GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 eth_zero_addr(zero_mac_addr);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096                                                 GFP_ATOMIC,
1097                                                 qdev->lbq_buf_order);
1098                 if (unlikely(!rx_ring->pg_chunk.page)) {
1099                         netif_err(qdev, drv, qdev->ndev,
1100                                   "page allocation failed.\n");
1101                         return -ENOMEM;
1102                 }
1103                 rx_ring->pg_chunk.offset = 0;
1104                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105                                         0, ql_lbq_block_size(qdev),
1106                                         PCI_DMA_FROMDEVICE);
1107                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108                         __free_pages(rx_ring->pg_chunk.page,
1109                                         qdev->lbq_buf_order);
1110                         rx_ring->pg_chunk.page = NULL;
1111                         netif_err(qdev, drv, qdev->ndev,
1112                                   "PCI mapping failed.\n");
1113                         return -ENOMEM;
1114                 }
1115                 rx_ring->pg_chunk.map = map;
1116                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117         }
1118
1119         /* Copy the current master pg_chunk info
1120          * to the current descriptor.
1121          */
1122         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124         /* Adjust the master page chunk for next
1125          * buffer get.
1126          */
1127         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129                 rx_ring->pg_chunk.page = NULL;
1130                 lbq_desc->p.pg_chunk.last_flag = 1;
1131         } else {
1132                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133                 get_page(rx_ring->pg_chunk.page);
1134                 lbq_desc->p.pg_chunk.last_flag = 0;
1135         }
1136         return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141         u32 clean_idx = rx_ring->lbq_clean_idx;
1142         u32 start_idx = clean_idx;
1143         struct bq_desc *lbq_desc;
1144         u64 map;
1145         int i;
1146
1147         while (rx_ring->lbq_free_cnt > 32) {
1148                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150                                      "lbq: try cleaning clean_idx = %d.\n",
1151                                      clean_idx);
1152                         lbq_desc = &rx_ring->lbq[clean_idx];
1153                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154                                 rx_ring->lbq_clean_idx = clean_idx;
1155                                 netif_err(qdev, ifup, qdev->ndev,
1156                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157                                                 i, clean_idx);
1158                                 return;
1159                         }
1160
1161                         map = lbq_desc->p.pg_chunk.map +
1162                                 lbq_desc->p.pg_chunk.offset;
1163                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164                         dma_unmap_len_set(lbq_desc, maplen,
1165                                         rx_ring->lbq_buf_size);
1166                                 *lbq_desc->addr = cpu_to_le64(map);
1167
1168                         pci_dma_sync_single_for_device(qdev->pdev, map,
1169                                                 rx_ring->lbq_buf_size,
1170                                                 PCI_DMA_FROMDEVICE);
1171                         clean_idx++;
1172                         if (clean_idx == rx_ring->lbq_len)
1173                                 clean_idx = 0;
1174                 }
1175
1176                 rx_ring->lbq_clean_idx = clean_idx;
1177                 rx_ring->lbq_prod_idx += 16;
1178                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179                         rx_ring->lbq_prod_idx = 0;
1180                 rx_ring->lbq_free_cnt -= 16;
1181         }
1182
1183         if (start_idx != clean_idx) {
1184                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185                              "lbq: updating prod idx = %d.\n",
1186                              rx_ring->lbq_prod_idx);
1187                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188                                 rx_ring->lbq_prod_idx_db_reg);
1189         }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195         u32 clean_idx = rx_ring->sbq_clean_idx;
1196         u32 start_idx = clean_idx;
1197         struct bq_desc *sbq_desc;
1198         u64 map;
1199         int i;
1200
1201         while (rx_ring->sbq_free_cnt > 16) {
1202                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203                         sbq_desc = &rx_ring->sbq[clean_idx];
1204                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205                                      "sbq: try cleaning clean_idx = %d.\n",
1206                                      clean_idx);
1207                         if (sbq_desc->p.skb == NULL) {
1208                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1209                                              qdev->ndev,
1210                                              "sbq: getting new skb for index %d.\n",
1211                                              sbq_desc->index);
1212                                 sbq_desc->p.skb =
1213                                     netdev_alloc_skb(qdev->ndev,
1214                                                      SMALL_BUFFER_SIZE);
1215                                 if (sbq_desc->p.skb == NULL) {
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438                                  struct rx_ring *rx_ring)
1439 {
1440         struct nic_stats *stats = &qdev->nic_stats;
1441
1442         stats->rx_err_count++;
1443         rx_ring->rx_errors++;
1444
1445         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447                 stats->rx_code_err++;
1448                 break;
1449         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450                 stats->rx_oversize_err++;
1451                 break;
1452         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453                 stats->rx_undersize_err++;
1454                 break;
1455         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456                 stats->rx_preamble_err++;
1457                 break;
1458         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459                 stats->rx_frame_len_err++;
1460                 break;
1461         case IB_MAC_IOCB_RSP_ERR_CRC:
1462                 stats->rx_crc_err++;
1463         default:
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1474                                   void *page, size_t *len)
1475 {
1476         u16 *tags;
1477
1478         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479                 return;
1480         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481                 tags = (u16 *)page;
1482                 /* Look for stacked vlan tags in ethertype field */
1483                 if (tags[6] == ETH_P_8021Q &&
1484                     tags[8] == ETH_P_8021Q)
1485                         *len += 2 * VLAN_HLEN;
1486                 else
1487                         *len += VLAN_HLEN;
1488         }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493                                         struct rx_ring *rx_ring,
1494                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1495                                         u32 length,
1496                                         u16 vlan_id)
1497 {
1498         struct sk_buff *skb;
1499         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500         struct napi_struct *napi = &rx_ring->napi;
1501
1502         /* Frame error, so drop the packet. */
1503         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505                 put_page(lbq_desc->p.pg_chunk.page);
1506                 return;
1507         }
1508         napi->dev = qdev->ndev;
1509
1510         skb = napi_get_frags(napi);
1511         if (!skb) {
1512                 netif_err(qdev, drv, qdev->ndev,
1513                           "Couldn't get an skb, exiting.\n");
1514                 rx_ring->rx_dropped++;
1515                 put_page(lbq_desc->p.pg_chunk.page);
1516                 return;
1517         }
1518         prefetch(lbq_desc->p.pg_chunk.va);
1519         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520                              lbq_desc->p.pg_chunk.page,
1521                              lbq_desc->p.pg_chunk.offset,
1522                              length);
1523
1524         skb->len += length;
1525         skb->data_len += length;
1526         skb->truesize += length;
1527         skb_shinfo(skb)->nr_frags++;
1528
1529         rx_ring->rx_packets++;
1530         rx_ring->rx_bytes += length;
1531         skb->ip_summed = CHECKSUM_UNNECESSARY;
1532         skb_record_rx_queue(skb, rx_ring->cq_id);
1533         if (vlan_id != 0xffff)
1534                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535         napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540                                         struct rx_ring *rx_ring,
1541                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1542                                         u32 length,
1543                                         u16 vlan_id)
1544 {
1545         struct net_device *ndev = qdev->ndev;
1546         struct sk_buff *skb = NULL;
1547         void *addr;
1548         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549         struct napi_struct *napi = &rx_ring->napi;
1550         size_t hlen = ETH_HLEN;
1551
1552         skb = netdev_alloc_skb(ndev, length);
1553         if (!skb) {
1554                 rx_ring->rx_dropped++;
1555                 put_page(lbq_desc->p.pg_chunk.page);
1556                 return;
1557         }
1558
1559         addr = lbq_desc->p.pg_chunk.va;
1560         prefetch(addr);
1561
1562         /* Frame error, so drop the packet. */
1563         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565                 goto err_out;
1566         }
1567
1568         /* Update the MAC header length*/
1569         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571         /* The max framesize filter on this chip is set higher than
1572          * MTU since FCoE uses 2k frames.
1573          */
1574         if (skb->len > ndev->mtu + hlen) {
1575                 netif_err(qdev, drv, qdev->ndev,
1576                           "Segment too small, dropping.\n");
1577                 rx_ring->rx_dropped++;
1578                 goto err_out;
1579         }
1580         memcpy(skb_put(skb, hlen), addr, hlen);
1581         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583                      length);
1584         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585                                 lbq_desc->p.pg_chunk.offset + hlen,
1586                                 length - hlen);
1587         skb->len += length - hlen;
1588         skb->data_len += length - hlen;
1589         skb->truesize += length - hlen;
1590
1591         rx_ring->rx_packets++;
1592         rx_ring->rx_bytes += skb->len;
1593         skb->protocol = eth_type_trans(skb, ndev);
1594         skb_checksum_none_assert(skb);
1595
1596         if ((ndev->features & NETIF_F_RXCSUM) &&
1597                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598                 /* TCP frame. */
1599                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601                                      "TCP checksum done!\n");
1602                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1603                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605                         /* Unfragmented ipv4 UDP frame. */
1606                         struct iphdr *iph =
1607                                 (struct iphdr *)((u8 *)addr + hlen);
1608                         if (!(iph->frag_off &
1609                                 htons(IP_MF|IP_OFFSET))) {
1610                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1612                                              qdev->ndev,
1613                                              "UDP checksum done!\n");
1614                         }
1615                 }
1616         }
1617
1618         skb_record_rx_queue(skb, rx_ring->cq_id);
1619         if (vlan_id != 0xffff)
1620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622                 napi_gro_receive(napi, skb);
1623         else
1624                 netif_receive_skb(skb);
1625         return;
1626 err_out:
1627         dev_kfree_skb_any(skb);
1628         put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633                                         struct rx_ring *rx_ring,
1634                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1635                                         u32 length,
1636                                         u16 vlan_id)
1637 {
1638         struct net_device *ndev = qdev->ndev;
1639         struct sk_buff *skb = NULL;
1640         struct sk_buff *new_skb = NULL;
1641         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643         skb = sbq_desc->p.skb;
1644         /* Allocate new_skb and copy */
1645         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646         if (new_skb == NULL) {
1647                 rx_ring->rx_dropped++;
1648                 return;
1649         }
1650         skb_reserve(new_skb, NET_IP_ALIGN);
1651
1652         pci_dma_sync_single_for_cpu(qdev->pdev,
1653                                     dma_unmap_addr(sbq_desc, mapaddr),
1654                                     dma_unmap_len(sbq_desc, maplen),
1655                                     PCI_DMA_FROMDEVICE);
1656
1657         memcpy(skb_put(new_skb, length), skb->data, length);
1658
1659         pci_dma_sync_single_for_device(qdev->pdev,
1660                                        dma_unmap_addr(sbq_desc, mapaddr),
1661                                        dma_unmap_len(sbq_desc, maplen),
1662                                        PCI_DMA_FROMDEVICE);
1663         skb = new_skb;
1664
1665         /* Frame error, so drop the packet. */
1666         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668                 dev_kfree_skb_any(skb);
1669                 return;
1670         }
1671
1672         /* loopback self test for ethtool */
1673         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674                 ql_check_lb_frame(qdev, skb);
1675                 dev_kfree_skb_any(skb);
1676                 return;
1677         }
1678
1679         /* The max framesize filter on this chip is set higher than
1680          * MTU since FCoE uses 2k frames.
1681          */
1682         if (skb->len > ndev->mtu + ETH_HLEN) {
1683                 dev_kfree_skb_any(skb);
1684                 rx_ring->rx_dropped++;
1685                 return;
1686         }
1687
1688         prefetch(skb->data);
1689         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691                              "%s Multicast.\n",
1692                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698         }
1699         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701                              "Promiscuous Packet.\n");
1702
1703         rx_ring->rx_packets++;
1704         rx_ring->rx_bytes += skb->len;
1705         skb->protocol = eth_type_trans(skb, ndev);
1706         skb_checksum_none_assert(skb);
1707
1708         /* If rx checksum is on, and there are no
1709          * csum or frame errors.
1710          */
1711         if ((ndev->features & NETIF_F_RXCSUM) &&
1712                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713                 /* TCP frame. */
1714                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716                                      "TCP checksum done!\n");
1717                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1718                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720                         /* Unfragmented ipv4 UDP frame. */
1721                         struct iphdr *iph = (struct iphdr *) skb->data;
1722                         if (!(iph->frag_off &
1723                                 htons(IP_MF|IP_OFFSET))) {
1724                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1726                                              qdev->ndev,
1727                                              "UDP checksum done!\n");
1728                         }
1729                 }
1730         }
1731
1732         skb_record_rx_queue(skb, rx_ring->cq_id);
1733         if (vlan_id != 0xffff)
1734                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736                 napi_gro_receive(&rx_ring->napi, skb);
1737         else
1738                 netif_receive_skb(skb);
1739 }
1740
1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743         void *temp_addr = skb->data;
1744
1745         /* Undo the skb_reserve(skb,32) we did before
1746          * giving to hardware, and realign data on
1747          * a 2-byte boundary.
1748          */
1749         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751         skb_copy_to_linear_data(skb, temp_addr,
1752                 (unsigned int)len);
1753 }
1754
1755 /*
1756  * This function builds an skb for the given inbound
1757  * completion.  It will be rewritten for readability in the near
1758  * future, but for not it works well.
1759  */
1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761                                        struct rx_ring *rx_ring,
1762                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764         struct bq_desc *lbq_desc;
1765         struct bq_desc *sbq_desc;
1766         struct sk_buff *skb = NULL;
1767         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769         size_t hlen = ETH_HLEN;
1770
1771         /*
1772          * Handle the header buffer if present.
1773          */
1774         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777                              "Header of %d bytes in small buffer.\n", hdr_len);
1778                 /*
1779                  * Headers fit nicely into a small buffer.
1780                  */
1781                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1782                 pci_unmap_single(qdev->pdev,
1783                                 dma_unmap_addr(sbq_desc, mapaddr),
1784                                 dma_unmap_len(sbq_desc, maplen),
1785                                 PCI_DMA_FROMDEVICE);
1786                 skb = sbq_desc->p.skb;
1787                 ql_realign_skb(skb, hdr_len);
1788                 skb_put(skb, hdr_len);
1789                 sbq_desc->p.skb = NULL;
1790         }
1791
1792         /*
1793          * Handle the data buffer(s).
