GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40
41 #include <linux/pinctrl/consumer.h>
42 #include <net/pkt_cls.h>
43
44 #include "cpsw.h"
45 #include "cpsw_ale.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48
49 #include <net/pkt_sched.h>
50
51 #define CPSW_DEBUG      (NETIF_MSG_HW           | NETIF_MSG_WOL         | \
52                          NETIF_MSG_DRV          | NETIF_MSG_LINK        | \
53                          NETIF_MSG_IFUP         | NETIF_MSG_INTR        | \
54                          NETIF_MSG_PROBE        | NETIF_MSG_TIMER       | \
55                          NETIF_MSG_IFDOWN       | NETIF_MSG_RX_ERR      | \
56                          NETIF_MSG_TX_ERR       | NETIF_MSG_TX_DONE     | \
57                          NETIF_MSG_PKTDATA      | NETIF_MSG_TX_QUEUED   | \
58                          NETIF_MSG_RX_STATUS)
59
60 #define cpsw_info(priv, type, format, ...)              \
61 do {                                                            \
62         if (netif_msg_##type(priv) && net_ratelimit())          \
63                 dev_info(priv->dev, format, ## __VA_ARGS__);    \
64 } while (0)
65
66 #define cpsw_err(priv, type, format, ...)               \
67 do {                                                            \
68         if (netif_msg_##type(priv) && net_ratelimit())          \
69                 dev_err(priv->dev, format, ## __VA_ARGS__);     \
70 } while (0)
71
72 #define cpsw_dbg(priv, type, format, ...)               \
73 do {                                                            \
74         if (netif_msg_##type(priv) && net_ratelimit())          \
75                 dev_dbg(priv->dev, format, ## __VA_ARGS__);     \
76 } while (0)
77
78 #define cpsw_notice(priv, type, format, ...)            \
79 do {                                                            \
80         if (netif_msg_##type(priv) && net_ratelimit())          \
81                 dev_notice(priv->dev, format, ## __VA_ARGS__);  \
82 } while (0)
83
84 #define ALE_ALL_PORTS           0x7
85
86 #define CPSW_MAJOR_VERSION(reg)         (reg >> 8 & 0x7)
87 #define CPSW_MINOR_VERSION(reg)         (reg & 0xff)
88 #define CPSW_RTL_VERSION(reg)           ((reg >> 11) & 0x1f)
89
90 #define CPSW_VERSION_1          0x19010a
91 #define CPSW_VERSION_2          0x19010c
92 #define CPSW_VERSION_3          0x19010f
93 #define CPSW_VERSION_4          0x190112
94
95 #define HOST_PORT_NUM           0
96 #define CPSW_ALE_PORTS_NUM      3
97 #define SLIVER_SIZE             0x40
98
99 #define CPSW1_HOST_PORT_OFFSET  0x028
100 #define CPSW1_SLAVE_OFFSET      0x050
101 #define CPSW1_SLAVE_SIZE        0x040
102 #define CPSW1_CPDMA_OFFSET      0x100
103 #define CPSW1_STATERAM_OFFSET   0x200
104 #define CPSW1_HW_STATS          0x400
105 #define CPSW1_CPTS_OFFSET       0x500
106 #define CPSW1_ALE_OFFSET        0x600
107 #define CPSW1_SLIVER_OFFSET     0x700
108
109 #define CPSW2_HOST_PORT_OFFSET  0x108
110 #define CPSW2_SLAVE_OFFSET      0x200
111 #define CPSW2_SLAVE_SIZE        0x100
112 #define CPSW2_CPDMA_OFFSET      0x800
113 #define CPSW2_HW_STATS          0x900
114 #define CPSW2_STATERAM_OFFSET   0xa00
115 #define CPSW2_CPTS_OFFSET       0xc00
116 #define CPSW2_ALE_OFFSET        0xd00
117 #define CPSW2_SLIVER_OFFSET     0xd80
118 #define CPSW2_BD_OFFSET         0x2000
119
120 #define CPDMA_RXTHRESH          0x0c0
121 #define CPDMA_RXFREE            0x0e0
122 #define CPDMA_TXHDP             0x00
123 #define CPDMA_RXHDP             0x20
124 #define CPDMA_TXCP              0x40
125 #define CPDMA_RXCP              0x60
126
127 #define CPSW_POLL_WEIGHT        64
128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE             4
129 #define CPSW_MIN_PACKET_SIZE    (VLAN_ETH_ZLEN)
130 #define CPSW_MAX_PACKET_SIZE    (VLAN_ETH_FRAME_LEN +\
131                                  ETH_FCS_LEN +\
132                                  CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133
134 #define RX_PRIORITY_MAPPING     0x76543210
135 #define TX_PRIORITY_MAPPING     0x33221100
136 #define CPDMA_TX_PRIORITY_MAP   0x76543210
137
138 #define CPSW_VLAN_AWARE         BIT(1)
139 #define CPSW_RX_VLAN_ENCAP      BIT(2)
140 #define CPSW_ALE_VLAN_AWARE     1
141
142 #define CPSW_FIFO_NORMAL_MODE           (0 << 16)
143 #define CPSW_FIFO_DUAL_MAC_MODE         (1 << 16)
144 #define CPSW_FIFO_RATE_LIMIT_MODE       (2 << 16)
145
146 #define CPSW_INTPACEEN          (0x3f << 16)
147 #define CPSW_INTPRESCALE_MASK   (0x7FF << 0)
148 #define CPSW_CMINTMAX_CNT       63
149 #define CPSW_CMINTMIN_CNT       2
150 #define CPSW_CMINTMAX_INTVL     (1000 / CPSW_CMINTMIN_CNT)
151 #define CPSW_CMINTMIN_INTVL     ((1000 / CPSW_CMINTMAX_CNT) + 1)
152
153 #define cpsw_slave_index(cpsw, priv)                            \
154                 ((cpsw->data.dual_emac) ? priv->emac_port :     \
