GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV              7
27 enum {
28         EFX_EF10_TEST = 1,
29         EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53
54 #define EFX_EF10_FILTER_DEV_UC_MAX      32
55 #define EFX_EF10_FILTER_DEV_MC_MAX      256
56
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59         struct list_head list;
60         u16 vid;
61 };
62
63 /* Per-VLAN filters information */
64 struct efx_ef10_filter_vlan {
65         struct list_head list;
66         u16 vid;
67         u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
68         u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
69         u16 ucdef;
70         u16 bcast;
71         u16 mcdef;
72 };
73
74 struct efx_ef10_dev_addr {
75         u8 addr[ETH_ALEN];
76 };
77
78 struct efx_ef10_filter_table {
79 /* The MCDI match masks supported by this fw & hw, in order of priority */
80         u32 rx_match_mcdi_flags[
81                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
82         unsigned int rx_match_count;
83
84         struct {
85                 unsigned long spec;     /* pointer to spec plus flag bits */
86 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
87  * used to mark and sweep MAC filters for the device address lists.
88  */
89 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
90 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
91 #define EFX_EF10_FILTER_FLAGS           3UL
92                 u64 handle;             /* firmware handle */
93         } *entry;
94         wait_queue_head_t waitq;
95 /* Shadow of net_device address lists, guarded by mac_lock */
96         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
97         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
98         int dev_uc_count;
99         int dev_mc_count;
100         bool uc_promisc;
101         bool mc_promisc;
102 /* Whether in multicast promiscuous mode when last changed */
103         bool mc_promisc_last;
104         bool vlan_filter;
105         struct list_head vlan_list;
106 };
107
108 /* An arbitrary search limit for the software hash table */
109 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
110
111 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
112 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
113 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
114 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
115                                               struct efx_ef10_filter_vlan *vlan);
116 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
117
118 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
119 {
120         efx_dword_t reg;
121
122         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
123         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
124                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
125 }
126
127 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
128 {
129         int bar;
130
131         bar = efx->type->mem_bar;
132         return resource_size(&efx->pci_dev->resource[bar]);
133 }
134
135 static bool efx_ef10_is_vf(struct efx_nic *efx)
136 {
137         return efx->type->is_vf;
138 }
139
140 static int efx_ef10_get_pf_index(struct efx_nic *efx)
141 {
142         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
143         struct efx_ef10_nic_data *nic_data = efx->nic_data;
144         size_t outlen;
145         int rc;
146
147         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
148                           sizeof(outbuf), &outlen);
149         if (rc)
150                 return rc;
151         if (outlen < sizeof(outbuf))
152                 return -EIO;
153
154         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
155         return 0;
156 }
157
158 #ifdef CONFIG_SFC_SRIOV
159 static int efx_ef10_get_vf_index(struct efx_nic *efx)
160 {
161         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
162         struct efx_ef10_nic_data *nic_data = efx->nic_data;
163         size_t outlen;
164         int rc;
165
166         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
167                           sizeof(outbuf), &outlen);
168         if (rc)
169                 return rc;
170         if (outlen < sizeof(outbuf))
171                 return -EIO;
172
173         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
174         return 0;
175 }
176 #endif
177
178 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
179 {
180         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
181         struct efx_ef10_nic_data *nic_data = efx->nic_data;
182         size_t outlen;
183         int rc;
184
185         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
186
187         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
188                           outbuf, sizeof(outbuf), &outlen);
189         if (rc)
190                 return rc;
191         if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
192                 netif_err(efx, drv, efx->net_dev,
193                           "unable to read datapath firmware capabilities\n");
194                 return -EIO;
195         }
196
197         nic_data->datapath_caps =
198                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
199
200         if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
201                 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
202                                 GET_CAPABILITIES_V2_OUT_FLAGS2);
203                 nic_data->piobuf_size = MCDI_WORD(outbuf,
204                                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
205         } else {
206                 nic_data->datapath_caps2 = 0;
207                 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
208         }
209
210         /* record the DPCPU firmware IDs to determine VEB vswitching support.
211          */
212         nic_data->rx_dpcpu_fw_id =
213                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
214         nic_data->tx_dpcpu_fw_id =
215                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
216
217         if (!(nic_data->datapath_caps &
218               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
219                 netif_err(efx, probe, efx->net_dev,
220                           "current firmware does not support an RX prefix\n");
221                 return -ENODEV;
222         }
223
224         return 0;
225 }
226
227 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
228 {
229         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
230         int rc;
231
232         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
233                           outbuf, sizeof(outbuf), NULL);
234         if (rc)
235                 return rc;
236         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
237         return rc > 0 ? rc : -ERANGE;
238 }
239
240 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
241 {
242         struct efx_ef10_nic_data *nic_data = efx->nic_data;
243         unsigned int implemented;
244         unsigned int enabled;
245         int rc;
246
247         nic_data->workaround_35388 = false;
248         nic_data->workaround_61265 = false;
249
250         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
251
252         if (rc == -ENOSYS) {
253                 /* Firmware without GET_WORKAROUNDS - not a problem. */
254                 rc = 0;
255         } else if (rc == 0) {
256                 /* Bug61265 workaround is always enabled if implemented. */
257                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
258                         nic_data->workaround_61265 = true;
259
260                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
261                         nic_data->workaround_35388 = true;
262                 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
263                         /* Workaround is implemented but not enabled.
264                          * Try to enable it.
265                          */
266                         rc = efx_mcdi_set_workaround(efx,
267                                                      MC_CMD_WORKAROUND_BUG35388,
268                                                      true, NULL);
269                         if (rc == 0)
270                                 nic_data->workaround_35388 = true;
271                         /* If we failed to set the workaround just carry on. */
272                         rc = 0;
273                 }
274         }
275
276         netif_dbg(efx, probe, efx->net_dev,
277                   "workaround for bug 35388 is %sabled\n",
278                   nic_data->workaround_35388 ? "en" : "dis");
279         netif_dbg(efx, probe, efx->net_dev,
280                   "workaround for bug 61265 is %sabled\n",
281                   nic_data->workaround_61265 ? "en" : "dis");
282
283         return rc;
284 }
285
286 static void efx_ef10_process_timer_config(struct efx_nic *efx,
287                                           const efx_dword_t *data)
288 {
289         unsigned int max_count;
290
291         if (EFX_EF10_WORKAROUND_61265(efx)) {
292                 efx->timer_quantum_ns = MCDI_DWORD(data,
293                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
294                 efx->timer_max_ns = MCDI_DWORD(data,
295                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
296         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
297                 efx->timer_quantum_ns = MCDI_DWORD(data,
298                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
299                 max_count = MCDI_DWORD(data,
300                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
301                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
302         } else {
303                 efx->timer_quantum_ns = MCDI_DWORD(data,
304                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
305                 max_count = MCDI_DWORD(data,
306                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
307                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
308         }
309
310         netif_dbg(efx, probe, efx->net_dev,
311                   "got timer properties from MC: quantum %u ns; max %u ns\n",
312                   efx->timer_quantum_ns, efx->timer_max_ns);
313 }
314
315 static int efx_ef10_get_timer_config(struct efx_nic *efx)
316 {
317         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
318         int rc;
319
320         rc = efx_ef10_get_timer_workarounds(efx);
321         if (rc)
322                 return rc;
323
324         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
325                                 outbuf, sizeof(outbuf), NULL);
326
327         if (rc == 0) {
328                 efx_ef10_process_timer_config(efx, outbuf);
329         } else if (rc == -ENOSYS || rc == -EPERM) {
330                 /* Not available - fall back to Huntington defaults. */
331                 unsigned int quantum;
332
333                 rc = efx_ef10_get_sysclk_freq(efx);
334                 if (rc < 0)
335                         return rc;
336
337                 quantum = 1536000 / rc; /* 1536 cycles */
338                 efx->timer_quantum_ns = quantum;
339                 efx->timer_max_ns = efx->type->timer_period_max * quantum;
340                 rc = 0;
341         } else {
342                 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
343                                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
344                                        NULL, 0, rc);
345         }
346
347         return rc;
348 }
349
350 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
351 {
352         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
353         size_t outlen;
354         int rc;
355
356         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
357
358         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
359                           outbuf, sizeof(outbuf), &outlen);
360         if (rc)
361                 return rc;
362         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
363                 return -EIO;
364
365         ether_addr_copy(mac_address,
366                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
367         return 0;
368 }
369
370 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
371 {
372         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
373         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
374         size_t outlen;
375         int num_addrs, rc;
376
377         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
378                        EVB_PORT_ID_ASSIGNED);
379         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
380                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
381
382         if (rc)
383                 return rc;
384         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
385                 return -EIO;
386
387         num_addrs = MCDI_DWORD(outbuf,
388                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
389
390         WARN_ON(num_addrs != 1);
391
392         ether_addr_copy(mac_address,
393                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
394
395         return 0;
396 }
397
398 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
399                                                struct device_attribute *attr,
400                                                char *buf)
401 {
402         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
403
404         return sprintf(buf, "%d\n",
405                        ((efx->mcdi->fn_flags) &
406                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
407                        ? 1 : 0);
408 }
409
410 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
411                                           struct device_attribute *attr,
412                                           char *buf)
413 {
414         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
415
416         return sprintf(buf, "%d\n",
417                        ((efx->mcdi->fn_flags) &
418                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
419                        ? 1 : 0);
420 }
421
422 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
423 {
424         struct efx_ef10_nic_data *nic_data = efx->nic_data;
425         struct efx_ef10_vlan *vlan;
426
427         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
428
429         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
430                 if (vlan->vid == vid)
431                         return vlan;
432         }
433
434         return NULL;
435 }
436
437 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
438 {
439         struct efx_ef10_nic_data *nic_data = efx->nic_data;
440         struct efx_ef10_vlan *vlan;
441         int rc;
442
443         mutex_lock(&nic_data->vlan_lock);
444
445         vlan = efx_ef10_find_vlan(efx, vid);
446         if (vlan) {
447                 /* We add VID 0 on init. 8021q adds it on module init
448                  * for all interfaces with VLAN filtring feature.
449                  */
450                 if (vid == 0)
451                         goto done_unlock;
452                 netif_warn(efx, drv, efx->net_dev,
453                            "VLAN %u already added\n", vid);
454                 rc = -EALREADY;
455                 goto fail_exist;
456         }
457
458         rc = -ENOMEM;
459         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
460         if (!vlan)
461                 goto fail_alloc;
462
463         vlan->vid = vid;
464
465         list_add_tail(&vlan->list, &nic_data->vlan_list);
466
467         if (efx->filter_state) {
468                 mutex_lock(&efx->mac_lock);
469                 down_write(&efx->filter_sem);
470                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
471                 up_write(&efx->filter_sem);
472                 mutex_unlock(&efx->mac_lock);
473                 if (rc)
474                         goto fail_filter_add_vlan;
475         }
476
477 done_unlock:
478         mutex_unlock(&nic_data->vlan_lock);
479         return 0;
480
481 fail_filter_add_vlan:
482         list_del(&vlan->list);
483         kfree(vlan);
484 fail_alloc:
485 fail_exist:
486         mutex_unlock(&nic_data->vlan_lock);
487         return rc;
488 }
489
490 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
491                                        struct efx_ef10_vlan *vlan)
492 {
493         struct efx_ef10_nic_data *nic_data = efx->nic_data;
494
495         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
496
497         if (efx->filter_state) {
498                 down_write(&efx->filter_sem);
499                 efx_ef10_filter_del_vlan(efx, vlan->vid);
500                 up_write(&efx->filter_sem);
501         }
502
503         list_del(&vlan->list);
504         kfree(vlan);
505 }
506
507 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
508 {
509         struct efx_ef10_nic_data *nic_data = efx->nic_data;
510         struct efx_ef10_vlan *vlan;
511         int rc = 0;
512
513         /* 8021q removes VID 0 on module unload for all interfaces
514          * with VLAN filtering feature. We need to keep it to receive
515          * untagged traffic.
516          */
517         if (vid == 0)
518                 return 0;
519
520         mutex_lock(&nic_data->vlan_lock);
521
522         vlan = efx_ef10_find_vlan(efx, vid);
523         if (!vlan) {
524                 netif_err(efx, drv, efx->net_dev,
525                           "VLAN %u to be deleted not found\n", vid);
526                 rc = -ENOENT;
527         } else {
528                 efx_ef10_del_vlan_internal(efx, vlan);
529         }
530
531         mutex_unlock(&nic_data->vlan_lock);
532
533         return rc;
534 }
535
536 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
537 {
538         struct efx_ef10_nic_data *nic_data = efx->nic_data;
539         struct efx_ef10_vlan *vlan, *next_vlan;
540
541         mutex_lock(&nic_data->vlan_lock);
542         list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
543                 efx_ef10_del_vlan_internal(efx, vlan);
544         mutex_unlock(&nic_data->vlan_lock);
545 }
546
547 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
548                    NULL);
549 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
550
551 static int efx_ef10_probe(struct efx_nic *efx)
552 {
553         struct efx_ef10_nic_data *nic_data;
554         struct net_device *net_dev = efx->net_dev;
555         int i, rc;
556
557         /* We can have one VI for each 8K region.  However, until we
558          * use TX option descriptors we need two TX queues per channel.
559          */
560         efx->max_channels = min_t(unsigned int,
561                                   EFX_MAX_CHANNELS,
562                                   efx_ef10_mem_map_size(efx) /
563                                   (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
564         efx->max_tx_channels = efx->max_channels;
565         if (WARN_ON(efx->max_channels == 0))
566                 return -EIO;
567
568         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
569         if (!nic_data)
570                 return -ENOMEM;
571         efx->nic_data = nic_data;
572
573         /* we assume later that we can copy from this buffer in dwords */
574         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
575
576         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
577                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
578         if (rc)
579                 goto fail1;
580
581         /* Get the MC's warm boot count.  In case it's rebooting right
582          * now, be prepared to retry.
583          */
584         i = 0;
585         for (;;) {
586                 rc = efx_ef10_get_warm_boot_count(efx);
587                 if (rc >= 0)
588                         break;
589                 if (++i == 5)
590                         goto fail2;
591                 ssleep(1);
592         }
593         nic_data->warm_boot_count = rc;
594
595         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
596
597         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
598
599         /* In case we're recovering from a crash (kexec), we want to
600          * cancel any outstanding request by the previous user of this
601          * function.  We send a special message using the least
602          * significant bits of the 'high' (doorbell) register.
603          */
604         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
605
606         rc = efx_mcdi_init(efx);
607         if (rc)
608                 goto fail2;
609
610         /* Reset (most) configuration for this function */
611         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
612         if (rc)
613                 goto fail3;
614
615         /* Enable event logging */
616         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
617         if (rc)
618                 goto fail3;
619
620         rc = device_create_file(&efx->pci_dev->dev,
621                                 &dev_attr_link_control_flag);
622         if (rc)
623                 goto fail3;
624
625         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
626         if (rc)
627                 goto fail4;
628
629         rc = efx_ef10_get_pf_index(efx);
630         if (rc)
631                 goto fail5;
632
633         rc = efx_ef10_init_datapath_caps(efx);
634         if (rc < 0)
635                 goto fail5;
636
637         efx->rx_packet_len_offset =
638                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
639
640         rc = efx_mcdi_port_get_number(efx);
641         if (rc < 0)
642                 goto fail5;
643         efx->port_num = rc;
644         net_dev->dev_port = rc;
645
646         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
647         if (rc)
648                 goto fail5;
649
650         rc = efx_ef10_get_timer_config(efx);
651         if (rc < 0)
652                 goto fail5;
653
654         rc = efx_mcdi_mon_probe(efx);
655         if (rc && rc != -EPERM)
656                 goto fail5;
657
658         efx_ptp_probe(efx, NULL);
659
660 #ifdef CONFIG_SFC_SRIOV
661         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
662                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
663                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
664
665                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
666         } else
667 #endif
668                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
669
670         INIT_LIST_HEAD(&nic_data->vlan_list);
671         mutex_init(&nic_data->vlan_lock);
672
673         /* Add unspecified VID to support VLAN filtering being disabled */
674         rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
675         if (rc)
676                 goto fail_add_vid_unspec;
677
678         /* If VLAN filtering is enabled, we need VID 0 to get untagged
679          * traffic.  It is added automatically if 8021q module is loaded,
680          * but we can't rely on it since module may be not loaded.
681          */
682         rc = efx_ef10_add_vlan(efx, 0);
683         if (rc)
684                 goto fail_add_vid_0;
685
686         return 0;
687
688 fail_add_vid_0:
689         efx_ef10_cleanup_vlans(efx);
690 fail_add_vid_unspec:
691         mutex_destroy(&nic_data->vlan_lock);
692         efx_ptp_remove(efx);
693         efx_mcdi_mon_remove(efx);
694 fail5:
695         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
696 fail4:
697         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
698 fail3:
699         efx_mcdi_fini(efx);
700 fail2:
701         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
702 fail1:
703         kfree(nic_data);
704         efx->nic_data = NULL;
705         return rc;
706 }
707
708 static int efx_ef10_free_vis(struct efx_nic *efx)
709 {
710         MCDI_DECLARE_BUF_ERR(outbuf);
711         size_t outlen;
712         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
713                                     outbuf, sizeof(outbuf), &outlen);
714
715         /* -EALREADY means nothing to free, so ignore */
716         if (rc == -EALREADY)
717                 rc = 0;
718         if (rc)
719                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
720                                        rc);
721         return rc;
722 }
723
724 #ifdef EFX_USE_PIO
725
726 static void efx_ef10_free_piobufs(struct efx_nic *efx)
727 {
728         struct efx_ef10_nic_data *nic_data = efx->nic_data;
729         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
730         unsigned int i;
731         int rc;
732
733         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
734
735         for (i = 0; i < nic_data->n_piobufs; i++) {
736                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
737                                nic_data->piobuf_handle[i]);
738                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
739                                   NULL, 0, NULL);
740                 WARN_ON(rc);
741         }
742
743         nic_data->n_piobufs = 0;
744 }
745
746 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
747 {
748         struct efx_ef10_nic_data *nic_data = efx->nic_data;
749         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
750         unsigned int i;
751         size_t outlen;
752         int rc = 0;
753
754         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
755
756         for (i = 0; i < n; i++) {
757                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
758                                         outbuf, sizeof(outbuf), &outlen);
759                 if (rc) {
760                         /* Don't display the MC error if we didn't have space
761                          * for a VF.
762                          */
763                         if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
764                                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
765                                                        0, outbuf, outlen, rc);
766                         break;
767                 }
768                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
769                         rc = -EIO;
770                         break;
771                 }
772                 nic_data->piobuf_handle[i] =
773                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
774                 netif_dbg(efx, probe, efx->net_dev,
775                           "allocated PIO buffer %u handle %x\n", i,
776                           nic_data->piobuf_handle[i]);
777         }
778
779         nic_data->n_piobufs = i;
780         if (rc)
781                 efx_ef10_free_piobufs(efx);
782         return rc;
783 }
784
785 static int efx_ef10_link_piobufs(struct efx_nic *efx)
786 {
787         struct efx_ef10_nic_data *nic_data = efx->nic_data;
788         _MCDI_DECLARE_BUF(inbuf,
789                           max(MC_CMD_LINK_PIOBUF_IN_LEN,
790                               MC_CMD_UNLINK_PIOBUF_IN_LEN));
791         struct efx_channel *channel;
792         struct efx_tx_queue *tx_queue;
793         unsigned int offset, index;
794         int rc;
795
796         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
797         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
798
799         memset(inbuf, 0, sizeof(inbuf));
800
801         /* Link a buffer to each VI in the write-combining mapping */
802         for (index = 0; index < nic_data->n_piobufs; ++index) {
803                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
804                                nic_data->piobuf_handle[index]);
805                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
806                                nic_data->pio_write_vi_base + index);
807                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
808                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
809                                   NULL, 0, NULL);
810                 if (rc) {
811                         netif_err(efx, drv, efx->net_dev,
812                                   "failed to link VI %u to PIO buffer %u (%d)\n",
813                                   nic_data->pio_write_vi_base + index, index,
814                                   rc);
815                         goto fail;
816                 }
817                 netif_dbg(efx, probe, efx->net_dev,
818                           "linked VI %u to PIO buffer %u\n",
819                           nic_data->pio_write_vi_base + index, index);
820         }
821
822         /* Link a buffer to each TX queue */
823         efx_for_each_channel(channel, efx) {
824                 efx_for_each_channel_tx_queue(tx_queue, channel) {
825                         /* We assign the PIO buffers to queues in
826                          * reverse order to allow for the following
827                          * special case.