1794          */
1795         if (unlikely(!length)) {        /* Is there data too? */
1796                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797                              "No Data buffer in this packet.\n");
1798                 return skb;
1799         }
1800
1801         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804                                      "Headers in small, data of %d bytes in small, combine them.\n",
1805                                      length);
1806                         /*
1807                          * Data is less than small buffer size so it's
1808                          * stuffed in a small buffer.
1809                          * For this case we append the data
1810                          * from the "data" small buffer to the "header" small
1811                          * buffer.
1812                          */
1813                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1814                         pci_dma_sync_single_for_cpu(qdev->pdev,
1815                                                     dma_unmap_addr
1816                                                     (sbq_desc, mapaddr),
1817                                                     dma_unmap_len
1818                                                     (sbq_desc, maplen),
1819                                                     PCI_DMA_FROMDEVICE);
1820                         memcpy(skb_put(skb, length),
1821                                sbq_desc->p.skb->data, length);
1822                         pci_dma_sync_single_for_device(qdev->pdev,
1823                                                        dma_unmap_addr
1824                                                        (sbq_desc,
1825                                                         mapaddr),
1826                                                        dma_unmap_len
1827                                                        (sbq_desc,
1828                                                         maplen),
1829                                                        PCI_DMA_FROMDEVICE);
1830                 } else {
1831                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832                                      "%d bytes in a single small buffer.\n",
1833                                      length);
1834                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1835                         skb = sbq_desc->p.skb;
1836                         ql_realign_skb(skb, length);
1837                         skb_put(skb, length);
1838                         pci_unmap_single(qdev->pdev,
1839                                          dma_unmap_addr(sbq_desc,
1840                                                         mapaddr),
1841                                          dma_unmap_len(sbq_desc,
1842                                                        maplen),
1843                                          PCI_DMA_FROMDEVICE);
1844                         sbq_desc->p.skb = NULL;
1845                 }
1846         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1848                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849                                      "Header in small, %d bytes in large. Chain large to small!\n",
1850                                      length);
1851                         /*
1852                          * The data is in a single large buffer.  We
1853                          * chain it to the header buffer's skb and let
1854                          * it rip.
1855                          */
1856                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1857                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1859                                      lbq_desc->p.pg_chunk.offset, length);
1860                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861                                                 lbq_desc->p.pg_chunk.offset,
1862                                                 length);
1863                         skb->len += length;
1864                         skb->data_len += length;
1865                         skb->truesize += length;
1866                 } else {
1867                         /*
1868                          * The headers and data are in a single large buffer. We
1869                          * copy it to a new skb and let it go. This can happen with
1870                          * jumbo mtu on a non-TCP/UDP frame.
1871                          */
1872                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1873                         skb = netdev_alloc_skb(qdev->ndev, length);
1874                         if (skb == NULL) {
1875                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876                                              "No skb available, drop the packet.\n");
1877                                 return NULL;
1878                         }
1879                         pci_unmap_page(qdev->pdev,
1880                                        dma_unmap_addr(lbq_desc,
1881                                                       mapaddr),
1882                                        dma_unmap_len(lbq_desc, maplen),
1883                                        PCI_DMA_FROMDEVICE);
1884                         skb_reserve(skb, NET_IP_ALIGN);
1885                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887                                      length);
1888                         skb_fill_page_desc(skb, 0,
1889                                                 lbq_desc->p.pg_chunk.page,
1890                                                 lbq_desc->p.pg_chunk.offset,
1891                                                 length);
1892                         skb->len += length;
1893                         skb->data_len += length;
1894                         skb->truesize += length;
1895                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1896                                               lbq_desc->p.pg_chunk.va,
1897                                               &hlen);
1898                         __pskb_pull_tail(skb, hlen);
1899                 }
1900         } else {
1901                 /*
1902                  * The data is in a chain of large buffers
1903                  * pointed to by a small buffer.  We loop
1904                  * thru and chain them to the our small header
1905                  * buffer's skb.
1906                  * frags:  There are 18 max frags and our small
1907                  *         buffer will hold 32 of them. The thing is,
1908                  *         we'll use 3 max for our 9000 byte jumbo
1909                  *         frames.  If the MTU goes up we could
1910                  *          eventually be in trouble.
1911                  */
1912                 int size, i = 0;
1913                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1914                 pci_unmap_single(qdev->pdev,
1915                                  dma_unmap_addr(sbq_desc, mapaddr),
1916                                  dma_unmap_len(sbq_desc, maplen),
1917                                  PCI_DMA_FROMDEVICE);
1918                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1919                         /*
1920                          * This is an non TCP/UDP IP frame, so
1921                          * the headers aren't split into a small
1922                          * buffer.  We have to use the small buffer
1923                          * that contains our sg list as our skb to
1924                          * send upstairs. Copy the sg list here to
1925                          * a local buffer and use it to find the
1926                          * pages to chain.
1927                          */
1928                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1929                                      "%d bytes of headers & data in chain of large.\n",
1930                                      length);
1931                         skb = sbq_desc->p.skb;
1932                         sbq_desc->p.skb = NULL;
1933                         skb_reserve(skb, NET_IP_ALIGN);
1934                 }
1935                 do {
1936                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1937                         size = (length < rx_ring->lbq_buf_size) ? length :
1938                                 rx_ring->lbq_buf_size;
1939
1940                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1941                                      "Adding page %d to skb for %d bytes.\n",
1942                                      i, size);
1943                         skb_fill_page_desc(skb, i,
1944                                                 lbq_desc->p.pg_chunk.page,
1945                                                 lbq_desc->p.pg_chunk.offset,
1946                                                 size);
1947                         skb->len += size;
1948                         skb->data_len += size;
1949                         skb->truesize += size;
1950                         length -= size;
1951                         i++;
1952                 } while (length > 0);
1953                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1954                                       &hlen);
1955                 __pskb_pull_tail(skb, hlen);
1956         }
1957         return skb;
1958 }
1959
1960 /* Process an inbound completion from an rx ring. */
1961 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1962                                    struct rx_ring *rx_ring,
1963                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1964                                    u16 vlan_id)
1965 {
1966         struct net_device *ndev = qdev->ndev;
1967         struct sk_buff *skb = NULL;
1968
1969         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1970
1971         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1972         if (unlikely(!skb)) {
1973                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974                              "No skb available, drop packet.\n");
1975                 rx_ring->rx_dropped++;
1976                 return;
1977         }
1978
1979         /* Frame error, so drop the packet. */
1980         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1981                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1982                 dev_kfree_skb_any(skb);
1983                 return;
1984         }
1985
1986         /* The max framesize filter on this chip is set higher than
1987          * MTU since FCoE uses 2k frames.
1988          */
1989         if (skb->len > ndev->mtu + ETH_HLEN) {
1990                 dev_kfree_skb_any(skb);
1991                 rx_ring->rx_dropped++;
1992                 return;
1993         }
1994
1995         /* loopback self test for ethtool */
1996         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1997                 ql_check_lb_frame(qdev, skb);
1998                 dev_kfree_skb_any(skb);
1999                 return;
2000         }
2001
2002         prefetch(skb->data);
2003         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2004                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2005                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2006                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2007                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2008                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2009                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2010                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2011                 rx_ring->rx_multicast++;
2012         }
2013         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2014                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2015                              "Promiscuous Packet.\n");
2016         }
2017
2018         skb->protocol = eth_type_trans(skb, ndev);
2019         skb_checksum_none_assert(skb);
2020
2021         /* If rx checksum is on, and there are no
2022          * csum or frame errors.
2023          */
2024         if ((ndev->features & NETIF_F_RXCSUM) &&
2025                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2026                 /* TCP frame. */
2027                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2028                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029                                      "TCP checksum done!\n");
2030                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2031                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2032                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2033                 /* Unfragmented ipv4 UDP frame. */
2034                         struct iphdr *iph = (struct iphdr *) skb->data;
2035                         if (!(iph->frag_off &
2036                                 htons(IP_MF|IP_OFFSET))) {
2037                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2038                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2039                                              "TCP checksum done!\n");
2040                         }
2041                 }
2042         }
2043
2044         rx_ring->rx_packets++;
2045         rx_ring->rx_bytes += skb->len;
2046         skb_record_rx_queue(skb, rx_ring->cq_id);
2047         if (vlan_id != 0xffff)
2048                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2049         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2050                 napi_gro_receive(&rx_ring->napi, skb);
2051         else
2052                 netif_receive_skb(skb);
2053 }
2054
2055 /* Process an inbound completion from an rx ring. */
2056 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2057                                         struct rx_ring *rx_ring,
2058                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2059 {
2060         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2061         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2062                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2063                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2064                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2065
2066         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2067
2068         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2069                 /* The data and headers are split into
2070                  * separate buffers.
2071                  */
2072                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2073                                                 vlan_id);
2074         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2075                 /* The data fit in a single small buffer.
2076                  * Allocate a new skb, copy the data and
2077                  * return the buffer to the free pool.
2078                  */
2079                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2080                                                 length, vlan_id);
2081         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2082                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2083                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2084                 /* TCP packet in a page chunk that's been checksummed.
2085                  * Tack it on to our GRO skb and let it go.
2086                  */
2087                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2088                                                 length, vlan_id);
2089         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2090                 /* Non-TCP packet in a page chunk. Allocate an
2091                  * skb, tack it on frags, and send it up.
2092                  */
2093                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2094                                                 length, vlan_id);
2095         } else {
2096                 /* Non-TCP/UDP large frames that span multiple buffers
2097                  * can be processed corrrectly by the split frame logic.
2098                  */
2099                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2100                                                 vlan_id);
2101         }
2102
2103         return (unsigned long)length;
2104 }
2105
2106 /* Process an outbound completion from an rx ring. */
2107 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2108                                    struct ob_mac_iocb_rsp *mac_rsp)
2109 {
2110         struct tx_ring *tx_ring;
2111         struct tx_ring_desc *tx_ring_desc;
2112
2113         QL_DUMP_OB_MAC_RSP(mac_rsp);
2114         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2115         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2116         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2117         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2118         tx_ring->tx_packets++;
2119         dev_kfree_skb(tx_ring_desc->skb);
2120         tx_ring_desc->skb = NULL;
2121
2122         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2123                                         OB_MAC_IOCB_RSP_S |
2124                                         OB_MAC_IOCB_RSP_L |
2125                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2126                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2127                         netif_warn(qdev, tx_done, qdev->ndev,
2128                                    "Total descriptor length did not match transfer length.\n");
2129                 }
2130                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2131                         netif_warn(qdev, tx_done, qdev->ndev,
2132                                    "Frame too short to be valid, not sent.\n");
2133                 }
2134                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2135                         netif_warn(qdev, tx_done, qdev->ndev,
2136                                    "Frame too long, but sent anyway.\n");
2137                 }
2138                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2139                         netif_warn(qdev, tx_done, qdev->ndev,
2140                                    "PCI backplane error. Frame not sent.\n");
2141                 }
2142         }
2143         atomic_inc(&tx_ring->tx_count);
2144 }
2145
2146 /* Fire up a handler to reset the MPI processor. */
2147 void ql_queue_fw_error(struct ql_adapter *qdev)
2148 {
2149         ql_link_off(qdev);
2150         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2151 }
2152
2153 void ql_queue_asic_error(struct ql_adapter *qdev)
2154 {
2155         ql_link_off(qdev);
2156         ql_disable_interrupts(qdev);
2157         /* Clear adapter up bit to signal the recovery
2158          * process that it shouldn't kill the reset worker
2159          * thread
2160          */
2161         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2162         /* Set asic recovery bit to indicate reset process that we are
2163          * in fatal error recovery process rather than normal close
2164          */
2165         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2166         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2167 }
2168
2169 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2170                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2171 {
2172         switch (ib_ae_rsp->event) {
2173         case MGMT_ERR_EVENT:
2174                 netif_err(qdev, rx_err, qdev->ndev,
2175                           "Management Processor Fatal Error.\n");
2176                 ql_queue_fw_error(qdev);
2177                 return;
2178
2179         case CAM_LOOKUP_ERR_EVENT:
2180                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2181                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2182                 ql_queue_asic_error(qdev);
2183                 return;
2184
2185         case SOFT_ECC_ERROR_EVENT:
2186                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2187                 ql_queue_asic_error(qdev);
2188                 break;
2189
2190         case PCI_ERR_ANON_BUF_RD:
2191                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2192                                         "anonymous buffers from rx_ring %d.\n",
2193                                         ib_ae_rsp->q_id);
2194                 ql_queue_asic_error(qdev);
2195                 break;
2196
2197         default:
2198                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2199                           ib_ae_rsp->event);
2200                 ql_queue_asic_error(qdev);
2201                 break;
2202         }
2203 }
2204
2205 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2206 {
2207         struct ql_adapter *qdev = rx_ring->qdev;
2208         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2209         struct ob_mac_iocb_rsp *net_rsp = NULL;
2210         int count = 0;
2211
2212         struct tx_ring *tx_ring;
2213         /* While there are entries in the completion queue. */
2214         while (prod != rx_ring->cnsmr_idx) {
2215
2216                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2217                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2218                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2219
2220                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2221                 rmb();
2222                 switch (net_rsp->opcode) {
2223
2224                 case OPCODE_OB_MAC_TSO_IOCB:
2225                 case OPCODE_OB_MAC_IOCB:
2226                         ql_process_mac_tx_intr(qdev, net_rsp);
2227                         break;
2228                 default:
2229                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2230                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2231                                      net_rsp->opcode);
2232                 }
2233                 count++;
2234                 ql_update_cq(rx_ring);
2235                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2236         }
2237         if (!net_rsp)
2238                 return 0;
2239         ql_write_cq_idx(rx_ring);
2240         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2241         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2242                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2243                         /*
2244                          * The queue got stopped because the tx_ring was full.
2245                          * Wake it up, because it's now at least 25% empty.