155                 cpsw->data.active_slave)
156 #define IRQ_NUM                 2
157 #define CPSW_MAX_QUEUES         8
158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT      16
160 #define CPSW_FIFO_SHAPE_EN_SHIFT        16
161 #define CPSW_FIFO_RATE_EN_SHIFT         20
162 #define CPSW_TC_NUM                     4
163 #define CPSW_FIFO_SHAPERS_NUM           (CPSW_TC_NUM - 1)
164 #define CPSW_PCT_MASK                   0x7f
165
166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT       29
167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK         GENMASK(2, 0)
168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT        16
169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT   8
170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK     GENMASK(1, 0)
171 enum {
172         CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
173         CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
174         CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
175         CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
176 };
177
178 static int debug_level;
179 module_param(debug_level, int, 0);
180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
181
182 static int ale_ageout = 10;
183 module_param(ale_ageout, int, 0);
184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
185
186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
187 module_param(rx_packet_max, int, 0);
188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
189
190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
191 module_param(descs_pool_size, int, 0444);
192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
193
194 struct cpsw_wr_regs {
195         u32     id_ver;
196         u32     soft_reset;
197         u32     control;
198         u32     int_control;
199         u32     rx_thresh_en;
200         u32     rx_en;
201         u32     tx_en;
202         u32     misc_en;
203         u32     mem_allign1[8];
204         u32     rx_thresh_stat;
205         u32     rx_stat;
206         u32     tx_stat;
207         u32     misc_stat;
208         u32     mem_allign2[8];
209         u32     rx_imax;
210         u32     tx_imax;
211
212 };
213
214 struct cpsw_ss_regs {
215         u32     id_ver;
216         u32     control;
217         u32     soft_reset;
218         u32     stat_port_en;
219         u32     ptype;
220         u32     soft_idle;
221         u32     thru_rate;
222         u32     gap_thresh;
223         u32     tx_start_wds;
224         u32     flow_control;
225         u32     vlan_ltype;
226         u32     ts_ltype;
227         u32     dlr_ltype;
228 };
229
230 /* CPSW_PORT_V1 */
231 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
232 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
233 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
234 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
235 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
236 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
237 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
238 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
239
240 /* CPSW_PORT_V2 */
241 #define CPSW2_CONTROL       0x00 /* Control Register */
242 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
243 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
244 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
245 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
246 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
247 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
248
249 /* CPSW_PORT_V1 and V2 */
250 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
251 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
252 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
253
254 /* CPSW_PORT_V2 only */
255 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
256 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
257 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
258 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
259 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
260 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
261 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
262 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
263
264 /* Bit definitions for the CPSW2_CONTROL register */
265 #define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
266 #define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
267 #define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
268 #define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269 #define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 #define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
271 #define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
272 #define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