828                          */
829                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
830                                    tx_queue->channel->channel - 1) *
831                                   efx_piobuf_size);
832                         index = offset / nic_data->piobuf_size;
833                         offset = offset % nic_data->piobuf_size;
834
835                         /* When the host page size is 4K, the first
836                          * host page in the WC mapping may be within
837                          * the same VI page as the last TX queue.  We
838                          * can only link one buffer to each VI.
839                          */
840                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
841                                 BUG_ON(index != 0);
842                                 rc = 0;
843                         } else {
844                                 MCDI_SET_DWORD(inbuf,
845                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
846                                                nic_data->piobuf_handle[index]);
847                                 MCDI_SET_DWORD(inbuf,
848                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
849                                                tx_queue->queue);
850                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
851                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
852                                                   NULL, 0, NULL);
853                         }
854
855                         if (rc) {
856                                 /* This is non-fatal; the TX path just
857                                  * won't use PIO for this queue
858                                  */
859                                 netif_err(efx, drv, efx->net_dev,
860                                           "failed to link VI %u to PIO buffer %u (%d)\n",
861                                           tx_queue->queue, index, rc);
862                                 tx_queue->piobuf = NULL;
863                         } else {
864                                 tx_queue->piobuf =
865                                         nic_data->pio_write_base +
866                                         index * EFX_VI_PAGE_SIZE + offset;
867                                 tx_queue->piobuf_offset = offset;
868                                 netif_dbg(efx, probe, efx->net_dev,
869                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
870                                           tx_queue->queue, index,
871                                           tx_queue->piobuf_offset,
872                                           tx_queue->piobuf);
873                         }
874                 }
875         }
876
877         return 0;
878
879 fail:
880         while (index--) {
881                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
882                                nic_data->pio_write_vi_base + index);
883                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
884                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
885                              NULL, 0, NULL);
886         }
887         return rc;
888 }
889
890 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
891 {
892         struct efx_channel *channel;
893         struct efx_tx_queue *tx_queue;
894
895         /* All our existing PIO buffers went away */
896         efx_for_each_channel(channel, efx)
897                 efx_for_each_channel_tx_queue(tx_queue, channel)
898                         tx_queue->piobuf = NULL;
899 }
900
901 #else /* !EFX_USE_PIO */
902
903 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
904 {
905         return n == 0 ? 0 : -ENOBUFS;
906 }
907
908 static int efx_ef10_link_piobufs(struct efx_nic *efx)
909 {
910         return 0;
911 }
912
913 static void efx_ef10_free_piobufs(struct efx_nic *efx)
914 {
915 }
916
917 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
918 {
919 }
920
921 #endif /* EFX_USE_PIO */
922
923 static void efx_ef10_remove(struct efx_nic *efx)
924 {
925         struct efx_ef10_nic_data *nic_data = efx->nic_data;
926         int rc;
927
928 #ifdef CONFIG_SFC_SRIOV
929         struct efx_ef10_nic_data *nic_data_pf;
930         struct pci_dev *pci_dev_pf;
931         struct efx_nic *efx_pf;
932         struct ef10_vf *vf;
933
934         if (efx->pci_dev->is_virtfn) {
935                 pci_dev_pf = efx->pci_dev->physfn;
936                 if (pci_dev_pf) {
937                         efx_pf = pci_get_drvdata(pci_dev_pf);
938                         nic_data_pf = efx_pf->nic_data;
939                         vf = nic_data_pf->vf + nic_data->vf_index;
940                         vf->efx = NULL;
941                 } else
942                         netif_info(efx, drv, efx->net_dev,
943                                    "Could not get the PF id from VF\n");
944         }
945 #endif
946
947         efx_ef10_cleanup_vlans(efx);
948         mutex_destroy(&nic_data->vlan_lock);
949
950         efx_ptp_remove(efx);
951
952         efx_mcdi_mon_remove(efx);
953
954         efx_ef10_rx_free_indir_table(efx);
955
956         if (nic_data->wc_membase)
957                 iounmap(nic_data->wc_membase);
958
959         rc = efx_ef10_free_vis(efx);
960         WARN_ON(rc != 0);
961
962         if (!nic_data->must_restore_piobufs)
963                 efx_ef10_free_piobufs(efx);
964
965         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
966         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
967
968         efx_mcdi_fini(efx);
969         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
970         kfree(nic_data);
971 }
972
973 static int efx_ef10_probe_pf(struct efx_nic *efx)
974 {
975         return efx_ef10_probe(efx);
976 }
977
978 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
979                             u32 *port_flags, u32 *vadaptor_flags,
980                             unsigned int *vlan_tags)
981 {
982         struct efx_ef10_nic_data *nic_data = efx->nic_data;
983         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
984         MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
985         size_t outlen;
986         int rc;
987
988         if (nic_data->datapath_caps &
989             (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
990                 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
991                                port_id);
992
993                 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
994                                   outbuf, sizeof(outbuf), &outlen);
995                 if (rc)
996                         return rc;
997
998                 if (outlen < sizeof(outbuf)) {
999                         rc = -EIO;
1000                         return rc;
1001                 }
1002         }
1003
1004         if (port_flags)
1005                 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1006         if (vadaptor_flags)
1007                 *vadaptor_flags =
1008                         MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1009         if (vlan_tags)
1010                 *vlan_tags =
1011                         MCDI_DWORD(outbuf,
1012                                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1013
1014         return 0;
1015 }
1016
1017 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1018 {
1019         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1020
1021         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1022         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1023                             NULL, 0, NULL);
1024 }
1025
1026 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1027 {
1028         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1029
1030         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1031         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1032                             NULL, 0, NULL);
1033 }
1034
1035 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1036                            unsigned int port_id, u8 *mac)
1037 {
1038         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1039
1040         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1041         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1042
1043         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1044                             sizeof(inbuf), NULL, 0, NULL);
1045 }
1046
1047 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1048                            unsigned int port_id, u8 *mac)
1049 {
1050         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1051
1052         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1053         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1054
1055         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1056                             sizeof(inbuf), NULL, 0, NULL);
1057 }
1058
1059 #ifdef CONFIG_SFC_SRIOV
1060 static int efx_ef10_probe_vf(struct efx_nic *efx)
1061 {
1062         int rc;
1063         struct pci_dev *pci_dev_pf;
1064
1065         /* If the parent PF has no VF data structure, it doesn't know about this
1066          * VF so fail probe.  The VF needs to be re-created.  This can happen
1067          * if the PF driver is unloaded while the VF is assigned to a guest.
1068          */
1069         pci_dev_pf = efx->pci_dev->physfn;
1070         if (pci_dev_pf) {
1071                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1072                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1073
1074                 if (!nic_data_pf->vf) {
1075                         netif_info(efx, drv, efx->net_dev,
1076                                    "The VF cannot link to its parent PF; "
1077                                    "please destroy and re-create the VF\n");
1078                         return -EBUSY;
1079                 }
1080         }
1081
1082         rc = efx_ef10_probe(efx);
1083         if (rc)
1084                 return rc;
1085
1086         rc = efx_ef10_get_vf_index(efx);
1087         if (rc)
1088                 goto fail;
1089
1090         if (efx->pci_dev->is_virtfn) {
1091                 if (efx->pci_dev->physfn) {
1092                         struct efx_nic *efx_pf =
1093                                 pci_get_drvdata(efx->pci_dev->physfn);
1094                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1095                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1096
1097                         nic_data_p->vf[nic_data->vf_index].efx = efx;
1098                         nic_data_p->vf[nic_data->vf_index].pci_dev =
1099                                 efx->pci_dev;
1100                 } else
1101                         netif_info(efx, drv, efx->net_dev,
1102                                    "Could not get the PF id from VF\n");
1103         }
1104
1105         return 0;
1106
1107 fail:
1108         efx_ef10_remove(efx);
1109         return rc;
1110 }
1111 #else
1112 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1113 {
1114         return 0;
1115 }
1116 #endif
1117
1118 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1119                               unsigned int min_vis, unsigned int max_vis)
1120 {
1121         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1122         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1123         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1124         size_t outlen;
1125         int rc;
1126
1127         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1128         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1129         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1130                           outbuf, sizeof(outbuf), &outlen);
1131         if (rc != 0)
1132                 return rc;
1133
1134         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1135                 return -EIO;
1136
1137         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1138                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1139
1140         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1141         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1142         return 0;
1143 }
1144
1145 /* Note that the failure path of this function does not free
1146  * resources, as this will be done by efx_ef10_remove().
1147  */
1148 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1149 {
1150         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1151         unsigned int uc_mem_map_size, wc_mem_map_size;
1152         unsigned int min_vis = max(EFX_TXQ_TYPES,
1153                                    efx_separate_tx_channels ? 2 : 1);
1154         unsigned int channel_vis, pio_write_vi_base, max_vis;
1155         void __iomem *membase;
1156         int rc;
1157
1158         channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1159
1160 #ifdef EFX_USE_PIO
1161         /* Try to allocate PIO buffers if wanted and if the full
1162          * number of PIO buffers would be sufficient to allocate one
1163          * copy-buffer per TX channel.  Failure is non-fatal, as there
1164          * are only a small number of PIO buffers shared between all
1165          * functions of the controller.
1166          */
1167         if (efx_piobuf_size != 0 &&
1168             nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1169             efx->n_tx_channels) {
1170                 unsigned int n_piobufs =
1171                         DIV_ROUND_UP(efx->n_tx_channels,
1172                                      nic_data->piobuf_size / efx_piobuf_size);
1173
1174                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1175                 if (rc)
1176                         netif_err(efx, probe, efx->net_dev,
1177                                   "failed to allocate PIO buffers (%d)\n", rc);
1178                 else
1179                         netif_dbg(efx, probe, efx->net_dev,
1180                                   "allocated %u PIO buffers\n", n_piobufs);
1181         }
1182 #else
1183         nic_data->n_piobufs = 0;
1184 #endif
1185
1186         /* PIO buffers should be mapped with write-combining enabled,
1187          * and we want to make single UC and WC mappings rather than
1188          * several of each (in fact that's the only option if host
1189          * page size is >4K).  So we may allocate some extra VIs just
1190          * for writing PIO buffers through.
1191          *
1192          * The UC mapping contains (channel_vis - 1) complete VIs and the
1193          * first half of the next VI.  Then the WC mapping begins with
1194          * the second half of this last VI.
1195          */
1196         uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1197                                      ER_DZ_TX_PIOBUF);
1198         if (nic_data->n_piobufs) {
1199                 /* pio_write_vi_base rounds down to give the number of complete
1200                  * VIs inside the UC mapping.
1201                  */
1202                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1203                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1204                                                nic_data->n_piobufs) *
1205                                               EFX_VI_PAGE_SIZE) -
1206                                    uc_mem_map_size);
1207                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1208         } else {
1209                 pio_write_vi_base = 0;
1210                 wc_mem_map_size = 0;
1211                 max_vis = channel_vis;
1212         }
1213
1214         /* In case the last attached driver failed to free VIs, do it now */
1215         rc = efx_ef10_free_vis(efx);
1216         if (rc != 0)
1217                 return rc;
1218
1219         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1220         if (rc != 0)
1221                 return rc;
1222
1223         if (nic_data->n_allocated_vis < channel_vis) {
1224                 netif_info(efx, drv, efx->net_dev,
1225                            "Could not allocate enough VIs to satisfy RSS"
1226                            " requirements. Performance may not be optimal.\n");
1227                 /* We didn't get the VIs to populate our channels.
1228                  * We could keep what we got but then we'd have more
1229                  * interrupts than we need.
1230                  * Instead calculate new max_channels and restart
1231                  */
1232                 efx->max_channels = nic_data->n_allocated_vis;
1233                 efx->max_tx_channels =
1234                         nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1235
1236                 efx_ef10_free_vis(efx);
1237                 return -EAGAIN;
1238         }
1239
1240         /* If we didn't get enough VIs to map all the PIO buffers, free the
1241          * PIO buffers
1242          */
1243         if (nic_data->n_piobufs &&
1244             nic_data->n_allocated_vis <
1245             pio_write_vi_base + nic_data->n_piobufs) {
1246                 netif_dbg(efx, probe, efx->net_dev,
1247                           "%u VIs are not sufficient to map %u PIO buffers\n",
1248                           nic_data->n_allocated_vis, nic_data->n_piobufs);
1249                 efx_ef10_free_piobufs(efx);
1250         }
1251
1252         /* Shrink the original UC mapping of the memory BAR */
1253         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1254         if (!membase) {
1255                 netif_err(efx, probe, efx->net_dev,
1256                           "could not shrink memory BAR to %x\n",
1257                           uc_mem_map_size);
1258                 return -ENOMEM;
1259         }
1260         iounmap(efx->membase);
1261         efx->membase = membase;
1262
1263         /* Set up the WC mapping if needed */
1264         if (wc_mem_map_size) {
1265                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1266                                                   uc_mem_map_size,
1267                                                   wc_mem_map_size);
1268                 if (!nic_data->wc_membase) {
1269                         netif_err(efx, probe, efx->net_dev,
1270                                   "could not allocate WC mapping of size %x\n",
1271                                   wc_mem_map_size);
1272                         return -ENOMEM;
1273                 }
1274                 nic_data->pio_write_vi_base = pio_write_vi_base;
1275                 nic_data->pio_write_base =
1276                         nic_data->wc_membase +
1277                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1278                          uc_mem_map_size);
1279
1280                 rc = efx_ef10_link_piobufs(efx);
1281                 if (rc)
1282                         efx_ef10_free_piobufs(efx);
1283         }
1284
1285         netif_dbg(efx, probe, efx->net_dev,
1286                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1287                   &efx->membase_phys, efx->membase, uc_mem_map_size,
1288                   nic_data->wc_membase, wc_mem_map_size);
1289
1290         return 0;
1291 }
1292
1293 static int efx_ef10_init_nic(struct efx_nic *efx)
1294 {
1295         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1296         int rc;
1297
1298         if (nic_data->must_check_datapath_caps) {
1299                 rc = efx_ef10_init_datapath_caps(efx);
1300                 if (rc)
1301                         return rc;
1302                 nic_data->must_check_datapath_caps = false;
1303         }
1304
1305         if (nic_data->must_realloc_vis) {
1306                 /* We cannot let the number of VIs change now */
1307                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1308                                         nic_data->n_allocated_vis);
1309                 if (rc)
1310                         return rc;
1311                 nic_data->must_realloc_vis = false;
1312         }
1313
1314         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1315                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1316                 if (rc == 0) {
1317                         rc = efx_ef10_link_piobufs(efx);
1318                         if (rc)
1319                                 efx_ef10_free_piobufs(efx);
1320                 }
1321
1322                 /* Log an error on failure, but this is non-fatal */
1323                 if (rc)
1324                         netif_err(efx, drv, efx->net_dev,
1325                                   "failed to restore PIO buffers (%d)\n", rc);
1326                 nic_data->must_restore_piobufs = false;
1327         }
1328
1329         /* don't fail init if RSS setup doesn't work */
1330         efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1331
1332         return 0;
1333 }
1334
1335 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1336 {
1337         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1338 #ifdef CONFIG_SFC_SRIOV
1339         unsigned int i;
1340 #endif
1341
1342         /* All our allocations have been reset */
1343         nic_data->must_realloc_vis = true;
1344         nic_data->must_restore_filters = true;
1345         nic_data->must_restore_piobufs = true;
1346         efx_ef10_forget_old_piobufs(efx);
1347         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1348
1349         /* Driver-created vswitches and vports must be re-created */
1350         nic_data->must_probe_vswitching = true;
1351         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1352 #ifdef CONFIG_SFC_SRIOV
1353         if (nic_data->vf)
1354                 for (i = 0; i < efx->vf_count; i++)
1355                         nic_data->vf[i].vport_id = 0;
1356 #endif
1357 }
1358
1359 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1360 {
1361         if (reason == RESET_TYPE_MC_FAILURE)
1362                 return RESET_TYPE_DATAPATH;
1363
1364         return efx_mcdi_map_reset_reason(reason);
1365 }
1366
1367 static int efx_ef10_map_reset_flags(u32 *flags)
1368 {
1369         enum {
1370                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1371                                    ETH_RESET_SHARED_SHIFT),
1372                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1373                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1374                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1375                                  ETH_RESET_SHARED_SHIFT)
1376         };
1377
1378         /* We assume for now that our PCI function is permitted to
1379          * reset everything.
1380          */
1381
1382         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1383                 *flags &= ~EF10_RESET_MC;
1384                 return RESET_TYPE_WORLD;
1385         }
1386
1387         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1388                 *flags &= ~EF10_RESET_PORT;
1389                 return RESET_TYPE_ALL;
1390         }
1391
1392         /* no invisible reset implemented */
1393
1394         return -EINVAL;
1395 }
1396
1397 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1398 {
1399         int rc = efx_mcdi_reset(efx, reset_type);
1400
1401         /* Unprivileged functions return -EPERM, but need to return success
1402          * here so that the datapath is brought back up.
1403          */
1404         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1405                 rc = 0;
1406
1407         /* If it was a port reset, trigger reallocation of MC resources.
1408          * Note that on an MC reset nothing needs to be done now because we'll
1409          * detect the MC reset later and handle it then.
1410          * For an FLR, we never get an MC reset event, but the MC has reset all
1411          * resources assigned to us, so we have to trigger reallocation now.