2246                          */
2247                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2248         }
2249
2250         return count;
2251 }
2252
2253 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2254 {
2255         struct ql_adapter *qdev = rx_ring->qdev;
2256         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2257         struct ql_net_rsp_iocb *net_rsp;
2258         int count = 0;
2259
2260         /* While there are entries in the completion queue. */
2261         while (prod != rx_ring->cnsmr_idx) {
2262
2263                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2264                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2265                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2266
2267                 net_rsp = rx_ring->curr_entry;
2268                 rmb();
2269                 switch (net_rsp->opcode) {
2270                 case OPCODE_IB_MAC_IOCB:
2271                         ql_process_mac_rx_intr(qdev, rx_ring,
2272                                                (struct ib_mac_iocb_rsp *)
2273                                                net_rsp);
2274                         break;
2275
2276                 case OPCODE_IB_AE_IOCB:
2277                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2278                                                 net_rsp);
2279                         break;
2280                 default:
2281                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2282                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2283                                      net_rsp->opcode);
2284                         break;
2285                 }
2286                 count++;
2287                 ql_update_cq(rx_ring);
2288                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2289                 if (count == budget)
2290                         break;
2291         }
2292         ql_update_buffer_queues(qdev, rx_ring);
2293         ql_write_cq_idx(rx_ring);
2294         return count;
2295 }
2296
2297 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2298 {
2299         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2300         struct ql_adapter *qdev = rx_ring->qdev;
2301         struct rx_ring *trx_ring;
2302         int i, work_done = 0;
2303         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2304
2305         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2306                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2307
2308         /* Service the TX rings first.  They start
2309          * right after the RSS rings. */
2310         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2311                 trx_ring = &qdev->rx_ring[i];
2312                 /* If this TX completion ring belongs to this vector and
2313                  * it's not empty then service it.
2314                  */
2315                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2316                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2317                                         trx_ring->cnsmr_idx)) {
2318                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2319                                      "%s: Servicing TX completion ring %d.\n",
2320                                      __func__, trx_ring->cq_id);
2321                         ql_clean_outbound_rx_ring(trx_ring);
2322                 }
2323         }
2324
2325         /*
2326          * Now service the RSS ring if it's active.
2327          */
2328         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2329                                         rx_ring->cnsmr_idx) {
2330                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2331                              "%s: Servicing RX completion ring %d.\n",
2332                              __func__, rx_ring->cq_id);
2333                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2334         }
2335
2336         if (work_done < budget) {
2337                 napi_complete(napi);
2338                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2339         }
2340         return work_done;
2341 }
2342
2343 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2344 {
2345         struct ql_adapter *qdev = netdev_priv(ndev);
2346
2347         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2348                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2349                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2350         } else {
2351                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2352         }
2353 }
2354
2355 /**
2356  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2357  * based on the features to enable/disable hardware vlan accel
2358  */
2359 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2360                                         netdev_features_t features)
2361 {
2362         struct ql_adapter *qdev = netdev_priv(ndev);
2363         int status = 0;
2364         bool need_restart = netif_running(ndev);
2365
2366         if (need_restart) {
2367                 status = ql_adapter_down(qdev);
2368                 if (status) {
2369                         netif_err(qdev, link, qdev->ndev,
2370                                   "Failed to bring down the adapter\n");
2371                         return status;
2372                 }
2373         }
2374
2375         /* update the features with resent change */
2376         ndev->features = features;
2377
2378         if (need_restart) {
2379                 status = ql_adapter_up(qdev);
2380                 if (status) {
2381                         netif_err(qdev, link, qdev->ndev,
2382                                   "Failed to bring up the adapter\n");
2383                         return status;
2384                 }
2385         }
2386
2387         return status;
2388 }
2389
2390 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2391         netdev_features_t features)
2392 {
2393         int err;
2394
2395         /* Update the behavior of vlan accel in the adapter */
2396         err = qlge_update_hw_vlan_features(ndev, features);
2397         if (err)
2398                 return err;
2399
2400         return features;
2401 }
2402
2403 static int qlge_set_features(struct net_device *ndev,
2404         netdev_features_t features)
2405 {
2406         netdev_features_t changed = ndev->features ^ features;
2407
2408         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2409                 qlge_vlan_mode(ndev, features);
2410
2411         return 0;
2412 }
2413
2414 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2415 {
2416         u32 enable_bit = MAC_ADDR_E;
2417         int err;
2418
2419         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2420                                   MAC_ADDR_TYPE_VLAN, vid);
2421         if (err)
2422                 netif_err(qdev, ifup, qdev->ndev,
2423                           "Failed to init vlan address.\n");
2424         return err;
2425 }
2426
2427 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2428 {
2429         struct ql_adapter *qdev = netdev_priv(ndev);
2430         int status;
2431         int err;
2432
2433         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2434         if (status)
2435                 return status;
2436
2437         err = __qlge_vlan_rx_add_vid(qdev, vid);
2438         set_bit(vid, qdev->active_vlans);
2439
2440         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2441
2442         return err;
2443 }
2444
2445 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2446 {
2447         u32 enable_bit = 0;
2448         int err;
2449
2450         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2451                                   MAC_ADDR_TYPE_VLAN, vid);
2452         if (err)
2453                 netif_err(qdev, ifup, qdev->ndev,
2454                           "Failed to clear vlan address.\n");
2455         return err;
2456 }
2457
2458 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2459 {
2460         struct ql_adapter *qdev = netdev_priv(ndev);
2461         int status;
2462         int err;
2463
2464         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2465         if (status)
2466                 return status;
2467
2468         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2469         clear_bit(vid, qdev->active_vlans);
2470
2471         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2472
2473         return err;
2474 }
2475
2476 static void qlge_restore_vlan(struct ql_adapter *qdev)
2477 {
2478         int status;
2479         u16 vid;
2480
2481         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2482         if (status)
2483                 return;
2484
2485         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2486                 __qlge_vlan_rx_add_vid(qdev, vid);
2487
2488         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2489 }
2490
2491 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2492 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2493 {
2494         struct rx_ring *rx_ring = dev_id;
2495         napi_schedule(&rx_ring->napi);
2496         return IRQ_HANDLED;
2497 }
2498
2499 /* This handles a fatal error, MPI activity, and the default
2500  * rx_ring in an MSI-X multiple vector environment.
2501  * In MSI/Legacy environment it also process the rest of
2502  * the rx_rings.
2503  */
2504 static irqreturn_t qlge_isr(int irq, void *dev_id)
2505 {
2506         struct rx_ring *rx_ring = dev_id;
2507         struct ql_adapter *qdev = rx_ring->qdev;
2508         struct intr_context *intr_context = &qdev->intr_context[0];
2509         u32 var;
2510         int work_done = 0;
2511
2512         spin_lock(&qdev->hw_lock);
2513         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2514                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2515                              "Shared Interrupt, Not ours!\n");
2516                 spin_unlock(&qdev->hw_lock);
2517                 return IRQ_NONE;
2518         }
2519         spin_unlock(&qdev->hw_lock);
2520
2521         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2522
2523         /*
2524          * Check for fatal error.
2525          */
2526         if (var & STS_FE) {
2527                 ql_queue_asic_error(qdev);
2528                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2529                 var = ql_read32(qdev, ERR_STS);
2530                 netdev_err(qdev->ndev, "Resetting chip. "
2531                                         "Error Status Register = 0x%x\n", var);
2532                 return IRQ_HANDLED;
2533         }
2534
2535         /*
2536          * Check MPI processor activity.
2537          */
2538         if ((var & STS_PI) &&
2539                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2540                 /*
2541                  * We've got an async event or mailbox completion.
2542                  * Handle it and clear the source of the interrupt.
2543                  */
2544                 netif_err(qdev, intr, qdev->ndev,
2545                           "Got MPI processor interrupt.\n");
2546                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2548                 queue_delayed_work_on(smp_processor_id(),
2549                                 qdev->workqueue, &qdev->mpi_work, 0);
2550                 work_done++;
2551         }
2552
2553         /*
2554          * Get the bit-mask that shows the active queues for this
2555          * pass.  Compare it to the queues that this irq services
2556          * and call napi if there's a match.
2557          */
2558         var = ql_read32(qdev, ISR1);
2559         if (var & intr_context->irq_mask) {
2560                 netif_info(qdev, intr, qdev->ndev,
2561                            "Waking handler for rx_ring[0].\n");
2562                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2563                 napi_schedule(&rx_ring->napi);
2564                 work_done++;
2565         }
2566         ql_enable_completion_interrupt(qdev, intr_context->intr);
2567         return work_done ? IRQ_HANDLED : IRQ_NONE;
2568 }
2569
2570 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2571 {
2572
2573         if (skb_is_gso(skb)) {
2574                 int err;
2575                 __be16 l3_proto = vlan_get_protocol(skb);
2576
2577                 err = skb_cow_head(skb, 0);
2578                 if (err < 0)
2579                         return err;
2580
2581                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2582                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2583                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2584                 mac_iocb_ptr->total_hdrs_len =
2585                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2586                 mac_iocb_ptr->net_trans_offset =
2587                     cpu_to_le16(skb_network_offset(skb) |
2588                                 skb_transport_offset(skb)
2589                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2590                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2591                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2592                 if (likely(l3_proto == htons(ETH_P_IP))) {
2593                         struct iphdr *iph = ip_hdr(skb);
2594                         iph->check = 0;
2595                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2596                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2597                                                                  iph->daddr, 0,
2598                                                                  IPPROTO_TCP,
2599                                                                  0);
2600                 } else if (l3_proto == htons(ETH_P_IPV6)) {
2601                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2602                         tcp_hdr(skb)->check =
2603                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2604                                              &ipv6_hdr(skb)->daddr,
2605                                              0, IPPROTO_TCP, 0);
2606                 }
2607                 return 1;
2608         }
2609         return 0;
2610 }
2611
2612 static void ql_hw_csum_setup(struct sk_buff *skb,
2613                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2614 {
2615         int len;
2616         struct iphdr *iph = ip_hdr(skb);
2617         __sum16 *check;
2618         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2619         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2620         mac_iocb_ptr->net_trans_offset =
2621                 cpu_to_le16(skb_network_offset(skb) |
2622                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2623
2624         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2625         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2626         if (likely(iph->protocol == IPPROTO_TCP)) {
2627                 check = &(tcp_hdr(skb)->check);
2628                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2629                 mac_iocb_ptr->total_hdrs_len =
2630                     cpu_to_le16(skb_transport_offset(skb) +
2631                                 (tcp_hdr(skb)->doff << 2));
2632         } else {
2633                 check = &(udp_hdr(skb)->check);
2634                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2635                 mac_iocb_ptr->total_hdrs_len =
2636                     cpu_to_le16(skb_transport_offset(skb) +
2637                                 sizeof(struct udphdr));
2638         }
2639         *check = ~csum_tcpudp_magic(iph->saddr,
2640                                     iph->daddr, len, iph->protocol, 0);
2641 }
2642
2643 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2644 {
2645         struct tx_ring_desc *tx_ring_desc;
2646         struct ob_mac_iocb_req *mac_iocb_ptr;
2647         struct ql_adapter *qdev = netdev_priv(ndev);
2648         int tso;
2649         struct tx_ring *tx_ring;
2650         u32 tx_ring_idx = (u32) skb->queue_mapping;
2651
2652         tx_ring = &qdev->tx_ring[tx_ring_idx];
2653
2654         if (skb_padto(skb, ETH_ZLEN))
2655                 return NETDEV_TX_OK;
2656
2657         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2658                 netif_info(qdev, tx_queued, qdev->ndev,
2659                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2660                            __func__, tx_ring_idx);
2661                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2662                 tx_ring->tx_errors++;
2663                 return NETDEV_TX_BUSY;
2664         }
2665         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2666         mac_iocb_ptr = tx_ring_desc->queue_entry;
2667         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2668
2669         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2670         mac_iocb_ptr->tid = tx_ring_desc->index;
2671         /* We use the upper 32-bits to store the tx queue for this IO.
2672          * When we get the completion we can use it to establish the context.
2673          */
2674         mac_iocb_ptr->txq_idx = tx_ring_idx;
2675         tx_ring_desc->skb = skb;
2676
2677         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2678
2679         if (skb_vlan_tag_present(skb)) {
2680                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2681                              "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2682                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2683                 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2684         }
2685         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2686         if (tso < 0) {
2687                 dev_kfree_skb_any(skb);
2688                 return NETDEV_TX_OK;
2689         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2690                 ql_hw_csum_setup(skb,
2691                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2692         }
2693         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2694                         NETDEV_TX_OK) {
2695                 netif_err(qdev, tx_queued, qdev->ndev,
2696                           "Could not map the segments.\n");
2697                 tx_ring->tx_errors++;
2698                 return NETDEV_TX_BUSY;
2699         }
2700         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2701         tx_ring->prod_idx++;
2702         if (tx_ring->prod_idx == tx_ring->wq_len)
2703                 tx_ring->prod_idx = 0;
2704         wmb();
2705
2706         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2707         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2708                      "tx queued, slot %d, len %d\n",
2709                      tx_ring->prod_idx, skb->len);
2710
2711         atomic_dec(&tx_ring->tx_count);
2712
2713         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2714                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2715                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2716                         /*
2717                          * The queue got stopped because the tx_ring was full.
2718                          * Wake it up, because it's now at least 25% empty.
