GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 eth_zero_addr(zero_mac_addr);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096                                                 GFP_ATOMIC,
1097                                                 qdev->lbq_buf_order);
1098                 if (unlikely(!rx_ring->pg_chunk.page)) {
1099                         netif_err(qdev, drv, qdev->ndev,
1100                                   "page allocation failed.\n");
1101                         return -ENOMEM;
1102                 }
1103                 rx_ring->pg_chunk.offset = 0;
1104                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105                                         0, ql_lbq_block_size(qdev),
1106                                         PCI_DMA_FROMDEVICE);
1107                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108                         __free_pages(rx_ring->pg_chunk.page,
1109                                         qdev->lbq_buf_order);
1110                         rx_ring->pg_chunk.page = NULL;
1111                         netif_err(qdev, drv, qdev->ndev,
1112                                   "PCI mapping failed.\n");
1113                         return -ENOMEM;
1114                 }
1115                 rx_ring->pg_chunk.map = map;
1116                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117         }
1118
1119         /* Copy the current master pg_chunk info
1120          * to the current descriptor.
1121          */
1122         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124         /* Adjust the master page chunk for next
1125          * buffer get.
1126          */
1127         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129                 rx_ring->pg_chunk.page = NULL;
1130                 lbq_desc->p.pg_chunk.last_flag = 1;
1131         } else {
1132                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133                 get_page(rx_ring->pg_chunk.page);
1134                 lbq_desc->p.pg_chunk.last_flag = 0;
1135         }
1136         return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141         u32 clean_idx = rx_ring->lbq_clean_idx;
1142         u32 start_idx = clean_idx;
1143         struct bq_desc *lbq_desc;
1144         u64 map;
1145         int i;
1146
1147         while (rx_ring->lbq_free_cnt > 32) {
1148                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150                                      "lbq: try cleaning clean_idx = %d.\n",
1151                                      clean_idx);
1152                         lbq_desc = &rx_ring->lbq[clean_idx];
1153                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154                                 rx_ring->lbq_clean_idx = clean_idx;
1155                                 netif_err(qdev, ifup, qdev->ndev,
1156                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157                                                 i, clean_idx);
1158                                 return;
1159                         }
1160
1161                         map = lbq_desc->p.pg_chunk.map +
1162                                 lbq_desc->p.pg_chunk.offset;
1163                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164                         dma_unmap_len_set(lbq_desc, maplen,
1165                                         rx_ring->lbq_buf_size);
1166                                 *lbq_desc->addr = cpu_to_le64(map);
1167
1168                         pci_dma_sync_single_for_device(qdev->pdev, map,
1169                                                 rx_ring->lbq_buf_size,
1170                                                 PCI_DMA_FROMDEVICE);
1171                         clean_idx++;
1172                         if (clean_idx == rx_ring->lbq_len)
1173                                 clean_idx = 0;
1174                 }
1175
1176                 rx_ring->lbq_clean_idx = clean_idx;
1177                 rx_ring->lbq_prod_idx += 16;
1178                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179                         rx_ring->lbq_prod_idx = 0;
1180                 rx_ring->lbq_free_cnt -= 16;
1181         }
1182
1183         if (start_idx != clean_idx) {
1184                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185                              "lbq: updating prod idx = %d.\n",
1186                              rx_ring->lbq_prod_idx);
1187                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188                                 rx_ring->lbq_prod_idx_db_reg);
1189         }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195         u32 clean_idx = rx_ring->sbq_clean_idx;
1196         u32 start_idx = clean_idx;
1197         struct bq_desc *sbq_desc;
1198         u64 map;
1199         int i;
1200
1201         while (rx_ring->sbq_free_cnt > 16) {
1202                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203                         sbq_desc = &rx_ring->sbq[clean_idx];
1204                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205                                      "sbq: try cleaning clean_idx = %d.\n",
1206                                      clean_idx);
1207                         if (sbq_desc->p.skb == NULL) {
1208                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1209                                              qdev->ndev,
1210                                              "sbq: getting new skb for index %d.\n",
1211                                              sbq_desc->index);
1212                                 sbq_desc->p.skb =
1213                                     netdev_alloc_skb(qdev->ndev,
1214                                                      SMALL_BUFFER_SIZE);
1215                                 if (sbq_desc->p.skb == NULL) {
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438                                  struct rx_ring *rx_ring)
1439 {
1440         struct nic_stats *stats = &qdev->nic_stats;
1441
1442         stats->rx_err_count++;
1443         rx_ring->rx_errors++;
1444
1445         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447                 stats->rx_code_err++;
1448                 break;
1449         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450                 stats->rx_oversize_err++;
1451                 break;
1452         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453                 stats->rx_undersize_err++;
1454                 break;
1455         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456                 stats->rx_preamble_err++;
1457                 break;
1458         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459                 stats->rx_frame_len_err++;
1460                 break;
1461         case IB_MAC_IOCB_RSP_ERR_CRC:
1462                 stats->rx_crc_err++;
1463         default:
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1474                                   void *page, size_t *len)
1475 {
1476         u16 *tags;
1477
1478         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479                 return;
1480         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481                 tags = (u16 *)page;
1482                 /* Look for stacked vlan tags in ethertype field */
1483                 if (tags[6] == ETH_P_8021Q &&
1484                     tags[8] == ETH_P_8021Q)
1485                         *len += 2 * VLAN_HLEN;
1486                 else
1487                         *len += VLAN_HLEN;
1488         }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493                                         struct rx_ring *rx_ring,
1494                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1495                                         u32 length,
1496                                         u16 vlan_id)
1497 {
1498         struct sk_buff *skb;
1499         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500         struct napi_struct *napi = &rx_ring->napi;
1501
1502         /* Frame error, so drop the packet. */
1503         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505                 put_page(lbq_desc->p.pg_chunk.page);
1506                 return;
1507         }
1508         napi->dev = qdev->ndev;
1509
1510         skb = napi_get_frags(napi);
1511         if (!skb) {
1512                 netif_err(qdev, drv, qdev->ndev,
1513                           "Couldn't get an skb, exiting.\n");
1514                 rx_ring->rx_dropped++;
1515                 put_page(lbq_desc->p.pg_chunk.page);
1516                 return;
1517         }
1518         prefetch(lbq_desc->p.pg_chunk.va);
1519         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520                              lbq_desc->p.pg_chunk.page,
1521                              lbq_desc->p.pg_chunk.offset,
1522                              length);
1523
1524         skb->len += length;
1525         skb->data_len += length;
1526         skb->truesize += length;
1527         skb_shinfo(skb)->nr_frags++;
1528
1529         rx_ring->rx_packets++;
1530         rx_ring->rx_bytes += length;
1531         skb->ip_summed = CHECKSUM_UNNECESSARY;
1532         skb_record_rx_queue(skb, rx_ring->cq_id);
1533         if (vlan_id != 0xffff)
1534                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535         napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540                                         struct rx_ring *rx_ring,
1541                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1542                                         u32 length,
1543                                         u16 vlan_id)
1544 {
1545         struct net_device *ndev = qdev->ndev;
1546         struct sk_buff *skb = NULL;
1547         void *addr;
1548         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549         struct napi_struct *napi = &rx_ring->napi;
1550         size_t hlen = ETH_HLEN;
1551
1552         skb = netdev_alloc_skb(ndev, length);
1553         if (!skb) {
1554                 rx_ring->rx_dropped++;
1555                 put_page(lbq_desc->p.pg_chunk.page);
1556                 return;
1557         }
1558
1559         addr = lbq_desc->p.pg_chunk.va;
1560         prefetch(addr);
1561
1562         /* Frame error, so drop the packet. */
1563         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565                 goto err_out;
1566         }
1567
1568         /* Update the MAC header length*/
1569         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571         /* The max framesize filter on this chip is set higher than
1572          * MTU since FCoE uses 2k frames.
1573          */
1574         if (skb->len > ndev->mtu + hlen) {
1575                 netif_err(qdev, drv, qdev->ndev,
1576                           "Segment too small, dropping.\n");
1577                 rx_ring->rx_dropped++;
1578                 goto err_out;
1579         }
1580         memcpy(skb_put(skb, hlen), addr, hlen);
1581         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583                      length);
1584         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585                                 lbq_desc->p.pg_chunk.offset + hlen,
1586                                 length - hlen);
1587         skb->len += length - hlen;
1588         skb->data_len += length - hlen;
1589         skb->truesize += length - hlen;
1590
1591         rx_ring->rx_packets++;
1592         rx_ring->rx_bytes += skb->len;
1593         skb->protocol = eth_type_trans(skb, ndev);
1594         skb_checksum_none_assert(skb);
1595
1596         if ((ndev->features & NETIF_F_RXCSUM) &&
1597                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598                 /* TCP frame. */
1599                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601                                      "TCP checksum done!\n");
1602                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1603                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605                         /* Unfragmented ipv4 UDP frame. */
1606                         struct iphdr *iph =
1607                                 (struct iphdr *)((u8 *)addr + hlen);
1608                         if (!(iph->frag_off &
1609                                 htons(IP_MF|IP_OFFSET))) {
1610                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1612                                              qdev->ndev,
1613                                              "UDP checksum done!\n");
1614                         }
1615                 }
1616         }
1617
1618         skb_record_rx_queue(skb, rx_ring->cq_id);
1619         if (vlan_id != 0xffff)
1620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622                 napi_gro_receive(napi, skb);
1623         else
1624                 netif_receive_skb(skb);
1625         return;
1626 err_out:
1627         dev_kfree_skb_any(skb);
1628         put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633                                         struct rx_ring *rx_ring,
1634                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1635                                         u32 length,
1636                                         u16 vlan_id)
1637 {
1638         struct net_device *ndev = qdev->ndev;
1639         struct sk_buff *skb = NULL;
1640         struct sk_buff *new_skb = NULL;
1641         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643         skb = sbq_desc->p.skb;
1644         /* Allocate new_skb and copy */
1645         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646         if (new_skb == NULL) {
1647                 rx_ring->rx_dropped++;
1648                 return;
1649         }
1650         skb_reserve(new_skb, NET_IP_ALIGN);
1651
1652         pci_dma_sync_single_for_cpu(qdev->pdev,
1653                                     dma_unmap_addr(sbq_desc, mapaddr),
1654                                     dma_unmap_len(sbq_desc, maplen),
1655                                     PCI_DMA_FROMDEVICE);
1656
1657         memcpy(skb_put(new_skb, length), skb->data, length);
1658
1659         pci_dma_sync_single_for_device(qdev->pdev,
1660                                        dma_unmap_addr(sbq_desc, mapaddr),
1661                                        dma_unmap_len(sbq_desc, maplen),
1662                                        PCI_DMA_FROMDEVICE);
1663         skb = new_skb;
1664
1665         /* Frame error, so drop the packet. */
1666         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668                 dev_kfree_skb_any(skb);
1669                 return;
1670         }
1671
1672         /* loopback self test for ethtool */
1673         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674                 ql_check_lb_frame(qdev, skb);
1675                 dev_kfree_skb_any(skb);
1676                 return;
1677         }
1678
1679         /* The max framesize filter on this chip is set higher than
1680          * MTU since FCoE uses 2k frames.
1681          */
1682         if (skb->len > ndev->mtu + ETH_HLEN) {
1683                 dev_kfree_skb_any(skb);
1684                 rx_ring->rx_dropped++;
1685                 return;
1686         }
1687
1688         prefetch(skb->data);
1689         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691                              "%s Multicast.\n",
1692                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698         }
1699         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701                              "Promiscuous Packet.\n");
1702
1703         rx_ring->rx_packets++;
1704         rx_ring->rx_bytes += skb->len;
1705         skb->protocol = eth_type_trans(skb, ndev);
1706         skb_checksum_none_assert(skb);
1707
1708         /* If rx checksum is on, and there are no
1709          * csum or frame errors.
1710          */
1711         if ((ndev->features & NETIF_F_RXCSUM) &&
1712                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713                 /* TCP frame. */
1714                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716                                      "TCP checksum done!\n");
1717                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1718                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720                         /* Unfragmented ipv4 UDP frame. */
1721                         struct iphdr *iph = (struct iphdr *) skb->data;
1722                         if (!(iph->frag_off &
1723                                 htons(IP_MF|IP_OFFSET))) {
1724                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1726                                              qdev->ndev,
1727                                              "UDP checksum done!\n");
1728                         }
1729                 }
1730         }
1731
1732         skb_record_rx_queue(skb, rx_ring->cq_id);
1733         if (vlan_id != 0xffff)
1734                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736                 napi_gro_receive(&rx_ring->napi, skb);
1737         else
1738                 netif_receive_skb(skb);
1739 }
1740
1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743         void *temp_addr = skb->data;
1744
1745         /* Undo the skb_reserve(skb,32) we did before
1746          * giving to hardware, and realign data on
1747          * a 2-byte boundary.
1748          */
1749         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751         skb_copy_to_linear_data(skb, temp_addr,
1752                 (unsigned int)len);
1753 }
1754
1755 /*
1756  * This function builds an skb for the given inbound
1757  * completion.  It will be rewritten for readability in the near
1758  * future, but for not it works well.
1759  */
1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761                                        struct rx_ring *rx_ring,
1762                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764         struct bq_desc *lbq_desc;
1765         struct bq_desc *sbq_desc;
1766         struct sk_buff *skb = NULL;
1767         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769         size_t hlen = ETH_HLEN;
1770
1771         /*
1772          * Handle the header buffer if present.
1773          */
1774         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777                              "Header of %d bytes in small buffer.\n", hdr_len);
1778                 /*
1779                  * Headers fit nicely into a small buffer.
1780                  */
1781                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1782                 pci_unmap_single(qdev->pdev,
1783                                 dma_unmap_addr(sbq_desc, mapaddr),
1784                                 dma_unmap_len(sbq_desc, maplen),
1785                                 PCI_DMA_FROMDEVICE);
1786                 skb = sbq_desc->p.skb;
1787                 ql_realign_skb(skb, hdr_len);
1788                 skb_put(skb, hdr_len);
1789                 sbq_desc->p.skb = NULL;
1790         }
1791
1792         /*
1793          * Handle the data buffer(s).