273 #define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
274 #define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
275 #define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
276 #define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
277 #define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
278 #define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
279 #define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
280 #define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
281 #define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
282 #define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283
284 #define CTRL_V2_TS_BITS \
285         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286          TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287
288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
290 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
291
292
293 #define CTRL_V3_TS_BITS \
294         (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295          TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
296          TS_LTYPE1_EN)
297
298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
299 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
300 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301
302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
303 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
304 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
305 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
306 #define TS_MSG_TYPE_EN_MASK      (0xffff)
307
308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310
311 /* Bit definitions for the CPSW1_TS_CTL register */
312 #define CPSW_V1_TS_RX_EN                BIT(0)
313 #define CPSW_V1_TS_TX_EN                BIT(4)
314 #define CPSW_V1_MSG_TYPE_OFS            16
315
316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
317 #define CPSW_V1_SEQ_ID_OFS_SHIFT        16
318
319 #define CPSW_MAX_BLKS_TX                15
320 #define CPSW_MAX_BLKS_TX_SHIFT          4
321 #define CPSW_MAX_BLKS_RX                5
322
323 struct cpsw_host_regs {
324         u32     max_blks;
325         u32     blk_cnt;
326         u32     tx_in_ctl;
327         u32     port_vlan;
328         u32     tx_pri_map;
329         u32     cpdma_tx_pri_map;
330         u32     cpdma_rx_chan_map;
331 };
332
333 struct cpsw_sliver_regs {
334         u32     id_ver;
335         u32     mac_control;
336         u32     mac_status;
337         u32     soft_reset;
338         u32     rx_maxlen;
339         u32     __reserved_0;
340         u32     rx_pause;
341         u32     tx_pause;
342         u32     __reserved_1;
343         u32     rx_pri_map;
344 };
345
346 struct cpsw_hw_stats {
347         u32     rxgoodframes;
348         u32     rxbroadcastframes;
349         u32     rxmulticastframes;
350         u32     rxpauseframes;
351         u32     rxcrcerrors;
352         u32     rxaligncodeerrors;
353         u32     rxoversizedframes;
354         u32     rxjabberframes;
355         u32     rxundersizedframes;
356         u32     rxfragments;
357         u32     __pad_0[2];
358         u32     rxoctets;
359         u32     txgoodframes;
360         u32     txbroadcastframes;
361         u32     txmulticastframes;
362         u32     txpauseframes;
363         u32     txdeferredframes;
364         u32     txcollisionframes;
365         u32     txsinglecollframes;
366         u32     txmultcollframes;
367         u32     txexcessivecollisions;
368         u32     txlatecollisions;
369         u32     txunderrun;
370         u32     txcarriersenseerrors;
371         u32     txoctets;
372         u32     octetframes64;
373         u32     octetframes65t127;
374         u32     octetframes128t255;
375         u32     octetframes256t511;
376         u32     octetframes512t1023;
377         u32     octetframes1024tup;
378         u32     netoctets;
379         u32     rxsofoverruns;
380         u32     rxmofoverruns;
381         u32     rxdmaoverruns;
382 };
383
384 struct cpsw_slave_data {
385         struct device_node *phy_node;
386         char            phy_id[MII_BUS_ID_SIZE];
387         int             phy_if;
388         u8              mac_addr[ETH_ALEN];
389         u16             dual_emac_res_vlan;     /* Reserved VLAN for DualEMAC */
390 };
391
392 struct cpsw_platform_data {
393         struct cpsw_slave_data  *slave_data;
394         u32     ss_reg_ofs;     /* Subsystem control register offset */
395         u32     channels;       /* number of cpdma channels (symmetric) */
396         u32     slaves;         /* number of slave cpgmac ports */
397         u32     active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
398         u32     ale_entries;    /* ale table size */