2719                          */
2720                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2721         }
2722         return NETDEV_TX_OK;
2723 }
2724
2725
2726 static void ql_free_shadow_space(struct ql_adapter *qdev)
2727 {
2728         if (qdev->rx_ring_shadow_reg_area) {
2729                 pci_free_consistent(qdev->pdev,
2730                                     PAGE_SIZE,
2731                                     qdev->rx_ring_shadow_reg_area,
2732                                     qdev->rx_ring_shadow_reg_dma);
2733                 qdev->rx_ring_shadow_reg_area = NULL;
2734         }
2735         if (qdev->tx_ring_shadow_reg_area) {
2736                 pci_free_consistent(qdev->pdev,
2737                                     PAGE_SIZE,
2738                                     qdev->tx_ring_shadow_reg_area,
2739                                     qdev->tx_ring_shadow_reg_dma);
2740                 qdev->tx_ring_shadow_reg_area = NULL;
2741         }
2742 }
2743
2744 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2745 {
2746         qdev->rx_ring_shadow_reg_area =
2747                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2748                                       &qdev->rx_ring_shadow_reg_dma);
2749         if (qdev->rx_ring_shadow_reg_area == NULL) {
2750                 netif_err(qdev, ifup, qdev->ndev,
2751                           "Allocation of RX shadow space failed.\n");
2752                 return -ENOMEM;
2753         }
2754
2755         qdev->tx_ring_shadow_reg_area =
2756                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2757                                       &qdev->tx_ring_shadow_reg_dma);
2758         if (qdev->tx_ring_shadow_reg_area == NULL) {
2759                 netif_err(qdev, ifup, qdev->ndev,
2760                           "Allocation of TX shadow space failed.\n");
2761                 goto err_wqp_sh_area;
2762         }
2763         return 0;
2764
2765 err_wqp_sh_area:
2766         pci_free_consistent(qdev->pdev,
2767                             PAGE_SIZE,
2768                             qdev->rx_ring_shadow_reg_area,
2769                             qdev->rx_ring_shadow_reg_dma);
2770         return -ENOMEM;
2771 }
2772
2773 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2774 {
2775         struct tx_ring_desc *tx_ring_desc;
2776         int i;
2777         struct ob_mac_iocb_req *mac_iocb_ptr;
2778
2779         mac_iocb_ptr = tx_ring->wq_base;
2780         tx_ring_desc = tx_ring->q;
2781         for (i = 0; i < tx_ring->wq_len; i++) {
2782                 tx_ring_desc->index = i;
2783                 tx_ring_desc->skb = NULL;
2784                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2785                 mac_iocb_ptr++;
2786                 tx_ring_desc++;
2787         }
2788         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2789 }
2790
2791 static void ql_free_tx_resources(struct ql_adapter *qdev,
2792                                  struct tx_ring *tx_ring)
2793 {
2794         if (tx_ring->wq_base) {
2795                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2796                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2797                 tx_ring->wq_base = NULL;
2798         }
2799         kfree(tx_ring->q);
2800         tx_ring->q = NULL;
2801 }
2802
2803 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2804                                  struct tx_ring *tx_ring)
2805 {
2806         tx_ring->wq_base =
2807             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2808                                  &tx_ring->wq_base_dma);
2809
2810         if ((tx_ring->wq_base == NULL) ||
2811             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2812                 goto pci_alloc_err;
2813
2814         tx_ring->q =
2815             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2816         if (tx_ring->q == NULL)
2817                 goto err;
2818
2819         return 0;
2820 err:
2821         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2822                             tx_ring->wq_base, tx_ring->wq_base_dma);
2823         tx_ring->wq_base = NULL;
2824 pci_alloc_err:
2825         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2826         return -ENOMEM;
2827 }
2828
2829 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2830 {
2831         struct bq_desc *lbq_desc;
2832
2833         uint32_t  curr_idx, clean_idx;
2834
2835         curr_idx = rx_ring->lbq_curr_idx;
2836         clean_idx = rx_ring->lbq_clean_idx;
2837         while (curr_idx != clean_idx) {
2838                 lbq_desc = &rx_ring->lbq[curr_idx];
2839
2840                 if (lbq_desc->p.pg_chunk.last_flag) {
2841                         pci_unmap_page(qdev->pdev,
2842                                 lbq_desc->p.pg_chunk.map,
2843                                 ql_lbq_block_size(qdev),
2844                                        PCI_DMA_FROMDEVICE);
2845                         lbq_desc->p.pg_chunk.last_flag = 0;
2846                 }
2847
2848                 put_page(lbq_desc->p.pg_chunk.page);
2849                 lbq_desc->p.pg_chunk.page = NULL;
2850
2851                 if (++curr_idx == rx_ring->lbq_len)
2852                         curr_idx = 0;
2853
2854         }
2855         if (rx_ring->pg_chunk.page) {
2856                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2857                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2858                 put_page(rx_ring->pg_chunk.page);
2859                 rx_ring->pg_chunk.page = NULL;
2860         }
2861 }
2862
2863 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2864 {
2865         int i;
2866         struct bq_desc *sbq_desc;
2867
2868         for (i = 0; i < rx_ring->sbq_len; i++) {
2869                 sbq_desc = &rx_ring->sbq[i];
2870                 if (sbq_desc == NULL) {
2871                         netif_err(qdev, ifup, qdev->ndev,
2872                                   "sbq_desc %d is NULL.\n", i);
2873                         return;
2874                 }
2875                 if (sbq_desc->p.skb) {
2876                         pci_unmap_single(qdev->pdev,
2877                                          dma_unmap_addr(sbq_desc, mapaddr),
2878                                          dma_unmap_len(sbq_desc, maplen),
2879                                          PCI_DMA_FROMDEVICE);
2880                         dev_kfree_skb(sbq_desc->p.skb);
2881                         sbq_desc->p.skb = NULL;
2882                 }
2883         }
2884 }
2885
2886 /* Free all large and small rx buffers associated
2887  * with the completion queues for this device.
2888  */
2889 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2890 {
2891         int i;
2892         struct rx_ring *rx_ring;
2893
2894         for (i = 0; i < qdev->rx_ring_count; i++) {
2895                 rx_ring = &qdev->rx_ring[i];
2896                 if (rx_ring->lbq)
2897                         ql_free_lbq_buffers(qdev, rx_ring);
2898                 if (rx_ring->sbq)
2899                         ql_free_sbq_buffers(qdev, rx_ring);
2900         }
2901 }
2902
2903 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2904 {
2905         struct rx_ring *rx_ring;
2906         int i;
2907
2908         for (i = 0; i < qdev->rx_ring_count; i++) {
2909                 rx_ring = &qdev->rx_ring[i];
2910                 if (rx_ring->type != TX_Q)
2911                         ql_update_buffer_queues(qdev, rx_ring);
2912         }
2913 }
2914
2915 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2916                                 struct rx_ring *rx_ring)
2917 {
2918         int i;
2919         struct bq_desc *lbq_desc;
2920         __le64 *bq = rx_ring->lbq_base;
2921
2922         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2923         for (i = 0; i < rx_ring->lbq_len; i++) {
2924                 lbq_desc = &rx_ring->lbq[i];
2925                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2926                 lbq_desc->index = i;
2927                 lbq_desc->addr = bq;
2928                 bq++;
2929         }
2930 }
2931
2932 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2933                                 struct rx_ring *rx_ring)
2934 {
2935         int i;
2936         struct bq_desc *sbq_desc;
2937         __le64 *bq = rx_ring->sbq_base;
2938
2939         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2940         for (i = 0; i < rx_ring->sbq_len; i++) {
2941                 sbq_desc = &rx_ring->sbq[i];
2942                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2943                 sbq_desc->index = i;
2944                 sbq_desc->addr = bq;
2945                 bq++;
2946         }
2947 }
2948
2949 static void ql_free_rx_resources(struct ql_adapter *qdev,
2950                                  struct rx_ring *rx_ring)
2951 {
2952         /* Free the small buffer queue. */
2953         if (rx_ring->sbq_base) {
2954                 pci_free_consistent(qdev->pdev,
2955                                     rx_ring->sbq_size,
2956                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2957                 rx_ring->sbq_base = NULL;
2958         }
2959
2960         /* Free the small buffer queue control blocks. */
2961         kfree(rx_ring->sbq);
2962         rx_ring->sbq = NULL;
2963
2964         /* Free the large buffer queue. */
2965         if (rx_ring->lbq_base) {
2966                 pci_free_consistent(qdev->pdev,
2967                                     rx_ring->lbq_size,
2968                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2969                 rx_ring->lbq_base = NULL;
2970         }
2971
2972         /* Free the large buffer queue control blocks. */
2973         kfree(rx_ring->lbq);
2974         rx_ring->lbq = NULL;
2975
2976         /* Free the rx queue. */
2977         if (rx_ring->cq_base) {
2978                 pci_free_consistent(qdev->pdev,
2979                                     rx_ring->cq_size,
2980                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2981                 rx_ring->cq_base = NULL;
2982         }
2983 }
2984
2985 /* Allocate queues and buffers for this completions queue based
2986  * on the values in the parameter structure. */
2987 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2988                                  struct rx_ring *rx_ring)
2989 {
2990
2991         /*
2992          * Allocate the completion queue for this rx_ring.
2993          */
2994         rx_ring->cq_base =
2995             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2996                                  &rx_ring->cq_base_dma);
2997
2998         if (rx_ring->cq_base == NULL) {
2999                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
3000                 return -ENOMEM;
3001         }
3002
3003         if (rx_ring->sbq_len) {
3004                 /*
3005                  * Allocate small buffer queue.
3006                  */
3007                 rx_ring->sbq_base =
3008                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3009                                          &rx_ring->sbq_base_dma);
3010
3011                 if (rx_ring->sbq_base == NULL) {
3012                         netif_err(qdev, ifup, qdev->ndev,
3013                                   "Small buffer queue allocation failed.\n");
3014                         goto err_mem;
3015                 }
3016
3017                 /*
3018                  * Allocate small buffer queue control blocks.
3019                  */
3020                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3021                                              sizeof(struct bq_desc),
3022                                              GFP_KERNEL);
3023                 if (rx_ring->sbq == NULL)
3024                         goto err_mem;
3025
3026                 ql_init_sbq_ring(qdev, rx_ring);
3027         }
3028
3029         if (rx_ring->lbq_len) {
3030                 /*
3031                  * Allocate large buffer queue.
3032                  */
3033                 rx_ring->lbq_base =
3034                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3035                                          &rx_ring->lbq_base_dma);
3036
3037                 if (rx_ring->lbq_base == NULL) {
3038                         netif_err(qdev, ifup, qdev->ndev,
3039                                   "Large buffer queue allocation failed.\n");
3040                         goto err_mem;
3041                 }
3042                 /*
3043                  * Allocate large buffer queue control blocks.
3044                  */
3045                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3046                                              sizeof(struct bq_desc),
3047                                              GFP_KERNEL);
3048                 if (rx_ring->lbq == NULL)
3049                         goto err_mem;
3050
3051                 ql_init_lbq_ring(qdev, rx_ring);
3052         }
3053
3054         return 0;
3055
3056 err_mem:
3057         ql_free_rx_resources(qdev, rx_ring);
3058         return -ENOMEM;
3059 }
3060
3061 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3062 {
3063         struct tx_ring *tx_ring;
3064         struct tx_ring_desc *tx_ring_desc;
3065         int i, j;
3066
3067         /*
3068          * Loop through all queues and free
3069          * any resources.
3070          */
3071         for (j = 0; j < qdev->tx_ring_count; j++) {
3072                 tx_ring = &qdev->tx_ring[j];
3073                 for (i = 0; i < tx_ring->wq_len; i++) {
3074                         tx_ring_desc = &tx_ring->q[i];
3075                         if (tx_ring_desc && tx_ring_desc->skb) {
3076                                 netif_err(qdev, ifdown, qdev->ndev,
3077                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3078                                           tx_ring_desc->skb, j,
3079                                           tx_ring_desc->index);
3080                                 ql_unmap_send(qdev, tx_ring_desc,
3081                                               tx_ring_desc->map_cnt);
3082                                 dev_kfree_skb(tx_ring_desc->skb);
3083                                 tx_ring_desc->skb = NULL;
3084                         }
3085                 }
3086         }
3087 }
3088
3089 static void ql_free_mem_resources(struct ql_adapter *qdev)
3090 {
3091         int i;
3092
3093         for (i = 0; i < qdev->tx_ring_count; i++)
3094                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3095         for (i = 0; i < qdev->rx_ring_count; i++)
3096                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3097         ql_free_shadow_space(qdev);
3098 }
3099
3100 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3101 {
3102         int i;
3103
3104         /* Allocate space for our shadow registers and such. */
3105         if (ql_alloc_shadow_space(qdev))
3106                 return -ENOMEM;
3107
3108         for (i = 0; i < qdev->rx_ring_count; i++) {
3109                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3110                         netif_err(qdev, ifup, qdev->ndev,
3111                                   "RX resource allocation failed.\n");
3112                         goto err_mem;
3113                 }
3114         }
3115         /* Allocate tx queue resources */
3116         for (i = 0; i < qdev->tx_ring_count; i++) {
3117                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3118                         netif_err(qdev, ifup, qdev->ndev,
3119                                   "TX resource allocation failed.\n");
3120                         goto err_mem;
3121                 }
3122         }
3123         return 0;
3124
3125 err_mem:
3126         ql_free_mem_resources(qdev);
3127         return -ENOMEM;
3128 }
3129
3130 /* Set up the rx ring control block and pass it to the chip.
3131  * The control block is defined as
3132  * "Completion Queue Initialization Control Block", or cqicb.
3133  */
3134 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3135 {
3136         struct cqicb *cqicb = &rx_ring->cqicb;
3137         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3138                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3139         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3140                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3141         void __iomem *doorbell_area =
3142             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3143         int err = 0;
3144         u16 bq_len;
3145         u64 tmp;
3146         __le64 *base_indirect_ptr;
3147         int page_entries;
3148
3149         /* Set up the shadow registers for this ring. */
3150         rx_ring->prod_idx_sh_reg = shadow_reg;
3151         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3152         *rx_ring->prod_idx_sh_reg = 0;
3153         shadow_reg += sizeof(u64);
3154         shadow_reg_dma += sizeof(u64);
3155         rx_ring->lbq_base_indirect = shadow_reg;
3156         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3157         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3158         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3159         rx_ring->sbq_base_indirect = shadow_reg;
3160         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3161
3162         /* PCI doorbell mem area + 0x00 for consumer index register */
3163         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3164         rx_ring->cnsmr_idx = 0;
3165         rx_ring->curr_entry = rx_ring->cq_base;
3166
3167         /* PCI doorbell mem area + 0x04 for valid register */
3168         rx_ring->valid_db_reg = doorbell_area + 0x04;
3169
3170         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3171         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3172
3173         /* PCI doorbell mem area + 0x1c */
3174         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3175
3176         memset((void *)cqicb, 0, sizeof(struct cqicb));
3177         cqicb->msix_vect = rx_ring->irq;
3178
3179         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3180         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3181
3182         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3183
3184         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3185
3186         /*
3187          * Set up the control block load flags.
