638         if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
639                 rcr |= SONIC_RCR_PRO;
640         } else {
641                 if ((dev->flags & IFF_ALLMULTI) ||
642                     (netdev_mc_count(dev) > 15)) {
643                         rcr |= SONIC_RCR_AMC;
644                 } else {
645                         unsigned long flags;
646
647                         netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
648                                   netdev_mc_count(dev));
649                         sonic_set_cam_enable(dev, 1);  /* always enable our own address */
650                         i = 1;
651                         netdev_for_each_mc_addr(ha, dev) {
652                                 addr = ha->addr;
653                                 sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
654                                 sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
655                                 sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
656                                 sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
657                                 i++;
658                         }
659                         SONIC_WRITE(SONIC_CDC, 16);
660                         SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
661
662                         /* LCAM and TXP commands can't be used simultaneously */
663                         spin_lock_irqsave(&lp->lock, flags);
664                         sonic_quiesce(dev, SONIC_CR_TXP);
665                         SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
666                         sonic_quiesce(dev, SONIC_CR_LCAM);
667                         spin_unlock_irqrestore(&lp->lock, flags);
668                 }
669         }
670
671         netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
672
673         SONIC_WRITE(SONIC_RCR, rcr);
674 }
675
676
677 /*
678  * Initialize the SONIC ethernet controller.
679  */
680 static int sonic_init(struct net_device *dev)
681 {
682         struct sonic_local *lp = netdev_priv(dev);
683         int i;
684
685         /*
686          * put the Sonic into software-reset mode and
687          * disable all interrupts
688          */
689         SONIC_WRITE(SONIC_IMR, 0);
690         SONIC_WRITE(SONIC_ISR, 0x7fff);
691         SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
692
693         /* While in reset mode, clear CAM Enable register */
694         SONIC_WRITE(SONIC_CE, 0);
695
696         /*
697          * clear software reset flag, disable receiver, clear and
698          * enable interrupts, then completely initialize the SONIC
699          */
700         SONIC_WRITE(SONIC_CMD, 0);
701         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
702         sonic_quiesce(dev, SONIC_CR_ALL);
703
704         /*
705          * initialize the receive resource area
706          */
707         netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
708                   __func__);
709
710         for (i = 0; i < SONIC_NUM_RRS; i++) {
711                 u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
712                 u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
713                 sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
714                 sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
715                 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
716                 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
717         }
718
719         /* initialize all RRA registers */
720         SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
721         SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
722         SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
723         SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
724         SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
725         SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
726
727         /* load the resource pointers */
728         netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
729
730         SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
731         sonic_quiesce(dev, SONIC_CR_RRRA);
732
733         /*
734          * Initialize the receive descriptors so that they
735          * become a circular linked list, ie. let the last
736          * descriptor point to the first again.
737          */
738         netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
739                   __func__);
740
741         for (i=0; i<SONIC_NUM_RDS; i++) {
742                 sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
743                 sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
744                 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
745                 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
746                 sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
747                 sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
748                 sonic_rda_put(dev, i, SONIC_RD_LINK,
749                         lp->rda_laddr +
750                         ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
751         }
752         /* fix last descriptor */
753         sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
754                 (lp->rda_laddr & 0xffff) | SONIC_EOL);
755         lp->eol_rx = SONIC_NUM_RDS - 1;
756         lp->cur_rx = 0;
757         SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
758         SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
759
760         /*
761          * initialize transmit descriptors
762          */
763         netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
764                   __func__);
765
766         for (i = 0; i < SONIC_NUM_TDS; i++) {
767                 sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
768                 sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
769                 sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
770                 sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
771                 sonic_tda_put(dev, i, SONIC_TD_LINK,
772                         (lp->tda_laddr & 0xffff) +
773                         (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
774                 lp->tx_skb[i] = NULL;
775         }
776         /* fix last descriptor */
777         sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
778                 (lp->tda_laddr & 0xffff));
779
780         SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
781         SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
782         lp->cur_tx = lp->next_tx = 0;
783         lp->eol_tx = SONIC_NUM_TDS - 1;
784
785         /*
786          * put our own address to CAM desc[0]
787          */
788         sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
789         sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
790         sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
791         sonic_set_cam_enable(dev, 1);
792
793         for (i = 0; i < 16; i++)
794                 sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
795
796         /*
797          * initialize CAM registers
798          */
799         SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
800         SONIC_WRITE(SONIC_CDC, 16);
801
802         /*
803          * load the CAM
804          */
805         SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
806         sonic_quiesce(dev, SONIC_CR_LCAM);
807
808         /*
809          * enable receiver, disable loopback
810          * and enable all interrupts
811          */
812         SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
813         SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
814         SONIC_WRITE(SONIC_ISR, 0x7fff);
815         SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
816         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
817
818         netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
819                   SONIC_READ(SONIC_CMD));
820
821         return 0;
822 }
823
824 MODULE_LICENSE("GPL");