399         u32     bd_ram_size;  /*buffer descriptor ram size */
400         u32     mac_control;    /* Mac control register */
401         u16     default_vlan;   /* Def VLAN for ALE lookup in VLAN aware mode*/
402         bool    dual_emac;      /* Enable Dual EMAC mode */
403 };
404
405 struct cpsw_slave {
406         void __iomem                    *regs;
407         struct cpsw_sliver_regs __iomem *sliver;
408         int                             slave_num;
409         u32                             mac_control;
410         struct cpsw_slave_data          *data;
411         struct phy_device               *phy;
412         struct net_device               *ndev;
413         u32                             port_vlan;
414 };
415
416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
417 {
418         return readl_relaxed(slave->regs + offset);
419 }
420
421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
422 {
423         writel_relaxed(val, slave->regs + offset);
424 }
425
426 struct cpsw_vector {
427         struct cpdma_chan *ch;
428         int budget;
429 };
430
431 struct cpsw_common {
432         struct device                   *dev;
433         struct cpsw_platform_data       data;
434         struct napi_struct              napi_rx;
435         struct napi_struct              napi_tx;
436         struct cpsw_ss_regs __iomem     *regs;
437         struct cpsw_wr_regs __iomem     *wr_regs;
438         u8 __iomem                      *hw_stats;
439         struct cpsw_host_regs __iomem   *host_port_regs;
440         u32                             version;
441         u32                             coal_intvl;
442         u32                             bus_freq_mhz;
443         int                             rx_packet_max;
444         struct cpsw_slave               *slaves;
445         struct cpdma_ctlr               *dma;
446         struct cpsw_vector              txv[CPSW_MAX_QUEUES];
447         struct cpsw_vector              rxv[CPSW_MAX_QUEUES];
448         struct cpsw_ale                 *ale;
449         bool                            quirk_irq;
450         bool                            rx_irq_disabled;
451         bool                            tx_irq_disabled;
452         u32 irqs_table[IRQ_NUM];
453         struct cpts                     *cpts;
454         int                             rx_ch_num, tx_ch_num;
455         int                             speed;
456         int                             usage_count;
457 };
458
459 struct cpsw_priv {
460         struct net_device               *ndev;
461         struct device                   *dev;
462         u32                             msg_enable;
463         u8                              mac_addr[ETH_ALEN];
464         bool                            rx_pause;
465         bool                            tx_pause;
466         bool                            mqprio_hw;
467         int                             fifo_bw[CPSW_TC_NUM];
468         int                             shp_cfg_speed;
469         u32 emac_port;
470         struct cpsw_common *cpsw;
471 };
472
473 struct cpsw_stats {
474         char stat_string[ETH_GSTRING_LEN];
475         int type;
476         int sizeof_stat;
477         int stat_offset;
478 };
479
480 enum {
481         CPSW_STATS,
482         CPDMA_RX_STATS,
483         CPDMA_TX_STATS,
484 };
485
486 #define CPSW_STAT(m)            CPSW_STATS,                             \
487                                 sizeof(((struct cpsw_hw_stats *)0)->m), \
488                                 offsetof(struct cpsw_hw_stats, m)
489 #define CPDMA_RX_STAT(m)        CPDMA_RX_STATS,                            \
490                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
491                                 offsetof(struct cpdma_chan_stats, m)
492 #define CPDMA_TX_STAT(m)        CPDMA_TX_STATS,                            \
493                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
494                                 offsetof(struct cpdma_chan_stats, m)
495
496 static const struct cpsw_stats cpsw_gstrings_stats[] = {
497         { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
498         { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
499         { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
500         { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
501         { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
502         { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
503         { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
504         { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
505         { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
506         { "Rx Fragments", CPSW_STAT(rxfragments) },
507         { "Rx Octets", CPSW_STAT(rxoctets) },
508         { "Good Tx Frames", CPSW_STAT(txgoodframes) },