1794          */
1795         if (unlikely(!length)) {        /* Is there data too? */
1796                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797                              "No Data buffer in this packet.\n");
1798                 return skb;
1799         }
1800
1801         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804                                      "Headers in small, data of %d bytes in small, combine them.\n",
1805                                      length);
1806                         /*
1807                          * Data is less than small buffer size so it's
1808                          * stuffed in a small buffer.
1809                          * For this case we append the data
1810                          * from the "data" small buffer to the "header" small
1811                          * buffer.
1812                          */
1813                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1814                         pci_dma_sync_single_for_cpu(qdev->pdev,
1815                                                     dma_unmap_addr
1816                                                     (sbq_desc, mapaddr),
1817                                                     dma_unmap_len
1818                                                     (sbq_desc, maplen),
1819                                                     PCI_DMA_FROMDEVICE);
1820                         memcpy(skb_put(skb, length),
1821                                sbq_desc->p.skb->data, length);
1822                         pci_dma_sync_single_for_device(qdev->pdev,
1823                                                        dma_unmap_addr
1824                                                        (sbq_desc,
1825                                                         mapaddr),
1826                                                        dma_unmap_len
1827                                                        (sbq_desc,
1828                                                         maplen),
1829                                                        PCI_DMA_FROMDEVICE);
1830                 } else {
1831                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832                                      "%d bytes in a single small buffer.\n",
1833                                      length);
1834                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1835                         skb = sbq_desc->p.skb;
1836                         ql_realign_skb(skb, length);
1837                         skb_put(skb, length);
1838                         pci_unmap_single(qdev->pdev,
1839                                          dma_unmap_addr(sbq_desc,
1840                                                         mapaddr),
1841                                          dma_unmap_len(sbq_desc,
1842                                                        maplen),
1843                                          PCI_DMA_FROMDEVICE);
1844                         sbq_desc->p.skb = NULL;
1845                 }
1846         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1848                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849                                      "Header in small, %d bytes in large. Chain large to small!\n",
1850                                      length);
1851                         /*
1852                          * The data is in a single large buffer.  We
1853                          * chain it to the header buffer's skb and let
1854                          * it rip.
1855                          */
1856                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1857                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1859                                      lbq_desc->p.pg_chunk.offset, length);
1860                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861                                                 lbq_desc->p.pg_chunk.offset,
1862                                                 length);
1863                         skb->len += length;
1864                         skb->data_len += length;
1865                         skb->truesize += length;
1866                 } else {
1867                         /*
1868                          * The headers and data are in a single large buffer. We
1869                          * copy it to a new skb and let it go. This can happen with
1870                          * jumbo mtu on a non-TCP/UDP frame.
1871                          */
1872                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1873                         skb = netdev_alloc_skb(qdev->ndev, length);
1874                         if (skb == NULL) {
1875                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876                                              "No skb available, drop the packet.\n");
1877                                 return NULL;
1878                         }
1879                         pci_unmap_page(qdev->pdev,
1880                                        dma_unmap_addr(lbq_desc,
1881                                                       mapaddr),
1882                                        dma_unmap_len(lbq_desc, maplen),
1883                                        PCI_DMA_FROMDEVICE);
1884                         skb_reserve(skb, NET_IP_ALIGN);
1885                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887                                      length);
1888                         skb_fill_page_desc(skb, 0,
1889                                                 lbq_desc->p.pg_chunk.page,
1890                                                 lbq_desc->p.pg_chunk.offset,
1891                                                 length);
1892                         skb->len += length;
1893                         skb->data_len += length;
1894                         skb->truesize += length;
1895                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1896                                               lbq_desc->p.pg_chunk.va,
1897                                               &hlen);
1898                         __pskb_pull_tail(skb, hlen);
1899                 }
1900         } else {
1901                 /*
1902                  * The data is in a chain of large buffers
1903                  * pointed to by a small buffer.  We loop
1904                  * thru and chain them to the our small header
1905                  * buffer's skb.
1906                  * frags:  There are 18 max frags and our small
1907                  *         buffer will hold 32 of them. The thing is,
1908                  *         we'll use 3 max for our 9000 byte jumbo
1909                  *         frames.  If the MTU goes up we could
1910                  *          eventually be in trouble.
1911                  */
1912                 int size, i = 0;
1913                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1914                 pci_unmap_single(qdev->pdev,
1915                                  dma_unmap_addr(sbq_desc, mapaddr),
1916                                  dma_unmap_len(sbq_desc, maplen),
1917                                  PCI_DMA_FROMDEVICE);
1918                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1919                         /*
1920                          * This is an non TCP/UDP IP frame, so
1921                          * the headers aren't split into a small
1922                          * buffer.  We have to use the small buffer
1923                          * that contains our sg list as our skb to
1924                          * send upstairs. Copy the sg list here to
1925                          * a local buffer and use it to find the
1926                          * pages to chain.
1927                          */
1928                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1929                                      "%d bytes of headers & data in chain of large.\n",
1930                                      length);
1931                         skb = sbq_desc->p.skb;
1932                         sbq_desc->p.skb = NULL;
1933                         skb_reserve(skb, NET_IP_ALIGN);
1934                 }
1935                 do {
1936                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1937                         size = (length < rx_ring->lbq_buf_size) ? length :
1938                                 rx_ring->lbq_buf_size;
1939
1940                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1941                                      "Adding page %d to skb for %d bytes.\n",
1942                                      i, size);
1943                         skb_fill_page_desc(skb, i,
1944                                                 lbq_desc->p.pg_chunk.page,
1945                                                 lbq_desc->p.pg_chunk.offset,
1946                                                 size);
1947                         skb->len += size;
1948                         skb->data_len += size;
1949                         skb->truesize += size;
1950                         length -= size;
1951                         i++;
1952                 } while (length > 0);
1953                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1954                                       &hlen);
1955                 __pskb_pull_tail(skb, hlen);
1956         }
1957         return skb;
1958 }
1959
1960 /* Process an inbound completion from an rx ring. */
1961 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1962                                    struct rx_ring *rx_ring,
1963                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1964                                    u16 vlan_id)
1965 {
1966         struct net_device *ndev = qdev->ndev;
1967         struct sk_buff *skb = NULL;
1968
1969         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1970
1971         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1972         if (unlikely(!skb)) {
1973                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974                              "No skb available, drop packet.\n");
1975                 rx_ring->rx_dropped++;
1976                 return;
1977         }
1978
1979         /* Frame error, so drop the packet. */
1980         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1981                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1982                 dev_kfree_skb_any(skb);
1983                 return;
1984         }
1985
1986         /* The max framesize filter on this chip is set higher than
1987          * MTU since FCoE uses 2k frames.
1988          */
1989         if (skb->len > ndev->mtu + ETH_HLEN) {
1990                 dev_kfree_skb_any(skb);
1991                 rx_ring->rx_dropped++;
1992                 return;
1993         }
1994
1995         /* loopback self test for ethtool */
1996         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1997                 ql_check_lb_frame(qdev, skb);
1998                 dev_kfree_skb_any(skb);
1999                 return;
2000         }
2001
2002         prefetch(skb->data);
2003         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2004                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2005                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2006                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2007                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2008                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2009                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2010                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2011                 rx_ring->rx_multicast++;
2012         }
2013         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2014                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2015                              "Promiscuous Packet.\n");
2016         }
2017
2018         skb->protocol = eth_type_trans(skb, ndev);
2019         skb_checksum_none_assert(skb);
2020
2021         /* If rx checksum is on, and there are no
2022          * csum or frame errors.
2023          */
2024         if ((ndev->features & NETIF_F_RXCSUM) &&
2025                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2026                 /* TCP frame. */
2027                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2028                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029                                      "TCP checksum done!\n");
2030                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2031                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2032                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2033                 /* Unfragmented ipv4 UDP frame. */
2034                         struct iphdr *iph = (struct iphdr *) skb->data;
2035                         if (!(iph->frag_off &
2036                                 htons(IP_MF|IP_OFFSET))) {
2037                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2038                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2039                                              "TCP checksum done!\n");
2040                         }
2041                 }
2042         }
2043
2044         rx_ring->rx_packets++;
2045         rx_ring->rx_bytes += skb->len;
2046         skb_record_rx_queue(skb, rx_ring->cq_id);
2047         if (vlan_id != 0xffff)
2048                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2049         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2050                 napi_gro_receive(&rx_ring->napi, skb);
2051         else
2052                 netif_receive_skb(skb);
2053 }
2054
2055 /* Process an inbound completion from an rx ring. */
2056 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2057                                         struct rx_ring *rx_ring,
2058                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2059 {
2060         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2061         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2062                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2063                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2064                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2065
2066         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2067
2068         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2069                 /* The data and headers are split into
2070                  * separate buffers.
2071                  */
2072                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2073                                                 vlan_id);
2074         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2075                 /* The data fit in a single small buffer.
2076                  * Allocate a new skb, copy the data and
2077                  * return the buffer to the free pool.
2078                  */
2079                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2080                                                 length, vlan_id);
2081         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2082                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2083                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2084                 /* TCP packet in a page chunk that's been checksummed.
2085                  * Tack it on to our GRO skb and let it go.
2086                  */
2087                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2088                                                 length, vlan_id);
2089         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2090                 /* Non-TCP packet in a page chunk. Allocate an
2091                  * skb, tack it on frags, and send it up.
2092                  */
2093                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2094                                                 length, vlan_id);
2095         } else {
2096                 /* Non-TCP/UDP large frames that span multiple buffers
2097                  * can be processed corrrectly by the split frame logic.
2098                  */
2099                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2100                                                 vlan_id);
2101         }
2102
2103         return (unsigned long)length;
2104 }
2105
2106 /* Process an outbound completion from an rx ring. */
2107 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2108                                    struct ob_mac_iocb_rsp *mac_rsp)
2109 {
2110         struct tx_ring *tx_ring;
2111         struct tx_ring_desc *tx_ring_desc;
2112
2113         QL_DUMP_OB_MAC_RSP(mac_rsp);
2114         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2115         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2116         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2117         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2118         tx_ring->tx_packets++;
2119         dev_kfree_skb(tx_ring_desc->skb);
2120         tx_ring_desc->skb = NULL;
2121
2122         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2123                                         OB_MAC_IOCB_RSP_S |
2124                                         OB_MAC_IOCB_RSP_L |
2125                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2126                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2127                         netif_warn(qdev, tx_done, qdev->ndev,
2128                                    "Total descriptor length did not match transfer length.\n");
2129                 }
2130                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2131                         netif_warn(qdev, tx_done, qdev->ndev,
2132                                    "Frame too short to be valid, not sent.\n");
2133                 }
2134                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2135                         netif_warn(qdev, tx_done, qdev->ndev,
2136                                    "Frame too long, but sent anyway.\n");
2137                 }
2138                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2139                         netif_warn(qdev, tx_done, qdev->ndev,
2140                                    "PCI backplane error. Frame not sent.\n");
2141                 }
2142         }
2143         atomic_inc(&tx_ring->tx_count);
2144 }
2145
2146 /* Fire up a handler to reset the MPI processor. */
2147 void ql_queue_fw_error(struct ql_adapter *qdev)
2148 {
2149         ql_link_off(qdev);
2150         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2151 }
2152
2153 void ql_queue_asic_error(struct ql_adapter *qdev)
2154 {
2155         ql_link_off(qdev);
2156         ql_disable_interrupts(qdev);
2157         /* Clear adapter up bit to signal the recovery
2158          * process that it shouldn't kill the reset worker
2159          * thread
2160          */
2161         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2162         /* Set asic recovery bit to indicate reset process that we are
2163          * in fatal error recovery process rather than normal close
2164          */
2165         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2166         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2167 }
2168
2169 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2170                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2171 {
2172         switch (ib_ae_rsp->event) {
2173         case MGMT_ERR_EVENT:
2174                 netif_err(qdev, rx_err, qdev->ndev,
2175                           "Management Processor Fatal Error.\n");
2176                 ql_queue_fw_error(qdev);
2177                 return;
2178
2179         case CAM_LOOKUP_ERR_EVENT:
2180                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2181                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2182                 ql_queue_asic_error(qdev);
2183                 return;
2184
2185         case SOFT_ECC_ERROR_EVENT:
2186                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2187                 ql_queue_asic_error(qdev);
2188                 break;
2189
2190         case PCI_ERR_ANON_BUF_RD:
2191                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2192                                         "anonymous buffers from rx_ring %d.\n",
2193                                         ib_ae_rsp->q_id);
2194                 ql_queue_asic_error(qdev);
2195                 break;
2196
2197         default:
2198                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2199                           ib_ae_rsp->event);
2200                 ql_queue_asic_error(qdev);
2201                 break;
2202         }
2203 }
2204
2205 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2206 {
2207         struct ql_adapter *qdev = rx_ring->qdev;
2208         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2209         struct ob_mac_iocb_rsp *net_rsp = NULL;
2210         int count = 0;
2211
2212         struct tx_ring *tx_ring;
2213         /* While there are entries in the completion queue. */
2214         while (prod != rx_ring->cnsmr_idx) {
2215
2216                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2217                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2218                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2219
2220                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2221                 rmb();
2222                 switch (net_rsp->opcode) {
2223
2224                 case OPCODE_OB_MAC_TSO_IOCB:
2225                 case OPCODE_OB_MAC_IOCB:
2226                         ql_process_mac_tx_intr(qdev, net_rsp);
2227                         break;
2228                 default:
2229                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2230                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2231                                      net_rsp->opcode);
2232                 }
2233                 count++;
2234                 ql_update_cq(rx_ring);
2235                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2236         }
2237         if (!net_rsp)
2238                 return 0;
2239         ql_write_cq_idx(rx_ring);
2240         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2241         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2242                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2243                         /*
2244                          * The queue got stopped because the tx_ring was full.
2245                          * Wake it up, because it's now at least 25% empty.