1412          */
1413         if ((reset_type == RESET_TYPE_ALL ||
1414              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1415                 efx_ef10_reset_mc_allocations(efx);
1416         return rc;
1417 }
1418
1419 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1420         [EF10_STAT_ ## ext_name] =                              \
1421         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1422 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1423         [EF10_STAT_ ## int_name] =                              \
1424         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1425 #define EF10_OTHER_STAT(ext_name)                               \
1426         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1427 #define GENERIC_SW_STAT(ext_name)                               \
1428         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1429
1430 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1431         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1432         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1433         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1434         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1435         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1436         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1437         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1438         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1439         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1440         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1441         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1442         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1443         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1444         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1445         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1446         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1447         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1448         EF10_OTHER_STAT(port_rx_good_bytes),
1449         EF10_OTHER_STAT(port_rx_bad_bytes),
1450         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1451         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1452         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1453         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1454         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1455         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1456         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1457         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1458         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1459         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1460         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1461         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1462         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1463         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1464         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1465         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1466         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1467         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1468         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1469         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1470         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1471         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1472         GENERIC_SW_STAT(rx_nodesc_trunc),
1473         GENERIC_SW_STAT(rx_noskb_drops),
1474         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1475         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1476         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1477         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1478         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1479         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1480         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1481         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1482         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1483         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1484         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1485         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1486         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1487         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1488         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1489         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1490         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1491         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1492         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1493         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1494         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1495         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1496         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1497         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1498         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1499         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1500         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1501         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1502         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1503         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1504 };
1505
1506 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1507                                (1ULL << EF10_STAT_port_tx_packets) |    \
1508                                (1ULL << EF10_STAT_port_tx_pause) |      \
1509                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1510                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1511                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1512                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1513                                (1ULL <<                                 \
1514                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1515                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1516                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1517                                (1ULL << EF10_STAT_port_rx_packets) |    \
1518                                (1ULL << EF10_STAT_port_rx_good) |       \
1519                                (1ULL << EF10_STAT_port_rx_bad) |        \
1520                                (1ULL << EF10_STAT_port_rx_pause) |      \
1521                                (1ULL << EF10_STAT_port_rx_control) |    \
1522                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1523                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1524                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1525                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1526                                (1ULL << EF10_STAT_port_rx_64) |         \
1527                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1528                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1529                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1530                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1531                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1532                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1533                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1534                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1535                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1536                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1537                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1538                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1539
1540 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1541  * For a 10G/40G switchable port we do not expose these because they might
1542  * not include all the packets they should.
1543  * On 8000 series NICs these statistics are always provided.
1544  */
1545 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1546                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1547                                  (1ULL << EF10_STAT_port_tx_64) |       \
1548                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1549                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1550                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1551                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1552                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1553                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1554
1555 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1556  * switchable port we do expose these because the errors will otherwise
1557  * be silent.
1558  */
1559 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1560                                   (1ULL << EF10_STAT_port_rx_length_error))
1561
1562 /* These statistics are only provided if the firmware supports the
1563  * capability PM_AND_RXDP_COUNTERS.
1564  */
1565 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1566         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1567         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1568         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1569         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1570         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1571         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1572         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1573         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1574         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1575         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1576         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1577         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1578
1579 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1580 {
1581         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1582         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1583         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1584
1585         if (!(efx->mcdi->fn_flags &
1586               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1587                 return 0;
1588
1589         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1590                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1591                 /* 8000 series have everything even at 40G */
1592                 if (nic_data->datapath_caps2 &
1593                     (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1594                         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1595         } else {
1596                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1597         }
1598
1599         if (nic_data->datapath_caps &
1600             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1601                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1602
1603         return raw_mask;
1604 }
1605
1606 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1607 {
1608         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1609         u64 raw_mask[2];
1610
1611         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1612
1613         /* Only show vadaptor stats when EVB capability is present */
1614         if (nic_data->datapath_caps &
1615             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1616                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1617                 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1618         } else {
1619                 raw_mask[1] = 0;
1620         }
1621
1622 #if BITS_PER_LONG == 64
1623         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1624         mask[0] = raw_mask[0];
1625         mask[1] = raw_mask[1];
1626 #else
1627         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1628         mask[0] = raw_mask[0] & 0xffffffff;
1629         mask[1] = raw_mask[0] >> 32;
1630         mask[2] = raw_mask[1] & 0xffffffff;
1631 #endif
1632 }
1633
1634 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1635 {
1636         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1637
1638         efx_ef10_get_stat_mask(efx, mask);
1639         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1640                                       mask, names);
1641 }
1642
1643 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1644                                            struct rtnl_link_stats64 *core_stats)
1645 {
1646         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1647         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1648         u64 *stats = nic_data->stats;
1649         size_t stats_count = 0, index;
1650
1651         efx_ef10_get_stat_mask(efx, mask);
1652
1653         if (full_stats) {
1654                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1655                         if (efx_ef10_stat_desc[index].name) {
1656                                 *full_stats++ = stats[index];
1657                                 ++stats_count;
1658                         }
1659                 }
1660         }
1661
1662         if (!core_stats)
1663                 return stats_count;
1664
1665         if (nic_data->datapath_caps &
1666                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1667                 /* Use vadaptor stats. */
1668                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1669                                          stats[EF10_STAT_rx_multicast] +
1670                                          stats[EF10_STAT_rx_broadcast];
1671                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1672                                          stats[EF10_STAT_tx_multicast] +
1673                                          stats[EF10_STAT_tx_broadcast];
1674                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1675                                        stats[EF10_STAT_rx_multicast_bytes] +
1676                                        stats[EF10_STAT_rx_broadcast_bytes];
1677                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1678                                        stats[EF10_STAT_tx_multicast_bytes] +
1679                                        stats[EF10_STAT_tx_broadcast_bytes];
1680                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1681                                          stats[GENERIC_STAT_rx_noskb_drops];
1682                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1683                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1684                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1685                 core_stats->rx_errors = core_stats->rx_crc_errors;
1686                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1687         } else {
1688                 /* Use port stats. */
1689                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1690                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1691                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1692                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1693                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1694                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1695                                          stats[GENERIC_STAT_rx_noskb_drops];
1696                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1697                 core_stats->rx_length_errors =
1698                                 stats[EF10_STAT_port_rx_gtjumbo] +
1699                                 stats[EF10_STAT_port_rx_length_error];
1700                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1701                 core_stats->rx_frame_errors =
1702                                 stats[EF10_STAT_port_rx_align_error];
1703                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1704                 core_stats->rx_errors = (core_stats->rx_length_errors +
1705                                          core_stats->rx_crc_errors +
1706                                          core_stats->rx_frame_errors);
1707         }
1708
1709         return stats_count;
1710 }
1711
1712 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1713 {
1714         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1715         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1716         __le64 generation_start, generation_end;
1717         u64 *stats = nic_data->stats;
1718         __le64 *dma_stats;
1719
1720         efx_ef10_get_stat_mask(efx, mask);
1721
1722         dma_stats = efx->stats_buffer.addr;
1723
1724         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1725         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1726                 return 0;
1727         rmb();
1728         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1729                              stats, efx->stats_buffer.addr, false);
1730         rmb();
1731         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1732         if (generation_end != generation_start)
1733                 return -EAGAIN;
1734
1735         /* Update derived statistics */
1736         efx_nic_fix_nodesc_drop_stat(efx,
1737                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1738         stats[EF10_STAT_port_rx_good_bytes] =
1739                 stats[EF10_STAT_port_rx_bytes] -
1740                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1741         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1742                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1743         efx_update_sw_stats(efx, stats);
1744         return 0;
1745 }
1746
1747
1748 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1749                                        struct rtnl_link_stats64 *core_stats)
1750 {
1751         int retry;
1752
1753         /* If we're unlucky enough to read statistics during the DMA, wait
1754          * up to 10ms for it to finish (typically takes <500us)
1755          */
1756         for (retry = 0; retry < 100; ++retry) {
1757                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1758                         break;
1759                 udelay(100);
1760         }
1761
1762         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1763 }
1764
1765 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1766 {
1767         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1768         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1769         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1770         __le64 generation_start, generation_end;
1771         u64 *stats = nic_data->stats;
1772         u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1773         struct efx_buffer stats_buf;
1774         __le64 *dma_stats;
1775         int rc;
1776
1777         spin_unlock_bh(&efx->stats_lock);
1778
1779         if (in_interrupt()) {
1780                 /* If in atomic context, cannot update stats.  Just update the
1781                  * software stats and return so the caller can continue.
1782                  */
1783                 spin_lock_bh(&efx->stats_lock);
1784                 efx_update_sw_stats(efx, stats);
1785                 return 0;
1786         }
1787
1788         efx_ef10_get_stat_mask(efx, mask);
1789
1790         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1791         if (rc) {
1792                 spin_lock_bh(&efx->stats_lock);
1793                 return rc;
1794         }
1795
1796         dma_stats = stats_buf.addr;
1797         dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1798
1799         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1800         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1801                               MAC_STATS_IN_DMA, 1);
1802         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1803         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1804
1805         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1806                                 NULL, 0, NULL);
1807         spin_lock_bh(&efx->stats_lock);
1808         if (rc) {
1809                 /* Expect ENOENT if DMA queues have not been set up */
1810                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1811                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1812                                                sizeof(inbuf), NULL, 0, rc);
1813                 goto out;
1814         }
1815
1816         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1817         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1818                 WARN_ON_ONCE(1);
1819                 goto out;
1820         }
1821         rmb();
1822         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1823                              stats, stats_buf.addr, false);
1824         rmb();
1825         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1826         if (generation_end != generation_start) {
1827                 rc = -EAGAIN;
1828                 goto out;
1829         }
1830
1831         efx_update_sw_stats(efx, stats);
1832 out:
1833         efx_nic_free_buffer(efx, &stats_buf);
1834         return rc;
1835 }
1836
1837 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1838                                        struct rtnl_link_stats64 *core_stats)
1839 {
1840         if (efx_ef10_try_update_nic_stats_vf(efx))
1841                 return 0;
1842
1843         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1844 }
1845
1846 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1847 {
1848         struct efx_nic *efx = channel->efx;
1849         unsigned int mode, usecs;
1850         efx_dword_t timer_cmd;
1851
1852         if (channel->irq_moderation_us) {
1853                 mode = 3;
1854                 usecs = channel->irq_moderation_us;
1855         } else {
1856                 mode = 0;
1857                 usecs = 0;
1858         }
1859
1860         if (EFX_EF10_WORKAROUND_61265(efx)) {
1861                 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1862                 unsigned int ns = usecs * 1000;
1863
1864                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1865                                channel->channel);
1866                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1867                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1868                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1869
1870                 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1871                                    inbuf, sizeof(inbuf), 0, NULL, 0);
1872         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1873                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1874
1875                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1876                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1877                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1878                                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1879                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1880                                 channel->channel);
1881         } else {
1882                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1883
1884                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1885                                      ERF_DZ_TC_TIMER_VAL, ticks);
1886                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1887                                 channel->channel);
1888         }
1889 }
1890
1891 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1892                                 struct ethtool_wolinfo *wol) {}
1893
1894 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1895 {
1896         return -EOPNOTSUPP;
1897 }
1898
1899 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1900 {
1901         wol->supported = 0;
1902         wol->wolopts = 0;
1903         memset(&wol->sopass, 0, sizeof(wol->sopass));
1904 }
1905
1906 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1907 {
1908         if (type != 0)
1909                 return -EINVAL;
1910         return 0;
1911 }
1912
1913 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1914                                   const efx_dword_t *hdr, size_t hdr_len,
1915                                   const efx_dword_t *sdu, size_t sdu_len)
1916 {
1917         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1918         u8 *pdu = nic_data->mcdi_buf.addr;
1919
1920         memcpy(pdu, hdr, hdr_len);
1921         memcpy(pdu + hdr_len, sdu, sdu_len);
1922         wmb();
1923
1924         /* The hardware provides 'low' and 'high' (doorbell) registers
1925          * for passing the 64-bit address of an MCDI request to
1926          * firmware.  However the dwords are swapped by firmware.  The
1927          * least significant bits of the doorbell are then 0 for all
1928          * MCDI requests due to alignment.
1929          */
1930         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1931                     ER_DZ_MC_DB_LWRD);
1932         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1933                     ER_DZ_MC_DB_HWRD);
1934 }
1935
1936 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1937 {
1938         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1939         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1940
1941         rmb();
1942         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1943 }
1944
1945 static void
1946 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1947                             size_t offset, size_t outlen)
1948 {
1949         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1950         const u8 *pdu = nic_data->mcdi_buf.addr;
1951
1952         memcpy(outbuf, pdu + offset, outlen);
1953 }
1954
1955 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1956 {
1957         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1958
1959         /* All our allocations have been reset */
1960         efx_ef10_reset_mc_allocations(efx);
1961
1962         /* The datapath firmware might have been changed */
1963         nic_data->must_check_datapath_caps = true;
1964
1965         /* MAC statistics have been cleared on the NIC; clear the local
1966          * statistic that we update with efx_update_diff_stat().
1967          */
1968         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1969 }
1970
1971 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1972 {
1973         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1974         int rc;
1975
1976         rc = efx_ef10_get_warm_boot_count(efx);
1977         if (rc < 0) {
1978                 /* The firmware is presumably in the process of
1979                  * rebooting.  However, we are supposed to report each
1980                  * reboot just once, so we must only do that once we
1981                  * can read and store the updated warm boot count.
1982                  */
1983                 return 0;
1984         }
1985
1986         if (rc == nic_data->warm_boot_count)
1987                 return 0;
1988
1989         nic_data->warm_boot_count = rc;
1990         efx_ef10_mcdi_reboot_detected(efx);
1991
1992         return -EIO;
1993 }
1994
1995 /* Handle an MSI interrupt
1996  *
1997  * Handle an MSI hardware interrupt.  This routine schedules event
1998  * queue processing.  No interrupt acknowledgement cycle is necessary.
1999  * Also, we never need to check that the interrupt is for us, since
2000  * MSI interrupts cannot be shared.
2001  */
2002 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2003 {
2004         struct efx_msi_context *context = dev_id;
2005         struct efx_nic *efx = context->efx;
2006
2007         netif_vdbg(efx, intr, efx->net_dev,
2008                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2009
2010         if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
2011                 /* Note test interrupts */
2012                 if (context->index == efx->irq_level)
2013                         efx->last_irq_cpu = raw_smp_processor_id();
2014
2015                 /* Schedule processing of the channel */
2016                 efx_schedule_channel_irq(efx->channel[context->index]);
2017         }
2018
2019         return IRQ_HANDLED;
2020 }
2021
2022 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2023 {
2024         struct efx_nic *efx = dev_id;
2025         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
2026         struct efx_channel *channel;
2027         efx_dword_t reg;
2028         u32 queues;
2029
2030         /* Read the ISR which also ACKs the interrupts */
2031         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2032         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2033
2034         if (queues == 0)
2035                 return IRQ_NONE;
2036
2037         if (likely(soft_enabled)) {
2038                 /* Note test interrupts */
2039                 if (queues & (1U << efx->irq_level))
2040                         efx->last_irq_cpu = raw_smp_processor_id();
2041
2042                 efx_for_each_channel(channel, efx) {
2043                         if (queues & 1)
2044                                 efx_schedule_channel_irq(channel);
2045                         queues >>= 1;
2046                 }
2047         }
2048
2049         netif_vdbg(efx, intr, efx->net_dev,
2050                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2051                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2052
2053         return IRQ_HANDLED;
2054 }
2055
2056 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2057 {
2058         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2059
2060         if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2061                                     NULL) == 0)
2062                 return -ENOTSUPP;
2063
2064         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2065
2066         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2067         return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2068                             inbuf, sizeof(inbuf), NULL, 0, NULL);
2069 }
2070
2071 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2072 {
2073         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2074                                     (tx_queue->ptr_mask + 1) *
2075                                     sizeof(efx_qword_t),
2076                                     GFP_KERNEL);
2077 }
2078
2079 /* This writes to the TX_DESC_WPTR and also pushes data */
2080 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2081                                          const efx_qword_t *txd)
2082 {
2083         unsigned int write_ptr;
2084         efx_oword_t reg;
2085
2086         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2087         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2088         reg.qword[0] = *txd;
2089         efx_writeo_page(tx_queue->efx, &reg,
2090                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
2091 }
2092
2093 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2094 {
2095         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2096                                                        EFX_BUF_SIZE));
2097         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2098         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2099         struct efx_channel *channel = tx_queue->channel;
2100         struct efx_nic *efx = tx_queue->efx;
2101         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2102         size_t inlen;
2103         dma_addr_t dma_addr;
2104         efx_qword_t *txd;
2105         int rc;
2106         int i;
2107         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2108
2109         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2110         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2111         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2112         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2113         MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
2114                               INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2115                               INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2116         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2117         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2118
2119         dma_addr = tx_queue->txd.buf.dma_addr;
2120
2121         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2122                   tx_queue->queue, entries, (u64)dma_addr);
2123
2124         for (i = 0; i < entries; ++i) {
2125                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2126                 dma_addr += EFX_BUF_SIZE;
2127         }
2128
2129         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2130
2131         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2132                           NULL, 0, NULL);
2133         if (rc)
2134                 goto fail;
2135
2136         /* A previous user of this TX queue might have set us up the
2137          * bomb by writing a descriptor to the TX push collector but
2138          * not the doorbell.  (Each collector belongs to a port, not a
2139          * queue or function, so cannot easily be reset.)  We must
2140          * attempt to push a no-op descriptor in its place.
2141          */
2142         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2143         tx_queue->insert_count = 1;
2144         txd = efx_tx_desc(tx_queue, 0);
2145         EFX_POPULATE_QWORD_4(*txd,
2146                              ESF_DZ_TX_DESC_IS_OPT, true,
2147                              ESF_DZ_TX_OPTION_TYPE,
2148                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2149                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2150                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2151         tx_queue->write_count = 1;
2152
2153         if (nic_data->datapath_caps &
2154             (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2155                 tx_queue->tso_version = 1;
2156         }
2157
2158         wmb();
2159         efx_ef10_push_tx_desc(tx_queue, txd);
2160
2161         return;
2162
2163 fail:
2164         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2165                     tx_queue->queue);
2166 }
2167
2168 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2169 {
2170         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2171         MCDI_DECLARE_BUF_ERR(outbuf);
2172         struct efx_nic *efx = tx_queue->efx;
2173         size_t outlen;
2174         int rc;
2175
2176         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2177                        tx_queue->queue);
2178
2179         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2180                           outbuf, sizeof(outbuf), &outlen);
2181
2182         if (rc && rc != -EALREADY)
2183                 goto fail;
2184
2185         return;
2186
2187 fail:
2188         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2189                                outbuf, outlen, rc);
2190 }
2191
2192 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2193 {
2194         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2195 }
2196
2197 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2198 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2199 {
2200         unsigned int write_ptr;
2201         efx_dword_t reg;
2202
2203         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2204         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2205         efx_writed_page(tx_queue->efx, &reg,
2206                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2207 }
2208
2209 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2210 {
2211         unsigned int old_write_count = tx_queue->write_count;
2212         struct efx_tx_buffer *buffer;
2213         unsigned int write_ptr;
2214         efx_qword_t *txd;
2215
2216         tx_queue->xmit_more_available = false;
2217         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2218                 return;
2219
2220         do {
2221                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2222                 buffer = &tx_queue->buffer[write_ptr];
2223                 txd = efx_tx_desc(tx_queue, write_ptr);
2224                 ++tx_queue->write_count;
2225
2226                 /* Create TX descriptor ring entry */
2227                 if (buffer->flags & EFX_TX_BUF_OPTION) {
2228                         *txd = buffer->option;
2229                 } else {
2230                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2231                         EFX_POPULATE_QWORD_3(
2232                                 *txd,
2233                                 ESF_DZ_TX_KER_CONT,
2234                                 buffer->flags & EFX_TX_BUF_CONT,
2235                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2236                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2237                 }
2238         } while (tx_queue->write_count != tx_queue->insert_count);
2239
2240         wmb(); /* Ensure descriptors are written before they are fetched */
2241
2242         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2243                 txd = efx_tx_desc(tx_queue,
2244                                   old_write_count & tx_queue->ptr_mask);
2245                 efx_ef10_push_tx_desc(tx_queue, txd);
2246                 ++tx_queue->pushes;
2247         } else {
2248                 efx_ef10_notify_tx_desc(tx_queue);
2249         }
2250 }
2251
2252 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2253                                       bool exclusive, unsigned *context_size)
2254 {
2255         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2256         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2257         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2258         size_t outlen;
2259         int rc;
2260         u32 alloc_type = exclusive ?