509         { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
510         { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
511         { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
512         { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
513         { "Collisions", CPSW_STAT(txcollisionframes) },
514         { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
515         { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
516         { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
517         { "Late Collisions", CPSW_STAT(txlatecollisions) },
518         { "Tx Underrun", CPSW_STAT(txunderrun) },
519         { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
520         { "Tx Octets", CPSW_STAT(txoctets) },
521         { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
522         { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
523         { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
524         { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
525         { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
526         { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
527         { "Net Octets", CPSW_STAT(netoctets) },
528         { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
529         { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
530         { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
531 };
532
533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
534         { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
535         { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
536         { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
537         { "misqueued", CPDMA_RX_STAT(misqueued) },
538         { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
539         { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
540         { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
541         { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
542         { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
543         { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
544         { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
545         { "requeue", CPDMA_RX_STAT(requeue) },
546         { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
547 };
548
549 #define CPSW_STATS_COMMON_LEN   ARRAY_SIZE(cpsw_gstrings_stats)
550 #define CPSW_STATS_CH_LEN       ARRAY_SIZE(cpsw_gstrings_ch_stats)
551
552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553 #define napi_to_cpsw(napi)      container_of(napi, struct cpsw_common, napi)
554 #define for_each_slave(priv, func, arg...)                              \
555         do {                                                            \
556                 struct cpsw_slave *slave;                               \
557                 struct cpsw_common *cpsw = (priv)->cpsw;                \
558                 int n;                                                  \
559                 if (cpsw->data.dual_emac)                               \
560                         (func)((cpsw)->slaves + priv->emac_port, ##arg);\
561                 else                                                    \
562                         for (n = cpsw->data.slaves,                     \
563                                         slave = cpsw->slaves;           \
564                                         n; n--)                         \
565                                 (func)(slave++, ##arg);                 \
566         } while (0)
567
568 static inline int cpsw_get_slave_port(u32 slave_num)
569 {
570         return slave_num + 1;
571 }
572
573 static void cpsw_add_mcast(struct cpsw_priv *priv, u8 *addr)
574 {
575         struct cpsw_common *cpsw = priv->cpsw;
576
577         if (cpsw->data.dual_emac) {
578                 struct cpsw_slave *slave = cpsw->slaves + priv->emac_port;
579                 int slave_port = cpsw_get_slave_port(slave->slave_num);
580
581                 cpsw_ale_add_mcast(cpsw->ale, addr,
582                                    1 << slave_port | ALE_PORT_HOST,
583                                    ALE_VLAN, slave->port_vlan, 0);
584                 return;
585         }
586
587         cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0);
588 }
589
590 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
591 {
592         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
593         struct cpsw_ale *ale = cpsw->ale;
594         int i;
595
596         if (cpsw->data.dual_emac) {
597                 bool flag = false;
598
599                 /* Enabling promiscuous mode for one interface will be
600                  * common for both the interface as the interface shares
601                  * the same hardware resource.