2246                          */
2247                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2248         }
2249
2250         return count;
2251 }
2252
2253 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2254 {
2255         struct ql_adapter *qdev = rx_ring->qdev;
2256         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2257         struct ql_net_rsp_iocb *net_rsp;
2258         int count = 0;
2259
2260         /* While there are entries in the completion queue. */
2261         while (prod != rx_ring->cnsmr_idx) {
2262
2263                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2264                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2265                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2266
2267                 net_rsp = rx_ring->curr_entry;
2268                 rmb();
2269                 switch (net_rsp->opcode) {
2270                 case OPCODE_IB_MAC_IOCB:
2271                         ql_process_mac_rx_intr(qdev, rx_ring,
2272                                                (struct ib_mac_iocb_rsp *)
2273                                                net_rsp);
2274                         break;
2275
2276                 case OPCODE_IB_AE_IOCB:
2277                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2278                                                 net_rsp);
2279                         break;
2280                 default:
2281                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2282                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2283                                      net_rsp->opcode);
2284                         break;
2285                 }
2286                 count++;
2287                 ql_update_cq(rx_ring);
2288                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2289                 if (count == budget)
2290                         break;
2291         }
2292         ql_update_buffer_queues(qdev, rx_ring);
2293         ql_write_cq_idx(rx_ring);
2294         return count;
2295 }
2296
2297 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2298 {
2299         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2300         struct ql_adapter *qdev = rx_ring->qdev;
2301         struct rx_ring *trx_ring;
2302         int i, work_done = 0;
2303         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2304
2305         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2306                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2307
2308         /* Service the TX rings first.  They start
2309          * right after the RSS rings. */
2310         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2311                 trx_ring = &qdev->rx_ring[i];
2312                 /* If this TX completion ring belongs to this vector and
2313                  * it's not empty then service it.
2314                  */
2315                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2316                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2317                                         trx_ring->cnsmr_idx)) {
2318                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2319                                      "%s: Servicing TX completion ring %d.\n",
2320                                      __func__, trx_ring->cq_id);
2321                         ql_clean_outbound_rx_ring(trx_ring);
2322                 }
2323         }
2324
2325         /*
2326          * Now service the RSS ring if it's active.
2327          */
2328         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2329                                         rx_ring->cnsmr_idx) {
2330                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2331                              "%s: Servicing RX completion ring %d.\n",
2332                              __func__, rx_ring->cq_id);
2333                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2334         }
2335
2336         if (work_done < budget) {
2337                 napi_complete(napi);
2338                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2339         }
2340         return work_done;
2341 }
2342
2343 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2344 {
2345         struct ql_adapter *qdev = netdev_priv(ndev);
2346
2347         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2348                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2349                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2350         } else {
2351                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2352         }
2353 }
2354
2355 /**
2356  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2357  * based on the features to enable/disable hardware vlan accel
2358  */
2359 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2360                                         netdev_features_t features)
2361 {
2362         struct ql_adapter *qdev = netdev_priv(ndev);
2363         int status = 0;
2364         bool need_restart = netif_running(ndev);
2365
2366         if (need_restart) {
2367                 status = ql_adapter_down(qdev);
2368                 if (status) {
2369                         netif_err(qdev, link, qdev->ndev,
2370                                   "Failed to bring down the adapter\n");
2371                         return status;
2372                 }
2373         }
2374
2375         /* update the features with resent change */
2376         ndev->features = features;
2377
2378         if (need_restart) {
2379                 status = ql_adapter_up(qdev);
2380                 if (status) {
2381                         netif_err(qdev, link, qdev->ndev,
2382                                   "Failed to bring up the adapter\n");
2383                         return status;
2384                 }
2385         }
2386
2387         return status;
2388 }
2389
2390 static int qlge_set_features(struct net_device *ndev,
2391         netdev_features_t features)
2392 {
2393         netdev_features_t changed = ndev->features ^ features;
2394         int err;
2395
2396         if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2397                 /* Update the behavior of vlan accel in the adapter */
2398                 err = qlge_update_hw_vlan_features(ndev, features);
2399                 if (err)
2400                         return err;
2401
2402                 qlge_vlan_mode(ndev, features);
2403         }
2404
2405         return 0;
2406 }
2407
2408 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2409 {
2410         u32 enable_bit = MAC_ADDR_E;
2411         int err;
2412
2413         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2414                                   MAC_ADDR_TYPE_VLAN, vid);
2415         if (err)
2416                 netif_err(qdev, ifup, qdev->ndev,
2417                           "Failed to init vlan address.\n");
2418         return err;
2419 }
2420
2421 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2422 {
2423         struct ql_adapter *qdev = netdev_priv(ndev);
2424         int status;
2425         int err;
2426
2427         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2428         if (status)
2429                 return status;
2430
2431         err = __qlge_vlan_rx_add_vid(qdev, vid);
2432         set_bit(vid, qdev->active_vlans);
2433
2434         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2435
2436         return err;
2437 }
2438
2439 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2440 {
2441         u32 enable_bit = 0;
2442         int err;
2443
2444         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2445                                   MAC_ADDR_TYPE_VLAN, vid);
2446         if (err)
2447                 netif_err(qdev, ifup, qdev->ndev,
2448                           "Failed to clear vlan address.\n");
2449         return err;
2450 }
2451
2452 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2453 {
2454         struct ql_adapter *qdev = netdev_priv(ndev);
2455         int status;
2456         int err;
2457
2458         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2459         if (status)
2460                 return status;
2461
2462         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2463         clear_bit(vid, qdev->active_vlans);
2464
2465         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2466
2467         return err;
2468 }
2469
2470 static void qlge_restore_vlan(struct ql_adapter *qdev)
2471 {
2472         int status;
2473         u16 vid;
2474
2475         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2476         if (status)
2477                 return;
2478
2479         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2480                 __qlge_vlan_rx_add_vid(qdev, vid);
2481
2482         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2483 }
2484
2485 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2486 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2487 {
2488         struct rx_ring *rx_ring = dev_id;
2489         napi_schedule(&rx_ring->napi);
2490         return IRQ_HANDLED;
2491 }
2492
2493 /* This handles a fatal error, MPI activity, and the default
2494  * rx_ring in an MSI-X multiple vector environment.
2495  * In MSI/Legacy environment it also process the rest of
2496  * the rx_rings.
2497  */
2498 static irqreturn_t qlge_isr(int irq, void *dev_id)
2499 {
2500         struct rx_ring *rx_ring = dev_id;
2501         struct ql_adapter *qdev = rx_ring->qdev;
2502         struct intr_context *intr_context = &qdev->intr_context[0];
2503         u32 var;
2504         int work_done = 0;
2505
2506         spin_lock(&qdev->hw_lock);
2507         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2508                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2509                              "Shared Interrupt, Not ours!\n");
2510                 spin_unlock(&qdev->hw_lock);
2511                 return IRQ_NONE;
2512         }
2513         spin_unlock(&qdev->hw_lock);
2514
2515         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2516
2517         /*
2518          * Check for fatal error.
2519          */
2520         if (var & STS_FE) {
2521                 ql_queue_asic_error(qdev);
2522                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2523                 var = ql_read32(qdev, ERR_STS);
2524                 netdev_err(qdev->ndev, "Resetting chip. "
2525                                         "Error Status Register = 0x%x\n", var);
2526                 return IRQ_HANDLED;
2527         }
2528
2529         /*
2530          * Check MPI processor activity.
2531          */
2532         if ((var & STS_PI) &&
2533                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2534                 /*
2535                  * We've got an async event or mailbox completion.
2536                  * Handle it and clear the source of the interrupt.
2537                  */
2538                 netif_err(qdev, intr, qdev->ndev,
2539                           "Got MPI processor interrupt.\n");
2540                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2541                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2542                 queue_delayed_work_on(smp_processor_id(),
2543                                 qdev->workqueue, &qdev->mpi_work, 0);
2544                 work_done++;
2545         }
2546
2547         /*
2548          * Get the bit-mask that shows the active queues for this
2549          * pass.  Compare it to the queues that this irq services
2550          * and call napi if there's a match.
2551          */
2552         var = ql_read32(qdev, ISR1);
2553         if (var & intr_context->irq_mask) {
2554                 netif_info(qdev, intr, qdev->ndev,
2555                            "Waking handler for rx_ring[0].\n");
2556                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2557                 napi_schedule(&rx_ring->napi);
2558                 work_done++;
2559         }
2560         ql_enable_completion_interrupt(qdev, intr_context->intr);
2561         return work_done ? IRQ_HANDLED : IRQ_NONE;
2562 }
2563
2564 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2565 {
2566
2567         if (skb_is_gso(skb)) {
2568                 int err;
2569                 __be16 l3_proto = vlan_get_protocol(skb);
2570
2571                 err = skb_cow_head(skb, 0);
2572                 if (err < 0)
2573                         return err;
2574
2575                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2576                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2577                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2578                 mac_iocb_ptr->total_hdrs_len =
2579                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2580                 mac_iocb_ptr->net_trans_offset =
2581                     cpu_to_le16(skb_network_offset(skb) |
2582                                 skb_transport_offset(skb)
2583                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2584                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2585                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2586                 if (likely(l3_proto == htons(ETH_P_IP))) {
2587                         struct iphdr *iph = ip_hdr(skb);
2588                         iph->check = 0;
2589                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2590                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2591                                                                  iph->daddr, 0,
2592                                                                  IPPROTO_TCP,
2593                                                                  0);
2594                 } else if (l3_proto == htons(ETH_P_IPV6)) {
2595                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2596                         tcp_hdr(skb)->check =
2597                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2598                                              &ipv6_hdr(skb)->daddr,
2599                                              0, IPPROTO_TCP, 0);
2600                 }
2601                 return 1;
2602         }
2603         return 0;
2604 }
2605
2606 static void ql_hw_csum_setup(struct sk_buff *skb,
2607                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2608 {
2609         int len;
2610         struct iphdr *iph = ip_hdr(skb);
2611         __sum16 *check;
2612         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2613         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2614         mac_iocb_ptr->net_trans_offset =
2615                 cpu_to_le16(skb_network_offset(skb) |
2616                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2617
2618         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2619         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2620         if (likely(iph->protocol == IPPROTO_TCP)) {
2621                 check = &(tcp_hdr(skb)->check);
2622                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2623                 mac_iocb_ptr->total_hdrs_len =
2624                     cpu_to_le16(skb_transport_offset(skb) +
2625                                 (tcp_hdr(skb)->doff << 2));
2626         } else {
2627                 check = &(udp_hdr(skb)->check);
2628                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2629                 mac_iocb_ptr->total_hdrs_len =
2630                     cpu_to_le16(skb_transport_offset(skb) +
2631                                 sizeof(struct udphdr));
2632         }
2633         *check = ~csum_tcpudp_magic(iph->saddr,
2634                                     iph->daddr, len, iph->protocol, 0);
2635 }
2636
2637 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2638 {
2639         struct tx_ring_desc *tx_ring_desc;
2640         struct ob_mac_iocb_req *mac_iocb_ptr;
2641         struct ql_adapter *qdev = netdev_priv(ndev);
2642         int tso;
2643         struct tx_ring *tx_ring;
2644         u32 tx_ring_idx = (u32) skb->queue_mapping;
2645
2646         tx_ring = &qdev->tx_ring[tx_ring_idx];
2647
2648         if (skb_padto(skb, ETH_ZLEN))
2649                 return NETDEV_TX_OK;
2650
2651         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2652                 netif_info(qdev, tx_queued, qdev->ndev,
2653                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2654                            __func__, tx_ring_idx);
2655                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2656                 tx_ring->tx_errors++;
2657                 return NETDEV_TX_BUSY;
2658         }
2659         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2660         mac_iocb_ptr = tx_ring_desc->queue_entry;
2661         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2662
2663         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2664         mac_iocb_ptr->tid = tx_ring_desc->index;
2665         /* We use the upper 32-bits to store the tx queue for this IO.
2666          * When we get the completion we can use it to establish the context.
2667          */
2668         mac_iocb_ptr->txq_idx = tx_ring_idx;
2669         tx_ring_desc->skb = skb;
2670
2671         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2672
2673         if (skb_vlan_tag_present(skb)) {
2674                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2675                              "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2676                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2677                 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2678         }
2679         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2680         if (tso < 0) {
2681                 dev_kfree_skb_any(skb);
2682                 return NETDEV_TX_OK;
2683         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2684                 ql_hw_csum_setup(skb,
2685                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2686         }
2687         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2688                         NETDEV_TX_OK) {
2689                 netif_err(qdev, tx_queued, qdev->ndev,
2690                           "Could not map the segments.\n");
2691                 tx_ring->tx_errors++;
2692                 return NETDEV_TX_BUSY;
2693         }
2694         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2695         tx_ring->prod_idx++;
2696         if (tx_ring->prod_idx == tx_ring->wq_len)
2697                 tx_ring->prod_idx = 0;
2698         wmb();
2699
2700         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2701         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2702                      "tx queued, slot %d, len %d\n",
2703                      tx_ring->prod_idx, skb->len);
2704
2705         atomic_dec(&tx_ring->tx_count);
2706
2707         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2708                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2709                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2710                         /*
2711                          * The queue got stopped because the tx_ring was full.
2712                          * Wake it up, because it's now at least 25% empty.