2261                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2262                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2263         unsigned rss_spread = exclusive ?
2264                                 efx->rss_spread :
2265                                 min(rounddown_pow_of_two(efx->rss_spread),
2266                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2267
2268         if (!exclusive && rss_spread == 1) {
2269                 *context = EFX_EF10_RSS_CONTEXT_INVALID;
2270                 if (context_size)
2271                         *context_size = 1;
2272                 return 0;
2273         }
2274
2275         if (nic_data->datapath_caps &
2276             1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2277                 return -EOPNOTSUPP;
2278
2279         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2280                        nic_data->vport_id);
2281         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2282         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2283
2284         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2285                 outbuf, sizeof(outbuf), &outlen);
2286         if (rc != 0)
2287                 return rc;
2288
2289         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2290                 return -EIO;
2291
2292         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2293
2294         if (context_size)
2295                 *context_size = rss_spread;
2296
2297         return 0;
2298 }
2299
2300 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2301 {
2302         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2303         int rc;
2304
2305         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2306                        context);
2307
2308         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2309                             NULL, 0, NULL);
2310         WARN_ON(rc != 0);
2311 }
2312
2313 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2314                                        const u32 *rx_indir_table)
2315 {
2316         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2317         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2318         int i, rc;
2319
2320         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2321                        context);
2322         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2323                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2324
2325         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2326                 MCDI_PTR(tablebuf,
2327                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2328                                 (u8) rx_indir_table[i];
2329
2330         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2331                           sizeof(tablebuf), NULL, 0, NULL);
2332         if (rc != 0)
2333                 return rc;
2334
2335         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2336                        context);
2337         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2338                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2339         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2340                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
2341                         efx->rx_hash_key[i];
2342
2343         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2344                             sizeof(keybuf), NULL, 0, NULL);
2345 }
2346
2347 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2348 {
2349         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2350
2351         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2352                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2353         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2354 }
2355
2356 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2357                                               unsigned *context_size)
2358 {
2359         u32 new_rx_rss_context;
2360         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2361         int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2362                                             false, context_size);
2363
2364         if (rc != 0)
2365                 return rc;
2366
2367         nic_data->rx_rss_context = new_rx_rss_context;
2368         nic_data->rx_rss_context_exclusive = false;
2369         efx_set_default_rx_indir_table(efx);
2370         return 0;
2371 }
2372
2373 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2374                                                  const u32 *rx_indir_table)
2375 {
2376         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2377         int rc;
2378         u32 new_rx_rss_context;
2379
2380         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2381             !nic_data->rx_rss_context_exclusive) {
2382                 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2383                                                 true, NULL);
2384                 if (rc == -EOPNOTSUPP)
2385                         return rc;
2386                 else if (rc != 0)
2387                         goto fail1;
2388         } else {
2389                 new_rx_rss_context = nic_data->rx_rss_context;
2390         }
2391
2392         rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2393                                          rx_indir_table);
2394         if (rc != 0)
2395                 goto fail2;
2396
2397         if (nic_data->rx_rss_context != new_rx_rss_context)
2398                 efx_ef10_rx_free_indir_table(efx);
2399         nic_data->rx_rss_context = new_rx_rss_context;
2400         nic_data->rx_rss_context_exclusive = true;
2401         if (rx_indir_table != efx->rx_indir_table)
2402                 memcpy(efx->rx_indir_table, rx_indir_table,
2403                        sizeof(efx->rx_indir_table));
2404         return 0;
2405
2406 fail2:
2407         if (new_rx_rss_context != nic_data->rx_rss_context)
2408                 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2409 fail1:
2410         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2411         return rc;
2412 }
2413
2414 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2415                                           const u32 *rx_indir_table)
2416 {
2417         int rc;
2418
2419         if (efx->rss_spread == 1)
2420                 return 0;
2421
2422         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2423
2424         if (rc == -ENOBUFS && !user) {
2425                 unsigned context_size;
2426                 bool mismatch = false;
2427                 size_t i;
2428
2429                 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2430                      i++)
2431                         mismatch = rx_indir_table[i] !=
2432                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
2433
2434                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2435                 if (rc == 0) {
2436                         if (context_size != efx->rss_spread)
2437                                 netif_warn(efx, probe, efx->net_dev,
2438                                            "Could not allocate an exclusive RSS"
2439                                            " context; allocated a shared one of"
2440                                            " different size."
2441                                            " Wanted %u, got %u.\n",
2442                                            efx->rss_spread, context_size);
2443                         else if (mismatch)
2444                                 netif_warn(efx, probe, efx->net_dev,
2445                                            "Could not allocate an exclusive RSS"
2446                                            " context; allocated a shared one but"
2447                                            " could not apply custom"
2448                                            " indirection.\n");
2449                         else
2450                                 netif_info(efx, probe, efx->net_dev,
2451                                            "Could not allocate an exclusive RSS"
2452                                            " context; allocated a shared one.\n");
2453                 }
2454         }
2455         return rc;
2456 }
2457
2458 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2459                                           const u32 *rx_indir_table
2460                                           __attribute__ ((unused)))
2461 {
2462         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2463
2464         if (user)
2465                 return -EOPNOTSUPP;
2466         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2467                 return 0;
2468         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2469 }
2470
2471 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2472 {
2473         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2474                                     (rx_queue->ptr_mask + 1) *
2475                                     sizeof(efx_qword_t),
2476                                     GFP_KERNEL);
2477 }
2478
2479 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2480 {
2481         MCDI_DECLARE_BUF(inbuf,
2482                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2483                                                 EFX_BUF_SIZE));
2484         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2485         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2486         struct efx_nic *efx = rx_queue->efx;
2487         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2488         size_t inlen;
2489         dma_addr_t dma_addr;
2490         int rc;
2491         int i;
2492         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2493
2494         rx_queue->scatter_n = 0;
2495         rx_queue->scatter_len = 0;
2496
2497         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2498         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2499         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2500         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2501                        efx_rx_queue_index(rx_queue));
2502         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2503                               INIT_RXQ_IN_FLAG_PREFIX, 1,
2504                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2505         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2506         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2507
2508         dma_addr = rx_queue->rxd.buf.dma_addr;
2509
2510         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2511                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2512
2513         for (i = 0; i < entries; ++i) {
2514                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2515                 dma_addr += EFX_BUF_SIZE;
2516         }
2517
2518         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2519
2520         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2521                           NULL, 0, NULL);
2522         if (rc)
2523                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2524                             efx_rx_queue_index(rx_queue));
2525 }
2526
2527 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2528 {
2529         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2530         MCDI_DECLARE_BUF_ERR(outbuf);
2531         struct efx_nic *efx = rx_queue->efx;
2532         size_t outlen;
2533         int rc;
2534
2535         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2536                        efx_rx_queue_index(rx_queue));
2537
2538         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2539                           outbuf, sizeof(outbuf), &outlen);
2540
2541         if (rc && rc != -EALREADY)
2542                 goto fail;
2543
2544         return;
2545
2546 fail:
2547         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2548                                outbuf, outlen, rc);
2549 }
2550
2551 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2552 {
2553         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2554 }
2555
2556 /* This creates an entry in the RX descriptor queue */
2557 static inline void
2558 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2559 {
2560         struct efx_rx_buffer *rx_buf;
2561         efx_qword_t *rxd;
2562
2563         rxd = efx_rx_desc(rx_queue, index);
2564         rx_buf = efx_rx_buffer(rx_queue, index);
2565         EFX_POPULATE_QWORD_2(*rxd,
2566                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2567                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2568 }
2569
2570 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2571 {
2572         struct efx_nic *efx = rx_queue->efx;
2573         unsigned int write_count;
2574         efx_dword_t reg;
2575
2576         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2577         write_count = rx_queue->added_count & ~7;
2578         if (rx_queue->notified_count == write_count)
2579                 return;
2580
2581         do
2582                 efx_ef10_build_rx_desc(
2583                         rx_queue,
2584                         rx_queue->notified_count & rx_queue->ptr_mask);
2585         while (++rx_queue->notified_count != write_count);
2586
2587         wmb();
2588         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2589                              write_count & rx_queue->ptr_mask);
2590         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2591                         efx_rx_queue_index(rx_queue));
2592 }
2593
2594 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2595
2596 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2597 {
2598         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2599         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2600         efx_qword_t event;
2601
2602         EFX_POPULATE_QWORD_2(event,
2603                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2604                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2605
2606         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2607
2608         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2609          * already swapped the data to little-endian order.
2610          */
2611         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2612                sizeof(efx_qword_t));
2613
2614         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2615                            inbuf, sizeof(inbuf), 0,
2616                            efx_ef10_rx_defer_refill_complete, 0);
2617 }
2618
2619 static void
2620 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2621                                   int rc, efx_dword_t *outbuf,
2622                                   size_t outlen_actual)
2623 {
2624         /* nothing to do */
2625 }
2626
2627 static int efx_ef10_ev_probe(struct efx_channel *channel)
2628 {
2629         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2630                                     (channel->eventq_mask + 1) *
2631                                     sizeof(efx_qword_t),
2632                                     GFP_KERNEL);
2633 }
2634
2635 static void efx_ef10_ev_fini(struct efx_channel *channel)
2636 {
2637         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2638         MCDI_DECLARE_BUF_ERR(outbuf);
2639         struct efx_nic *efx = channel->efx;
2640         size_t outlen;
2641         int rc;
2642
2643         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2644
2645         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2646                           outbuf, sizeof(outbuf), &outlen);
2647
2648         if (rc && rc != -EALREADY)
2649                 goto fail;
2650
2651         return;
2652
2653 fail:
2654         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2655                                outbuf, outlen, rc);
2656 }
2657
2658 static int efx_ef10_ev_init(struct efx_channel *channel)
2659 {
2660         MCDI_DECLARE_BUF(inbuf,
2661                          MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2662                                                    EFX_BUF_SIZE));
2663         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
2664         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2665         struct efx_nic *efx = channel->efx;
2666         struct efx_ef10_nic_data *nic_data;
2667         size_t inlen, outlen;
2668         unsigned int enabled, implemented;
2669         dma_addr_t dma_addr;
2670         int rc;
2671         int i;
2672
2673         nic_data = efx->nic_data;
2674
2675         /* Fill event queue with all ones (i.e. empty events) */
2676         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2677
2678         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2679         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2680         /* INIT_EVQ expects index in vector table, not absolute */
2681         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2682         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2683                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2684         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2685         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2686         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2687                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2688         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2689
2690         if (nic_data->datapath_caps2 &
2691             1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
2692                 /* Use the new generic approach to specifying event queue
2693                  * configuration, requesting lower latency or higher throughput.
2694                  * The options that actually get used appear in the output.
2695                  */
2696                 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
2697                                       INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
2698                                       INIT_EVQ_V2_IN_FLAG_TYPE,
2699                                       MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
2700         } else {
2701                 bool cut_thru = !(nic_data->datapath_caps &
2702                         1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2703
2704                 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2705                                       INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2706                                       INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2707                                       INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2708                                       INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
2709         }
2710
2711         dma_addr = channel->eventq.buf.dma_addr;
2712         for (i = 0; i < entries; ++i) {
2713                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2714                 dma_addr += EFX_BUF_SIZE;
2715         }
2716
2717         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2718
2719         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2720                           outbuf, sizeof(outbuf), &outlen);
2721
2722         if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
2723                 netif_dbg(efx, drv, efx->net_dev,
2724                           "Channel %d using event queue flags %08x\n",
2725                           channel->channel,
2726                           MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
2727
2728         /* IRQ return is ignored */
2729         if (channel->channel || rc)
2730                 return rc;
2731
2732         /* Successfully created event queue on channel 0 */
2733         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2734         if (rc == -ENOSYS) {
2735                 /* GET_WORKAROUNDS was implemented before this workaround,
2736                  * thus it must be unavailable in this firmware.
2737                  */
2738                 nic_data->workaround_26807 = false;
2739                 rc = 0;
2740         } else if (rc) {
2741                 goto fail;
2742         } else {
2743                 nic_data->workaround_26807 =
2744                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2745
2746                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2747                     !nic_data->workaround_26807) {
2748                         unsigned int flags;
2749
2750                         rc = efx_mcdi_set_workaround(efx,
2751                                                      MC_CMD_WORKAROUND_BUG26807,
2752                                                      true, &flags);
2753
2754                         if (!rc) {
2755                                 if (flags &
2756                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2757                                         netif_info(efx, drv, efx->net_dev,
2758                                                    "other functions on NIC have been reset\n");
2759
2760                                         /* With MCFW v4.6.x and earlier, the
2761                                          * boot count will have incremented,
2762                                          * so re-read the warm_boot_count
2763                                          * value now to ensure this function
2764                                          * doesn't think it has changed next
2765                                          * time it checks.
2766                                          */
2767                                         rc = efx_ef10_get_warm_boot_count(efx);
2768                                         if (rc >= 0) {
2769                                                 nic_data->warm_boot_count = rc;
2770                                                 rc = 0;
2771                                         }
2772                                 }
2773                                 nic_data->workaround_26807 = true;
2774                         } else if (rc == -EPERM) {
2775                                 rc = 0;
2776                         }
2777                 }
2778         }
2779
2780         if (!rc)
2781                 return 0;
2782
2783 fail:
2784         efx_ef10_ev_fini(channel);
2785         return rc;
2786 }
2787
2788 static void efx_ef10_ev_remove(struct efx_channel *channel)
2789 {
2790         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2791 }
2792
2793 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2794                                            unsigned int rx_queue_label)
2795 {
2796         struct efx_nic *efx = rx_queue->efx;
2797
2798         netif_info(efx, hw, efx->net_dev,
2799                    "rx event arrived on queue %d labeled as queue %u\n",
2800                    efx_rx_queue_index(rx_queue), rx_queue_label);
2801
2802         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2803 }
2804
2805 static void
2806 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2807                              unsigned int actual, unsigned int expected)
2808 {
2809         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2810         struct efx_nic *efx = rx_queue->efx;
2811
2812         netif_info(efx, hw, efx->net_dev,
2813                    "dropped %d events (index=%d expected=%d)\n",
2814                    dropped, actual, expected);
2815
2816         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2817 }
2818
2819 /* partially received RX was aborted. clean up. */
2820 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2821 {
2822         unsigned int rx_desc_ptr;
2823
2824         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2825                   "scattered RX aborted (dropping %u buffers)\n",
2826                   rx_queue->scatter_n);
2827
2828         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2829
2830         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2831                       0, EFX_RX_PKT_DISCARD);
2832
2833         rx_queue->removed_count += rx_queue->scatter_n;
2834         rx_queue->scatter_n = 0;
2835         rx_queue->scatter_len = 0;
2836         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2837 }
2838
2839 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2840                                     const efx_qword_t *event)
2841 {
2842         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2843         unsigned int n_descs, n_packets, i;
2844         struct efx_nic *efx = channel->efx;
2845         struct efx_rx_queue *rx_queue;
2846         bool rx_cont;
2847         u16 flags = 0;
2848
2849         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2850                 return 0;
2851
2852         /* Basic packet information */
2853         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2854         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2855         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2856         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2857         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2858
2859         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2860                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2861                             EFX_QWORD_FMT "\n",
2862                             EFX_QWORD_VAL(*event));
2863
2864         rx_queue = efx_channel_get_rx_queue(channel);
2865
2866         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2867                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2868
2869         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2870                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2871
2872         if (n_descs != rx_queue->scatter_n + 1) {
2873                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2874
2875                 /* detect rx abort */
2876                 if (unlikely(n_descs == rx_queue->scatter_n)) {
2877                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2878                                 netdev_WARN(efx->net_dev,
2879                                             "invalid RX abort: scatter_n=%u event="
2880                                             EFX_QWORD_FMT "\n",
2881                                             rx_queue->scatter_n,
2882                                             EFX_QWORD_VAL(*event));
2883                         efx_ef10_handle_rx_abort(rx_queue);
2884                         return 0;
2885                 }
2886
2887                 /* Check that RX completion merging is valid, i.e.
2888                  * the current firmware supports it and this is a
2889                  * non-scattered packet.
2890                  */
2891                 if (!(nic_data->datapath_caps &
2892                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2893                     rx_queue->scatter_n != 0 || rx_cont) {
2894                         efx_ef10_handle_rx_bad_lbits(
2895                                 rx_queue, next_ptr_lbits,
2896                                 (rx_queue->removed_count +
2897                                  rx_queue->scatter_n + 1) &
2898                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2899                         return 0;
2900                 }
2901
2902                 /* Merged completion for multiple non-scattered packets */
2903                 rx_queue->scatter_n = 1;
2904                 rx_queue->scatter_len = 0;
2905                 n_packets = n_descs;
2906                 ++channel->n_rx_merge_events;
2907                 channel->n_rx_merge_packets += n_packets;
2908                 flags |= EFX_RX_PKT_PREFIX_LEN;
2909         } else {
2910                 ++rx_queue->scatter_n;
2911                 rx_queue->scatter_len += rx_bytes;
2912                 if (rx_cont)
2913                         return 0;
2914                 n_packets = 1;
2915         }
2916
2917         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2918                 flags |= EFX_RX_PKT_DISCARD;
2919
2920         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2921                 channel->n_rx_ip_hdr_chksum_err += n_packets;
2922         } else if (unlikely(EFX_QWORD_FIELD(*event,
2923                                             ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2924                 channel->n_rx_tcp_udp_chksum_err += n_packets;
2925         } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2926                    rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2927                 flags |= EFX_RX_PKT_CSUMMED;
2928         }
2929
2930         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2931                 flags |= EFX_RX_PKT_TCP;
2932
2933         channel->irq_mod_score += 2 * n_packets;
2934
2935         /* Handle received packet(s) */
2936         for (i = 0; i < n_packets; i++) {
2937                 efx_rx_packet(rx_queue,
2938                               rx_queue->removed_count & rx_queue->ptr_mask,
2939                               rx_queue->scatter_n, rx_queue->scatter_len,
2940                               flags);
2941                 rx_queue->removed_count += rx_queue->scatter_n;
2942         }
2943
2944         rx_queue->scatter_n = 0;
2945         rx_queue->scatter_len = 0;
2946
2947         return n_packets;
2948 }
2949
2950 static int
2951 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2952 {
2953         struct efx_nic *efx = channel->efx;
2954         struct efx_tx_queue *tx_queue;
2955         unsigned int tx_ev_desc_ptr;
2956         unsigned int tx_ev_q_label;
2957         int tx_descs = 0;
2958
2959         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2960                 return 0;
2961
2962         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2963                 return 0;
2964
2965         /* Transmit completion */
2966         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2967         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2968         tx_queue = efx_channel_get_tx_queue(channel,
2969                                             tx_ev_q_label % EFX_TXQ_TYPES);
2970         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2971                     tx_queue->ptr_mask);
2972         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2973
2974         return tx_descs;
2975 }
2976
2977 static void
2978 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2979 {
2980         struct efx_nic *efx = channel->efx;
2981         int subcode;
2982
2983         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2984
2985         switch (subcode) {
2986         case ESE_DZ_DRV_TIMER_EV:
2987         case ESE_DZ_DRV_WAKE_UP_EV:
2988                 break;
2989         case ESE_DZ_DRV_START_UP_EV:
2990                 /* event queue init complete. ok. */
2991                 break;
2992         default:
2993                 netif_err(efx, hw, efx->net_dev,
2994                           "channel %d unknown driver event type %d"
2995                           " (data " EFX_QWORD_FMT ")\n",
2996                           channel->channel, subcode,
2997                           EFX_QWORD_VAL(*event));
2998
2999         }
3000 }
3001
3002 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3003                                                    efx_qword_t *event)
3004 {
3005         struct efx_nic *efx = channel->efx;
3006         u32 subcode;
3007
3008         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3009
3010         switch (subcode) {
3011         case EFX_EF10_TEST:
3012                 channel->event_test_cpu = raw_smp_processor_id();
3013                 break;
3014         case EFX_EF10_REFILL:
3015                 /* The queue must be empty, so we won't receive any rx
3016                  * events, so efx_process_channel() won't refill the
3017                  * queue. Refill it here
3018                  */
3019                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3020                 break;
3021         default:
3022                 netif_err(efx, hw, efx->net_dev,
3023                           "channel %d unknown driver event type %u"
3024                           " (data " EFX_QWORD_FMT ")\n",
3025                           channel->channel, (unsigned) subcode,
3026                           EFX_QWORD_VAL(*event));
3027         }
3028 }
3029
3030 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3031 {
3032         struct efx_nic *efx = channel->efx;
3033         efx_qword_t event, *p_event;
3034         unsigned int read_ptr;
3035         int ev_code;
3036         int tx_descs = 0;
3037         int spent = 0;
3038
3039         if (quota <= 0)
3040                 return spent;
3041
3042         read_ptr = channel->eventq_read_ptr;
3043
3044         for (;;) {
3045                 p_event = efx_event(channel, read_ptr);
3046                 event = *p_event;
3047
3048                 if (!efx_event_present(&event))
3049                         break;
3050
3051                 EFX_SET_QWORD(*p_event);
3052
3053                 ++read_ptr;
3054
3055                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3056
3057                 netif_vdbg(efx, drv, efx->net_dev,
3058                            "processing event on %d " EFX_QWORD_FMT "\n",
3059                            channel->channel, EFX_QWORD_VAL(event));
3060
3061                 switch (ev_code) {
3062                 case ESE_DZ_EV_CODE_MCDI_EV:
3063                         efx_mcdi_process_event(channel, &event);
3064                         break;
3065                 case ESE_DZ_EV_CODE_RX_EV:
3066                         spent += efx_ef10_handle_rx_event(channel, &event);
3067                         if (spent >= quota) {
3068                                 /* XXX can we split a merged event to
3069                                  * avoid going over-quota?