602                  */
603                 for (i = 0; i < cpsw->data.slaves; i++)
604                         if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
605                                 flag = true;
606
607                 if (!enable && flag) {
608                         enable = true;
609                         dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
610                 }
611
612                 if (enable) {
613                         /* Enable Bypass */
614                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
615
616                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
617                 } else {
618                         /* Disable Bypass */
619                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
620                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
621                 }
622         } else {
623                 if (enable) {
624                         unsigned long timeout = jiffies + HZ;
625
626                         /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
627                         for (i = 0; i <= cpsw->data.slaves; i++) {
628                                 cpsw_ale_control_set(ale, i,
629                                                      ALE_PORT_NOLEARN, 1);
630                                 cpsw_ale_control_set(ale, i,
631                                                      ALE_PORT_NO_SA_UPDATE, 1);
632                         }
633
634                         /* Clear All Untouched entries */
635                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
636                         do {
637                                 cpu_relax();
638                                 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
639                                         break;
640                         } while (time_after(timeout, jiffies));
641                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
642
643                         /* Clear all mcast from ALE */
644                         cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
645                         __dev_mc_unsync(ndev, NULL);
646
647                         /* Flood All Unicast Packets to Host port */
648                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
649                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
650                 } else {
651                         /* Don't Flood All Unicast Packets to Host port */
652                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
653
654                         /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
655                         for (i = 0; i <= cpsw->data.slaves; i++) {
656                                 cpsw_ale_control_set(ale, i,
657                                                      ALE_PORT_NOLEARN, 0);
658                                 cpsw_ale_control_set(ale, i,
659                                                      ALE_PORT_NO_SA_UPDATE, 0);
660                         }
661                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
662                 }
663         }
664 }
665
666 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
667 {
668         struct cpsw_priv *priv = netdev_priv(ndev);
669         struct cpsw_common *cpsw = priv->cpsw;
670         int vid;
671
672         if (cpsw->data.dual_emac)
673                 vid = cpsw->slaves[priv->emac_port].port_vlan;
674         else
675                 vid = cpsw->data.default_vlan;
676
677         if (ndev->flags & IFF_PROMISC) {
678                 /* Enable promiscuous mode */
679                 cpsw_set_promiscious(ndev, true);
680                 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
681                 return;
682         } else {
683                 /* Disable promiscuous mode */
684                 cpsw_set_promiscious(ndev, false);
685         }
686
687         /* Restore allmulti on vlans if necessary */
688         cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
689
690         /* Clear all mcast from ALE */
691         cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
692
693         if (!netdev_mc_empty(ndev)) {
694                 struct netdev_hw_addr *ha;
695
696                 /* program multicast address list into ALE register */
697                 netdev_for_each_mc_addr(ha, ndev) {
698                         cpsw_add_mcast(priv, ha->addr);
699                 }
700         }
701 }
702
703 static void cpsw_intr_enable(struct cpsw_common *cpsw)
704 {
705         writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
706         writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
707
708         cpdma_ctlr_int_ctrl(cpsw->dma, true);
709         return;
710 }
711
712 static void cpsw_intr_disable(struct cpsw_common *cpsw)
713 {
714         writel_relaxed(0, &cpsw->wr_regs->tx_en);
715         writel_relaxed(0, &cpsw->wr_regs->rx_en);
716
717         cpdma_ctlr_int_ctrl(cpsw->dma, false);
718         return;
719 }
720
721 static void cpsw_tx_handler(void *token, int len, int status)
722 {
723         struct netdev_queue     *txq;
724         struct sk_buff          *skb = token;
725         struct net_device       *ndev = skb->dev;
726         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
727
728         /* Check whether the queue is stopped due to stalled tx dma, if the
729          * queue is stopped then start the queue as we have free desc for tx
730          */
731         txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