2713                          */
2714                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2715         }
2716         return NETDEV_TX_OK;
2717 }
2718
2719
2720 static void ql_free_shadow_space(struct ql_adapter *qdev)
2721 {
2722         if (qdev->rx_ring_shadow_reg_area) {
2723                 pci_free_consistent(qdev->pdev,
2724                                     PAGE_SIZE,
2725                                     qdev->rx_ring_shadow_reg_area,
2726                                     qdev->rx_ring_shadow_reg_dma);
2727                 qdev->rx_ring_shadow_reg_area = NULL;
2728         }
2729         if (qdev->tx_ring_shadow_reg_area) {
2730                 pci_free_consistent(qdev->pdev,
2731                                     PAGE_SIZE,
2732                                     qdev->tx_ring_shadow_reg_area,
2733                                     qdev->tx_ring_shadow_reg_dma);
2734                 qdev->tx_ring_shadow_reg_area = NULL;
2735         }
2736 }
2737
2738 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2739 {
2740         qdev->rx_ring_shadow_reg_area =
2741                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2742                                       &qdev->rx_ring_shadow_reg_dma);
2743         if (qdev->rx_ring_shadow_reg_area == NULL) {
2744                 netif_err(qdev, ifup, qdev->ndev,
2745                           "Allocation of RX shadow space failed.\n");
2746                 return -ENOMEM;
2747         }
2748
2749         qdev->tx_ring_shadow_reg_area =
2750                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2751                                       &qdev->tx_ring_shadow_reg_dma);
2752         if (qdev->tx_ring_shadow_reg_area == NULL) {
2753                 netif_err(qdev, ifup, qdev->ndev,
2754                           "Allocation of TX shadow space failed.\n");
2755                 goto err_wqp_sh_area;
2756         }
2757         return 0;
2758
2759 err_wqp_sh_area:
2760         pci_free_consistent(qdev->pdev,
2761                             PAGE_SIZE,
2762                             qdev->rx_ring_shadow_reg_area,
2763                             qdev->rx_ring_shadow_reg_dma);
2764         return -ENOMEM;
2765 }
2766
2767 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2768 {
2769         struct tx_ring_desc *tx_ring_desc;
2770         int i;
2771         struct ob_mac_iocb_req *mac_iocb_ptr;
2772
2773         mac_iocb_ptr = tx_ring->wq_base;
2774         tx_ring_desc = tx_ring->q;
2775         for (i = 0; i < tx_ring->wq_len; i++) {
2776                 tx_ring_desc->index = i;
2777                 tx_ring_desc->skb = NULL;
2778                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2779                 mac_iocb_ptr++;
2780                 tx_ring_desc++;
2781         }
2782         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2783 }
2784
2785 static void ql_free_tx_resources(struct ql_adapter *qdev,
2786                                  struct tx_ring *tx_ring)
2787 {
2788         if (tx_ring->wq_base) {
2789                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2790                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2791                 tx_ring->wq_base = NULL;
2792         }
2793         kfree(tx_ring->q);
2794         tx_ring->q = NULL;
2795 }
2796
2797 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2798                                  struct tx_ring *tx_ring)
2799 {
2800         tx_ring->wq_base =
2801             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2802                                  &tx_ring->wq_base_dma);
2803
2804         if ((tx_ring->wq_base == NULL) ||
2805             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2806                 goto pci_alloc_err;
2807
2808         tx_ring->q =
2809             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2810         if (tx_ring->q == NULL)
2811                 goto err;
2812
2813         return 0;
2814 err:
2815         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2816                             tx_ring->wq_base, tx_ring->wq_base_dma);
2817         tx_ring->wq_base = NULL;
2818 pci_alloc_err:
2819         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2820         return -ENOMEM;
2821 }
2822
2823 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2824 {
2825         struct bq_desc *lbq_desc;
2826
2827         uint32_t  curr_idx, clean_idx;
2828
2829         curr_idx = rx_ring->lbq_curr_idx;
2830         clean_idx = rx_ring->lbq_clean_idx;
2831         while (curr_idx != clean_idx) {
2832                 lbq_desc = &rx_ring->lbq[curr_idx];
2833
2834                 if (lbq_desc->p.pg_chunk.last_flag) {
2835                         pci_unmap_page(qdev->pdev,
2836                                 lbq_desc->p.pg_chunk.map,
2837                                 ql_lbq_block_size(qdev),
2838                                        PCI_DMA_FROMDEVICE);
2839                         lbq_desc->p.pg_chunk.last_flag = 0;
2840                 }
2841
2842                 put_page(lbq_desc->p.pg_chunk.page);
2843                 lbq_desc->p.pg_chunk.page = NULL;
2844
2845                 if (++curr_idx == rx_ring->lbq_len)
2846                         curr_idx = 0;
2847
2848         }
2849         if (rx_ring->pg_chunk.page) {
2850                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2851                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2852                 put_page(rx_ring->pg_chunk.page);
2853                 rx_ring->pg_chunk.page = NULL;
2854         }
2855 }
2856
2857 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2858 {
2859         int i;
2860         struct bq_desc *sbq_desc;
2861
2862         for (i = 0; i < rx_ring->sbq_len; i++) {
2863                 sbq_desc = &rx_ring->sbq[i];
2864                 if (sbq_desc == NULL) {
2865                         netif_err(qdev, ifup, qdev->ndev,
2866                                   "sbq_desc %d is NULL.\n", i);
2867                         return;
2868                 }
2869                 if (sbq_desc->p.skb) {
2870                         pci_unmap_single(qdev->pdev,
2871                                          dma_unmap_addr(sbq_desc, mapaddr),
2872                                          dma_unmap_len(sbq_desc, maplen),
2873                                          PCI_DMA_FROMDEVICE);
2874                         dev_kfree_skb(sbq_desc->p.skb);
2875                         sbq_desc->p.skb = NULL;
2876                 }
2877         }
2878 }
2879
2880 /* Free all large and small rx buffers associated
2881  * with the completion queues for this device.
2882  */
2883 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2884 {
2885         int i;
2886         struct rx_ring *rx_ring;
2887
2888         for (i = 0; i < qdev->rx_ring_count; i++) {
2889                 rx_ring = &qdev->rx_ring[i];
2890                 if (rx_ring->lbq)
2891                         ql_free_lbq_buffers(qdev, rx_ring);
2892                 if (rx_ring->sbq)
2893                         ql_free_sbq_buffers(qdev, rx_ring);
2894         }
2895 }
2896
2897 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2898 {
2899         struct rx_ring *rx_ring;
2900         int i;
2901
2902         for (i = 0; i < qdev->rx_ring_count; i++) {
2903                 rx_ring = &qdev->rx_ring[i];
2904                 if (rx_ring->type != TX_Q)
2905                         ql_update_buffer_queues(qdev, rx_ring);
2906         }
2907 }
2908
2909 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2910                                 struct rx_ring *rx_ring)
2911 {
2912         int i;
2913         struct bq_desc *lbq_desc;
2914         __le64 *bq = rx_ring->lbq_base;
2915
2916         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2917         for (i = 0; i < rx_ring->lbq_len; i++) {
2918                 lbq_desc = &rx_ring->lbq[i];
2919                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2920                 lbq_desc->index = i;
2921                 lbq_desc->addr = bq;
2922                 bq++;
2923         }
2924 }
2925
2926 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2927                                 struct rx_ring *rx_ring)
2928 {
2929         int i;
2930         struct bq_desc *sbq_desc;
2931         __le64 *bq = rx_ring->sbq_base;
2932
2933         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2934         for (i = 0; i < rx_ring->sbq_len; i++) {
2935                 sbq_desc = &rx_ring->sbq[i];
2936                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2937                 sbq_desc->index = i;
2938                 sbq_desc->addr = bq;
2939                 bq++;
2940         }
2941 }
2942
2943 static void ql_free_rx_resources(struct ql_adapter *qdev,
2944                                  struct rx_ring *rx_ring)
2945 {
2946         /* Free the small buffer queue. */
2947         if (rx_ring->sbq_base) {
2948                 pci_free_consistent(qdev->pdev,
2949                                     rx_ring->sbq_size,
2950                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2951                 rx_ring->sbq_base = NULL;
2952         }
2953
2954         /* Free the small buffer queue control blocks. */
2955         kfree(rx_ring->sbq);
2956         rx_ring->sbq = NULL;
2957
2958         /* Free the large buffer queue. */
2959         if (rx_ring->lbq_base) {
2960                 pci_free_consistent(qdev->pdev,
2961                                     rx_ring->lbq_size,
2962                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2963                 rx_ring->lbq_base = NULL;
2964         }
2965
2966         /* Free the large buffer queue control blocks. */
2967         kfree(rx_ring->lbq);
2968         rx_ring->lbq = NULL;
2969
2970         /* Free the rx queue. */
2971         if (rx_ring->cq_base) {
2972                 pci_free_consistent(qdev->pdev,
2973                                     rx_ring->cq_size,
2974                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2975                 rx_ring->cq_base = NULL;
2976         }
2977 }
2978
2979 /* Allocate queues and buffers for this completions queue based
2980  * on the values in the parameter structure. */
2981 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2982                                  struct rx_ring *rx_ring)
2983 {
2984
2985         /*
2986          * Allocate the completion queue for this rx_ring.
2987          */
2988         rx_ring->cq_base =
2989             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2990                                  &rx_ring->cq_base_dma);
2991
2992         if (rx_ring->cq_base == NULL) {
2993                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2994                 return -ENOMEM;
2995         }
2996
2997         if (rx_ring->sbq_len) {
2998                 /*
2999                  * Allocate small buffer queue.
3000                  */
3001                 rx_ring->sbq_base =
3002                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3003                                          &rx_ring->sbq_base_dma);
3004
3005                 if (rx_ring->sbq_base == NULL) {
3006                         netif_err(qdev, ifup, qdev->ndev,
3007                                   "Small buffer queue allocation failed.\n");
3008                         goto err_mem;
3009                 }
3010
3011                 /*
3012                  * Allocate small buffer queue control blocks.
3013                  */
3014                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3015                                              sizeof(struct bq_desc),
3016                                              GFP_KERNEL);
3017                 if (rx_ring->sbq == NULL)
3018                         goto err_mem;
3019
3020                 ql_init_sbq_ring(qdev, rx_ring);
3021         }
3022
3023         if (rx_ring->lbq_len) {
3024                 /*
3025                  * Allocate large buffer queue.
3026                  */
3027                 rx_ring->lbq_base =
3028                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3029                                          &rx_ring->lbq_base_dma);
3030
3031                 if (rx_ring->lbq_base == NULL) {
3032                         netif_err(qdev, ifup, qdev->ndev,
3033                                   "Large buffer queue allocation failed.\n");
3034                         goto err_mem;
3035                 }
3036                 /*
3037                  * Allocate large buffer queue control blocks.
3038                  */
3039                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3040                                              sizeof(struct bq_desc),
3041                                              GFP_KERNEL);
3042                 if (rx_ring->lbq == NULL)
3043                         goto err_mem;
3044
3045                 ql_init_lbq_ring(qdev, rx_ring);
3046         }
3047
3048         return 0;
3049
3050 err_mem:
3051         ql_free_rx_resources(qdev, rx_ring);
3052         return -ENOMEM;
3053 }
3054
3055 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3056 {
3057         struct tx_ring *tx_ring;
3058         struct tx_ring_desc *tx_ring_desc;
3059         int i, j;
3060
3061         /*
3062          * Loop through all queues and free
3063          * any resources.
3064          */
3065         for (j = 0; j < qdev->tx_ring_count; j++) {
3066                 tx_ring = &qdev->tx_ring[j];
3067                 for (i = 0; i < tx_ring->wq_len; i++) {
3068                         tx_ring_desc = &tx_ring->q[i];
3069                         if (tx_ring_desc && tx_ring_desc->skb) {
3070                                 netif_err(qdev, ifdown, qdev->ndev,
3071                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3072                                           tx_ring_desc->skb, j,
3073                                           tx_ring_desc->index);
3074                                 ql_unmap_send(qdev, tx_ring_desc,
3075                                               tx_ring_desc->map_cnt);
3076                                 dev_kfree_skb(tx_ring_desc->skb);
3077                                 tx_ring_desc->skb = NULL;
3078                         }
3079                 }
3080         }
3081 }
3082
3083 static void ql_free_mem_resources(struct ql_adapter *qdev)
3084 {
3085         int i;
3086
3087         for (i = 0; i < qdev->tx_ring_count; i++)
3088                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3089         for (i = 0; i < qdev->rx_ring_count; i++)
3090                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3091         ql_free_shadow_space(qdev);
3092 }
3093
3094 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3095 {
3096         int i;
3097
3098         /* Allocate space for our shadow registers and such. */
3099         if (ql_alloc_shadow_space(qdev))
3100                 return -ENOMEM;
3101
3102         for (i = 0; i < qdev->rx_ring_count; i++) {
3103                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3104                         netif_err(qdev, ifup, qdev->ndev,
3105                                   "RX resource allocation failed.\n");
3106                         goto err_mem;
3107                 }
3108         }
3109         /* Allocate tx queue resources */
3110         for (i = 0; i < qdev->tx_ring_count; i++) {
3111                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3112                         netif_err(qdev, ifup, qdev->ndev,
3113                                   "TX resource allocation failed.\n");
3114                         goto err_mem;
3115                 }
3116         }
3117         return 0;
3118
3119 err_mem:
3120         ql_free_mem_resources(qdev);
3121         return -ENOMEM;
3122 }
3123
3124 /* Set up the rx ring control block and pass it to the chip.
3125  * The control block is defined as
3126  * "Completion Queue Initialization Control Block", or cqicb.
3127  */
3128 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3129 {
3130         struct cqicb *cqicb = &rx_ring->cqicb;
3131         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3132                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3133         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3134                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3135         void __iomem *doorbell_area =
3136             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3137         int err = 0;
3138         u16 bq_len;
3139         u64 tmp;
3140         __le64 *base_indirect_ptr;
3141         int page_entries;
3142
3143         /* Set up the shadow registers for this ring. */
3144         rx_ring->prod_idx_sh_reg = shadow_reg;
3145         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3146         *rx_ring->prod_idx_sh_reg = 0;
3147         shadow_reg += sizeof(u64);
3148         shadow_reg_dma += sizeof(u64);
3149         rx_ring->lbq_base_indirect = shadow_reg;
3150         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3151         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3152         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3153         rx_ring->sbq_base_indirect = shadow_reg;
3154         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3155
3156         /* PCI doorbell mem area + 0x00 for consumer index register */
3157         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3158         rx_ring->cnsmr_idx = 0;
3159         rx_ring->curr_entry = rx_ring->cq_base;
3160
3161         /* PCI doorbell mem area + 0x04 for valid register */
3162         rx_ring->valid_db_reg = doorbell_area + 0x04;
3163
3164         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3165         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3166
3167         /* PCI doorbell mem area + 0x1c */
3168         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3169
3170         memset((void *)cqicb, 0, sizeof(struct cqicb));
3171         cqicb->msix_vect = rx_ring->irq;
3172
3173         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3174         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3175
3176         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3177
3178         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3179
3180         /*
3181          * Set up the control block load flags.