3188          */
3189         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3190             FLAGS_LV |          /* Load MSI-X vector */
3191             FLAGS_LI;           /* Load irq delay values */
3192         if (rx_ring->lbq_len) {
3193                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3194                 tmp = (u64)rx_ring->lbq_base_dma;
3195                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3196                 page_entries = 0;
3197                 do {
3198                         *base_indirect_ptr = cpu_to_le64(tmp);
3199                         tmp += DB_PAGE_SIZE;
3200                         base_indirect_ptr++;
3201                         page_entries++;
3202                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3203                 cqicb->lbq_addr =
3204                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3205                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3206                         (u16) rx_ring->lbq_buf_size;
3207                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3208                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3209                         (u16) rx_ring->lbq_len;
3210                 cqicb->lbq_len = cpu_to_le16(bq_len);
3211                 rx_ring->lbq_prod_idx = 0;
3212                 rx_ring->lbq_curr_idx = 0;
3213                 rx_ring->lbq_clean_idx = 0;
3214                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3215         }
3216         if (rx_ring->sbq_len) {
3217                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3218                 tmp = (u64)rx_ring->sbq_base_dma;
3219                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3220                 page_entries = 0;
3221                 do {
3222                         *base_indirect_ptr = cpu_to_le64(tmp);
3223                         tmp += DB_PAGE_SIZE;
3224                         base_indirect_ptr++;
3225                         page_entries++;
3226                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3227                 cqicb->sbq_addr =
3228                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3229                 cqicb->sbq_buf_size =
3230                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3231                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3232                         (u16) rx_ring->sbq_len;
3233                 cqicb->sbq_len = cpu_to_le16(bq_len);
3234                 rx_ring->sbq_prod_idx = 0;
3235                 rx_ring->sbq_curr_idx = 0;
3236                 rx_ring->sbq_clean_idx = 0;
3237                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3238         }
3239         switch (rx_ring->type) {
3240         case TX_Q:
3241                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3242                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3243                 break;
3244         case RX_Q:
3245                 /* Inbound completion handling rx_rings run in
3246                  * separate NAPI contexts.
3247                  */
3248                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3249                                64);
3250                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3251                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3252                 break;
3253         default:
3254                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3255                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3256         }
3257         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3258                            CFG_LCQ, rx_ring->cq_id);
3259         if (err) {
3260                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3261                 return err;
3262         }
3263         return err;
3264 }
3265
3266 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3267 {
3268         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3269         void __iomem *doorbell_area =
3270             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3271         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3272             (tx_ring->wq_id * sizeof(u64));
3273         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3274             (tx_ring->wq_id * sizeof(u64));
3275         int err = 0;
3276
3277         /*
3278          * Assign doorbell registers for this tx_ring.
3279          */
3280         /* TX PCI doorbell mem area for tx producer index */
3281         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3282         tx_ring->prod_idx = 0;
3283         /* TX PCI doorbell mem area + 0x04 */
3284         tx_ring->valid_db_reg = doorbell_area + 0x04;
3285
3286         /*
3287          * Assign shadow registers for this tx_ring.
3288          */
3289         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3290         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3291
3292         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3293         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3294                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3295         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3296         wqicb->rid = 0;
3297         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3298
3299         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3300
3301         ql_init_tx_ring(qdev, tx_ring);
3302
3303         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3304                            (u16) tx_ring->wq_id);
3305         if (err) {
3306                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3307                 return err;
3308         }
3309         return err;
3310 }
3311
3312 static void ql_disable_msix(struct ql_adapter *qdev)
3313 {
3314         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3315                 pci_disable_msix(qdev->pdev);
3316                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3317                 kfree(qdev->msi_x_entry);
3318                 qdev->msi_x_entry = NULL;
3319         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3320                 pci_disable_msi(qdev->pdev);
3321                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3322         }
3323 }
3324
3325 /* We start by trying to get the number of vectors
3326  * stored in qdev->intr_count. If we don't get that
3327  * many then we reduce the count and try again.
3328  */
3329 static void ql_enable_msix(struct ql_adapter *qdev)
3330 {
3331         int i, err;
3332
3333         /* Get the MSIX vectors. */
3334         if (qlge_irq_type == MSIX_IRQ) {
3335                 /* Try to alloc space for the msix struct,
3336                  * if it fails then go to MSI/legacy.
3337                  */
3338                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3339                                             sizeof(struct msix_entry),
3340                                             GFP_KERNEL);
3341                 if (!qdev->msi_x_entry) {
3342                         qlge_irq_type = MSI_IRQ;
3343                         goto msi;
3344                 }
3345
3346                 for (i = 0; i < qdev->intr_count; i++)
3347                         qdev->msi_x_entry[i].entry = i;
3348
3349                 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3350                                             1, qdev->intr_count);
3351                 if (err < 0) {
3352                         kfree(qdev->msi_x_entry);
3353                         qdev->msi_x_entry = NULL;
3354                         netif_warn(qdev, ifup, qdev->ndev,
3355                                    "MSI-X Enable failed, trying MSI.\n");
3356                         qlge_irq_type = MSI_IRQ;
3357                 } else {
3358                         qdev->intr_count = err;
3359                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3360                         netif_info(qdev, ifup, qdev->ndev,
3361                                    "MSI-X Enabled, got %d vectors.\n",
3362                                    qdev->intr_count);
3363                         return;
3364                 }
3365         }
3366 msi:
3367         qdev->intr_count = 1;
3368         if (qlge_irq_type == MSI_IRQ) {
3369                 if (!pci_enable_msi(qdev->pdev)) {
3370                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3371                         netif_info(qdev, ifup, qdev->ndev,
3372                                    "Running with MSI interrupts.\n");
3373                         return;
3374                 }
3375         }
3376         qlge_irq_type = LEG_IRQ;
3377         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3378                      "Running with legacy interrupts.\n");
3379 }
3380
3381 /* Each vector services 1 RSS ring and and 1 or more
3382  * TX completion rings.  This function loops through
3383  * the TX completion rings and assigns the vector that
3384  * will service it.  An example would be if there are
3385  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3386  * This would mean that vector 0 would service RSS ring 0
3387  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3388  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3389  */
3390 static void ql_set_tx_vect(struct ql_adapter *qdev)
3391 {
3392         int i, j, vect;
3393         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3394
3395         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3396                 /* Assign irq vectors to TX rx_rings.*/
3397                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3398                                          i < qdev->rx_ring_count; i++) {
3399                         if (j == tx_rings_per_vector) {
3400                                 vect++;
3401                                 j = 0;
3402                         }
3403                         qdev->rx_ring[i].irq = vect;
3404                         j++;
3405                 }
3406         } else {
3407                 /* For single vector all rings have an irq
3408                  * of zero.
3409                  */
3410                 for (i = 0; i < qdev->rx_ring_count; i++)
3411                         qdev->rx_ring[i].irq = 0;
3412         }
3413 }
3414
3415 /* Set the interrupt mask for this vector.  Each vector
3416  * will service 1 RSS ring and 1 or more TX completion
3417  * rings.  This function sets up a bit mask per vector
3418  * that indicates which rings it services.
3419  */
3420 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3421 {
3422         int j, vect = ctx->intr;
3423         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3424
3425         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3426                 /* Add the RSS ring serviced by this vector
3427                  * to the mask.
3428                  */
3429                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3430                 /* Add the TX ring(s) serviced by this vector
3431                  * to the mask. */
3432                 for (j = 0; j < tx_rings_per_vector; j++) {
3433                         ctx->irq_mask |=
3434                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3435                         (vect * tx_rings_per_vector) + j].cq_id);
3436                 }
3437         } else {
3438                 /* For single vector we just shift each queue's
3439                  * ID into the mask.
3440                  */
3441                 for (j = 0; j < qdev->rx_ring_count; j++)
3442                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3443         }
3444 }
3445
3446 /*
3447  * Here we build the intr_context structures based on
3448  * our rx_ring count and intr vector count.
3449  * The intr_context structure is used to hook each vector
3450  * to possibly different handlers.
3451  */
3452 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3453 {
3454         int i = 0;
3455         struct intr_context *intr_context = &qdev->intr_context[0];
3456
3457         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3458                 /* Each rx_ring has it's
3459                  * own intr_context since we have separate
3460                  * vectors for each queue.
3461                  */
3462                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3463                         qdev->rx_ring[i].irq = i;
3464                         intr_context->intr = i;
3465                         intr_context->qdev = qdev;
3466                         /* Set up this vector's bit-mask that indicates
3467                          * which queues it services.
3468                          */
3469                         ql_set_irq_mask(qdev, intr_context);
3470                         /*
3471                          * We set up each vectors enable/disable/read bits so
3472                          * there's no bit/mask calculations in the critical path.
3473                          */
3474                         intr_context->intr_en_mask =
3475                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3476                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3477                             | i;
3478                         intr_context->intr_dis_mask =
3479                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3480                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3481                             INTR_EN_IHD | i;
3482                         intr_context->intr_read_mask =
3483                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3484                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3485                             i;
3486                         if (i == 0) {
3487                                 /* The first vector/queue handles
3488                                  * broadcast/multicast, fatal errors,
3489                                  * and firmware events.  This in addition
3490                                  * to normal inbound NAPI processing.
3491                                  */
3492                                 intr_context->handler = qlge_isr;
3493                                 sprintf(intr_context->name, "%s-rx-%d",
3494                                         qdev->ndev->name, i);
3495                         } else {
3496                                 /*
3497                                  * Inbound queues handle unicast frames only.
3498                                  */
3499                                 intr_context->handler = qlge_msix_rx_isr;
3500                                 sprintf(intr_context->name, "%s-rx-%d",
3501                                         qdev->ndev->name, i);
3502                         }
3503                 }
3504         } else {
3505                 /*
3506                  * All rx_rings use the same intr_context since
3507                  * there is only one vector.
3508                  */
3509                 intr_context->intr = 0;
3510                 intr_context->qdev = qdev;
3511                 /*
3512                  * We set up each vectors enable/disable/read bits so
3513                  * there's no bit/mask calculations in the critical path.
3514                  */
3515                 intr_context->intr_en_mask =
3516                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3517                 intr_context->intr_dis_mask =
3518                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3519                     INTR_EN_TYPE_DISABLE;
3520                 intr_context->intr_read_mask =
3521                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3522                 /*
3523                  * Single interrupt means one handler for all rings.
3524                  */
3525                 intr_context->handler = qlge_isr;
3526                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3527                 /* Set up this vector's bit-mask that indicates
3528                  * which queues it services. In this case there is
3529                  * a single vector so it will service all RSS and
3530                  * TX completion rings.
3531                  */
3532                 ql_set_irq_mask(qdev, intr_context);
3533         }
3534         /* Tell the TX completion rings which MSIx vector
3535          * they will be using.
3536          */
3537         ql_set_tx_vect(qdev);
3538 }
3539
3540 static void ql_free_irq(struct ql_adapter *qdev)
3541 {
3542         int i;
3543         struct intr_context *intr_context = &qdev->intr_context[0];
3544
3545         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3546                 if (intr_context->hooked) {
3547                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3548                                 free_irq(qdev->msi_x_entry[i].vector,
3549                                          &qdev->rx_ring[i]);
3550                         } else {
3551                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3552                         }
3553                 }
3554         }
3555         ql_disable_msix(qdev);
3556 }
3557
3558 static int ql_request_irq(struct ql_adapter *qdev)
3559 {
3560         int i;
3561         int status = 0;
3562         struct pci_dev *pdev = qdev->pdev;
3563         struct intr_context *intr_context = &qdev->intr_context[0];
3564
3565         ql_resolve_queues_to_irqs(qdev);
3566
3567         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3568                 atomic_set(&intr_context->irq_cnt, 0);
3569                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3570                         status = request_irq(qdev->msi_x_entry[i].vector,
3571                                              intr_context->handler,
3572                                              0,
3573                                              intr_context->name,
3574                                              &qdev->rx_ring[i]);
3575                         if (status) {
3576                                 netif_err(qdev, ifup, qdev->ndev,
3577                                           "Failed request for MSIX interrupt %d.\n",
3578                                           i);
3579                                 goto err_irq;
3580                         }
3581                 } else {
3582                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3583                                      "trying msi or legacy interrupts.\n");
3584                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3585                                      "%s: irq = %d.\n", __func__, pdev->irq);
3586                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3587                                      "%s: context->name = %s.\n", __func__,
3588                                      intr_context->name);
3589                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3590                                      "%s: dev_id = 0x%p.\n", __func__,
3591                                      &qdev->rx_ring[0]);
3592                         status =
3593                             request_irq(pdev->irq, qlge_isr,
3594                                         test_bit(QL_MSI_ENABLED,
3595                                                  &qdev->
3596                                                  flags) ? 0 : IRQF_SHARED,
3597                                         intr_context->name, &qdev->rx_ring[0]);
3598                         if (status)
3599                                 goto err_irq;
3600
3601                         netif_err(qdev, ifup, qdev->ndev,
3602                                   "Hooked intr %d, queue type %s, with name %s.\n",
3603                                   i,
3604                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3605                                   "DEFAULT_Q" :
3606                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3607                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3608                                   intr_context->name);
3609                 }
3610                 intr_context->hooked = 1;
3611         }
3612         return status;
3613 err_irq:
3614         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3615         ql_free_irq(qdev);
3616         return status;
3617 }
3618
3619 static int ql_start_rss(struct ql_adapter *qdev)
3620 {
3621         static const u8 init_hash_seed[] = {
3622                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3623                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3624                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3625                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3626                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3627         };
3628         struct ricb *ricb = &qdev->ricb;
3629         int status = 0;
3630         int i;
3631         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3632
3633         memset((void *)ricb, 0, sizeof(*ricb));
3634
3635         ricb->base_cq = RSS_L4K;
3636         ricb->flags =
3637                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3638         ricb->mask = cpu_to_le16((u16)(0x3ff));
3639
3640         /*
3641          * Fill out the Indirection Table.