3070                                  */
3071                                 spent = quota;
3072                                 goto out;
3073                         }
3074                         break;
3075                 case ESE_DZ_EV_CODE_TX_EV:
3076                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
3077                         if (tx_descs > efx->txq_entries) {
3078                                 spent = quota;
3079                                 goto out;
3080                         } else if (++spent == quota) {
3081                                 goto out;
3082                         }
3083                         break;
3084                 case ESE_DZ_EV_CODE_DRIVER_EV:
3085                         efx_ef10_handle_driver_event(channel, &event);
3086                         if (++spent == quota)
3087                                 goto out;
3088                         break;
3089                 case EFX_EF10_DRVGEN_EV:
3090                         efx_ef10_handle_driver_generated_event(channel, &event);
3091                         break;
3092                 default:
3093                         netif_err(efx, hw, efx->net_dev,
3094                                   "channel %d unknown event type %d"
3095                                   " (data " EFX_QWORD_FMT ")\n",
3096                                   channel->channel, ev_code,
3097                                   EFX_QWORD_VAL(event));
3098                 }
3099         }
3100
3101 out:
3102         channel->eventq_read_ptr = read_ptr;
3103         return spent;
3104 }
3105
3106 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3107 {
3108         struct efx_nic *efx = channel->efx;
3109         efx_dword_t rptr;
3110
3111         if (EFX_EF10_WORKAROUND_35388(efx)) {
3112                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3113                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3114                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3115                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3116
3117                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3118                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3119                                      ERF_DD_EVQ_IND_RPTR,
3120                                      (channel->eventq_read_ptr &
3121                                       channel->eventq_mask) >>
3122                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3123                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3124                                 channel->channel);
3125                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3126                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3127                                      ERF_DD_EVQ_IND_RPTR,
3128                                      channel->eventq_read_ptr &
3129                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3130                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3131                                 channel->channel);
3132         } else {
3133                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3134                                      channel->eventq_read_ptr &
3135                                      channel->eventq_mask);
3136                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3137         }
3138 }
3139
3140 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3141 {
3142         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3143         struct efx_nic *efx = channel->efx;
3144         efx_qword_t event;
3145         int rc;
3146
3147         EFX_POPULATE_QWORD_2(event,
3148                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3149                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
3150
3151         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3152
3153         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3154          * already swapped the data to little-endian order.
3155          */
3156         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3157                sizeof(efx_qword_t));
3158
3159         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3160                           NULL, 0, NULL);
3161         if (rc != 0)
3162                 goto fail;
3163
3164         return;
3165
3166 fail:
3167         WARN_ON(true);
3168         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3169 }
3170
3171 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3172 {
3173         if (atomic_dec_and_test(&efx->active_queues))
3174                 wake_up(&efx->flush_wq);
3175
3176         WARN_ON(atomic_read(&efx->active_queues) < 0);
3177 }
3178
3179 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3180 {
3181         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3182         struct efx_channel *channel;
3183         struct efx_tx_queue *tx_queue;
3184         struct efx_rx_queue *rx_queue;
3185         int pending;
3186
3187         /* If the MC has just rebooted, the TX/RX queues will have already been
3188          * torn down, but efx->active_queues needs to be set to zero.
3189          */
3190         if (nic_data->must_realloc_vis) {
3191                 atomic_set(&efx->active_queues, 0);
3192                 return 0;
3193         }
3194
3195         /* Do not attempt to write to the NIC during EEH recovery */
3196         if (efx->state != STATE_RECOVERY) {
3197                 efx_for_each_channel(channel, efx) {
3198                         efx_for_each_channel_rx_queue(rx_queue, channel)
3199                                 efx_ef10_rx_fini(rx_queue);
3200                         efx_for_each_channel_tx_queue(tx_queue, channel)
3201                                 efx_ef10_tx_fini(tx_queue);
3202                 }
3203
3204                 wait_event_timeout(efx->flush_wq,
3205                                    atomic_read(&efx->active_queues) == 0,
3206                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3207                 pending = atomic_read(&efx->active_queues);
3208                 if (pending) {
3209                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3210                                   pending);
3211                         return -ETIMEDOUT;
3212                 }
3213         }
3214
3215         return 0;
3216 }
3217
3218 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3219 {
3220         atomic_set(&efx->active_queues, 0);
3221 }
3222
3223 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3224                                   const struct efx_filter_spec *right)
3225 {
3226         if ((left->match_flags ^ right->match_flags) |
3227             ((left->flags ^ right->flags) &
3228              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3229                 return false;
3230
3231         return memcmp(&left->outer_vid, &right->outer_vid,
3232                       sizeof(struct efx_filter_spec) -
3233                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
3234 }
3235
3236 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3237 {
3238         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3239         return jhash2((const u32 *)&spec->outer_vid,
3240                       (sizeof(struct efx_filter_spec) -
3241                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
3242                       0);
3243         /* XXX should we randomise the initval? */
3244 }
3245
3246 /* Decide whether a filter should be exclusive or else should allow
3247  * delivery to additional recipients.  Currently we decide that
3248  * filters for specific local unicast MAC and IP addresses are
3249  * exclusive.
3250  */
3251 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3252 {
3253         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3254             !is_multicast_ether_addr(spec->loc_mac))
3255                 return true;
3256
3257         if ((spec->match_flags &
3258              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3259             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3260                 if (spec->ether_type == htons(ETH_P_IP) &&
3261                     !ipv4_is_multicast(spec->loc_host[0]))
3262                         return true;
3263                 if (spec->ether_type == htons(ETH_P_IPV6) &&
3264                     ((const u8 *)spec->loc_host)[0] != 0xff)
3265                         return true;
3266         }
3267
3268         return false;
3269 }
3270
3271 static struct efx_filter_spec *
3272 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3273                            unsigned int filter_idx)
3274 {
3275         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3276                                           ~EFX_EF10_FILTER_FLAGS);
3277 }
3278
3279 static unsigned int
3280 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3281                            unsigned int filter_idx)
3282 {
3283         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3284 }
3285
3286 static void
3287 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3288                           unsigned int filter_idx,
3289                           const struct efx_filter_spec *spec,
3290                           unsigned int flags)
3291 {
3292         table->entry[filter_idx].spec = (unsigned long)spec | flags;
3293 }
3294
3295 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3296                                       const struct efx_filter_spec *spec,
3297                                       efx_dword_t *inbuf, u64 handle,
3298                                       bool replacing)
3299 {
3300         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3301         u32 flags = spec->flags;
3302
3303         memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
3304
3305         /* Remove RSS flag if we don't have an RSS context. */
3306         if (flags & EFX_FILTER_FLAG_RX_RSS &&
3307             spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3308             nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3309                 flags &= ~EFX_FILTER_FLAG_RX_RSS;
3310
3311         if (replacing) {
3312                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3313                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
3314                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3315         } else {
3316                 u32 match_fields = 0;
3317
3318                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3319                                efx_ef10_filter_is_exclusive(spec) ?
3320                                MC_CMD_FILTER_OP_IN_OP_INSERT :
3321                                MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3322
3323                 /* Convert match flags and values.  Unlike almost
3324                  * everything else in MCDI, these fields are in
3325                  * network byte order.
3326                  */
3327                 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3328                         match_fields |=
3329                                 is_multicast_ether_addr(spec->loc_mac) ?
3330                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
3331                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3332 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
3333                 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3334                         match_fields |=                                      \
3335                                 1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
3336                                 mcdi_field ## _LBN;                          \
3337                         BUILD_BUG_ON(                                        \
3338                                 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3339                                 sizeof(spec->gen_field));                    \
3340                         memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
3341                                &spec->gen_field, sizeof(spec->gen_field));   \
3342                 }
3343                 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3344                 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3345                 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3346                 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3347                 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3348                 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3349                 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3350                 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3351                 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3352                 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3353 #undef COPY_FIELD
3354                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3355                                match_fields);
3356         }
3357
3358         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3359         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3360                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3361                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3362                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3363         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3364         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3365                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3366         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3367                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3368                        0 : spec->dmaq_id);
3369         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3370                        (flags & EFX_FILTER_FLAG_RX_RSS) ?
3371                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3372                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3373         if (flags & EFX_FILTER_FLAG_RX_RSS)
3374                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3375                                spec->rss_context !=
3376                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3377                                spec->rss_context : nic_data->rx_rss_context);
3378 }
3379
3380 static int efx_ef10_filter_push(struct efx_nic *efx,
3381                                 const struct efx_filter_spec *spec,
3382                                 u64 *handle, bool replacing)
3383 {
3384         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3385         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3386         int rc;
3387
3388         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3389         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3390                           outbuf, sizeof(outbuf), NULL);
3391         if (rc == 0)
3392                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3393         if (rc == -ENOSPC)
3394                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3395         return rc;
3396 }
3397
3398 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3399 {
3400         unsigned int match_flags = spec->match_flags;
3401         u32 mcdi_flags = 0;
3402
3403         if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3404                 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3405                 mcdi_flags |=
3406                         is_multicast_ether_addr(spec->loc_mac) ?
3407                         (1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
3408                         (1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
3409         }
3410
3411 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) {                 \
3412                 unsigned int old_match_flags = match_flags;             \
3413                 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;          \
3414                 if (match_flags != old_match_flags)                     \
3415                         mcdi_flags |=                                   \
3416                                 (1 << MC_CMD_FILTER_OP_IN_MATCH_ ##     \
3417                                  mcdi_field ## _LBN);                   \
3418         }
3419         MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
3420         MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
3421         MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
3422         MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
3423         MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
3424         MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
3425         MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
3426         MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
3427         MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
3428         MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
3429 #undef MAP_FILTER_TO_MCDI_FLAG
3430
3431         /* Did we map them all? */
3432         WARN_ON_ONCE(match_flags);
3433
3434         return mcdi_flags;
3435 }
3436
3437 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3438                                const struct efx_filter_spec *spec)
3439 {
3440         u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3441         unsigned int match_pri;
3442
3443         for (match_pri = 0;
3444              match_pri < table->rx_match_count;
3445              match_pri++)
3446                 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3447                         return match_pri;
3448
3449         return -EPROTONOSUPPORT;
3450 }
3451
3452 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3453                                   struct efx_filter_spec *spec,
3454                                   bool replace_equal)
3455 {
3456         struct efx_ef10_filter_table *table = efx->filter_state;
3457         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3458         struct efx_filter_spec *saved_spec;
3459         unsigned int match_pri, hash;
3460         unsigned int priv_flags;
3461         bool replacing = false;
3462         int ins_index = -1;
3463         DEFINE_WAIT(wait);
3464         bool is_mc_recip;
3465         s32 rc;
3466
3467         /* For now, only support RX filters */
3468         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3469             EFX_FILTER_FLAG_RX)
3470                 return -EINVAL;
3471
3472         rc = efx_ef10_filter_pri(table, spec);
3473         if (rc < 0)
3474                 return rc;
3475         match_pri = rc;
3476
3477         hash = efx_ef10_filter_hash(spec);
3478         is_mc_recip = efx_filter_is_mc_recipient(spec);
3479         if (is_mc_recip)
3480                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3481
3482         /* Find any existing filters with the same match tuple or
3483          * else a free slot to insert at.  If any of them are busy,
3484          * we have to wait and retry.
3485          */
3486         for (;;) {
3487                 unsigned int depth = 1;
3488                 unsigned int i;
3489
3490                 spin_lock_bh(&efx->filter_lock);
3491
3492                 for (;;) {
3493                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3494                         saved_spec = efx_ef10_filter_entry_spec(table, i);
3495
3496                         if (!saved_spec) {
3497                                 if (ins_index < 0)
3498                                         ins_index = i;
3499                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3500                                 if (table->entry[i].spec &
3501                                     EFX_EF10_FILTER_FLAG_BUSY)
3502                                         break;
3503                                 if (spec->priority < saved_spec->priority &&
3504                                     spec->priority != EFX_FILTER_PRI_AUTO) {
3505                                         rc = -EPERM;
3506                                         goto out_unlock;
3507                                 }
3508                                 if (!is_mc_recip) {
3509                                         /* This is the only one */
3510                                         if (spec->priority ==
3511                                             saved_spec->priority &&
3512                                             !replace_equal) {
3513                                                 rc = -EEXIST;
3514                                                 goto out_unlock;
3515                                         }
3516                                         ins_index = i;
3517                                         goto found;
3518                                 } else if (spec->priority >
3519                                            saved_spec->priority ||
3520                                            (spec->priority ==
3521                                             saved_spec->priority &&
3522                                             replace_equal)) {
3523                                         if (ins_index < 0)
3524                                                 ins_index = i;
3525                                         else
3526                                                 __set_bit(depth, mc_rem_map);
3527                                 }
3528                         }
3529
3530                         /* Once we reach the maximum search depth, use
3531                          * the first suitable slot or return -EBUSY if
3532                          * there was none
3533                          */
3534                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3535                                 if (ins_index < 0) {
3536                                         rc = -EBUSY;
3537                                         goto out_unlock;
3538                                 }
3539                                 goto found;
3540                         }
3541
3542                         ++depth;
3543                 }
3544
3545                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3546                 spin_unlock_bh(&efx->filter_lock);
3547                 schedule();
3548         }
3549
3550 found:
3551         /* Create a software table entry if necessary, and mark it
3552          * busy.  We might yet fail to insert, but any attempt to
3553          * insert a conflicting filter while we're waiting for the
3554          * firmware must find the busy entry.
3555          */
3556         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3557         if (saved_spec) {
3558                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
3559                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3560                         /* Just make sure it won't be removed */
3561                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3562                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3563                         table->entry[ins_index].spec &=
3564                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3565                         rc = ins_index;
3566                         goto out_unlock;
3567                 }
3568                 replacing = true;
3569                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3570         } else {
3571                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3572                 if (!saved_spec) {
3573                         rc = -ENOMEM;
3574                         goto out_unlock;
3575                 }
3576                 *saved_spec = *spec;
3577                 priv_flags = 0;
3578         }
3579         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3580                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3581
3582         /* Mark lower-priority multicast recipients busy prior to removal */
3583         if (is_mc_recip) {
3584                 unsigned int depth, i;
3585
3586                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3587                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3588                         if (test_bit(depth, mc_rem_map))
3589                                 table->entry[i].spec |=
3590                                         EFX_EF10_FILTER_FLAG_BUSY;
3591                 }
3592         }
3593
3594         spin_unlock_bh(&efx->filter_lock);
3595
3596         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3597                                   replacing);
3598
3599         /* Finalise the software table entry */
3600         spin_lock_bh(&efx->filter_lock);
3601         if (rc == 0) {
3602                 if (replacing) {
3603                         /* Update the fields that may differ */
3604                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3605                                 saved_spec->flags |=
3606                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
3607                         saved_spec->priority = spec->priority;
3608                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3609                         saved_spec->flags |= spec->flags;
3610                         saved_spec->rss_context = spec->rss_context;
3611                         saved_spec->dmaq_id = spec->dmaq_id;
3612                 }
3613         } else if (!replacing) {
3614                 kfree(saved_spec);
3615                 saved_spec = NULL;
3616         }
3617         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3618
3619         /* Remove and finalise entries for lower-priority multicast
3620          * recipients
3621          */
3622         if (is_mc_recip) {
3623                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3624                 unsigned int depth, i;
3625
3626                 memset(inbuf, 0, sizeof(inbuf));
3627
3628                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3629                         if (!test_bit(depth, mc_rem_map))
3630                                 continue;
3631
3632                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3633                         saved_spec = efx_ef10_filter_entry_spec(table, i);
3634                         priv_flags = efx_ef10_filter_entry_flags(table, i);
3635
3636                         if (rc == 0) {
3637                                 spin_unlock_bh(&efx->filter_lock);
3638                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3639                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3640                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3641                                                table->entry[i].handle);
3642                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3643                                                   inbuf, sizeof(inbuf),
3644                                                   NULL, 0, NULL);
3645                                 spin_lock_bh(&efx->filter_lock);
3646                         }
3647
3648                         if (rc == 0) {
3649                                 kfree(saved_spec);
3650                                 saved_spec = NULL;
3651                                 priv_flags = 0;
3652                         } else {
3653                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3654                         }
3655                         efx_ef10_filter_set_entry(table, i, saved_spec,
3656                                                   priv_flags);
3657                 }
3658         }
3659
3660         /* If successful, return the inserted filter ID */
3661         if (rc == 0)
3662                 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3663
3664         wake_up_all(&table->waitq);
3665 out_unlock:
3666         spin_unlock_bh(&efx->filter_lock);
3667         finish_wait(&table->waitq, &wait);
3668         return rc;
3669 }
3670
3671 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3672 {
3673         /* no need to do anything here on EF10 */
3674 }
3675
3676 /* Remove a filter.
3677  * If !by_index, remove by ID
3678  * If by_index, remove by index
3679  * Filter ID may come from userland and must be range-checked.
3680  */
3681 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3682                                            unsigned int priority_mask,
3683                                            u32 filter_id, bool by_index)
3684 {
3685         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3686         struct efx_ef10_filter_table *table = efx->filter_state;
3687         MCDI_DECLARE_BUF(inbuf,
3688                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3689                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3690         struct efx_filter_spec *spec;
3691         DEFINE_WAIT(wait);
3692         int rc;
3693
3694         /* Find the software table entry and mark it busy.  Don't
3695          * remove it yet; any attempt to update while we're waiting
3696          * for the firmware must find the busy entry.