3182          */
3183         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3184             FLAGS_LV |          /* Load MSI-X vector */
3185             FLAGS_LI;           /* Load irq delay values */
3186         if (rx_ring->lbq_len) {
3187                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3188                 tmp = (u64)rx_ring->lbq_base_dma;
3189                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3190                 page_entries = 0;
3191                 do {
3192                         *base_indirect_ptr = cpu_to_le64(tmp);
3193                         tmp += DB_PAGE_SIZE;
3194                         base_indirect_ptr++;
3195                         page_entries++;
3196                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3197                 cqicb->lbq_addr =
3198                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3199                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3200                         (u16) rx_ring->lbq_buf_size;
3201                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3202                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3203                         (u16) rx_ring->lbq_len;
3204                 cqicb->lbq_len = cpu_to_le16(bq_len);
3205                 rx_ring->lbq_prod_idx = 0;
3206                 rx_ring->lbq_curr_idx = 0;
3207                 rx_ring->lbq_clean_idx = 0;
3208                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3209         }
3210         if (rx_ring->sbq_len) {
3211                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3212                 tmp = (u64)rx_ring->sbq_base_dma;
3213                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3214                 page_entries = 0;
3215                 do {
3216                         *base_indirect_ptr = cpu_to_le64(tmp);
3217                         tmp += DB_PAGE_SIZE;
3218                         base_indirect_ptr++;
3219                         page_entries++;
3220                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3221                 cqicb->sbq_addr =
3222                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3223                 cqicb->sbq_buf_size =
3224                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3225                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3226                         (u16) rx_ring->sbq_len;
3227                 cqicb->sbq_len = cpu_to_le16(bq_len);
3228                 rx_ring->sbq_prod_idx = 0;
3229                 rx_ring->sbq_curr_idx = 0;
3230                 rx_ring->sbq_clean_idx = 0;
3231                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3232         }
3233         switch (rx_ring->type) {
3234         case TX_Q:
3235                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3236                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3237                 break;
3238         case RX_Q:
3239                 /* Inbound completion handling rx_rings run in
3240                  * separate NAPI contexts.
3241                  */
3242                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3243                                64);
3244                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3245                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3246                 break;
3247         default:
3248                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3249                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3250         }
3251         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3252                            CFG_LCQ, rx_ring->cq_id);
3253         if (err) {
3254                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3255                 return err;
3256         }
3257         return err;
3258 }
3259
3260 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3261 {
3262         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3263         void __iomem *doorbell_area =
3264             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3265         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3266             (tx_ring->wq_id * sizeof(u64));
3267         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3268             (tx_ring->wq_id * sizeof(u64));
3269         int err = 0;
3270
3271         /*
3272          * Assign doorbell registers for this tx_ring.
3273          */
3274         /* TX PCI doorbell mem area for tx producer index */
3275         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3276         tx_ring->prod_idx = 0;
3277         /* TX PCI doorbell mem area + 0x04 */
3278         tx_ring->valid_db_reg = doorbell_area + 0x04;
3279
3280         /*
3281          * Assign shadow registers for this tx_ring.
3282          */
3283         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3284         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3285
3286         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3287         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3288                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3289         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3290         wqicb->rid = 0;
3291         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3292
3293         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3294
3295         ql_init_tx_ring(qdev, tx_ring);
3296
3297         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3298                            (u16) tx_ring->wq_id);
3299         if (err) {
3300                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3301                 return err;
3302         }
3303         return err;
3304 }
3305
3306 static void ql_disable_msix(struct ql_adapter *qdev)
3307 {
3308         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3309                 pci_disable_msix(qdev->pdev);
3310                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3311                 kfree(qdev->msi_x_entry);
3312                 qdev->msi_x_entry = NULL;
3313         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3314                 pci_disable_msi(qdev->pdev);
3315                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3316         }
3317 }
3318
3319 /* We start by trying to get the number of vectors
3320  * stored in qdev->intr_count. If we don't get that
3321  * many then we reduce the count and try again.
3322  */
3323 static void ql_enable_msix(struct ql_adapter *qdev)
3324 {
3325         int i, err;
3326
3327         /* Get the MSIX vectors. */
3328         if (qlge_irq_type == MSIX_IRQ) {
3329                 /* Try to alloc space for the msix struct,
3330                  * if it fails then go to MSI/legacy.
3331                  */
3332                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3333                                             sizeof(struct msix_entry),
3334                                             GFP_KERNEL);
3335                 if (!qdev->msi_x_entry) {
3336                         qlge_irq_type = MSI_IRQ;
3337                         goto msi;
3338                 }
3339
3340                 for (i = 0; i < qdev->intr_count; i++)
3341                         qdev->msi_x_entry[i].entry = i;
3342
3343                 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3344                                             1, qdev->intr_count);
3345                 if (err < 0) {
3346                         kfree(qdev->msi_x_entry);
3347                         qdev->msi_x_entry = NULL;
3348                         netif_warn(qdev, ifup, qdev->ndev,
3349                                    "MSI-X Enable failed, trying MSI.\n");
3350                         qlge_irq_type = MSI_IRQ;
3351                 } else {
3352                         qdev->intr_count = err;
3353                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3354                         netif_info(qdev, ifup, qdev->ndev,
3355                                    "MSI-X Enabled, got %d vectors.\n",
3356                                    qdev->intr_count);
3357                         return;
3358                 }
3359         }
3360 msi:
3361         qdev->intr_count = 1;
3362         if (qlge_irq_type == MSI_IRQ) {
3363                 if (!pci_enable_msi(qdev->pdev)) {
3364                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3365                         netif_info(qdev, ifup, qdev->ndev,
3366                                    "Running with MSI interrupts.\n");
3367                         return;
3368                 }
3369         }
3370         qlge_irq_type = LEG_IRQ;
3371         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3372                      "Running with legacy interrupts.\n");
3373 }
3374
3375 /* Each vector services 1 RSS ring and and 1 or more
3376  * TX completion rings.  This function loops through
3377  * the TX completion rings and assigns the vector that
3378  * will service it.  An example would be if there are
3379  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3380  * This would mean that vector 0 would service RSS ring 0
3381  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3382  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3383  */
3384 static void ql_set_tx_vect(struct ql_adapter *qdev)
3385 {
3386         int i, j, vect;
3387         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3388
3389         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3390                 /* Assign irq vectors to TX rx_rings.*/
3391                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3392                                          i < qdev->rx_ring_count; i++) {
3393                         if (j == tx_rings_per_vector) {
3394                                 vect++;
3395                                 j = 0;
3396                         }
3397                         qdev->rx_ring[i].irq = vect;
3398                         j++;
3399                 }
3400         } else {
3401                 /* For single vector all rings have an irq
3402                  * of zero.
3403                  */
3404                 for (i = 0; i < qdev->rx_ring_count; i++)
3405                         qdev->rx_ring[i].irq = 0;
3406         }
3407 }
3408
3409 /* Set the interrupt mask for this vector.  Each vector
3410  * will service 1 RSS ring and 1 or more TX completion
3411  * rings.  This function sets up a bit mask per vector
3412  * that indicates which rings it services.
3413  */
3414 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3415 {
3416         int j, vect = ctx->intr;
3417         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3418
3419         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3420                 /* Add the RSS ring serviced by this vector
3421                  * to the mask.
3422                  */
3423                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3424                 /* Add the TX ring(s) serviced by this vector
3425                  * to the mask. */
3426                 for (j = 0; j < tx_rings_per_vector; j++) {
3427                         ctx->irq_mask |=
3428                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3429                         (vect * tx_rings_per_vector) + j].cq_id);
3430                 }
3431         } else {
3432                 /* For single vector we just shift each queue's
3433                  * ID into the mask.
3434                  */
3435                 for (j = 0; j < qdev->rx_ring_count; j++)
3436                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3437         }
3438 }
3439
3440 /*
3441  * Here we build the intr_context structures based on
3442  * our rx_ring count and intr vector count.
3443  * The intr_context structure is used to hook each vector
3444  * to possibly different handlers.
3445  */
3446 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3447 {
3448         int i = 0;
3449         struct intr_context *intr_context = &qdev->intr_context[0];
3450
3451         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3452                 /* Each rx_ring has it's
3453                  * own intr_context since we have separate
3454                  * vectors for each queue.
3455                  */
3456                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3457                         qdev->rx_ring[i].irq = i;
3458                         intr_context->intr = i;
3459                         intr_context->qdev = qdev;
3460                         /* Set up this vector's bit-mask that indicates
3461                          * which queues it services.
3462                          */
3463                         ql_set_irq_mask(qdev, intr_context);
3464                         /*
3465                          * We set up each vectors enable/disable/read bits so
3466                          * there's no bit/mask calculations in the critical path.
3467                          */
3468                         intr_context->intr_en_mask =
3469                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3470                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3471                             | i;
3472                         intr_context->intr_dis_mask =
3473                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3474                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3475                             INTR_EN_IHD | i;
3476                         intr_context->intr_read_mask =
3477                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3478                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3479                             i;
3480                         if (i == 0) {
3481                                 /* The first vector/queue handles
3482                                  * broadcast/multicast, fatal errors,
3483                                  * and firmware events.  This in addition
3484                                  * to normal inbound NAPI processing.
3485                                  */
3486                                 intr_context->handler = qlge_isr;
3487                                 sprintf(intr_context->name, "%s-rx-%d",
3488                                         qdev->ndev->name, i);
3489                         } else {
3490                                 /*
3491                                  * Inbound queues handle unicast frames only.
3492                                  */
3493                                 intr_context->handler = qlge_msix_rx_isr;
3494                                 sprintf(intr_context->name, "%s-rx-%d",
3495                                         qdev->ndev->name, i);
3496                         }
3497                 }
3498         } else {
3499                 /*
3500                  * All rx_rings use the same intr_context since
3501                  * there is only one vector.
3502                  */
3503                 intr_context->intr = 0;
3504                 intr_context->qdev = qdev;
3505                 /*
3506                  * We set up each vectors enable/disable/read bits so
3507                  * there's no bit/mask calculations in the critical path.
3508                  */
3509                 intr_context->intr_en_mask =
3510                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3511                 intr_context->intr_dis_mask =
3512                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3513                     INTR_EN_TYPE_DISABLE;
3514                 intr_context->intr_read_mask =
3515                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3516                 /*
3517                  * Single interrupt means one handler for all rings.
3518                  */
3519                 intr_context->handler = qlge_isr;
3520                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3521                 /* Set up this vector's bit-mask that indicates
3522                  * which queues it services. In this case there is
3523                  * a single vector so it will service all RSS and
3524                  * TX completion rings.
3525                  */
3526                 ql_set_irq_mask(qdev, intr_context);
3527         }
3528         /* Tell the TX completion rings which MSIx vector
3529          * they will be using.
3530          */
3531         ql_set_tx_vect(qdev);
3532 }
3533
3534 static void ql_free_irq(struct ql_adapter *qdev)
3535 {
3536         int i;
3537         struct intr_context *intr_context = &qdev->intr_context[0];
3538
3539         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3540                 if (intr_context->hooked) {
3541                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3542                                 free_irq(qdev->msi_x_entry[i].vector,
3543                                          &qdev->rx_ring[i]);
3544                         } else {
3545                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3546                         }
3547                 }
3548         }
3549         ql_disable_msix(qdev);
3550 }
3551
3552 static int ql_request_irq(struct ql_adapter *qdev)
3553 {
3554         int i;
3555         int status = 0;
3556         struct pci_dev *pdev = qdev->pdev;
3557         struct intr_context *intr_context = &qdev->intr_context[0];
3558
3559         ql_resolve_queues_to_irqs(qdev);
3560
3561         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3562                 atomic_set(&intr_context->irq_cnt, 0);
3563                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3564                         status = request_irq(qdev->msi_x_entry[i].vector,
3565                                              intr_context->handler,
3566                                              0,
3567                                              intr_context->name,
3568                                              &qdev->rx_ring[i]);
3569                         if (status) {
3570                                 netif_err(qdev, ifup, qdev->ndev,
3571                                           "Failed request for MSIX interrupt %d.\n",
3572                                           i);
3573                                 goto err_irq;
3574                         }
3575                 } else {
3576                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3577                                      "trying msi or legacy interrupts.\n");
3578                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3579                                      "%s: irq = %d.\n", __func__, pdev->irq);
3580                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3581                                      "%s: context->name = %s.\n", __func__,
3582                                      intr_context->name);
3583                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584                                      "%s: dev_id = 0x%p.\n", __func__,
3585                                      &qdev->rx_ring[0]);
3586                         status =
3587                             request_irq(pdev->irq, qlge_isr,
3588                                         test_bit(QL_MSI_ENABLED,
3589                                                  &qdev->
3590                                                  flags) ? 0 : IRQF_SHARED,
3591                                         intr_context->name, &qdev->rx_ring[0]);
3592                         if (status)
3593                                 goto err_irq;
3594
3595                         netif_err(qdev, ifup, qdev->ndev,
3596                                   "Hooked intr %d, queue type %s, with name %s.\n",
3597                                   i,
3598                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3599                                   "DEFAULT_Q" :
3600                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3601                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3602                                   intr_context->name);
3603                 }
3604                 intr_context->hooked = 1;
3605         }
3606         return status;
3607 err_irq:
3608         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3609         ql_free_irq(qdev);
3610         return status;
3611 }
3612
3613 static int ql_start_rss(struct ql_adapter *qdev)
3614 {
3615         static const u8 init_hash_seed[] = {
3616                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3617                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3618                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3619                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3620                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3621         };
3622         struct ricb *ricb = &qdev->ricb;
3623         int status = 0;
3624         int i;
3625         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3626
3627         memset((void *)ricb, 0, sizeof(*ricb));
3628
3629         ricb->base_cq = RSS_L4K;
3630         ricb->flags =
3631                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3632         ricb->mask = cpu_to_le16((u16)(0x3ff));
3633
3634         /*
3635          * Fill out the Indirection Table.