3642          */
3643         for (i = 0; i < 1024; i++)
3644                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3645
3646         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3647         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3648
3649         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3650         if (status) {
3651                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3652                 return status;
3653         }
3654         return status;
3655 }
3656
3657 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3658 {
3659         int i, status = 0;
3660
3661         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3662         if (status)
3663                 return status;
3664         /* Clear all the entries in the routing table. */
3665         for (i = 0; i < 16; i++) {
3666                 status = ql_set_routing_reg(qdev, i, 0, 0);
3667                 if (status) {
3668                         netif_err(qdev, ifup, qdev->ndev,
3669                                   "Failed to init routing register for CAM packets.\n");
3670                         break;
3671                 }
3672         }
3673         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3674         return status;
3675 }
3676
3677 /* Initialize the frame-to-queue routing. */
3678 static int ql_route_initialize(struct ql_adapter *qdev)
3679 {
3680         int status = 0;
3681
3682         /* Clear all the entries in the routing table. */
3683         status = ql_clear_routing_entries(qdev);
3684         if (status)
3685                 return status;
3686
3687         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3688         if (status)
3689                 return status;
3690
3691         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3692                                                 RT_IDX_IP_CSUM_ERR, 1);
3693         if (status) {
3694                 netif_err(qdev, ifup, qdev->ndev,
3695                         "Failed to init routing register "
3696                         "for IP CSUM error packets.\n");
3697                 goto exit;
3698         }
3699         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3700                                                 RT_IDX_TU_CSUM_ERR, 1);
3701         if (status) {
3702                 netif_err(qdev, ifup, qdev->ndev,
3703                         "Failed to init routing register "
3704                         "for TCP/UDP CSUM error packets.\n");
3705                 goto exit;
3706         }
3707         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3708         if (status) {
3709                 netif_err(qdev, ifup, qdev->ndev,
3710                           "Failed to init routing register for broadcast packets.\n");
3711                 goto exit;
3712         }
3713         /* If we have more than one inbound queue, then turn on RSS in the
3714          * routing block.
3715          */
3716         if (qdev->rss_ring_count > 1) {
3717                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3718                                         RT_IDX_RSS_MATCH, 1);
3719                 if (status) {
3720                         netif_err(qdev, ifup, qdev->ndev,
3721                                   "Failed to init routing register for MATCH RSS packets.\n");
3722                         goto exit;
3723                 }
3724         }
3725
3726         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3727                                     RT_IDX_CAM_HIT, 1);
3728         if (status)
3729                 netif_err(qdev, ifup, qdev->ndev,
3730                           "Failed to init routing register for CAM packets.\n");
3731 exit:
3732         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3733         return status;
3734 }
3735
3736 int ql_cam_route_initialize(struct ql_adapter *qdev)
3737 {
3738         int status, set;
3739
3740         /* If check if the link is up and use to
3741          * determine if we are setting or clearing
3742          * the MAC address in the CAM.
3743          */
3744         set = ql_read32(qdev, STS);
3745         set &= qdev->port_link_up;
3746         status = ql_set_mac_addr(qdev, set);
3747         if (status) {
3748                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3749                 return status;
3750         }
3751
3752         status = ql_route_initialize(qdev);
3753         if (status)
3754                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3755
3756         return status;
3757 }
3758
3759 static int ql_adapter_initialize(struct ql_adapter *qdev)
3760 {
3761         u32 value, mask;
3762         int i;
3763         int status = 0;
3764
3765         /*
3766          * Set up the System register to halt on errors.
3767          */
3768         value = SYS_EFE | SYS_FAE;
3769         mask = value << 16;
3770         ql_write32(qdev, SYS, mask | value);
3771
3772         /* Set the default queue, and VLAN behavior. */
3773         value = NIC_RCV_CFG_DFQ;
3774         mask = NIC_RCV_CFG_DFQ_MASK;
3775         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3776                 value |= NIC_RCV_CFG_RV;
3777                 mask |= (NIC_RCV_CFG_RV << 16);
3778         }
3779         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3780
3781         /* Set the MPI interrupt to enabled. */
3782         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3783
3784         /* Enable the function, set pagesize, enable error checking. */
3785         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3786             FSC_EC | FSC_VM_PAGE_4K;
3787         value |= SPLT_SETTING;
3788
3789         /* Set/clear header splitting. */
3790         mask = FSC_VM_PAGESIZE_MASK |
3791             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3792         ql_write32(qdev, FSC, mask | value);
3793
3794         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3795
3796         /* Set RX packet routing to use port/pci function on which the
3797          * packet arrived on in addition to usual frame routing.
3798          * This is helpful on bonding where both interfaces can have
3799          * the same MAC address.
3800          */
3801         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3802         /* Reroute all packets to our Interface.
3803          * They may have been routed to MPI firmware
3804          * due to WOL.
3805          */
3806         value = ql_read32(qdev, MGMT_RCV_CFG);
3807         value &= ~MGMT_RCV_CFG_RM;
3808         mask = 0xffff0000;
3809
3810         /* Sticky reg needs clearing due to WOL. */
3811         ql_write32(qdev, MGMT_RCV_CFG, mask);
3812         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3813
3814         /* Default WOL is enable on Mezz cards */
3815         if (qdev->pdev->subsystem_device == 0x0068 ||
3816                         qdev->pdev->subsystem_device == 0x0180)
3817                 qdev->wol = WAKE_MAGIC;
3818
3819         /* Start up the rx queues. */
3820         for (i = 0; i < qdev->rx_ring_count; i++) {
3821                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3822                 if (status) {
3823                         netif_err(qdev, ifup, qdev->ndev,
3824                                   "Failed to start rx ring[%d].\n", i);
3825                         return status;
3826                 }
3827         }
3828
3829         /* If there is more than one inbound completion queue
3830          * then download a RICB to configure RSS.
3831          */
3832         if (qdev->rss_ring_count > 1) {
3833                 status = ql_start_rss(qdev);
3834                 if (status) {
3835                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3836                         return status;
3837                 }
3838         }
3839
3840         /* Start up the tx queues. */
3841         for (i = 0; i < qdev->tx_ring_count; i++) {
3842                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3843                 if (status) {
3844                         netif_err(qdev, ifup, qdev->ndev,
3845                                   "Failed to start tx ring[%d].\n", i);
3846                         return status;
3847                 }
3848         }
3849
3850         /* Initialize the port and set the max framesize. */
3851         status = qdev->nic_ops->port_initialize(qdev);
3852         if (status)
3853                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3854
3855         /* Set up the MAC address and frame routing filter. */
3856         status = ql_cam_route_initialize(qdev);
3857         if (status) {
3858                 netif_err(qdev, ifup, qdev->ndev,
3859                           "Failed to init CAM/Routing tables.\n");
3860                 return status;
3861         }
3862
3863         /* Start NAPI for the RSS queues. */
3864         for (i = 0; i < qdev->rss_ring_count; i++)
3865                 napi_enable(&qdev->rx_ring[i].napi);
3866
3867         return status;
3868 }
3869
3870 /* Issue soft reset to chip. */
3871 static int ql_adapter_reset(struct ql_adapter *qdev)
3872 {
3873         u32 value;
3874         int status = 0;
3875         unsigned long end_jiffies;
3876
3877         /* Clear all the entries in the routing table. */
3878         status = ql_clear_routing_entries(qdev);
3879         if (status) {
3880                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3881                 return status;
3882         }
3883
3884         /* Check if bit is set then skip the mailbox command and
3885          * clear the bit, else we are in normal reset process.
3886          */
3887         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3888                 /* Stop management traffic. */
3889                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3890
3891                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3892                 ql_wait_fifo_empty(qdev);
3893         } else
3894                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3895
3896         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3897
3898         end_jiffies = jiffies + usecs_to_jiffies(30);
3899         do {
3900                 value = ql_read32(qdev, RST_FO);
3901                 if ((value & RST_FO_FR) == 0)
3902                         break;
3903                 cpu_relax();
3904         } while (time_before(jiffies, end_jiffies));
3905
3906         if (value & RST_FO_FR) {
3907                 netif_err(qdev, ifdown, qdev->ndev,
3908                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3909                 status = -ETIMEDOUT;
3910         }
3911
3912         /* Resume management traffic. */
3913         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3914         return status;
3915 }
3916
3917 static void ql_display_dev_info(struct net_device *ndev)
3918 {
3919         struct ql_adapter *qdev = netdev_priv(ndev);
3920
3921         netif_info(qdev, probe, qdev->ndev,
3922                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3923                    "XG Roll = %d, XG Rev = %d.\n",
3924                    qdev->func,
3925                    qdev->port,
3926                    qdev->chip_rev_id & 0x0000000f,
3927                    qdev->chip_rev_id >> 4 & 0x0000000f,
3928                    qdev->chip_rev_id >> 8 & 0x0000000f,
3929                    qdev->chip_rev_id >> 12 & 0x0000000f);
3930         netif_info(qdev, probe, qdev->ndev,
3931                    "MAC address %pM\n", ndev->dev_addr);
3932 }
3933
3934 static int ql_wol(struct ql_adapter *qdev)
3935 {
3936         int status = 0;
3937         u32 wol = MB_WOL_DISABLE;
3938
3939         /* The CAM is still intact after a reset, but if we
3940          * are doing WOL, then we may need to program the
3941          * routing regs. We would also need to issue the mailbox
3942          * commands to instruct the MPI what to do per the ethtool
3943          * settings.
3944          */
3945
3946         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3947                         WAKE_MCAST | WAKE_BCAST)) {
3948                 netif_err(qdev, ifdown, qdev->ndev,
3949                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3950                           qdev->wol);
3951                 return -EINVAL;
3952         }
3953
3954         if (qdev->wol & WAKE_MAGIC) {
3955                 status = ql_mb_wol_set_magic(qdev, 1);
3956                 if (status) {
3957                         netif_err(qdev, ifdown, qdev->ndev,
3958                                   "Failed to set magic packet on %s.\n",
3959                                   qdev->ndev->name);
3960                         return status;
3961                 } else
3962                         netif_info(qdev, drv, qdev->ndev,
3963                                    "Enabled magic packet successfully on %s.\n",
3964                                    qdev->ndev->name);
3965
3966                 wol |= MB_WOL_MAGIC_PKT;
3967         }
3968
3969         if (qdev->wol) {
3970                 wol |= MB_WOL_MODE_ON;
3971                 status = ql_mb_wol_mode(qdev, wol);
3972                 netif_err(qdev, drv, qdev->ndev,
3973                           "WOL %s (wol code 0x%x) on %s\n",
3974                           (status == 0) ? "Successfully set" : "Failed",
3975                           wol, qdev->ndev->name);
3976         }
3977
3978         return status;
3979 }
3980
3981 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3982 {
3983
3984         /* Don't kill the reset worker thread if we
3985          * are in the process of recovery.
3986          */
3987         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3988                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3989         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3990         cancel_delayed_work_sync(&qdev->mpi_work);
3991         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3992         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3993         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3994 }
3995
3996 static int ql_adapter_down(struct ql_adapter *qdev)
3997 {
3998         int i, status = 0;
3999
4000         ql_link_off(qdev);
4001
4002         ql_cancel_all_work_sync(qdev);
4003
4004         for (i = 0; i < qdev->rss_ring_count; i++)
4005                 napi_disable(&qdev->rx_ring[i].napi);
4006
4007         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4008
4009         ql_disable_interrupts(qdev);
4010
4011         ql_tx_ring_clean(qdev);
4012
4013         /* Call netif_napi_del() from common point.
4014          */
4015         for (i = 0; i < qdev->rss_ring_count; i++)
4016                 netif_napi_del(&qdev->rx_ring[i].napi);
4017
4018         status = ql_adapter_reset(qdev);
4019         if (status)
4020                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4021                           qdev->func);
4022         ql_free_rx_buffers(qdev);
4023
4024         return status;
4025 }
4026
4027 static int ql_adapter_up(struct ql_adapter *qdev)
4028 {
4029         int err = 0;
4030
4031         err = ql_adapter_initialize(qdev);
4032         if (err) {
4033                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4034                 goto err_init;
4035         }
4036         set_bit(QL_ADAPTER_UP, &qdev->flags);
4037         ql_alloc_rx_buffers(qdev);
4038         /* If the port is initialized and the
4039          * link is up the turn on the carrier.
4040          */
4041         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4042                         (ql_read32(qdev, STS) & qdev->port_link_up))
4043                 ql_link_on(qdev);
4044         /* Restore rx mode. */
4045         clear_bit(QL_ALLMULTI, &qdev->flags);
4046         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4047         qlge_set_multicast_list(qdev->ndev);
4048
4049         /* Restore vlan setting. */
4050         qlge_restore_vlan(qdev);
4051
4052         ql_enable_interrupts(qdev);
4053         ql_enable_all_completion_interrupts(qdev);
4054         netif_tx_start_all_queues(qdev->ndev);
4055
4056         return 0;
4057 err_init:
4058         ql_adapter_reset(qdev);
4059         return err;
4060 }
4061
4062 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4063 {
4064         ql_free_mem_resources(qdev);
4065         ql_free_irq(qdev);
4066 }
4067
4068 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4069 {
4070         int status = 0;
4071
4072         if (ql_alloc_mem_resources(qdev)) {
4073                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4074                 return -ENOMEM;
4075         }
4076         status = ql_request_irq(qdev);
4077         return status;
4078 }
4079
4080 static int qlge_close(struct net_device *ndev)
4081 {
4082         struct ql_adapter *qdev = netdev_priv(ndev);
4083
4084         /* If we hit pci_channel_io_perm_failure
4085          * failure condition, then we already
4086          * brought the adapter down.
4087          */
4088         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4089                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4090                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4091                 return 0;
4092         }
4093
4094         /*
4095          * Wait for device to recover from a reset.
4096          * (Rarely happens, but possible.)
4097          */
4098         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4099                 msleep(1);
4100         ql_adapter_down(qdev);
4101         ql_release_adapter_resources(qdev);
4102         return 0;
4103 }
4104
4105 static int ql_configure_rings(struct ql_adapter *qdev)
4106 {
4107         int i;
4108         struct rx_ring *rx_ring;
4109         struct tx_ring *tx_ring;
4110         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4111         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4112                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4113
4114         qdev->lbq_buf_order = get_order(lbq_buf_len);
4115
4116         /* In a perfect world we have one RSS ring for each CPU
4117          * and each has it's own vector.  To do that we ask for
4118          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4119          * vector count to what we actually get.  We then
4120          * allocate an RSS ring for each.
4121          * Essentially, we are doing min(cpu_count, msix_vector_count).
4122          */
4123         qdev->intr_count = cpu_cnt;
4124         ql_enable_msix(qdev);
4125         /* Adjust the RSS ring count to the actual vector count. */
4126         qdev->rss_ring_count = qdev->intr_count;
4127         qdev->tx_ring_count = cpu_cnt;
4128         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4129
4130         for (i = 0; i < qdev->tx_ring_count; i++) {
4131                 tx_ring = &qdev->tx_ring[i];
4132                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4133                 tx_ring->qdev = qdev;
4134                 tx_ring->wq_id = i;
4135                 tx_ring->wq_len = qdev->tx_ring_size;
4136                 tx_ring->wq_size =
4137                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4138
4139                 /*
4140                  * The completion queue ID for the tx rings start
4141                  * immediately after the rss rings.