3697          */
3698         for (;;) {
3699                 spin_lock_bh(&efx->filter_lock);
3700                 if (!(table->entry[filter_idx].spec &
3701                       EFX_EF10_FILTER_FLAG_BUSY))
3702                         break;
3703                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3704                 spin_unlock_bh(&efx->filter_lock);
3705                 schedule();
3706         }
3707
3708         spec = efx_ef10_filter_entry_spec(table, filter_idx);
3709         if (!spec ||
3710             (!by_index &&
3711              efx_ef10_filter_pri(table, spec) !=
3712              filter_id / HUNT_FILTER_TBL_ROWS)) {
3713                 rc = -ENOENT;
3714                 goto out_unlock;
3715         }
3716
3717         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3718             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3719                 /* Just remove flags */
3720                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3721                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3722                 rc = 0;
3723                 goto out_unlock;
3724         }
3725
3726         if (!(priority_mask & (1U << spec->priority))) {
3727                 rc = -ENOENT;
3728                 goto out_unlock;
3729         }
3730
3731         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3732         spin_unlock_bh(&efx->filter_lock);
3733
3734         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3735                 /* Reset to an automatic filter */
3736
3737                 struct efx_filter_spec new_spec = *spec;
3738
3739                 new_spec.priority = EFX_FILTER_PRI_AUTO;
3740                 new_spec.flags = (EFX_FILTER_FLAG_RX |
3741                                   (efx_rss_enabled(efx) ?
3742                                    EFX_FILTER_FLAG_RX_RSS : 0));
3743                 new_spec.dmaq_id = 0;
3744                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3745                 rc = efx_ef10_filter_push(efx, &new_spec,
3746                                           &table->entry[filter_idx].handle,
3747                                           true);
3748
3749                 spin_lock_bh(&efx->filter_lock);
3750                 if (rc == 0)
3751                         *spec = new_spec;
3752         } else {
3753                 /* Really remove the filter */
3754
3755                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3756                                efx_ef10_filter_is_exclusive(spec) ?
3757                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
3758                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3759                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3760                                table->entry[filter_idx].handle);
3761                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3762                                   inbuf, sizeof(inbuf), NULL, 0, NULL);
3763
3764                 spin_lock_bh(&efx->filter_lock);
3765                 if (rc == 0) {
3766                         kfree(spec);
3767                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3768                 }
3769         }
3770
3771         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3772         wake_up_all(&table->waitq);
3773 out_unlock:
3774         spin_unlock_bh(&efx->filter_lock);
3775         finish_wait(&table->waitq, &wait);
3776         return rc;
3777 }
3778
3779 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3780                                        enum efx_filter_priority priority,
3781                                        u32 filter_id)
3782 {
3783         return efx_ef10_filter_remove_internal(efx, 1U << priority,
3784                                                filter_id, false);
3785 }
3786
3787 static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3788 {
3789         return filter_id % HUNT_FILTER_TBL_ROWS;
3790 }
3791
3792 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3793                                           enum efx_filter_priority priority,
3794                                           u32 filter_id)
3795 {
3796         if (filter_id == EFX_EF10_FILTER_ID_INVALID)
3797                 return;
3798         efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
3799 }
3800
3801 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3802                                     enum efx_filter_priority priority,
3803                                     u32 filter_id, struct efx_filter_spec *spec)
3804 {
3805         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3806         struct efx_ef10_filter_table *table = efx->filter_state;
3807         const struct efx_filter_spec *saved_spec;
3808         int rc;
3809
3810         spin_lock_bh(&efx->filter_lock);
3811         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3812         if (saved_spec && saved_spec->priority == priority &&
3813             efx_ef10_filter_pri(table, saved_spec) ==
3814             filter_id / HUNT_FILTER_TBL_ROWS) {
3815                 *spec = *saved_spec;
3816                 rc = 0;
3817         } else {
3818                 rc = -ENOENT;
3819         }
3820         spin_unlock_bh(&efx->filter_lock);
3821         return rc;
3822 }
3823
3824 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3825                                      enum efx_filter_priority priority)
3826 {
3827         unsigned int priority_mask;
3828         unsigned int i;
3829         int rc;
3830
3831         priority_mask = (((1U << (priority + 1)) - 1) &
3832                          ~(1U << EFX_FILTER_PRI_AUTO));
3833
3834         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3835                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3836                                                      i, true);
3837                 if (rc && rc != -ENOENT)
3838                         return rc;
3839         }
3840
3841         return 0;
3842 }
3843
3844 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3845                                          enum efx_filter_priority priority)
3846 {
3847         struct efx_ef10_filter_table *table = efx->filter_state;
3848         unsigned int filter_idx;
3849         s32 count = 0;
3850
3851         spin_lock_bh(&efx->filter_lock);
3852         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3853                 if (table->entry[filter_idx].spec &&
3854                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3855                     priority)
3856                         ++count;
3857         }
3858         spin_unlock_bh(&efx->filter_lock);
3859         return count;
3860 }
3861
3862 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3863 {
3864         struct efx_ef10_filter_table *table = efx->filter_state;
3865
3866         return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3867 }
3868
3869 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3870                                       enum efx_filter_priority priority,
3871                                       u32 *buf, u32 size)
3872 {
3873         struct efx_ef10_filter_table *table = efx->filter_state;
3874         struct efx_filter_spec *spec;
3875         unsigned int filter_idx;
3876         s32 count = 0;
3877
3878         spin_lock_bh(&efx->filter_lock);
3879         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3880                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3881                 if (spec && spec->priority == priority) {
3882                         if (count == size) {
3883                                 count = -EMSGSIZE;
3884                                 break;
3885                         }
3886                         buf[count++] = (efx_ef10_filter_pri(table, spec) *
3887                                         HUNT_FILTER_TBL_ROWS +
3888                                         filter_idx);
3889                 }
3890         }
3891         spin_unlock_bh(&efx->filter_lock);
3892         return count;
3893 }
3894
3895 #ifdef CONFIG_RFS_ACCEL
3896
3897 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3898
3899 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3900                                       struct efx_filter_spec *spec)
3901 {
3902         struct efx_ef10_filter_table *table = efx->filter_state;
3903         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3904         struct efx_filter_spec *saved_spec;
3905         unsigned int hash, i, depth = 1;
3906         bool replacing = false;
3907         int ins_index = -1;
3908         u64 cookie;
3909         s32 rc;
3910
3911         /* Must be an RX filter without RSS and not for a multicast
3912          * destination address (RFS only works for connected sockets).
3913          * These restrictions allow us to pass only a tiny amount of
3914          * data through to the completion function.
3915          */
3916         EFX_WARN_ON_PARANOID(spec->flags !=
3917                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3918         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3919         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3920
3921         hash = efx_ef10_filter_hash(spec);
3922
3923         spin_lock_bh(&efx->filter_lock);
3924
3925         /* Find any existing filter with the same match tuple or else
3926          * a free slot to insert at.  If an existing filter is busy,
3927          * we have to give up.
3928          */
3929         for (;;) {
3930                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3931                 saved_spec = efx_ef10_filter_entry_spec(table, i);
3932
3933                 if (!saved_spec) {
3934                         if (ins_index < 0)
3935                                 ins_index = i;
3936                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3937                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3938                                 rc = -EBUSY;
3939                                 goto fail_unlock;
3940                         }
3941                         if (spec->priority < saved_spec->priority) {
3942                                 rc = -EPERM;
3943                                 goto fail_unlock;
3944                         }
3945                         ins_index = i;
3946                         break;
3947                 }
3948
3949                 /* Once we reach the maximum search depth, use the
3950                  * first suitable slot or return -EBUSY if there was
3951                  * none
3952                  */
3953                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3954                         if (ins_index < 0) {
3955                                 rc = -EBUSY;
3956                                 goto fail_unlock;
3957                         }
3958                         break;
3959                 }
3960
3961                 ++depth;
3962         }
3963
3964         /* Create a software table entry if necessary, and mark it
3965          * busy.  We might yet fail to insert, but any attempt to
3966          * insert a conflicting filter while we're waiting for the
3967          * firmware must find the busy entry.
3968          */
3969         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3970         if (saved_spec) {
3971                 replacing = true;
3972         } else {
3973                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3974                 if (!saved_spec) {
3975                         rc = -ENOMEM;
3976                         goto fail_unlock;
3977                 }
3978                 *saved_spec = *spec;
3979         }
3980         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3981                                   EFX_EF10_FILTER_FLAG_BUSY);
3982
3983         spin_unlock_bh(&efx->filter_lock);
3984
3985         /* Pack up the variables needed on completion */
3986         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3987
3988         efx_ef10_filter_push_prep(efx, spec, inbuf,
3989                                   table->entry[ins_index].handle, replacing);
3990         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3991                            MC_CMD_FILTER_OP_OUT_LEN,
3992                            efx_ef10_filter_rfs_insert_complete, cookie);
3993
3994         return ins_index;
3995
3996 fail_unlock:
3997         spin_unlock_bh(&efx->filter_lock);
3998         return rc;
3999 }
4000
4001 static void
4002 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4003                                     int rc, efx_dword_t *outbuf,
4004                                     size_t outlen_actual)
4005 {
4006         struct efx_ef10_filter_table *table = efx->filter_state;
4007         unsigned int ins_index, dmaq_id;
4008         struct efx_filter_spec *spec;
4009         bool replacing;
4010
4011         /* Unpack the cookie */
4012         replacing = cookie >> 31;
4013         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4014         dmaq_id = cookie & 0xffff;
4015
4016         spin_lock_bh(&efx->filter_lock);
4017         spec = efx_ef10_filter_entry_spec(table, ins_index);
4018         if (rc == 0) {
4019                 table->entry[ins_index].handle =
4020                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4021                 if (replacing)
4022                         spec->dmaq_id = dmaq_id;
4023         } else if (!replacing) {
4024                 kfree(spec);
4025                 spec = NULL;
4026         }
4027         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4028         spin_unlock_bh(&efx->filter_lock);
4029
4030         wake_up_all(&table->waitq);
4031 }
4032
4033 static void
4034 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4035                                     unsigned long filter_idx,
4036                                     int rc, efx_dword_t *outbuf,
4037                                     size_t outlen_actual);
4038
4039 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4040                                            unsigned int filter_idx)
4041 {
4042         struct efx_ef10_filter_table *table = efx->filter_state;
4043         struct efx_filter_spec *spec =
4044                 efx_ef10_filter_entry_spec(table, filter_idx);
4045         MCDI_DECLARE_BUF(inbuf,
4046                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4047                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4048
4049         if (!spec ||
4050             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4051             spec->priority != EFX_FILTER_PRI_HINT ||
4052             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4053                                  flow_id, filter_idx))
4054                 return false;
4055
4056         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4057                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
4058         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4059                        table->entry[filter_idx].handle);
4060         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4061                                efx_ef10_filter_rfs_expire_complete, filter_idx))
4062                 return false;
4063
4064         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4065         return true;
4066 }
4067
4068 static void
4069 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4070                                     unsigned long filter_idx,
4071                                     int rc, efx_dword_t *outbuf,
4072                                     size_t outlen_actual)
4073 {
4074         struct efx_ef10_filter_table *table = efx->filter_state;
4075         struct efx_filter_spec *spec =
4076                 efx_ef10_filter_entry_spec(table, filter_idx);
4077
4078         spin_lock_bh(&efx->filter_lock);
4079         if (rc == 0) {
4080                 kfree(spec);
4081                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4082         }
4083         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4084         wake_up_all(&table->waitq);
4085         spin_unlock_bh(&efx->filter_lock);
4086 }
4087
4088 #endif /* CONFIG_RFS_ACCEL */
4089
4090 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
4091 {
4092         int match_flags = 0;
4093
4094 #define MAP_FLAG(gen_flag, mcdi_field) {                                \
4095                 u32 old_mcdi_flags = mcdi_flags;                        \
4096                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##      \
4097                                 mcdi_field ## _LBN);                    \
4098                 if (mcdi_flags != old_mcdi_flags)                       \
4099                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
4100         }
4101         MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4102         MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4103         MAP_FLAG(REM_HOST, SRC_IP);
4104         MAP_FLAG(LOC_HOST, DST_IP);
4105         MAP_FLAG(REM_MAC, SRC_MAC);
4106         MAP_FLAG(REM_PORT, SRC_PORT);
4107         MAP_FLAG(LOC_MAC, DST_MAC);
4108         MAP_FLAG(LOC_PORT, DST_PORT);
4109         MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4110         MAP_FLAG(INNER_VID, INNER_VLAN);
4111         MAP_FLAG(OUTER_VID, OUTER_VLAN);
4112         MAP_FLAG(IP_PROTO, IP_PROTO);
4113 #undef MAP_FLAG
4114
4115         /* Did we map them all? */
4116         if (mcdi_flags)
4117                 return -EINVAL;
4118
4119         return match_flags;
4120 }
4121
4122 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4123 {
4124         struct efx_ef10_filter_table *table = efx->filter_state;
4125         struct efx_ef10_filter_vlan *vlan, *next_vlan;
4126
4127         /* See comment in efx_ef10_filter_table_remove() */
4128         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4129                 return;
4130
4131         if (!table)
4132                 return;
4133
4134         list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4135                 efx_ef10_filter_del_vlan_internal(efx, vlan);
4136 }
4137
4138 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4139                                             enum efx_filter_match_flags match_flags)
4140 {
4141         unsigned int match_pri;
4142         int mf;
4143
4144         for (match_pri = 0;
4145              match_pri < table->rx_match_count;
4146              match_pri++) {
4147                 mf = efx_ef10_filter_match_flags_from_mcdi(
4148                                 table->rx_match_mcdi_flags[match_pri]);
4149                 if (mf == match_flags)
4150                         return true;
4151         }
4152
4153         return false;
4154 }
4155
4156 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4157 {
4158         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4159         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4160         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4161         struct net_device *net_dev = efx->net_dev;
4162         unsigned int pd_match_pri, pd_match_count;
4163         struct efx_ef10_filter_table *table;
4164         struct efx_ef10_vlan *vlan;
4165         size_t outlen;
4166         int rc;
4167
4168         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4169                 return -EINVAL;
4170
4171         if (efx->filter_state) /* already probed */
4172                 return 0;
4173
4174         table = kzalloc(sizeof(*table), GFP_KERNEL);
4175         if (!table)
4176                 return -ENOMEM;
4177
4178         /* Find out which RX filter types are supported, and their priorities */
4179         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4180                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4181         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4182                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4183                           &outlen);
4184         if (rc)
4185                 goto fail;
4186         pd_match_count = MCDI_VAR_ARRAY_LEN(
4187                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4188         table->rx_match_count = 0;
4189
4190         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4191                 u32 mcdi_flags =
4192                         MCDI_ARRAY_DWORD(
4193                                 outbuf,
4194                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4195                                 pd_match_pri);
4196                 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
4197                 if (rc < 0) {
4198                         netif_dbg(efx, probe, efx->net_dev,
4199                                   "%s: fw flags %#x pri %u not supported in driver\n",
4200                                   __func__, mcdi_flags, pd_match_pri);
4201                 } else {
4202                         netif_dbg(efx, probe, efx->net_dev,
4203                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4204                                   __func__, mcdi_flags, pd_match_pri,
4205                                   rc, table->rx_match_count);
4206                         table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4207                         table->rx_match_count++;
4208                 }
4209         }
4210
4211         if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4212             !(efx_ef10_filter_match_supported(table,
4213                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4214               efx_ef10_filter_match_supported(table,
4215                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4216                 netif_info(efx, probe, net_dev,
4217                            "VLAN filters are not supported in this firmware variant\n");
4218                 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4219                 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4220                 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4221         }
4222
4223         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4224         if (!table->entry) {
4225                 rc = -ENOMEM;
4226                 goto fail;
4227         }
4228
4229         table->mc_promisc_last = false;
4230         table->vlan_filter =
4231                 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4232         INIT_LIST_HEAD(&table->vlan_list);
4233
4234         efx->filter_state = table;
4235         init_waitqueue_head(&table->waitq);
4236
4237         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4238                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4239                 if (rc)
4240                         goto fail_add_vlan;
4241         }
4242
4243         return 0;
4244
4245 fail_add_vlan:
4246         efx_ef10_filter_cleanup_vlans(efx);
4247         efx->filter_state = NULL;
4248 fail:
4249         kfree(table);
4250         return rc;
4251 }
4252
4253 /* Caller must hold efx->filter_sem for read if race against
4254  * efx_ef10_filter_table_remove() is possible
4255  */
4256 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4257 {
4258         struct efx_ef10_filter_table *table = efx->filter_state;
4259         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4260         struct efx_filter_spec *spec;
4261         unsigned int filter_idx;
4262         bool failed = false;
4263         int rc;
4264
4265         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4266
4267         if (!nic_data->must_restore_filters)
4268                 return;
4269
4270         if (!table)
4271                 return;
4272
4273         spin_lock_bh(&efx->filter_lock);
4274
4275         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4276                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4277                 if (!spec)
4278                         continue;
4279
4280                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4281                 spin_unlock_bh(&efx->filter_lock);
4282
4283                 rc = efx_ef10_filter_push(efx, spec,
4284                                           &table->entry[filter_idx].handle,
4285                                           false);
4286                 if (rc)
4287                         failed = true;
4288
4289                 spin_lock_bh(&efx->filter_lock);
4290                 if (rc) {
4291                         kfree(spec);
4292                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4293                 } else {
4294                         table->entry[filter_idx].spec &=
4295                                 ~EFX_EF10_FILTER_FLAG_BUSY;
4296                 }
4297         }
4298
4299         spin_unlock_bh(&efx->filter_lock);
4300
4301         if (failed)
4302                 netif_err(efx, hw, efx->net_dev,
4303                           "unable to restore all filters\n");
4304         else
4305                 nic_data->must_restore_filters = false;
4306 }
4307
4308 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4309 {
4310         struct efx_ef10_filter_table *table = efx->filter_state;
4311         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4312         struct efx_filter_spec *spec;
4313         unsigned int filter_idx;
4314         int rc;
4315
4316         efx_ef10_filter_cleanup_vlans(efx);
4317         efx->filter_state = NULL;
4318         /* If we were called without locking, then it's not safe to free
4319          * the table as others might be using it.  So we just WARN, leak
4320          * the memory, and potentially get an inconsistent filter table
4321          * state.
4322          * This should never actually happen.
4323          */
4324         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4325                 return;
4326
4327         if (!table)
4328                 return;
4329
4330         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4331                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4332                 if (!spec)
4333                         continue;
4334
4335                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4336                                efx_ef10_filter_is_exclusive(spec) ?
4337                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4338                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4339                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4340                                table->entry[filter_idx].handle);
4341                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4342                                         sizeof(inbuf), NULL, 0, NULL);
4343                 if (rc)
4344                         netif_info(efx, drv, efx->net_dev,
4345                                    "%s: filter %04x remove failed\n",
4346                                    __func__, filter_idx);
4347                 kfree(spec);
4348         }
4349
4350         vfree(table->entry);
4351         kfree(table);
4352 }
4353
4354 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4355 {
4356         struct efx_ef10_filter_table *table = efx->filter_state;
4357         unsigned int filter_idx;
4358
4359         if (*id != EFX_EF10_FILTER_ID_INVALID) {
4360                 filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
4361                 if (!table->entry[filter_idx].spec)
4362                         netif_dbg(efx, drv, efx->net_dev,
4363                                   "marked null spec old %04x:%04x\n", *id,
4364                                   filter_idx);
4365                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4366                 *id = EFX_EF10_FILTER_ID_INVALID;
4367         }
4368 }
4369
4370 /* Mark old per-VLAN filters that may need to be removed */
4371 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
4372                                            struct efx_ef10_filter_vlan *vlan)
4373 {
4374         struct efx_ef10_filter_table *table = efx->filter_state;
4375         unsigned int i;
4376
4377         for (i = 0; i < table->dev_uc_count; i++)
4378                 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
4379         for (i = 0; i < table->dev_mc_count; i++)
4380                 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
4381         efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
4382         efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
4383         efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
4384 }
4385
4386 /* Mark old filters that may need to be removed.