3636          */
3637         for (i = 0; i < 1024; i++)
3638                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3639
3640         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3641         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3642
3643         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3644         if (status) {
3645                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3646                 return status;
3647         }
3648         return status;
3649 }
3650
3651 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3652 {
3653         int i, status = 0;
3654
3655         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3656         if (status)
3657                 return status;
3658         /* Clear all the entries in the routing table. */
3659         for (i = 0; i < 16; i++) {
3660                 status = ql_set_routing_reg(qdev, i, 0, 0);
3661                 if (status) {
3662                         netif_err(qdev, ifup, qdev->ndev,
3663                                   "Failed to init routing register for CAM packets.\n");
3664                         break;
3665                 }
3666         }
3667         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3668         return status;
3669 }
3670
3671 /* Initialize the frame-to-queue routing. */
3672 static int ql_route_initialize(struct ql_adapter *qdev)
3673 {
3674         int status = 0;
3675
3676         /* Clear all the entries in the routing table. */
3677         status = ql_clear_routing_entries(qdev);
3678         if (status)
3679                 return status;
3680
3681         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3682         if (status)
3683                 return status;
3684
3685         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3686                                                 RT_IDX_IP_CSUM_ERR, 1);
3687         if (status) {
3688                 netif_err(qdev, ifup, qdev->ndev,
3689                         "Failed to init routing register "
3690                         "for IP CSUM error packets.\n");
3691                 goto exit;
3692         }
3693         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3694                                                 RT_IDX_TU_CSUM_ERR, 1);
3695         if (status) {
3696                 netif_err(qdev, ifup, qdev->ndev,
3697                         "Failed to init routing register "
3698                         "for TCP/UDP CSUM error packets.\n");
3699                 goto exit;
3700         }
3701         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3702         if (status) {
3703                 netif_err(qdev, ifup, qdev->ndev,
3704                           "Failed to init routing register for broadcast packets.\n");
3705                 goto exit;
3706         }
3707         /* If we have more than one inbound queue, then turn on RSS in the
3708          * routing block.
3709          */
3710         if (qdev->rss_ring_count > 1) {
3711                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3712                                         RT_IDX_RSS_MATCH, 1);
3713                 if (status) {
3714                         netif_err(qdev, ifup, qdev->ndev,
3715                                   "Failed to init routing register for MATCH RSS packets.\n");
3716                         goto exit;
3717                 }
3718         }
3719
3720         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3721                                     RT_IDX_CAM_HIT, 1);
3722         if (status)
3723                 netif_err(qdev, ifup, qdev->ndev,
3724                           "Failed to init routing register for CAM packets.\n");
3725 exit:
3726         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3727         return status;
3728 }
3729
3730 int ql_cam_route_initialize(struct ql_adapter *qdev)
3731 {
3732         int status, set;
3733
3734         /* If check if the link is up and use to
3735          * determine if we are setting or clearing
3736          * the MAC address in the CAM.
3737          */
3738         set = ql_read32(qdev, STS);
3739         set &= qdev->port_link_up;
3740         status = ql_set_mac_addr(qdev, set);
3741         if (status) {
3742                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3743                 return status;
3744         }
3745
3746         status = ql_route_initialize(qdev);
3747         if (status)
3748                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3749
3750         return status;
3751 }
3752
3753 static int ql_adapter_initialize(struct ql_adapter *qdev)
3754 {
3755         u32 value, mask;
3756         int i;
3757         int status = 0;
3758
3759         /*
3760          * Set up the System register to halt on errors.
3761          */
3762         value = SYS_EFE | SYS_FAE;
3763         mask = value << 16;
3764         ql_write32(qdev, SYS, mask | value);
3765
3766         /* Set the default queue, and VLAN behavior. */
3767         value = NIC_RCV_CFG_DFQ;
3768         mask = NIC_RCV_CFG_DFQ_MASK;
3769         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3770                 value |= NIC_RCV_CFG_RV;
3771                 mask |= (NIC_RCV_CFG_RV << 16);
3772         }
3773         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3774
3775         /* Set the MPI interrupt to enabled. */
3776         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3777
3778         /* Enable the function, set pagesize, enable error checking. */
3779         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3780             FSC_EC | FSC_VM_PAGE_4K;
3781         value |= SPLT_SETTING;
3782
3783         /* Set/clear header splitting. */
3784         mask = FSC_VM_PAGESIZE_MASK |
3785             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3786         ql_write32(qdev, FSC, mask | value);
3787
3788         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3789
3790         /* Set RX packet routing to use port/pci function on which the
3791          * packet arrived on in addition to usual frame routing.
3792          * This is helpful on bonding where both interfaces can have
3793          * the same MAC address.
3794          */
3795         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3796         /* Reroute all packets to our Interface.
3797          * They may have been routed to MPI firmware
3798          * due to WOL.
3799          */
3800         value = ql_read32(qdev, MGMT_RCV_CFG);
3801         value &= ~MGMT_RCV_CFG_RM;
3802         mask = 0xffff0000;
3803
3804         /* Sticky reg needs clearing due to WOL. */
3805         ql_write32(qdev, MGMT_RCV_CFG, mask);
3806         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3807
3808         /* Default WOL is enable on Mezz cards */
3809         if (qdev->pdev->subsystem_device == 0x0068 ||
3810                         qdev->pdev->subsystem_device == 0x0180)
3811                 qdev->wol = WAKE_MAGIC;
3812
3813         /* Start up the rx queues. */
3814         for (i = 0; i < qdev->rx_ring_count; i++) {
3815                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3816                 if (status) {
3817                         netif_err(qdev, ifup, qdev->ndev,
3818                                   "Failed to start rx ring[%d].\n", i);
3819                         return status;
3820                 }
3821         }
3822
3823         /* If there is more than one inbound completion queue
3824          * then download a RICB to configure RSS.
3825          */
3826         if (qdev->rss_ring_count > 1) {
3827                 status = ql_start_rss(qdev);
3828                 if (status) {
3829                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3830                         return status;
3831                 }
3832         }
3833
3834         /* Start up the tx queues. */
3835         for (i = 0; i < qdev->tx_ring_count; i++) {
3836                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3837                 if (status) {
3838                         netif_err(qdev, ifup, qdev->ndev,
3839                                   "Failed to start tx ring[%d].\n", i);
3840                         return status;
3841                 }
3842         }
3843
3844         /* Initialize the port and set the max framesize. */
3845         status = qdev->nic_ops->port_initialize(qdev);
3846         if (status)
3847                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3848
3849         /* Set up the MAC address and frame routing filter. */
3850         status = ql_cam_route_initialize(qdev);
3851         if (status) {
3852                 netif_err(qdev, ifup, qdev->ndev,
3853                           "Failed to init CAM/Routing tables.\n");
3854                 return status;
3855         }
3856
3857         /* Start NAPI for the RSS queues. */
3858         for (i = 0; i < qdev->rss_ring_count; i++)
3859                 napi_enable(&qdev->rx_ring[i].napi);
3860
3861         return status;
3862 }
3863
3864 /* Issue soft reset to chip. */
3865 static int ql_adapter_reset(struct ql_adapter *qdev)
3866 {
3867         u32 value;
3868         int status = 0;
3869         unsigned long end_jiffies;
3870
3871         /* Clear all the entries in the routing table. */
3872         status = ql_clear_routing_entries(qdev);
3873         if (status) {
3874                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3875                 return status;
3876         }
3877
3878         /* Check if bit is set then skip the mailbox command and
3879          * clear the bit, else we are in normal reset process.
3880          */
3881         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3882                 /* Stop management traffic. */
3883                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3884
3885                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3886                 ql_wait_fifo_empty(qdev);
3887         } else
3888                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3889
3890         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3891
3892         end_jiffies = jiffies + usecs_to_jiffies(30);
3893         do {
3894                 value = ql_read32(qdev, RST_FO);
3895                 if ((value & RST_FO_FR) == 0)
3896                         break;
3897                 cpu_relax();
3898         } while (time_before(jiffies, end_jiffies));
3899
3900         if (value & RST_FO_FR) {
3901                 netif_err(qdev, ifdown, qdev->ndev,
3902                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3903                 status = -ETIMEDOUT;
3904         }
3905
3906         /* Resume management traffic. */
3907         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3908         return status;
3909 }
3910
3911 static void ql_display_dev_info(struct net_device *ndev)
3912 {
3913         struct ql_adapter *qdev = netdev_priv(ndev);
3914
3915         netif_info(qdev, probe, qdev->ndev,
3916                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3917                    "XG Roll = %d, XG Rev = %d.\n",
3918                    qdev->func,
3919                    qdev->port,
3920                    qdev->chip_rev_id & 0x0000000f,
3921                    qdev->chip_rev_id >> 4 & 0x0000000f,
3922                    qdev->chip_rev_id >> 8 & 0x0000000f,
3923                    qdev->chip_rev_id >> 12 & 0x0000000f);
3924         netif_info(qdev, probe, qdev->ndev,
3925                    "MAC address %pM\n", ndev->dev_addr);
3926 }
3927
3928 static int ql_wol(struct ql_adapter *qdev)
3929 {
3930         int status = 0;
3931         u32 wol = MB_WOL_DISABLE;
3932
3933         /* The CAM is still intact after a reset, but if we
3934          * are doing WOL, then we may need to program the
3935          * routing regs. We would also need to issue the mailbox
3936          * commands to instruct the MPI what to do per the ethtool
3937          * settings.
3938          */
3939
3940         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3941                         WAKE_MCAST | WAKE_BCAST)) {
3942                 netif_err(qdev, ifdown, qdev->ndev,
3943                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3944                           qdev->wol);
3945                 return -EINVAL;
3946         }
3947
3948         if (qdev->wol & WAKE_MAGIC) {
3949                 status = ql_mb_wol_set_magic(qdev, 1);
3950                 if (status) {
3951                         netif_err(qdev, ifdown, qdev->ndev,
3952                                   "Failed to set magic packet on %s.\n",
3953                                   qdev->ndev->name);
3954                         return status;
3955                 } else
3956                         netif_info(qdev, drv, qdev->ndev,
3957                                    "Enabled magic packet successfully on %s.\n",
3958                                    qdev->ndev->name);
3959
3960                 wol |= MB_WOL_MAGIC_PKT;
3961         }
3962
3963         if (qdev->wol) {
3964                 wol |= MB_WOL_MODE_ON;
3965                 status = ql_mb_wol_mode(qdev, wol);
3966                 netif_err(qdev, drv, qdev->ndev,
3967                           "WOL %s (wol code 0x%x) on %s\n",
3968                           (status == 0) ? "Successfully set" : "Failed",
3969                           wol, qdev->ndev->name);
3970         }
3971
3972         return status;
3973 }
3974
3975 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3976 {
3977
3978         /* Don't kill the reset worker thread if we
3979          * are in the process of recovery.
3980          */
3981         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3982                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3983         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3984         cancel_delayed_work_sync(&qdev->mpi_work);
3985         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3986         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3987         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3988 }
3989
3990 static int ql_adapter_down(struct ql_adapter *qdev)
3991 {
3992         int i, status = 0;
3993
3994         ql_link_off(qdev);
3995
3996         ql_cancel_all_work_sync(qdev);
3997
3998         for (i = 0; i < qdev->rss_ring_count; i++)
3999                 napi_disable(&qdev->rx_ring[i].napi);
4000
4001         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4002
4003         ql_disable_interrupts(qdev);
4004
4005         ql_tx_ring_clean(qdev);
4006
4007         /* Call netif_napi_del() from common point.
4008          */
4009         for (i = 0; i < qdev->rss_ring_count; i++)
4010                 netif_napi_del(&qdev->rx_ring[i].napi);
4011
4012         status = ql_adapter_reset(qdev);
4013         if (status)
4014                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4015                           qdev->func);
4016         ql_free_rx_buffers(qdev);
4017
4018         return status;
4019 }
4020
4021 static int ql_adapter_up(struct ql_adapter *qdev)
4022 {
4023         int err = 0;
4024
4025         err = ql_adapter_initialize(qdev);
4026         if (err) {
4027                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4028                 goto err_init;
4029         }
4030         set_bit(QL_ADAPTER_UP, &qdev->flags);
4031         ql_alloc_rx_buffers(qdev);
4032         /* If the port is initialized and the
4033          * link is up the turn on the carrier.
4034          */
4035         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4036                         (ql_read32(qdev, STS) & qdev->port_link_up))
4037                 ql_link_on(qdev);
4038         /* Restore rx mode. */
4039         clear_bit(QL_ALLMULTI, &qdev->flags);
4040         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4041         qlge_set_multicast_list(qdev->ndev);
4042
4043         /* Restore vlan setting. */
4044         qlge_restore_vlan(qdev);
4045
4046         ql_enable_interrupts(qdev);
4047         ql_enable_all_completion_interrupts(qdev);
4048         netif_tx_start_all_queues(qdev->ndev);
4049
4050         return 0;
4051 err_init:
4052         ql_adapter_reset(qdev);
4053         return err;
4054 }
4055
4056 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4057 {
4058         ql_free_mem_resources(qdev);
4059         ql_free_irq(qdev);
4060 }
4061
4062 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4063 {
4064         int status = 0;
4065
4066         if (ql_alloc_mem_resources(qdev)) {
4067                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4068                 return -ENOMEM;
4069         }
4070         status = ql_request_irq(qdev);
4071         return status;
4072 }
4073
4074 static int qlge_close(struct net_device *ndev)
4075 {
4076         struct ql_adapter *qdev = netdev_priv(ndev);
4077
4078         /* If we hit pci_channel_io_perm_failure
4079          * failure condition, then we already
4080          * brought the adapter down.
4081          */
4082         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4083                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4084                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4085                 return 0;
4086         }
4087
4088         /*
4089          * Wait for device to recover from a reset.
4090          * (Rarely happens, but possible.)
4091          */
4092         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4093                 msleep(1);
4094         ql_adapter_down(qdev);
4095         ql_release_adapter_resources(qdev);
4096         return 0;
4097 }
4098
4099 static int ql_configure_rings(struct ql_adapter *qdev)
4100 {
4101         int i;
4102         struct rx_ring *rx_ring;
4103         struct tx_ring *tx_ring;
4104         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4105         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4106                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4107
4108         qdev->lbq_buf_order = get_order(lbq_buf_len);
4109
4110         /* In a perfect world we have one RSS ring for each CPU
4111          * and each has it's own vector.  To do that we ask for
4112          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4113          * vector count to what we actually get.  We then
4114          * allocate an RSS ring for each.
4115          * Essentially, we are doing min(cpu_count, msix_vector_count).
4116          */
4117         qdev->intr_count = cpu_cnt;
4118         ql_enable_msix(qdev);
4119         /* Adjust the RSS ring count to the actual vector count. */
4120         qdev->rss_ring_count = qdev->intr_count;
4121         qdev->tx_ring_count = cpu_cnt;
4122         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4123
4124         for (i = 0; i < qdev->tx_ring_count; i++) {
4125                 tx_ring = &qdev->tx_ring[i];
4126                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4127                 tx_ring->qdev = qdev;
4128                 tx_ring->wq_id = i;
4129                 tx_ring->wq_len = qdev->tx_ring_size;
4130                 tx_ring->wq_size =
4131                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4132
4133                 /*
4134                  * The completion queue ID for the tx rings start
4135                  * immediately after the rss rings.