4142                  */
4143                 tx_ring->cq_id = qdev->rss_ring_count + i;
4144         }
4145
4146         for (i = 0; i < qdev->rx_ring_count; i++) {
4147                 rx_ring = &qdev->rx_ring[i];
4148                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4149                 rx_ring->qdev = qdev;
4150                 rx_ring->cq_id = i;
4151                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4152                 if (i < qdev->rss_ring_count) {
4153                         /*
4154                          * Inbound (RSS) queues.
4155                          */
4156                         rx_ring->cq_len = qdev->rx_ring_size;
4157                         rx_ring->cq_size =
4158                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4159                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4160                         rx_ring->lbq_size =
4161                             rx_ring->lbq_len * sizeof(__le64);
4162                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4163                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4164                         rx_ring->sbq_size =
4165                             rx_ring->sbq_len * sizeof(__le64);
4166                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4167                         rx_ring->type = RX_Q;
4168                 } else {
4169                         /*
4170                          * Outbound queue handles outbound completions only.
4171                          */
4172                         /* outbound cq is same size as tx_ring it services. */
4173                         rx_ring->cq_len = qdev->tx_ring_size;
4174                         rx_ring->cq_size =
4175                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4176                         rx_ring->lbq_len = 0;
4177                         rx_ring->lbq_size = 0;
4178                         rx_ring->lbq_buf_size = 0;
4179                         rx_ring->sbq_len = 0;
4180                         rx_ring->sbq_size = 0;
4181                         rx_ring->sbq_buf_size = 0;
4182                         rx_ring->type = TX_Q;
4183                 }
4184         }
4185         return 0;
4186 }
4187
4188 static int qlge_open(struct net_device *ndev)
4189 {
4190         int err = 0;
4191         struct ql_adapter *qdev = netdev_priv(ndev);
4192
4193         err = ql_adapter_reset(qdev);
4194         if (err)
4195                 return err;
4196
4197         err = ql_configure_rings(qdev);
4198         if (err)
4199                 return err;
4200
4201         err = ql_get_adapter_resources(qdev);
4202         if (err)
4203                 goto error_up;
4204
4205         err = ql_adapter_up(qdev);
4206         if (err)
4207                 goto error_up;
4208
4209         return err;
4210
4211 error_up:
4212         ql_release_adapter_resources(qdev);
4213         return err;
4214 }
4215
4216 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4217 {
4218         struct rx_ring *rx_ring;
4219         int i, status;
4220         u32 lbq_buf_len;
4221
4222         /* Wait for an outstanding reset to complete. */
4223         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4224                 int i = 4;
4225
4226                 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4227                         netif_err(qdev, ifup, qdev->ndev,
4228                                   "Waiting for adapter UP...\n");
4229                         ssleep(1);
4230                 }
4231
4232                 if (!i) {
4233                         netif_err(qdev, ifup, qdev->ndev,
4234                                   "Timed out waiting for adapter UP\n");
4235                         return -ETIMEDOUT;
4236                 }
4237         }
4238
4239         status = ql_adapter_down(qdev);
4240         if (status)
4241                 goto error;
4242
4243         /* Get the new rx buffer size. */
4244         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4245                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4246         qdev->lbq_buf_order = get_order(lbq_buf_len);
4247
4248         for (i = 0; i < qdev->rss_ring_count; i++) {
4249                 rx_ring = &qdev->rx_ring[i];
4250                 /* Set the new size. */
4251                 rx_ring->lbq_buf_size = lbq_buf_len;
4252         }
4253
4254         status = ql_adapter_up(qdev);
4255         if (status)
4256                 goto error;
4257
4258         return status;
4259 error:
4260         netif_alert(qdev, ifup, qdev->ndev,
4261                     "Driver up/down cycle failed, closing device.\n");
4262         set_bit(QL_ADAPTER_UP, &qdev->flags);
4263         dev_close(qdev->ndev);
4264         return status;
4265 }
4266
4267 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4268 {
4269         struct ql_adapter *qdev = netdev_priv(ndev);
4270         int status;
4271
4272         if (ndev->mtu == 1500 && new_mtu == 9000) {
4273                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4274         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4275                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4276         } else
4277                 return -EINVAL;
4278
4279         queue_delayed_work(qdev->workqueue,
4280                         &qdev->mpi_port_cfg_work, 3*HZ);
4281
4282         ndev->mtu = new_mtu;
4283
4284         if (!netif_running(qdev->ndev)) {
4285                 return 0;
4286         }
4287
4288         status = ql_change_rx_buffers(qdev);
4289         if (status) {
4290                 netif_err(qdev, ifup, qdev->ndev,
4291                           "Changing MTU failed.\n");
4292         }
4293
4294         return status;
4295 }
4296
4297 static struct net_device_stats *qlge_get_stats(struct net_device
4298                                                *ndev)
4299 {
4300         struct ql_adapter *qdev = netdev_priv(ndev);
4301         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4302         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4303         unsigned long pkts, mcast, dropped, errors, bytes;
4304         int i;
4305
4306         /* Get RX stats. */
4307         pkts = mcast = dropped = errors = bytes = 0;
4308         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4309                         pkts += rx_ring->rx_packets;
4310                         bytes += rx_ring->rx_bytes;
4311                         dropped += rx_ring->rx_dropped;
4312                         errors += rx_ring->rx_errors;
4313                         mcast += rx_ring->rx_multicast;
4314         }
4315         ndev->stats.rx_packets = pkts;
4316         ndev->stats.rx_bytes = bytes;
4317         ndev->stats.rx_dropped = dropped;
4318         ndev->stats.rx_errors = errors;
4319         ndev->stats.multicast = mcast;
4320
4321         /* Get TX stats. */
4322         pkts = errors = bytes = 0;
4323         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4324                         pkts += tx_ring->tx_packets;
4325                         bytes += tx_ring->tx_bytes;
4326                         errors += tx_ring->tx_errors;
4327         }
4328         ndev->stats.tx_packets = pkts;
4329         ndev->stats.tx_bytes = bytes;
4330         ndev->stats.tx_errors = errors;
4331         return &ndev->stats;
4332 }
4333
4334 static void qlge_set_multicast_list(struct net_device *ndev)
4335 {
4336         struct ql_adapter *qdev = netdev_priv(ndev);
4337         struct netdev_hw_addr *ha;
4338         int i, status;
4339
4340         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4341         if (status)
4342                 return;
4343         /*
4344          * Set or clear promiscuous mode if a
4345          * transition is taking place.
4346          */
4347         if (ndev->flags & IFF_PROMISC) {
4348                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4349                         if (ql_set_routing_reg
4350                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4351                                 netif_err(qdev, hw, qdev->ndev,
4352                                           "Failed to set promiscuous mode.\n");
4353                         } else {
4354                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4355                         }
4356                 }
4357         } else {
4358                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4359                         if (ql_set_routing_reg
4360                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4361                                 netif_err(qdev, hw, qdev->ndev,
4362                                           "Failed to clear promiscuous mode.\n");
4363                         } else {
4364                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4365                         }
4366                 }
4367         }
4368
4369         /*
4370          * Set or clear all multicast mode if a
4371          * transition is taking place.
4372          */
4373         if ((ndev->flags & IFF_ALLMULTI) ||
4374             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4375                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4376                         if (ql_set_routing_reg
4377                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4378                                 netif_err(qdev, hw, qdev->ndev,
4379                                           "Failed to set all-multi mode.\n");
4380                         } else {
4381                                 set_bit(QL_ALLMULTI, &qdev->flags);
4382                         }
4383                 }
4384         } else {
4385                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4386                         if (ql_set_routing_reg
4387                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4388                                 netif_err(qdev, hw, qdev->ndev,
4389                                           "Failed to clear all-multi mode.\n");
4390                         } else {
4391                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4392                         }
4393                 }
4394         }
4395
4396         if (!netdev_mc_empty(ndev)) {
4397                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4398                 if (status)
4399                         goto exit;
4400                 i = 0;
4401                 netdev_for_each_mc_addr(ha, ndev) {
4402                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4403                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4404                                 netif_err(qdev, hw, qdev->ndev,
4405                                           "Failed to loadmulticast address.\n");
4406                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4407                                 goto exit;
4408                         }
4409                         i++;
4410                 }
4411                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4412                 if (ql_set_routing_reg
4413                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4414                         netif_err(qdev, hw, qdev->ndev,
4415                                   "Failed to set multicast match mode.\n");
4416                 } else {
4417                         set_bit(QL_ALLMULTI, &qdev->flags);
4418                 }
4419         }
4420 exit:
4421         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4422 }
4423
4424 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4425 {
4426         struct ql_adapter *qdev = netdev_priv(ndev);
4427         struct sockaddr *addr = p;
4428         int status;
4429
4430         if (!is_valid_ether_addr(addr->sa_data))
4431                 return -EADDRNOTAVAIL;
4432         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4433         /* Update local copy of current mac address. */
4434         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4435
4436         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4437         if (status)
4438                 return status;
4439         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4440                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4441         if (status)
4442                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4443         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4444         return status;
4445 }
4446
4447 static void qlge_tx_timeout(struct net_device *ndev)
4448 {
4449         struct ql_adapter *qdev = netdev_priv(ndev);
4450         ql_queue_asic_error(qdev);
4451 }
4452
4453 static void ql_asic_reset_work(struct work_struct *work)
4454 {
4455         struct ql_adapter *qdev =
4456             container_of(work, struct ql_adapter, asic_reset_work.work);
4457         int status;
4458         rtnl_lock();
4459         status = ql_adapter_down(qdev);
4460         if (status)
4461                 goto error;
4462
4463         status = ql_adapter_up(qdev);
4464         if (status)
4465                 goto error;
4466
4467         /* Restore rx mode. */
4468         clear_bit(QL_ALLMULTI, &qdev->flags);
4469         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4470         qlge_set_multicast_list(qdev->ndev);
4471
4472         rtnl_unlock();
4473         return;
4474 error:
4475         netif_alert(qdev, ifup, qdev->ndev,
4476                     "Driver up/down cycle failed, closing device\n");
4477
4478         set_bit(QL_ADAPTER_UP, &qdev->flags);
4479         dev_close(qdev->ndev);
4480         rtnl_unlock();
4481 }
4482
4483 static const struct nic_operations qla8012_nic_ops = {
4484         .get_flash              = ql_get_8012_flash_params,
4485         .port_initialize        = ql_8012_port_initialize,
4486 };
4487
4488 static const struct nic_operations qla8000_nic_ops = {
4489         .get_flash              = ql_get_8000_flash_params,
4490         .port_initialize        = ql_8000_port_initialize,
4491 };
4492
4493 /* Find the pcie function number for the other NIC
4494  * on this chip.  Since both NIC functions share a
4495  * common firmware we have the lowest enabled function
4496  * do any common work.  Examples would be resetting
4497  * after a fatal firmware error, or doing a firmware
4498  * coredump.
4499  */
4500 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4501 {
4502         int status = 0;
4503         u32 temp;
4504         u32 nic_func1, nic_func2;
4505
4506         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4507                         &temp);
4508         if (status)
4509                 return status;
4510
4511         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4512                         MPI_TEST_NIC_FUNC_MASK);
4513         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4514                         MPI_TEST_NIC_FUNC_MASK);
4515
4516         if (qdev->func == nic_func1)
4517                 qdev->alt_func = nic_func2;
4518         else if (qdev->func == nic_func2)
4519                 qdev->alt_func = nic_func1;
4520         else
4521                 status = -EIO;
4522
4523         return status;
4524 }
4525
4526 static int ql_get_board_info(struct ql_adapter *qdev)
4527 {
4528         int status;
4529         qdev->func =
4530             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4531         if (qdev->func > 3)
4532                 return -EIO;
4533
4534         status = ql_get_alt_pcie_func(qdev);
4535         if (status)
4536                 return status;
4537
4538         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4539         if (qdev->port) {
4540                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4541                 qdev->port_link_up = STS_PL1;
4542                 qdev->port_init = STS_PI1;
4543                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4544                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4545         } else {
4546                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4547                 qdev->port_link_up = STS_PL0;
4548                 qdev->port_init = STS_PI0;
4549                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4550                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4551         }
4552         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4553         qdev->device_id = qdev->pdev->device;
4554         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4555                 qdev->nic_ops = &qla8012_nic_ops;
4556         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4557                 qdev->nic_ops = &qla8000_nic_ops;
4558         return status;
4559 }
4560
4561 static void ql_release_all(struct pci_dev *pdev)
4562 {
4563         struct net_device *ndev = pci_get_drvdata(pdev);
4564         struct ql_adapter *qdev = netdev_priv(ndev);
4565
4566         if (qdev->workqueue) {
4567                 destroy_workqueue(qdev->workqueue);
4568                 qdev->workqueue = NULL;
4569         }
4570
4571         if (qdev->reg_base)
4572                 iounmap(qdev->reg_base);
4573         if (qdev->doorbell_area)
4574                 iounmap(qdev->doorbell_area);
4575         vfree(qdev->mpi_coredump);
4576         pci_release_regions(pdev);
4577 }
4578
4579 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4580                           int cards_found)
4581 {
4582         struct ql_adapter *qdev = netdev_priv(ndev);
4583         int err = 0;
4584
4585         memset((void *)qdev, 0, sizeof(*qdev));
4586         err = pci_enable_device(pdev);
4587         if (err) {
4588                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4589                 return err;
4590         }
4591
4592         qdev->ndev = ndev;
4593         qdev->pdev = pdev;
4594         pci_set_drvdata(pdev, ndev);
4595
4596         /* Set PCIe read request size */
4597         err = pcie_set_readrq(pdev, 4096);
4598         if (err) {
4599                 dev_err(&pdev->dev, "Set readrq failed.\n");
4600                 goto err_out1;
4601         }
4602
4603         err = pci_request_regions(pdev, DRV_NAME);
4604         if (err) {
4605                 dev_err(&pdev->dev, "PCI region request failed.\n");
4606                 return err;
4607         }
4608
4609         pci_set_master(pdev);
4610         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4611                 set_bit(QL_DMA64, &qdev->flags);
4612                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4613         } else {
4614                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4615                 if (!err)
4616                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4617         }
4618
4619         if (err) {
4620                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4621                 goto err_out2;
4622         }
4623
4624         /* Set PCIe reset type for EEH to fundamental. */
4625         pdev->needs_freset = 1;
4626         pci_save_state(pdev);
4627         qdev->reg_base =
4628             ioremap_nocache(pci_resource_start(pdev, 1),
4629                             pci_resource_len(pdev, 1));
4630         if (!qdev->reg_base) {
4631                 dev_err(&pdev->dev, "Register mapping failed.\n");
4632                 err = -ENOMEM;
4633                 goto err_out2;
4634         }
4635
4636         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4637         qdev->doorbell_area =
4638             ioremap_nocache(pci_resource_start(pdev, 3),
4639                             pci_resource_len(pdev, 3));
4640         if (!qdev->doorbell_area) {
4641                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4642                 err = -ENOMEM;
4643                 goto err_out2;
4644         }
4645
4646         err = ql_get_board_info(qdev);
4647         if (err) {
4648                 dev_err(&pdev->dev, "Register access failed.\n");
4649                 err = -EIO;
4650                 goto err_out2;
4651         }
4652         qdev->msg_enable = netif_msg_init(debug, default_msg);
4653         spin_lock_init(&qdev->hw_lock);
4654         spin_lock_init(&qdev->stats_lock);
4655
4656         if (qlge_mpi_coredump) {
4657                 qdev->mpi_coredump =
4658                         vmalloc(sizeof(struct ql_mpi_coredump));
4659                 if (qdev->mpi_coredump == NULL) {
4660                         err = -ENOMEM;
4661                         goto err_out2;
4662                 }
4663                 if (qlge_force_coredump)
4664                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4665         }
4666         /* make sure the EEPROM is good */
4667         err = qdev->nic_ops->get_flash(qdev);
4668         if (err) {
4669                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4670                 goto err_out2;
4671         }
4672
4673         /* Keep local copy of current mac address. */
4674         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4675
4676         /* Set up the default ring sizes. */
4677         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4678         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4679
4680         /* Set up the coalescing parameters. */
4681         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4682         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4683         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4684         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4685
4686         /*
4687          * Set up the operating parameters.