4387  * Caller must hold efx->filter_sem for read if race against
4388  * efx_ef10_filter_table_remove() is possible
4389  */
4390 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
4391 {
4392         struct efx_ef10_filter_table *table = efx->filter_state;
4393         struct efx_ef10_filter_vlan *vlan;
4394
4395         spin_lock_bh(&efx->filter_lock);
4396         list_for_each_entry(vlan, &table->vlan_list, list)
4397                 _efx_ef10_filter_vlan_mark_old(efx, vlan);
4398         spin_unlock_bh(&efx->filter_lock);
4399 }
4400
4401 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
4402 {
4403         struct efx_ef10_filter_table *table = efx->filter_state;
4404         struct net_device *net_dev = efx->net_dev;
4405         struct netdev_hw_addr *uc;
4406         unsigned int i;
4407
4408         table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
4409         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
4410         i = 1;
4411         netdev_for_each_uc_addr(uc, net_dev) {
4412                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
4413                         table->uc_promisc = true;
4414                         break;
4415                 }
4416                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
4417                 i++;
4418         }
4419
4420         table->dev_uc_count = i;
4421 }
4422
4423 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
4424 {
4425         struct efx_ef10_filter_table *table = efx->filter_state;
4426         struct net_device *net_dev = efx->net_dev;
4427         struct netdev_hw_addr *mc;
4428         unsigned int i;
4429
4430         table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
4431
4432         i = 0;
4433         netdev_for_each_mc_addr(mc, net_dev) {
4434                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
4435                         table->mc_promisc = true;
4436                         break;
4437                 }
4438                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
4439                 i++;
4440         }
4441
4442         table->dev_mc_count = i;
4443 }
4444
4445 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
4446                                             struct efx_ef10_filter_vlan *vlan,
4447                                             bool multicast, bool rollback)
4448 {
4449         struct efx_ef10_filter_table *table = efx->filter_state;
4450         struct efx_ef10_dev_addr *addr_list;
4451         enum efx_filter_flags filter_flags;
4452         struct efx_filter_spec spec;
4453         u8 baddr[ETH_ALEN];
4454         unsigned int i, j;
4455         int addr_count;
4456         u16 *ids;
4457         int rc;
4458
4459         if (multicast) {
4460                 addr_list = table->dev_mc_list;
4461                 addr_count = table->dev_mc_count;
4462                 ids = vlan->mc;
4463         } else {
4464                 addr_list = table->dev_uc_list;
4465                 addr_count = table->dev_uc_count;
4466                 ids = vlan->uc;
4467         }
4468
4469         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4470
4471         /* Insert/renew filters */
4472         for (i = 0; i < addr_count; i++) {
4473                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4474                 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
4475                 rc = efx_ef10_filter_insert(efx, &spec, true);
4476                 if (rc < 0) {
4477                         if (rollback) {
4478                                 netif_info(efx, drv, efx->net_dev,
4479                                            "efx_ef10_filter_insert failed rc=%d\n",
4480                                            rc);
4481                                 /* Fall back to promiscuous */
4482                                 for (j = 0; j < i; j++) {
4483                                         efx_ef10_filter_remove_unsafe(
4484                                                 efx, EFX_FILTER_PRI_AUTO,
4485                                                 ids[j]);
4486                                         ids[j] = EFX_EF10_FILTER_ID_INVALID;
4487                                 }
4488                                 return rc;
4489                         } else {
4490                                 /* mark as not inserted, and carry on */
4491                                 rc = EFX_EF10_FILTER_ID_INVALID;
4492                         }
4493                 }
4494                 ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
4495         }
4496
4497         if (multicast && rollback) {
4498                 /* Also need an Ethernet broadcast filter */
4499                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4500                 eth_broadcast_addr(baddr);
4501                 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4502                 rc = efx_ef10_filter_insert(efx, &spec, true);
4503                 if (rc < 0) {
4504                         netif_warn(efx, drv, efx->net_dev,
4505                                    "Broadcast filter insert failed rc=%d\n", rc);
4506                         /* Fall back to promiscuous */
4507                         for (j = 0; j < i; j++) {
4508                                 efx_ef10_filter_remove_unsafe(
4509                                         efx, EFX_FILTER_PRI_AUTO,
4510                                         ids[j]);
4511                                 ids[j] = EFX_EF10_FILTER_ID_INVALID;
4512                         }
4513                         return rc;
4514                 } else {
4515                         EFX_WARN_ON_PARANOID(vlan->bcast !=
4516                                              EFX_EF10_FILTER_ID_INVALID);
4517                         vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4518                 }
4519         }
4520
4521         return 0;
4522 }
4523
4524 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
4525                                       struct efx_ef10_filter_vlan *vlan,
4526                                       bool multicast, bool rollback)
4527 {
4528         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4529         enum efx_filter_flags filter_flags;
4530         struct efx_filter_spec spec;
4531         u8 baddr[ETH_ALEN];
4532         int rc;
4533
4534         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4535
4536         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4537
4538         if (multicast)
4539                 efx_filter_set_mc_def(&spec);
4540         else
4541                 efx_filter_set_uc_def(&spec);
4542
4543         if (vlan->vid != EFX_FILTER_VID_UNSPEC)
4544                 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
4545
4546         rc = efx_ef10_filter_insert(efx, &spec, true);
4547         if (rc < 0) {
4548                 netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4549                              efx->net_dev,
4550                              "%scast mismatch filter insert failed rc=%d\n",
4551                              multicast ? "Multi" : "Uni", rc);
4552         } else if (multicast) {
4553                 EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
4554                 vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
4555                 if (!nic_data->workaround_26807) {
4556                         /* Also need an Ethernet broadcast filter */
4557                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4558                                            filter_flags, 0);
4559                         eth_broadcast_addr(baddr);
4560                         efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4561                         rc = efx_ef10_filter_insert(efx, &spec, true);
4562                         if (rc < 0) {
4563                                 netif_warn(efx, drv, efx->net_dev,
4564                                            "Broadcast filter insert failed rc=%d\n",
4565                                            rc);
4566                                 if (rollback) {
4567                                         /* Roll back the mc_def filter */
4568                                         efx_ef10_filter_remove_unsafe(
4569                                                         efx, EFX_FILTER_PRI_AUTO,
4570                                                         vlan->mcdef);
4571                                         vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4572                                         return rc;
4573                                 }
4574                         } else {
4575                                 EFX_WARN_ON_PARANOID(vlan->bcast !=
4576                                                      EFX_EF10_FILTER_ID_INVALID);
4577                                 vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4578                         }
4579                 }
4580                 rc = 0;
4581         } else {
4582                 EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
4583                 vlan->ucdef = rc;
4584                 rc = 0;
4585         }
4586         return rc;
4587 }
4588
4589 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
4590  * flag or removes these filters, we don't need to hold the filter_lock while
4591  * scanning for these filters.
4592  */
4593 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4594 {
4595         struct efx_ef10_filter_table *table = efx->filter_state;
4596         int remove_failed = 0;
4597         int remove_noent = 0;
4598         int rc;
4599         int i;
4600
4601         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4602                 if (ACCESS_ONCE(table->entry[i].spec) &
4603                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4604                         rc = efx_ef10_filter_remove_internal(efx,
4605                                         1U << EFX_FILTER_PRI_AUTO, i, true);
4606                         if (rc == -ENOENT)
4607                                 remove_noent++;
4608                         else if (rc)
4609                                 remove_failed++;
4610                 }
4611         }
4612
4613         if (remove_failed)
4614                 netif_info(efx, drv, efx->net_dev,
4615                            "%s: failed to remove %d filters\n",
4616                            __func__, remove_failed);
4617         if (remove_noent)
4618                 netif_info(efx, drv, efx->net_dev,
4619                            "%s: failed to remove %d non-existent filters\n",
4620                            __func__, remove_noent);
4621 }
4622
4623 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4624 {
4625         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4626         u8 mac_old[ETH_ALEN];
4627         int rc, rc2;
4628
4629         /* Only reconfigure a PF-created vport */
4630         if (is_zero_ether_addr(nic_data->vport_mac))
4631                 return 0;
4632
4633         efx_device_detach_sync(efx);
4634         efx_net_stop(efx->net_dev);
4635         down_write(&efx->filter_sem);
4636         efx_ef10_filter_table_remove(efx);
4637         up_write(&efx->filter_sem);
4638
4639         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4640         if (rc)
4641                 goto restore_filters;
4642
4643         ether_addr_copy(mac_old, nic_data->vport_mac);
4644         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4645                                     nic_data->vport_mac);
4646         if (rc)
4647                 goto restore_vadaptor;
4648
4649         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4650                                     efx->net_dev->dev_addr);
4651         if (!rc) {
4652                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4653         } else {
4654                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4655                 if (rc2) {
4656                         /* Failed to add original MAC, so clear vport_mac */
4657                         eth_zero_addr(nic_data->vport_mac);
4658                         goto reset_nic;
4659                 }
4660         }
4661
4662 restore_vadaptor:
4663         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4664         if (rc2)
4665                 goto reset_nic;
4666 restore_filters:
4667         down_write(&efx->filter_sem);
4668         rc2 = efx_ef10_filter_table_probe(efx);
4669         up_write(&efx->filter_sem);
4670         if (rc2)
4671                 goto reset_nic;
4672
4673         rc2 = efx_net_open(efx->net_dev);
4674         if (rc2)
4675                 goto reset_nic;
4676
4677         netif_device_attach(efx->net_dev);
4678
4679         return rc;
4680
4681 reset_nic:
4682         netif_err(efx, drv, efx->net_dev,
4683                   "Failed to restore when changing MAC address - scheduling reset\n");
4684         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4685
4686         return rc ? rc : rc2;
4687 }
4688
4689 /* Caller must hold efx->filter_sem for read if race against
4690  * efx_ef10_filter_table_remove() is possible
4691  */
4692 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
4693                                               struct efx_ef10_filter_vlan *vlan)
4694 {
4695         struct efx_ef10_filter_table *table = efx->filter_state;
4696         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4697
4698         /* Do not install unspecified VID if VLAN filtering is enabled.
4699          * Do not install all specified VIDs if VLAN filtering is disabled.
4700          */
4701         if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
4702                 return;
4703
4704         /* Insert/renew unicast filters */
4705         if (table->uc_promisc) {
4706                 efx_ef10_filter_insert_def(efx, vlan, false, false);
4707                 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
4708         } else {
4709                 /* If any of the filters failed to insert, fall back to
4710                  * promiscuous mode - add in the uc_def filter.  But keep
4711                  * our individual unicast filters.
4712                  */
4713                 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
4714                         efx_ef10_filter_insert_def(efx, vlan, false, false);
4715         }
4716
4717         /* Insert/renew multicast filters */
4718         /* If changing promiscuous state with cascaded multicast filters, remove
4719          * old filters first, so that packets are dropped rather than duplicated
4720          */
4721         if (nic_data->workaround_26807 &&
4722             table->mc_promisc_last != table->mc_promisc)
4723                 efx_ef10_filter_remove_old(efx);
4724         if (table->mc_promisc) {
4725                 if (nic_data->workaround_26807) {
4726                         /* If we failed to insert promiscuous filters, rollback
4727                          * and fall back to individual multicast filters
4728                          */
4729                         if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
4730                                 /* Changing promisc state, so remove old filters */
4731                                 efx_ef10_filter_remove_old(efx);
4732                                 efx_ef10_filter_insert_addr_list(efx, vlan,
4733                                                                  true, false);
4734                         }
4735                 } else {
4736                         /* If we failed to insert promiscuous filters, don't
4737                          * rollback.  Regardless, also insert the mc_list
4738                          */
4739                         efx_ef10_filter_insert_def(efx, vlan, true, false);
4740                         efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
4741                 }
4742         } else {
4743                 /* If any filters failed to insert, rollback and fall back to
4744                  * promiscuous mode - mc_def filter and maybe broadcast.  If
4745                  * that fails, roll back again and insert as many of our
4746                  * individual multicast filters as we can.
4747                  */
4748                 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
4749                         /* Changing promisc state, so remove old filters */
4750                         if (nic_data->workaround_26807)
4751                                 efx_ef10_filter_remove_old(efx);
4752                         if (efx_ef10_filter_insert_def(efx, vlan, true, true))
4753                                 efx_ef10_filter_insert_addr_list(efx, vlan,
4754                                                                  true, false);
4755                 }
4756         }
4757 }
4758
4759 /* Caller must hold efx->filter_sem for read if race against
4760  * efx_ef10_filter_table_remove() is possible
4761  */
4762 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4763 {
4764         struct efx_ef10_filter_table *table = efx->filter_state;
4765         struct net_device *net_dev = efx->net_dev;
4766         struct efx_ef10_filter_vlan *vlan;
4767         bool vlan_filter;
4768
4769         if (!efx_dev_registered(efx))
4770                 return;
4771
4772         if (!table)
4773                 return;
4774
4775         efx_ef10_filter_mark_old(efx);
4776
4777         /* Copy/convert the address lists; add the primary station
4778          * address and broadcast address
4779          */
4780         netif_addr_lock_bh(net_dev);
4781         efx_ef10_filter_uc_addr_list(efx);
4782         efx_ef10_filter_mc_addr_list(efx);
4783         netif_addr_unlock_bh(net_dev);
4784
4785         /* If VLAN filtering changes, all old filters are finally removed.
4786          * Do it in advance to avoid conflicts for unicast untagged and
4787          * VLAN 0 tagged filters.
4788          */
4789         vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4790         if (table->vlan_filter != vlan_filter) {
4791                 table->vlan_filter = vlan_filter;
4792                 efx_ef10_filter_remove_old(efx);
4793         }
4794
4795         list_for_each_entry(vlan, &table->vlan_list, list)
4796                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4797
4798         efx_ef10_filter_remove_old(efx);
4799         table->mc_promisc_last = table->mc_promisc;
4800 }
4801
4802 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
4803 {
4804         struct efx_ef10_filter_table *table = efx->filter_state;
4805         struct efx_ef10_filter_vlan *vlan;
4806
4807         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4808
4809         list_for_each_entry(vlan, &table->vlan_list, list) {
4810                 if (vlan->vid == vid)
4811                         return vlan;
4812         }
4813
4814         return NULL;
4815 }
4816
4817 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
4818 {
4819         struct efx_ef10_filter_table *table = efx->filter_state;
4820         struct efx_ef10_filter_vlan *vlan;
4821         unsigned int i;
4822
4823         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4824                 return -EINVAL;
4825
4826         vlan = efx_ef10_filter_find_vlan(efx, vid);
4827         if (WARN_ON(vlan)) {
4828                 netif_err(efx, drv, efx->net_dev,
4829                           "VLAN %u already added\n", vid);
4830                 return -EALREADY;
4831         }
4832
4833         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
4834         if (!vlan)
4835                 return -ENOMEM;
4836
4837         vlan->vid = vid;
4838
4839         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4840                 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
4841         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4842                 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
4843         vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
4844         vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
4845         vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4846
4847         list_add_tail(&vlan->list, &table->vlan_list);
4848
4849         if (efx_dev_registered(efx))
4850                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4851
4852         return 0;
4853 }
4854
4855 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
4856                                               struct efx_ef10_filter_vlan *vlan)
4857 {
4858         unsigned int i;
4859
4860         /* See comment in efx_ef10_filter_table_remove() */
4861         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4862                 return;
4863
4864         list_del(&vlan->list);
4865
4866         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4867                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4868                                               vlan->uc[i]);
4869         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4870                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4871                                               vlan->mc[i]);
4872         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
4873         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
4874         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
4875
4876         kfree(vlan);
4877 }
4878
4879 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
4880 {
4881         struct efx_ef10_filter_vlan *vlan;
4882
4883         /* See comment in efx_ef10_filter_table_remove() */
4884         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4885                 return;
4886
4887         vlan = efx_ef10_filter_find_vlan(efx, vid);
4888         if (!vlan) {
4889                 netif_err(efx, drv, efx->net_dev,
4890                           "VLAN %u not found in filter state\n", vid);
4891                 return;
4892         }
4893
4894         efx_ef10_filter_del_vlan_internal(efx, vlan);
4895 }
4896
4897 static int efx_ef10_set_mac_address(struct efx_nic *efx)
4898 {
4899         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4900         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4901         bool was_enabled = efx->port_enabled;
4902         int rc;
4903
4904         efx_device_detach_sync(efx);
4905         efx_net_stop(efx->net_dev);
4906
4907         mutex_lock(&efx->mac_lock);
4908         down_write(&efx->filter_sem);
4909         efx_ef10_filter_table_remove(efx);
4910
4911         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4912                         efx->net_dev->dev_addr);
4913         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4914                        nic_data->vport_id);
4915         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4916                                 sizeof(inbuf), NULL, 0, NULL);
4917
4918         efx_ef10_filter_table_probe(efx);
4919         up_write(&efx->filter_sem);
4920         mutex_unlock(&efx->mac_lock);
4921
4922         if (was_enabled)
4923                 efx_net_open(efx->net_dev);
4924         netif_device_attach(efx->net_dev);
4925
4926 #ifdef CONFIG_SFC_SRIOV
4927         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4928                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4929
4930                 if (rc == -EPERM) {
4931                         struct efx_nic *efx_pf;
4932
4933                         /* Switch to PF and change MAC address on vport */
4934                         efx_pf = pci_get_drvdata(pci_dev_pf);
4935
4936                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4937                                                        nic_data->vf_index,
4938                                                        efx->net_dev->dev_addr);
4939                 } else if (!rc) {
4940                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4941                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4942                         unsigned int i;
4943
4944                         /* MAC address successfully changed by VF (with MAC
4945                          * spoofing) so update the parent PF if possible.
4946                          */
4947                         for (i = 0; i < efx_pf->vf_count; ++i) {
4948                                 struct ef10_vf *vf = nic_data->vf + i;
4949
4950                                 if (vf->efx == efx) {
4951                                         ether_addr_copy(vf->mac,
4952                                                         efx->net_dev->dev_addr);
4953                                         return 0;
4954                                 }
4955                         }
4956                 }
4957         } else
4958 #endif
4959         if (rc == -EPERM) {
4960                 netif_err(efx, drv, efx->net_dev,
4961                           "Cannot change MAC address; use sfboot to enable"
4962                           " mac-spoofing on this interface\n");
4963         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4964                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4965                  * fall-back to the method of changing the MAC address on the
4966                  * vport.  This only applies to PFs because such versions of
4967                  * MCFW do not support VFs.
4968                  */
4969                 rc = efx_ef10_vport_set_mac_address(efx);
4970         } else if (rc) {
4971                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4972                                        sizeof(inbuf), NULL, 0, rc);
4973         }
4974
4975         return rc;
4976 }
4977
4978 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4979 {
4980         efx_ef10_filter_sync_rx_mode(efx);
4981
4982         return efx_mcdi_set_mac(efx);
4983 }
4984
4985 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4986 {
4987         efx_ef10_filter_sync_rx_mode(efx);
4988
4989         return 0;
4990 }
4991
4992 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4993 {
4994         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4995
4996         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4997         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4998                             NULL, 0, NULL);
4999 }
5000
5001 /* MC BISTs follow a different poll mechanism to phy BISTs.