4136                  */
4137                 tx_ring->cq_id = qdev->rss_ring_count + i;
4138         }
4139
4140         for (i = 0; i < qdev->rx_ring_count; i++) {
4141                 rx_ring = &qdev->rx_ring[i];
4142                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4143                 rx_ring->qdev = qdev;
4144                 rx_ring->cq_id = i;
4145                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4146                 if (i < qdev->rss_ring_count) {
4147                         /*
4148                          * Inbound (RSS) queues.
4149                          */
4150                         rx_ring->cq_len = qdev->rx_ring_size;
4151                         rx_ring->cq_size =
4152                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4153                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4154                         rx_ring->lbq_size =
4155                             rx_ring->lbq_len * sizeof(__le64);
4156                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4157                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4158                         rx_ring->sbq_size =
4159                             rx_ring->sbq_len * sizeof(__le64);
4160                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4161                         rx_ring->type = RX_Q;
4162                 } else {
4163                         /*
4164                          * Outbound queue handles outbound completions only.
4165                          */
4166                         /* outbound cq is same size as tx_ring it services. */
4167                         rx_ring->cq_len = qdev->tx_ring_size;
4168                         rx_ring->cq_size =
4169                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4170                         rx_ring->lbq_len = 0;
4171                         rx_ring->lbq_size = 0;
4172                         rx_ring->lbq_buf_size = 0;
4173                         rx_ring->sbq_len = 0;
4174                         rx_ring->sbq_size = 0;
4175                         rx_ring->sbq_buf_size = 0;
4176                         rx_ring->type = TX_Q;
4177                 }
4178         }
4179         return 0;
4180 }
4181
4182 static int qlge_open(struct net_device *ndev)
4183 {
4184         int err = 0;
4185         struct ql_adapter *qdev = netdev_priv(ndev);
4186
4187         err = ql_adapter_reset(qdev);
4188         if (err)
4189                 return err;
4190
4191         err = ql_configure_rings(qdev);
4192         if (err)
4193                 return err;
4194
4195         err = ql_get_adapter_resources(qdev);
4196         if (err)
4197                 goto error_up;
4198
4199         err = ql_adapter_up(qdev);
4200         if (err)
4201                 goto error_up;
4202
4203         return err;
4204
4205 error_up:
4206         ql_release_adapter_resources(qdev);
4207         return err;
4208 }
4209
4210 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4211 {
4212         struct rx_ring *rx_ring;
4213         int i, status;
4214         u32 lbq_buf_len;
4215
4216         /* Wait for an outstanding reset to complete. */
4217         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4218                 int i = 4;
4219
4220                 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4221                         netif_err(qdev, ifup, qdev->ndev,
4222                                   "Waiting for adapter UP...\n");
4223                         ssleep(1);
4224                 }
4225
4226                 if (!i) {
4227                         netif_err(qdev, ifup, qdev->ndev,
4228                                   "Timed out waiting for adapter UP\n");
4229                         return -ETIMEDOUT;
4230                 }
4231         }
4232
4233         status = ql_adapter_down(qdev);
4234         if (status)
4235                 goto error;
4236
4237         /* Get the new rx buffer size. */
4238         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4239                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4240         qdev->lbq_buf_order = get_order(lbq_buf_len);
4241
4242         for (i = 0; i < qdev->rss_ring_count; i++) {
4243                 rx_ring = &qdev->rx_ring[i];
4244                 /* Set the new size. */
4245                 rx_ring->lbq_buf_size = lbq_buf_len;
4246         }
4247
4248         status = ql_adapter_up(qdev);
4249         if (status)
4250                 goto error;
4251
4252         return status;
4253 error:
4254         netif_alert(qdev, ifup, qdev->ndev,
4255                     "Driver up/down cycle failed, closing device.\n");
4256         set_bit(QL_ADAPTER_UP, &qdev->flags);
4257         dev_close(qdev->ndev);
4258         return status;
4259 }
4260
4261 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4262 {
4263         struct ql_adapter *qdev = netdev_priv(ndev);
4264         int status;
4265
4266         if (ndev->mtu == 1500 && new_mtu == 9000) {
4267                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4268         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4269                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4270         } else
4271                 return -EINVAL;
4272
4273         queue_delayed_work(qdev->workqueue,
4274                         &qdev->mpi_port_cfg_work, 3*HZ);
4275
4276         ndev->mtu = new_mtu;
4277
4278         if (!netif_running(qdev->ndev)) {
4279                 return 0;
4280         }
4281
4282         status = ql_change_rx_buffers(qdev);
4283         if (status) {
4284                 netif_err(qdev, ifup, qdev->ndev,
4285                           "Changing MTU failed.\n");
4286         }
4287
4288         return status;
4289 }
4290
4291 static struct net_device_stats *qlge_get_stats(struct net_device
4292                                                *ndev)
4293 {
4294         struct ql_adapter *qdev = netdev_priv(ndev);
4295         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4296         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4297         unsigned long pkts, mcast, dropped, errors, bytes;
4298         int i;
4299
4300         /* Get RX stats. */
4301         pkts = mcast = dropped = errors = bytes = 0;
4302         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4303                         pkts += rx_ring->rx_packets;
4304                         bytes += rx_ring->rx_bytes;
4305                         dropped += rx_ring->rx_dropped;
4306                         errors += rx_ring->rx_errors;
4307                         mcast += rx_ring->rx_multicast;
4308         }
4309         ndev->stats.rx_packets = pkts;
4310         ndev->stats.rx_bytes = bytes;
4311         ndev->stats.rx_dropped = dropped;
4312         ndev->stats.rx_errors = errors;
4313         ndev->stats.multicast = mcast;
4314
4315         /* Get TX stats. */
4316         pkts = errors = bytes = 0;
4317         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4318                         pkts += tx_ring->tx_packets;
4319                         bytes += tx_ring->tx_bytes;
4320                         errors += tx_ring->tx_errors;
4321         }
4322         ndev->stats.tx_packets = pkts;
4323         ndev->stats.tx_bytes = bytes;
4324         ndev->stats.tx_errors = errors;
4325         return &ndev->stats;
4326 }
4327
4328 static void qlge_set_multicast_list(struct net_device *ndev)
4329 {
4330         struct ql_adapter *qdev = netdev_priv(ndev);
4331         struct netdev_hw_addr *ha;
4332         int i, status;
4333
4334         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4335         if (status)
4336                 return;
4337         /*
4338          * Set or clear promiscuous mode if a
4339          * transition is taking place.
4340          */
4341         if (ndev->flags & IFF_PROMISC) {
4342                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4343                         if (ql_set_routing_reg
4344                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4345                                 netif_err(qdev, hw, qdev->ndev,
4346                                           "Failed to set promiscuous mode.\n");
4347                         } else {
4348                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4349                         }
4350                 }
4351         } else {
4352                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4353                         if (ql_set_routing_reg
4354                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4355                                 netif_err(qdev, hw, qdev->ndev,
4356                                           "Failed to clear promiscuous mode.\n");
4357                         } else {
4358                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4359                         }
4360                 }
4361         }
4362
4363         /*
4364          * Set or clear all multicast mode if a
4365          * transition is taking place.
4366          */
4367         if ((ndev->flags & IFF_ALLMULTI) ||
4368             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4369                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4370                         if (ql_set_routing_reg
4371                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4372                                 netif_err(qdev, hw, qdev->ndev,
4373                                           "Failed to set all-multi mode.\n");
4374                         } else {
4375                                 set_bit(QL_ALLMULTI, &qdev->flags);
4376                         }
4377                 }
4378         } else {
4379                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4380                         if (ql_set_routing_reg
4381                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4382                                 netif_err(qdev, hw, qdev->ndev,
4383                                           "Failed to clear all-multi mode.\n");
4384                         } else {
4385                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4386                         }
4387                 }
4388         }
4389
4390         if (!netdev_mc_empty(ndev)) {
4391                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4392                 if (status)
4393                         goto exit;
4394                 i = 0;
4395                 netdev_for_each_mc_addr(ha, ndev) {
4396                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4397                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4398                                 netif_err(qdev, hw, qdev->ndev,
4399                                           "Failed to loadmulticast address.\n");
4400                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4401                                 goto exit;
4402                         }
4403                         i++;
4404                 }
4405                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4406                 if (ql_set_routing_reg
4407                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4408                         netif_err(qdev, hw, qdev->ndev,
4409                                   "Failed to set multicast match mode.\n");
4410                 } else {
4411                         set_bit(QL_ALLMULTI, &qdev->flags);
4412                 }
4413         }
4414 exit:
4415         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4416 }
4417
4418 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4419 {
4420         struct ql_adapter *qdev = netdev_priv(ndev);
4421         struct sockaddr *addr = p;
4422         int status;
4423
4424         if (!is_valid_ether_addr(addr->sa_data))
4425                 return -EADDRNOTAVAIL;
4426         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4427         /* Update local copy of current mac address. */
4428         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4429
4430         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4431         if (status)
4432                 return status;
4433         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4434                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4435         if (status)
4436                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4437         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4438         return status;
4439 }
4440
4441 static void qlge_tx_timeout(struct net_device *ndev)
4442 {
4443         struct ql_adapter *qdev = netdev_priv(ndev);
4444         ql_queue_asic_error(qdev);
4445 }
4446
4447 static void ql_asic_reset_work(struct work_struct *work)
4448 {
4449         struct ql_adapter *qdev =
4450             container_of(work, struct ql_adapter, asic_reset_work.work);
4451         int status;
4452         rtnl_lock();
4453         status = ql_adapter_down(qdev);
4454         if (status)
4455                 goto error;
4456
4457         status = ql_adapter_up(qdev);
4458         if (status)
4459                 goto error;
4460
4461         /* Restore rx mode. */
4462         clear_bit(QL_ALLMULTI, &qdev->flags);
4463         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4464         qlge_set_multicast_list(qdev->ndev);
4465
4466         rtnl_unlock();
4467         return;
4468 error:
4469         netif_alert(qdev, ifup, qdev->ndev,
4470                     "Driver up/down cycle failed, closing device\n");
4471
4472         set_bit(QL_ADAPTER_UP, &qdev->flags);
4473         dev_close(qdev->ndev);
4474         rtnl_unlock();
4475 }
4476
4477 static const struct nic_operations qla8012_nic_ops = {
4478         .get_flash              = ql_get_8012_flash_params,
4479         .port_initialize        = ql_8012_port_initialize,
4480 };
4481
4482 static const struct nic_operations qla8000_nic_ops = {
4483         .get_flash              = ql_get_8000_flash_params,
4484         .port_initialize        = ql_8000_port_initialize,
4485 };
4486
4487 /* Find the pcie function number for the other NIC
4488  * on this chip.  Since both NIC functions share a
4489  * common firmware we have the lowest enabled function
4490  * do any common work.  Examples would be resetting
4491  * after a fatal firmware error, or doing a firmware
4492  * coredump.
4493  */
4494 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4495 {
4496         int status = 0;
4497         u32 temp;
4498         u32 nic_func1, nic_func2;
4499
4500         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4501                         &temp);
4502         if (status)
4503                 return status;
4504
4505         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4506                         MPI_TEST_NIC_FUNC_MASK);
4507         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4508                         MPI_TEST_NIC_FUNC_MASK);
4509
4510         if (qdev->func == nic_func1)
4511                 qdev->alt_func = nic_func2;
4512         else if (qdev->func == nic_func2)
4513                 qdev->alt_func = nic_func1;
4514         else
4515                 status = -EIO;
4516
4517         return status;
4518 }
4519
4520 static int ql_get_board_info(struct ql_adapter *qdev)
4521 {
4522         int status;
4523         qdev->func =
4524             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4525         if (qdev->func > 3)
4526                 return -EIO;
4527
4528         status = ql_get_alt_pcie_func(qdev);
4529         if (status)
4530                 return status;
4531
4532         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4533         if (qdev->port) {
4534                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4535                 qdev->port_link_up = STS_PL1;
4536                 qdev->port_init = STS_PI1;
4537                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4538                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4539         } else {
4540                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4541                 qdev->port_link_up = STS_PL0;
4542                 qdev->port_init = STS_PI0;
4543                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4544                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4545         }
4546         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4547         qdev->device_id = qdev->pdev->device;
4548         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4549                 qdev->nic_ops = &qla8012_nic_ops;
4550         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4551                 qdev->nic_ops = &qla8000_nic_ops;
4552         return status;
4553 }
4554
4555 static void ql_release_all(struct pci_dev *pdev)
4556 {
4557         struct net_device *ndev = pci_get_drvdata(pdev);
4558         struct ql_adapter *qdev = netdev_priv(ndev);
4559
4560         if (qdev->workqueue) {
4561                 destroy_workqueue(qdev->workqueue);
4562                 qdev->workqueue = NULL;
4563         }
4564
4565         if (qdev->reg_base)
4566                 iounmap(qdev->reg_base);
4567         if (qdev->doorbell_area)
4568                 iounmap(qdev->doorbell_area);
4569         vfree(qdev->mpi_coredump);
4570         pci_release_regions(pdev);
4571 }
4572
4573 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4574                           int cards_found)
4575 {
4576         struct ql_adapter *qdev = netdev_priv(ndev);
4577         int err = 0;
4578
4579         memset((void *)qdev, 0, sizeof(*qdev));
4580         err = pci_enable_device(pdev);
4581         if (err) {
4582                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4583                 return err;
4584         }
4585
4586         qdev->ndev = ndev;
4587         qdev->pdev = pdev;
4588         pci_set_drvdata(pdev, ndev);
4589
4590         /* Set PCIe read request size */
4591         err = pcie_set_readrq(pdev, 4096);
4592         if (err) {
4593                 dev_err(&pdev->dev, "Set readrq failed.\n");
4594                 goto err_out1;
4595         }
4596
4597         err = pci_request_regions(pdev, DRV_NAME);
4598         if (err) {
4599                 dev_err(&pdev->dev, "PCI region request failed.\n");
4600                 return err;
4601         }
4602
4603         pci_set_master(pdev);
4604         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4605                 set_bit(QL_DMA64, &qdev->flags);
4606                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4607         } else {
4608                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4609                 if (!err)
4610                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4611         }
4612
4613         if (err) {
4614                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4615                 goto err_out2;
4616         }
4617
4618         /* Set PCIe reset type for EEH to fundamental. */
4619         pdev->needs_freset = 1;
4620         pci_save_state(pdev);
4621         qdev->reg_base =
4622             ioremap_nocache(pci_resource_start(pdev, 1),
4623                             pci_resource_len(pdev, 1));
4624         if (!qdev->reg_base) {
4625                 dev_err(&pdev->dev, "Register mapping failed.\n");
4626                 err = -ENOMEM;
4627                 goto err_out2;
4628         }
4629
4630         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4631         qdev->doorbell_area =
4632             ioremap_nocache(pci_resource_start(pdev, 3),
4633                             pci_resource_len(pdev, 3));
4634         if (!qdev->doorbell_area) {
4635                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4636                 err = -ENOMEM;
4637                 goto err_out2;
4638         }
4639
4640         err = ql_get_board_info(qdev);
4641         if (err) {
4642                 dev_err(&pdev->dev, "Register access failed.\n");
4643                 err = -EIO;
4644                 goto err_out2;
4645         }
4646         qdev->msg_enable = netif_msg_init(debug, default_msg);
4647         spin_lock_init(&qdev->hw_lock);
4648         spin_lock_init(&qdev->stats_lock);
4649
4650         if (qlge_mpi_coredump) {
4651                 qdev->mpi_coredump =
4652                         vmalloc(sizeof(struct ql_mpi_coredump));
4653                 if (qdev->mpi_coredump == NULL) {
4654                         err = -ENOMEM;
4655                         goto err_out2;
4656                 }
4657                 if (qlge_force_coredump)
4658                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4659         }
4660         /* make sure the EEPROM is good */
4661         err = qdev->nic_ops->get_flash(qdev);
4662         if (err) {
4663                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4664                 goto err_out2;
4665         }
4666
4667         /* Keep local copy of current mac address. */
4668         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4669
4670         /* Set up the default ring sizes. */
4671         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4672         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4673
4674         /* Set up the coalescing parameters. */
4675         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4676         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4677         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4678         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4679
4680         /*
4681          * Set up the operating parameters.