4688          */
4689         qdev->workqueue = alloc_ordered_workqueue(ndev->name, WQ_MEM_RECLAIM);
4690         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4691         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4692         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4693         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4694         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4695         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4696         init_completion(&qdev->ide_completion);
4697         mutex_init(&qdev->mpi_mutex);
4698
4699         if (!cards_found) {
4700                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4701                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4702                          DRV_NAME, DRV_VERSION);
4703         }
4704         return 0;
4705 err_out2:
4706         ql_release_all(pdev);
4707 err_out1:
4708         pci_disable_device(pdev);
4709         return err;
4710 }
4711
4712 static const struct net_device_ops qlge_netdev_ops = {
4713         .ndo_open               = qlge_open,
4714         .ndo_stop               = qlge_close,
4715         .ndo_start_xmit         = qlge_send,
4716         .ndo_change_mtu         = qlge_change_mtu,
4717         .ndo_get_stats          = qlge_get_stats,
4718         .ndo_set_rx_mode        = qlge_set_multicast_list,
4719         .ndo_set_mac_address    = qlge_set_mac_address,
4720         .ndo_validate_addr      = eth_validate_addr,
4721         .ndo_tx_timeout         = qlge_tx_timeout,
4722         .ndo_fix_features       = qlge_fix_features,
4723         .ndo_set_features       = qlge_set_features,
4724         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4725         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4726 };
4727
4728 static void ql_timer(unsigned long data)
4729 {
4730         struct ql_adapter *qdev = (struct ql_adapter *)data;
4731         u32 var = 0;
4732
4733         var = ql_read32(qdev, STS);
4734         if (pci_channel_offline(qdev->pdev)) {
4735                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4736                 return;
4737         }
4738
4739         mod_timer(&qdev->timer, jiffies + (5*HZ));
4740 }
4741
4742 static int qlge_probe(struct pci_dev *pdev,
4743                       const struct pci_device_id *pci_entry)
4744 {
4745         struct net_device *ndev = NULL;
4746         struct ql_adapter *qdev = NULL;
4747         static int cards_found = 0;
4748         int err = 0;
4749
4750         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4751                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4752         if (!ndev)
4753                 return -ENOMEM;
4754
4755         err = ql_init_device(pdev, ndev, cards_found);
4756         if (err < 0) {
4757                 free_netdev(ndev);
4758                 return err;
4759         }
4760
4761         qdev = netdev_priv(ndev);
4762         SET_NETDEV_DEV(ndev, &pdev->dev);
4763         ndev->hw_features = NETIF_F_SG |
4764                             NETIF_F_IP_CSUM |
4765                             NETIF_F_TSO |
4766                             NETIF_F_TSO_ECN |
4767                             NETIF_F_HW_VLAN_CTAG_TX |
4768                             NETIF_F_HW_VLAN_CTAG_RX |
4769                             NETIF_F_HW_VLAN_CTAG_FILTER |
4770                             NETIF_F_RXCSUM;
4771         ndev->features = ndev->hw_features;
4772         ndev->vlan_features = ndev->hw_features;
4773         /* vlan gets same features (except vlan filter) */
4774         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4775                                  NETIF_F_HW_VLAN_CTAG_TX |
4776                                  NETIF_F_HW_VLAN_CTAG_RX);
4777
4778         if (test_bit(QL_DMA64, &qdev->flags))
4779                 ndev->features |= NETIF_F_HIGHDMA;
4780
4781         /*
4782          * Set up net_device structure.
4783          */
4784         ndev->tx_queue_len = qdev->tx_ring_size;
4785         ndev->irq = pdev->irq;
4786
4787         ndev->netdev_ops = &qlge_netdev_ops;
4788         ndev->ethtool_ops = &qlge_ethtool_ops;
4789         ndev->watchdog_timeo = 10 * HZ;
4790
4791         err = register_netdev(ndev);
4792         if (err) {
4793                 dev_err(&pdev->dev, "net device registration failed.\n");
4794                 ql_release_all(pdev);
4795                 pci_disable_device(pdev);
4796                 free_netdev(ndev);
4797                 return err;
4798         }
4799         /* Start up the timer to trigger EEH if
4800          * the bus goes dead
4801          */
4802         init_timer_deferrable(&qdev->timer);
4803         qdev->timer.data = (unsigned long)qdev;
4804         qdev->timer.function = ql_timer;
4805         qdev->timer.expires = jiffies + (5*HZ);
4806         add_timer(&qdev->timer);
4807         ql_link_off(qdev);
4808         ql_display_dev_info(ndev);
4809         atomic_set(&qdev->lb_count, 0);
4810         cards_found++;
4811         return 0;
4812 }
4813
4814 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4815 {
4816         return qlge_send(skb, ndev);
4817 }
4818
4819 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4820 {
4821         return ql_clean_inbound_rx_ring(rx_ring, budget);
4822 }
4823
4824 static void qlge_remove(struct pci_dev *pdev)
4825 {
4826         struct net_device *ndev = pci_get_drvdata(pdev);
4827         struct ql_adapter *qdev = netdev_priv(ndev);
4828         del_timer_sync(&qdev->timer);
4829         ql_cancel_all_work_sync(qdev);
4830         unregister_netdev(ndev);
4831         ql_release_all(pdev);
4832         pci_disable_device(pdev);
4833         free_netdev(ndev);
4834 }
4835
4836 /* Clean up resources without touching hardware. */
4837 static void ql_eeh_close(struct net_device *ndev)
4838 {
4839         int i;
4840         struct ql_adapter *qdev = netdev_priv(ndev);
4841
4842         if (netif_carrier_ok(ndev)) {
4843                 netif_carrier_off(ndev);
4844                 netif_stop_queue(ndev);
4845         }
4846
4847         /* Disabling the timer */
4848         ql_cancel_all_work_sync(qdev);
4849
4850         for (i = 0; i < qdev->rss_ring_count; i++)
4851                 netif_napi_del(&qdev->rx_ring[i].napi);
4852
4853         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4854         ql_tx_ring_clean(qdev);
4855         ql_free_rx_buffers(qdev);
4856         ql_release_adapter_resources(qdev);
4857 }
4858
4859 /*
4860  * This callback is called by the PCI subsystem whenever
4861  * a PCI bus error is detected.
4862  */
4863 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4864                                                enum pci_channel_state state)
4865 {
4866         struct net_device *ndev = pci_get_drvdata(pdev);
4867         struct ql_adapter *qdev = netdev_priv(ndev);
4868
4869         switch (state) {
4870         case pci_channel_io_normal:
4871                 return PCI_ERS_RESULT_CAN_RECOVER;
4872         case pci_channel_io_frozen:
4873                 netif_device_detach(ndev);
4874                 del_timer_sync(&qdev->timer);
4875                 if (netif_running(ndev))
4876                         ql_eeh_close(ndev);
4877                 pci_disable_device(pdev);
4878                 return PCI_ERS_RESULT_NEED_RESET;
4879         case pci_channel_io_perm_failure:
4880                 dev_err(&pdev->dev,
4881                         "%s: pci_channel_io_perm_failure.\n", __func__);
4882                 del_timer_sync(&qdev->timer);
4883                 ql_eeh_close(ndev);
4884                 set_bit(QL_EEH_FATAL, &qdev->flags);
4885                 return PCI_ERS_RESULT_DISCONNECT;
4886         }
4887
4888         /* Request a slot reset. */
4889         return PCI_ERS_RESULT_NEED_RESET;
4890 }
4891
4892 /*
4893  * This callback is called after the PCI buss has been reset.
4894  * Basically, this tries to restart the card from scratch.
4895  * This is a shortened version of the device probe/discovery code,
4896  * it resembles the first-half of the () routine.
4897  */
4898 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4899 {
4900         struct net_device *ndev = pci_get_drvdata(pdev);
4901         struct ql_adapter *qdev = netdev_priv(ndev);
4902
4903         pdev->error_state = pci_channel_io_normal;
4904
4905         pci_restore_state(pdev);
4906         if (pci_enable_device(pdev)) {
4907                 netif_err(qdev, ifup, qdev->ndev,
4908                           "Cannot re-enable PCI device after reset.\n");
4909                 return PCI_ERS_RESULT_DISCONNECT;
4910         }
4911         pci_set_master(pdev);
4912
4913         if (ql_adapter_reset(qdev)) {
4914                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4915                 set_bit(QL_EEH_FATAL, &qdev->flags);
4916                 return PCI_ERS_RESULT_DISCONNECT;
4917         }
4918
4919         return PCI_ERS_RESULT_RECOVERED;
4920 }
4921
4922 static void qlge_io_resume(struct pci_dev *pdev)
4923 {
4924         struct net_device *ndev = pci_get_drvdata(pdev);
4925         struct ql_adapter *qdev = netdev_priv(ndev);
4926         int err = 0;
4927
4928         if (netif_running(ndev)) {
4929                 err = qlge_open(ndev);
4930                 if (err) {
4931                         netif_err(qdev, ifup, qdev->ndev,
4932                                   "Device initialization failed after reset.\n");
4933                         return;
4934                 }
4935         } else {
4936                 netif_err(qdev, ifup, qdev->ndev,
4937                           "Device was not running prior to EEH.\n");
4938         }
4939         mod_timer(&qdev->timer, jiffies + (5*HZ));
4940         netif_device_attach(ndev);
4941 }
4942
4943 static const struct pci_error_handlers qlge_err_handler = {
4944         .error_detected = qlge_io_error_detected,
4945         .slot_reset = qlge_io_slot_reset,
4946         .resume = qlge_io_resume,
4947 };
4948
4949 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4950 {
4951         struct net_device *ndev = pci_get_drvdata(pdev);
4952         struct ql_adapter *qdev = netdev_priv(ndev);
4953         int err;
4954
4955         netif_device_detach(ndev);
4956         del_timer_sync(&qdev->timer);
4957
4958         if (netif_running(ndev)) {
4959                 err = ql_adapter_down(qdev);
4960                 if (!err)
4961                         return err;
4962         }
4963
4964         ql_wol(qdev);
4965         err = pci_save_state(pdev);
4966         if (err)
4967                 return err;
4968
4969         pci_disable_device(pdev);
4970
4971         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4972
4973         return 0;
4974 }
4975
4976 #ifdef CONFIG_PM
4977 static int qlge_resume(struct pci_dev *pdev)
4978 {
4979         struct net_device *ndev = pci_get_drvdata(pdev);
4980         struct ql_adapter *qdev = netdev_priv(ndev);
4981         int err;
4982
4983         pci_set_power_state(pdev, PCI_D0);
4984         pci_restore_state(pdev);
4985         err = pci_enable_device(pdev);
4986         if (err) {
4987                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4988                 return err;
4989         }
4990         pci_set_master(pdev);
4991
4992         pci_enable_wake(pdev, PCI_D3hot, 0);
4993         pci_enable_wake(pdev, PCI_D3cold, 0);
4994
4995         if (netif_running(ndev)) {
4996                 err = ql_adapter_up(qdev);
4997                 if (err)
4998                         return err;
4999         }
5000
5001         mod_timer(&qdev->timer, jiffies + (5*HZ));
5002         netif_device_attach(ndev);
5003
5004         return 0;
5005 }
5006 #endif /* CONFIG_PM */
5007
5008 static void qlge_shutdown(struct pci_dev *pdev)
5009 {
5010         qlge_suspend(pdev, PMSG_SUSPEND);
5011 }
5012
5013 static struct pci_driver qlge_driver = {
5014         .name = DRV_NAME,
5015         .id_table = qlge_pci_tbl,
5016         .probe = qlge_probe,
5017         .remove = qlge_remove,
5018 #ifdef CONFIG_PM
5019         .suspend = qlge_suspend,
5020         .resume = qlge_resume,
5021 #endif
5022         .shutdown = qlge_shutdown,
5023         .err_handler = &qlge_err_handler
5024 };
5025
5026 module_pci_driver(qlge_driver);