5002  * The BIST is done in the poll handler on the MC, and the MCDI command
5003  * will block until the BIST is done.
5004  */
5005 static int efx_ef10_poll_bist(struct efx_nic *efx)
5006 {
5007         int rc;
5008         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5009         size_t outlen;
5010         u32 result;
5011
5012         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5013                            outbuf, sizeof(outbuf), &outlen);
5014         if (rc != 0)
5015                 return rc;
5016
5017         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5018                 return -EIO;
5019
5020         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5021         switch (result) {
5022         case MC_CMD_POLL_BIST_PASSED:
5023                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5024                 return 0;
5025         case MC_CMD_POLL_BIST_TIMEOUT:
5026                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5027                 return -EIO;
5028         case MC_CMD_POLL_BIST_FAILED:
5029                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5030                 return -EIO;
5031         default:
5032                 netif_err(efx, hw, efx->net_dev,
5033                           "BIST returned unknown result %u", result);
5034                 return -EIO;
5035         }
5036 }
5037
5038 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5039 {
5040         int rc;
5041
5042         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5043
5044         rc = efx_ef10_start_bist(efx, bist_type);
5045         if (rc != 0)
5046                 return rc;
5047
5048         return efx_ef10_poll_bist(efx);
5049 }
5050
5051 static int
5052 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5053 {
5054         int rc, rc2;
5055
5056         efx_reset_down(efx, RESET_TYPE_WORLD);
5057
5058         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5059                           NULL, 0, NULL, 0, NULL);
5060         if (rc != 0)
5061                 goto out;
5062
5063         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5064         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5065
5066         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5067
5068 out:
5069         if (rc == -EPERM)
5070                 rc = 0;
5071         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5072         return rc ? rc : rc2;
5073 }
5074
5075 #ifdef CONFIG_SFC_MTD
5076
5077 struct efx_ef10_nvram_type_info {
5078         u16 type, type_mask;
5079         u8 port;
5080         const char *name;
5081 };
5082
5083 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5084         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
5085         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5086         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
5087         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
5088         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
5089         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5090         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5091         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5092         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5093         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
5094         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
5095 };
5096 #define EF10_NVRAM_PARTITION_COUNT      ARRAY_SIZE(efx_ef10_nvram_types)
5097
5098 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5099                                         struct efx_mcdi_mtd_partition *part,
5100                                         unsigned int type,
5101                                         unsigned long *found)
5102 {
5103         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5104         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5105         const struct efx_ef10_nvram_type_info *info;
5106         size_t size, erase_size, outlen;
5107         int type_idx = 0;
5108         bool protected;
5109         int rc;
5110
5111         for (type_idx = 0; ; type_idx++) {
5112                 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
5113                         return -ENODEV;
5114                 info = efx_ef10_nvram_types + type_idx;
5115                 if ((type & ~info->type_mask) == info->type)
5116                         break;
5117         }
5118         if (info->port != efx_port_num(efx))
5119                 return -ENODEV;
5120
5121         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5122         if (rc)
5123                 return rc;
5124         if (protected)
5125                 return -ENODEV; /* hide it */
5126
5127         /* If we've already exposed a partition of this type, hide this
5128          * duplicate.  All operations on MTDs are keyed by the type anyway,
5129          * so we can't act on the duplicate.
5130          */
5131         if (__test_and_set_bit(type_idx, found))
5132                 return -EEXIST;
5133
5134         part->nvram_type = type;
5135
5136         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5137         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5138                           outbuf, sizeof(outbuf), &outlen);
5139         if (rc)
5140                 return rc;
5141         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5142                 return -EIO;
5143         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5144             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5145                 part->fw_subtype = MCDI_DWORD(outbuf,
5146                                               NVRAM_METADATA_OUT_SUBTYPE);
5147
5148         part->common.dev_type_name = "EF10 NVRAM manager";
5149         part->common.type_name = info->name;
5150
5151         part->common.mtd.type = MTD_NORFLASH;
5152         part->common.mtd.flags = MTD_CAP_NORFLASH;
5153         part->common.mtd.size = size;
5154         part->common.mtd.erasesize = erase_size;
5155
5156         return 0;
5157 }
5158
5159 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5160 {
5161         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5162         DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
5163         struct efx_mcdi_mtd_partition *parts;
5164         size_t outlen, n_parts_total, i, n_parts;
5165         unsigned int type;
5166         int rc;
5167
5168         ASSERT_RTNL();
5169
5170         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5171         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5172                           outbuf, sizeof(outbuf), &outlen);
5173         if (rc)
5174                 return rc;
5175         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5176                 return -EIO;
5177
5178         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5179         if (n_parts_total >
5180             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5181                 return -EIO;
5182
5183         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5184         if (!parts)
5185                 return -ENOMEM;
5186
5187         n_parts = 0;
5188         for (i = 0; i < n_parts_total; i++) {
5189                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5190                                         i);
5191                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
5192                                                   found);
5193                 if (rc == -EEXIST || rc == -ENODEV)
5194                         continue;
5195                 if (rc)
5196                         goto fail;
5197                 n_parts++;
5198         }
5199
5200         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5201 fail:
5202         if (rc)
5203                 kfree(parts);
5204         return rc;
5205 }
5206
5207 #endif /* CONFIG_SFC_MTD */
5208
5209 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5210 {
5211         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5212 }
5213
5214 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5215                                             u32 host_time) {}
5216
5217 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5218                                            bool temp)
5219 {
5220         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5221         int rc;
5222
5223         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5224             channel->sync_events_state == SYNC_EVENTS_VALID ||
5225             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5226                 return 0;
5227         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5228
5229         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5230         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5231         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5232                        channel->channel);
5233
5234         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5235                           inbuf, sizeof(inbuf), NULL, 0, NULL);
5236
5237         if (rc != 0)
5238                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5239                                                     SYNC_EVENTS_DISABLED;
5240
5241         return rc;
5242 }
5243
5244 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5245                                             bool temp)
5246 {
5247         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5248         int rc;
5249
5250         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5251             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5252                 return 0;
5253         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
5254                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
5255                 return 0;
5256         }
5257         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5258                                             SYNC_EVENTS_DISABLED;
5259
5260         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
5261         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5262         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
5263                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
5264         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
5265                        channel->channel);
5266
5267         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5268                           inbuf, sizeof(inbuf), NULL, 0, NULL);
5269
5270         return rc;
5271 }
5272
5273 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
5274                                            bool temp)
5275 {
5276         int (*set)(struct efx_channel *channel, bool temp);
5277         struct efx_channel *channel;
5278
5279         set = en ?
5280               efx_ef10_rx_enable_timestamping :
5281               efx_ef10_rx_disable_timestamping;
5282
5283         efx_for_each_channel(channel, efx) {
5284                 int rc = set(channel, temp);
5285                 if (en && rc != 0) {
5286                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
5287                         return rc;
5288                 }
5289         }
5290
5291         return 0;
5292 }
5293
5294 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
5295                                          struct hwtstamp_config *init)
5296 {
5297         return -EOPNOTSUPP;
5298 }
5299
5300 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
5301                                       struct hwtstamp_config *init)
5302 {
5303         int rc;
5304
5305         switch (init->rx_filter) {
5306         case HWTSTAMP_FILTER_NONE:
5307                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
5308                 /* if TX timestamping is still requested then leave PTP on */
5309                 return efx_ptp_change_mode(efx,
5310                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
5311         case HWTSTAMP_FILTER_ALL:
5312         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5313         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5314         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5315         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5316         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5317         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5318         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5319         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5320         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5321         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5322         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5323         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5324                 init->rx_filter = HWTSTAMP_FILTER_ALL;
5325                 rc = efx_ptp_change_mode(efx, true, 0);
5326                 if (!rc)
5327                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
5328                 if (rc)
5329                         efx_ptp_change_mode(efx, false, 0);
5330                 return rc;
5331         default:
5332                 return -ERANGE;
5333         }
5334 }
5335
5336 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5337 {
5338         if (proto != htons(ETH_P_8021Q))
5339                 return -EINVAL;
5340
5341         return efx_ef10_add_vlan(efx, vid);
5342 }
5343
5344 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5345 {
5346         if (proto != htons(ETH_P_8021Q))
5347                 return -EINVAL;
5348
5349         return efx_ef10_del_vlan(efx, vid);
5350 }
5351
5352 #define EF10_OFFLOAD_FEATURES           \
5353         (NETIF_F_IP_CSUM |              \
5354          NETIF_F_HW_VLAN_CTAG_FILTER |  \
5355          NETIF_F_IPV6_CSUM |            \
5356          NETIF_F_RXHASH |               \
5357          NETIF_F_NTUPLE)
5358
5359 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
5360         .is_vf = true,
5361         .mem_bar = EFX_MEM_VF_BAR,
5362         .mem_map_size = efx_ef10_mem_map_size,
5363         .probe = efx_ef10_probe_vf,
5364         .remove = efx_ef10_remove,
5365         .dimension_resources = efx_ef10_dimension_resources,
5366         .init = efx_ef10_init_nic,
5367         .fini = efx_port_dummy_op_void,
5368         .map_reset_reason = efx_ef10_map_reset_reason,
5369         .map_reset_flags = efx_ef10_map_reset_flags,
5370         .reset = efx_ef10_reset,
5371         .probe_port = efx_mcdi_port_probe,
5372         .remove_port = efx_mcdi_port_remove,
5373         .fini_dmaq = efx_ef10_fini_dmaq,
5374         .prepare_flr = efx_ef10_prepare_flr,
5375         .finish_flr = efx_port_dummy_op_void,
5376         .describe_stats = efx_ef10_describe_stats,
5377         .update_stats = efx_ef10_update_stats_vf,
5378         .start_stats = efx_port_dummy_op_void,
5379         .pull_stats = efx_port_dummy_op_void,
5380         .stop_stats = efx_port_dummy_op_void,
5381         .set_id_led = efx_mcdi_set_id_led,
5382         .push_irq_moderation = efx_ef10_push_irq_moderation,
5383         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
5384         .check_mac_fault = efx_mcdi_mac_check_fault,
5385         .reconfigure_port = efx_mcdi_port_reconfigure,
5386         .get_wol = efx_ef10_get_wol_vf,
5387         .set_wol = efx_ef10_set_wol_vf,
5388         .resume_wol = efx_port_dummy_op_void,
5389         .mcdi_request = efx_ef10_mcdi_request,
5390         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
5391         .mcdi_read_response = efx_ef10_mcdi_read_response,
5392         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5393         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5394         .irq_enable_master = efx_port_dummy_op_void,
5395         .irq_test_generate = efx_ef10_irq_test_generate,
5396         .irq_disable_non_ev = efx_port_dummy_op_void,
5397         .irq_handle_msi = efx_ef10_msi_interrupt,
5398         .irq_handle_legacy = efx_ef10_legacy_interrupt,
5399         .tx_probe = efx_ef10_tx_probe,
5400         .tx_init = efx_ef10_tx_init,
5401         .tx_remove = efx_ef10_tx_remove,
5402         .tx_write = efx_ef10_tx_write,
5403         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
5404         .rx_probe = efx_ef10_rx_probe,
5405         .rx_init = efx_ef10_rx_init,
5406         .rx_remove = efx_ef10_rx_remove,
5407         .rx_write = efx_ef10_rx_write,
5408         .rx_defer_refill = efx_ef10_rx_defer_refill,
5409         .ev_probe = efx_ef10_ev_probe,
5410         .ev_init = efx_ef10_ev_init,
5411         .ev_fini = efx_ef10_ev_fini,
5412         .ev_remove = efx_ef10_ev_remove,
5413         .ev_process = efx_ef10_ev_process,
5414         .ev_read_ack = efx_ef10_ev_read_ack,
5415         .ev_test_generate = efx_ef10_ev_test_generate,
5416         .filter_table_probe = efx_ef10_filter_table_probe,
5417         .filter_table_restore = efx_ef10_filter_table_restore,
5418         .filter_table_remove = efx_ef10_filter_table_remove,
5419         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5420         .filter_insert = efx_ef10_filter_insert,
5421         .filter_remove_safe = efx_ef10_filter_remove_safe,
5422         .filter_get_safe = efx_ef10_filter_get_safe,
5423         .filter_clear_rx = efx_ef10_filter_clear_rx,
5424         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
5425         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5426         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5427 #ifdef CONFIG_RFS_ACCEL
5428         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
5429         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5430 #endif
5431 #ifdef CONFIG_SFC_MTD
5432         .mtd_probe = efx_port_dummy_op_int,
5433 #endif
5434         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
5435         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
5436         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5437         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5438 #ifdef CONFIG_SFC_SRIOV
5439         .vswitching_probe = efx_ef10_vswitching_probe_vf,
5440         .vswitching_restore = efx_ef10_vswitching_restore_vf,
5441         .vswitching_remove = efx_ef10_vswitching_remove_vf,
5442         .sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
5443 #endif
5444         .get_mac_address = efx_ef10_get_mac_address_vf,
5445         .set_mac_address = efx_ef10_set_mac_address,
5446
5447         .revision = EFX_REV_HUNT_A0,
5448         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5449         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5450         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5451         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5452         .can_rx_scatter = true,
5453         .always_rx_scatter = true,
5454         .max_interrupt_mode = EFX_INT_MODE_MSIX,
5455         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5456         .offload_features = EF10_OFFLOAD_FEATURES,
5457         .mcdi_max_ver = 2,
5458         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5459         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5460                             1 << HWTSTAMP_FILTER_ALL,
5461 };
5462
5463 const struct efx_nic_type efx_hunt_a0_nic_type = {
5464         .is_vf = false,
5465         .mem_bar = EFX_MEM_BAR,
5466         .mem_map_size = efx_ef10_mem_map_size,
5467         .probe = efx_ef10_probe_pf,
5468         .remove = efx_ef10_remove,
5469         .dimension_resources = efx_ef10_dimension_resources,
5470         .init = efx_ef10_init_nic,
5471         .fini = efx_port_dummy_op_void,
5472         .map_reset_reason = efx_ef10_map_reset_reason,
5473         .map_reset_flags = efx_ef10_map_reset_flags,
5474         .reset = efx_ef10_reset,
5475         .probe_port = efx_mcdi_port_probe,
5476         .remove_port = efx_mcdi_port_remove,
5477         .fini_dmaq = efx_ef10_fini_dmaq,
5478         .prepare_flr = efx_ef10_prepare_flr,
5479         .finish_flr = efx_port_dummy_op_void,
5480         .describe_stats = efx_ef10_describe_stats,
5481         .update_stats = efx_ef10_update_stats_pf,
5482         .start_stats = efx_mcdi_mac_start_stats,
5483         .pull_stats = efx_mcdi_mac_pull_stats,
5484         .stop_stats = efx_mcdi_mac_stop_stats,
5485         .set_id_led = efx_mcdi_set_id_led,
5486         .push_irq_moderation = efx_ef10_push_irq_moderation,
5487         .reconfigure_mac = efx_ef10_mac_reconfigure,
5488         .check_mac_fault = efx_mcdi_mac_check_fault,
5489         .reconfigure_port = efx_mcdi_port_reconfigure,
5490         .get_wol = efx_ef10_get_wol,
5491         .set_wol = efx_ef10_set_wol,
5492         .resume_wol = efx_port_dummy_op_void,
5493         .test_chip = efx_ef10_test_chip,
5494         .test_nvram = efx_mcdi_nvram_test_all,
5495         .mcdi_request = efx_ef10_mcdi_request,
5496         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
5497         .mcdi_read_response = efx_ef10_mcdi_read_response,
5498         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5499         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5500         .irq_enable_master = efx_port_dummy_op_void,
5501         .irq_test_generate = efx_ef10_irq_test_generate,
5502         .irq_disable_non_ev = efx_port_dummy_op_void,
5503         .irq_handle_msi = efx_ef10_msi_interrupt,
5504         .irq_handle_legacy = efx_ef10_legacy_interrupt,
5505         .tx_probe = efx_ef10_tx_probe,
5506         .tx_init = efx_ef10_tx_init,
5507         .tx_remove = efx_ef10_tx_remove,
5508         .tx_write = efx_ef10_tx_write,
5509         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
5510         .rx_probe = efx_ef10_rx_probe,
5511         .rx_init = efx_ef10_rx_init,
5512         .rx_remove = efx_ef10_rx_remove,
5513         .rx_write = efx_ef10_rx_write,
5514         .rx_defer_refill = efx_ef10_rx_defer_refill,
5515         .ev_probe = efx_ef10_ev_probe,
5516         .ev_init = efx_ef10_ev_init,
5517         .ev_fini = efx_ef10_ev_fini,
5518         .ev_remove = efx_ef10_ev_remove,
5519         .ev_process = efx_ef10_ev_process,
5520         .ev_read_ack = efx_ef10_ev_read_ack,
5521         .ev_test_generate = efx_ef10_ev_test_generate,
5522         .filter_table_probe = efx_ef10_filter_table_probe,
5523         .filter_table_restore = efx_ef10_filter_table_restore,
5524         .filter_table_remove = efx_ef10_filter_table_remove,
5525         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5526         .filter_insert = efx_ef10_filter_insert,
5527         .filter_remove_safe = efx_ef10_filter_remove_safe,
5528         .filter_get_safe = efx_ef10_filter_get_safe,
5529         .filter_clear_rx = efx_ef10_filter_clear_rx,
5530         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
5531         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5532         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5533 #ifdef CONFIG_RFS_ACCEL
5534         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
5535         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5536 #endif
5537 #ifdef CONFIG_SFC_MTD
5538         .mtd_probe = efx_ef10_mtd_probe,
5539         .mtd_rename = efx_mcdi_mtd_rename,
5540         .mtd_read = efx_mcdi_mtd_read,
5541         .mtd_erase = efx_mcdi_mtd_erase,
5542         .mtd_write = efx_mcdi_mtd_write,
5543         .mtd_sync = efx_mcdi_mtd_sync,
5544 #endif
5545         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
5546         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
5547         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
5548         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5549         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5550 #ifdef CONFIG_SFC_SRIOV
5551         .sriov_configure = efx_ef10_sriov_configure,
5552         .sriov_init = efx_ef10_sriov_init,
5553         .sriov_fini = efx_ef10_sriov_fini,
5554         .sriov_wanted = efx_ef10_sriov_wanted,
5555         .sriov_reset = efx_ef10_sriov_reset,
5556         .sriov_flr = efx_ef10_sriov_flr,
5557         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
5558         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
5559         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
5560         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
5561         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
5562         .vswitching_probe = efx_ef10_vswitching_probe_pf,
5563         .vswitching_restore = efx_ef10_vswitching_restore_pf,
5564         .vswitching_remove = efx_ef10_vswitching_remove_pf,
5565 #endif
5566         .get_mac_address = efx_ef10_get_mac_address_pf,
5567         .set_mac_address = efx_ef10_set_mac_address,
5568
5569         .revision = EFX_REV_HUNT_A0,
5570         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5571         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5572         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5573         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5574         .can_rx_scatter = true,
5575         .always_rx_scatter = true,
5576         .max_interrupt_mode = EFX_INT_MODE_MSIX,
5577         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5578         .offload_features = EF10_OFFLOAD_FEATURES,
5579         .mcdi_max_ver = 2,
5580         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5581         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5582                             1 << HWTSTAMP_FILTER_ALL,
5583 };