4682          */
4683         qdev->workqueue = alloc_ordered_workqueue(ndev->name, WQ_MEM_RECLAIM);
4684         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4685         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4686         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4687         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4688         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4689         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4690         init_completion(&qdev->ide_completion);
4691         mutex_init(&qdev->mpi_mutex);
4692
4693         if (!cards_found) {
4694                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4695                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4696                          DRV_NAME, DRV_VERSION);
4697         }
4698         return 0;
4699 err_out2:
4700         ql_release_all(pdev);
4701 err_out1:
4702         pci_disable_device(pdev);
4703         return err;
4704 }
4705
4706 static const struct net_device_ops qlge_netdev_ops = {
4707         .ndo_open               = qlge_open,
4708         .ndo_stop               = qlge_close,
4709         .ndo_start_xmit         = qlge_send,
4710         .ndo_change_mtu         = qlge_change_mtu,
4711         .ndo_get_stats          = qlge_get_stats,
4712         .ndo_set_rx_mode        = qlge_set_multicast_list,
4713         .ndo_set_mac_address    = qlge_set_mac_address,
4714         .ndo_validate_addr      = eth_validate_addr,
4715         .ndo_tx_timeout         = qlge_tx_timeout,
4716         .ndo_set_features       = qlge_set_features,
4717         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4718         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4719 };
4720
4721 static void ql_timer(unsigned long data)
4722 {
4723         struct ql_adapter *qdev = (struct ql_adapter *)data;
4724         u32 var = 0;
4725
4726         var = ql_read32(qdev, STS);
4727         if (pci_channel_offline(qdev->pdev)) {
4728                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4729                 return;
4730         }
4731
4732         mod_timer(&qdev->timer, jiffies + (5*HZ));
4733 }
4734
4735 static int qlge_probe(struct pci_dev *pdev,
4736                       const struct pci_device_id *pci_entry)
4737 {
4738         struct net_device *ndev = NULL;
4739         struct ql_adapter *qdev = NULL;
4740         static int cards_found = 0;
4741         int err = 0;
4742
4743         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4744                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4745         if (!ndev)
4746                 return -ENOMEM;
4747
4748         err = ql_init_device(pdev, ndev, cards_found);
4749         if (err < 0) {
4750                 free_netdev(ndev);
4751                 return err;
4752         }
4753
4754         qdev = netdev_priv(ndev);
4755         SET_NETDEV_DEV(ndev, &pdev->dev);
4756         ndev->hw_features = NETIF_F_SG |
4757                             NETIF_F_IP_CSUM |
4758                             NETIF_F_TSO |
4759                             NETIF_F_TSO_ECN |
4760                             NETIF_F_HW_VLAN_CTAG_TX |
4761                             NETIF_F_HW_VLAN_CTAG_RX |
4762                             NETIF_F_HW_VLAN_CTAG_FILTER |
4763                             NETIF_F_RXCSUM;
4764         ndev->features = ndev->hw_features;
4765         ndev->vlan_features = ndev->hw_features;
4766         /* vlan gets same features (except vlan filter) */
4767         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4768                                  NETIF_F_HW_VLAN_CTAG_TX |
4769                                  NETIF_F_HW_VLAN_CTAG_RX);
4770
4771         if (test_bit(QL_DMA64, &qdev->flags))
4772                 ndev->features |= NETIF_F_HIGHDMA;
4773
4774         /*
4775          * Set up net_device structure.
4776          */
4777         ndev->tx_queue_len = qdev->tx_ring_size;
4778         ndev->irq = pdev->irq;
4779
4780         ndev->netdev_ops = &qlge_netdev_ops;
4781         ndev->ethtool_ops = &qlge_ethtool_ops;
4782         ndev->watchdog_timeo = 10 * HZ;
4783
4784         err = register_netdev(ndev);
4785         if (err) {
4786                 dev_err(&pdev->dev, "net device registration failed.\n");
4787                 ql_release_all(pdev);
4788                 pci_disable_device(pdev);
4789                 free_netdev(ndev);
4790                 return err;
4791         }
4792         /* Start up the timer to trigger EEH if
4793          * the bus goes dead
4794          */
4795         init_timer_deferrable(&qdev->timer);
4796         qdev->timer.data = (unsigned long)qdev;
4797         qdev->timer.function = ql_timer;
4798         qdev->timer.expires = jiffies + (5*HZ);
4799         add_timer(&qdev->timer);
4800         ql_link_off(qdev);
4801         ql_display_dev_info(ndev);
4802         atomic_set(&qdev->lb_count, 0);
4803         cards_found++;
4804         return 0;
4805 }
4806
4807 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4808 {
4809         return qlge_send(skb, ndev);
4810 }
4811
4812 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4813 {
4814         return ql_clean_inbound_rx_ring(rx_ring, budget);
4815 }
4816
4817 static void qlge_remove(struct pci_dev *pdev)
4818 {
4819         struct net_device *ndev = pci_get_drvdata(pdev);
4820         struct ql_adapter *qdev = netdev_priv(ndev);
4821         del_timer_sync(&qdev->timer);
4822         ql_cancel_all_work_sync(qdev);
4823         unregister_netdev(ndev);
4824         ql_release_all(pdev);
4825         pci_disable_device(pdev);
4826         free_netdev(ndev);
4827 }
4828
4829 /* Clean up resources without touching hardware. */
4830 static void ql_eeh_close(struct net_device *ndev)
4831 {
4832         int i;
4833         struct ql_adapter *qdev = netdev_priv(ndev);
4834
4835         if (netif_carrier_ok(ndev)) {
4836                 netif_carrier_off(ndev);
4837                 netif_stop_queue(ndev);
4838         }
4839
4840         /* Disabling the timer */
4841         ql_cancel_all_work_sync(qdev);
4842
4843         for (i = 0; i < qdev->rss_ring_count; i++)
4844                 netif_napi_del(&qdev->rx_ring[i].napi);
4845
4846         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4847         ql_tx_ring_clean(qdev);
4848         ql_free_rx_buffers(qdev);
4849         ql_release_adapter_resources(qdev);
4850 }
4851
4852 /*
4853  * This callback is called by the PCI subsystem whenever
4854  * a PCI bus error is detected.
4855  */
4856 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4857                                                enum pci_channel_state state)
4858 {
4859         struct net_device *ndev = pci_get_drvdata(pdev);
4860         struct ql_adapter *qdev = netdev_priv(ndev);
4861
4862         switch (state) {
4863         case pci_channel_io_normal:
4864                 return PCI_ERS_RESULT_CAN_RECOVER;
4865         case pci_channel_io_frozen:
4866                 netif_device_detach(ndev);
4867                 del_timer_sync(&qdev->timer);
4868                 if (netif_running(ndev))
4869                         ql_eeh_close(ndev);
4870                 pci_disable_device(pdev);
4871                 return PCI_ERS_RESULT_NEED_RESET;
4872         case pci_channel_io_perm_failure:
4873                 dev_err(&pdev->dev,
4874                         "%s: pci_channel_io_perm_failure.\n", __func__);
4875                 del_timer_sync(&qdev->timer);
4876                 ql_eeh_close(ndev);
4877                 set_bit(QL_EEH_FATAL, &qdev->flags);
4878                 return PCI_ERS_RESULT_DISCONNECT;
4879         }
4880
4881         /* Request a slot reset. */
4882         return PCI_ERS_RESULT_NEED_RESET;
4883 }
4884
4885 /*
4886  * This callback is called after the PCI buss has been reset.
4887  * Basically, this tries to restart the card from scratch.
4888  * This is a shortened version of the device probe/discovery code,
4889  * it resembles the first-half of the () routine.
4890  */
4891 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4892 {
4893         struct net_device *ndev = pci_get_drvdata(pdev);
4894         struct ql_adapter *qdev = netdev_priv(ndev);
4895
4896         pdev->error_state = pci_channel_io_normal;
4897
4898         pci_restore_state(pdev);
4899         if (pci_enable_device(pdev)) {
4900                 netif_err(qdev, ifup, qdev->ndev,
4901                           "Cannot re-enable PCI device after reset.\n");
4902                 return PCI_ERS_RESULT_DISCONNECT;
4903         }
4904         pci_set_master(pdev);
4905
4906         if (ql_adapter_reset(qdev)) {
4907                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4908                 set_bit(QL_EEH_FATAL, &qdev->flags);
4909                 return PCI_ERS_RESULT_DISCONNECT;
4910         }
4911
4912         return PCI_ERS_RESULT_RECOVERED;
4913 }
4914
4915 static void qlge_io_resume(struct pci_dev *pdev)
4916 {
4917         struct net_device *ndev = pci_get_drvdata(pdev);
4918         struct ql_adapter *qdev = netdev_priv(ndev);
4919         int err = 0;
4920
4921         if (netif_running(ndev)) {
4922                 err = qlge_open(ndev);
4923                 if (err) {
4924                         netif_err(qdev, ifup, qdev->ndev,
4925                                   "Device initialization failed after reset.\n");
4926                         return;
4927                 }
4928         } else {
4929                 netif_err(qdev, ifup, qdev->ndev,
4930                           "Device was not running prior to EEH.\n");
4931         }
4932         mod_timer(&qdev->timer, jiffies + (5*HZ));
4933         netif_device_attach(ndev);
4934 }
4935
4936 static const struct pci_error_handlers qlge_err_handler = {
4937         .error_detected = qlge_io_error_detected,
4938         .slot_reset = qlge_io_slot_reset,
4939         .resume = qlge_io_resume,
4940 };
4941
4942 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4943 {
4944         struct net_device *ndev = pci_get_drvdata(pdev);
4945         struct ql_adapter *qdev = netdev_priv(ndev);
4946         int err;
4947
4948         netif_device_detach(ndev);
4949         del_timer_sync(&qdev->timer);
4950
4951         if (netif_running(ndev)) {
4952                 err = ql_adapter_down(qdev);
4953                 if (!err)
4954                         return err;
4955         }
4956
4957         ql_wol(qdev);
4958         err = pci_save_state(pdev);
4959         if (err)
4960                 return err;
4961
4962         pci_disable_device(pdev);
4963
4964         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4965
4966         return 0;
4967 }
4968
4969 #ifdef CONFIG_PM
4970 static int qlge_resume(struct pci_dev *pdev)
4971 {
4972         struct net_device *ndev = pci_get_drvdata(pdev);
4973         struct ql_adapter *qdev = netdev_priv(ndev);
4974         int err;
4975
4976         pci_set_power_state(pdev, PCI_D0);
4977         pci_restore_state(pdev);
4978         err = pci_enable_device(pdev);
4979         if (err) {
4980                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4981                 return err;
4982         }
4983         pci_set_master(pdev);
4984
4985         pci_enable_wake(pdev, PCI_D3hot, 0);
4986         pci_enable_wake(pdev, PCI_D3cold, 0);
4987
4988         if (netif_running(ndev)) {
4989                 err = ql_adapter_up(qdev);
4990                 if (err)
4991                         return err;
4992         }
4993
4994         mod_timer(&qdev->timer, jiffies + (5*HZ));
4995         netif_device_attach(ndev);
4996
4997         return 0;
4998 }
4999 #endif /* CONFIG_PM */
5000
5001 static void qlge_shutdown(struct pci_dev *pdev)
5002 {
5003         qlge_suspend(pdev, PMSG_SUSPEND);
5004 }
5005
5006 static struct pci_driver qlge_driver = {
5007         .name = DRV_NAME,
5008         .id_table = qlge_pci_tbl,
5009         .probe = qlge_probe,
5010         .remove = qlge_remove,
5011 #ifdef CONFIG_PM
5012         .suspend = qlge_suspend,
5013         .resume = qlge_resume,
5014 #endif
5015         .shutdown = qlge_shutdown,
5016         .err_handler = &qlge_err_handler
5017 };
5018
5019 module_pci_driver(qlge_driver);