732         if (unlikely(netif_tx_queue_stopped(txq)))
733                 netif_tx_wake_queue(txq);
734
735         cpts_tx_timestamp(cpsw->cpts, skb);
736         ndev->stats.tx_packets++;
737         ndev->stats.tx_bytes += len;
738         dev_kfree_skb_any(skb);
739 }
740
741 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
742 {
743         struct cpsw_priv *priv = netdev_priv(skb->dev);
744         struct cpsw_common *cpsw = priv->cpsw;
745         u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
746         u16 vtag, vid, prio, pkt_type;
747
748         /* Remove VLAN header encapsulation word */
749         skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
750
751         pkt_type = (rx_vlan_encap_hdr >>
752                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
753                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
754         /* Ignore unknown & Priority-tagged packets*/
755         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
756             pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
757                 return;
758
759         vid = (rx_vlan_encap_hdr >>
760                CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
761                VLAN_VID_MASK;
762         /* Ignore vid 0 and pass packet as is */
763         if (!vid)
764                 return;
765         /* Ignore default vlans in dual mac mode */
766         if (cpsw->data.dual_emac &&
767             vid == cpsw->slaves[priv->emac_port].port_vlan)
768                 return;
769
770         prio = (rx_vlan_encap_hdr >>
771                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
772                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
773
774         vtag = (prio << VLAN_PRIO_SHIFT) | vid;
775         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
776
777         /* strip vlan tag for VLAN-tagged packet */
778         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
779                 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
780                 skb_pull(skb, VLAN_HLEN);
781         }
782 }
783
784 static void cpsw_rx_handler(void *token, int len, int status)
785 {
786         struct cpdma_chan       *ch;
787         struct sk_buff          *skb = token;
788         struct sk_buff          *new_skb;
789         struct net_device       *ndev = skb->dev;
790         int                     ret = 0, port;
791         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
792
793         if (cpsw->data.dual_emac) {
794                 port = CPDMA_RX_SOURCE_PORT(status);
795                 if (port) {
796                         ndev = cpsw->slaves[--port].ndev;
797                         skb->dev = ndev;
798                 }
799         }
800
801         if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
802                 /* In dual emac mode check for all interfaces */
803                 if (cpsw->data.dual_emac && cpsw->usage_count &&
804                     (status >= 0)) {
805                         /* The packet received is for the interface which
806                          * is already down and the other interface is up
807                          * and running, instead of freeing which results
808                          * in reducing of the number of rx descriptor in
809                          * DMA engine, requeue skb back to cpdma.
810                          */
811                         new_skb = skb;
812                         goto requeue;
813                 }
814
815                 /* the interface is going down, skbs are purged */
816                 dev_kfree_skb_any(skb);
817                 return;
818         }
819
820         new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
821         if (new_skb) {
822                 skb_copy_queue_mapping(new_skb, skb);
823                 skb_put(skb, len);
824                 if (status & CPDMA_RX_VLAN_ENCAP)
825                         cpsw_rx_vlan_encap(skb);
826                 cpts_rx_timestamp(cpsw->cpts, skb);
827                 skb->protocol = eth_type_trans(skb, ndev);
828                 netif_receive_skb(skb);
829                 ndev->stats.rx_bytes += len;
830                 ndev->stats.rx_packets++;
831                 kmemleak_not_leak(new_skb);
832         } else {
833                 ndev->stats.rx_dropped++;
834                 new_skb = skb;
835         }
836
837 requeue:
838         if (netif_dormant(ndev)) {
839                 dev_kfree_skb_any(new_skb);
840                 return;
841         }
842
843         ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
844         ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
845                                 skb_tailroom(new_skb), 0);
846         if (WARN_ON(ret < 0))
847                 dev_kfree_skb_any(new_skb);
848 }
849
850 static void cpsw_split_res(struct net_device *ndev)
851 {
852         struct cpsw_priv *priv = netdev_priv(ndev);
853         u32 consumed_rate = 0, bigest_rate = 0;
854         struct cpsw_common *cpsw = priv->cpsw;
855         struct cpsw_vector *txv = cpsw->txv;
856         int i, ch_weight, rlim_ch_num = 0;
857         int budget, bigest_rate_ch = 0;
858         u32 ch_rate, max_rate;
859         int ch_budget = 0;
860
861         for (i = 0; i < cpsw->tx_ch_num; i++) {
862                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
863                 if (!ch_rate)
864                         continue;
865
866                 rlim_ch_num++;
867                 consumed_rate += ch_rate;
868         }
869
870         if (cpsw->tx_ch_num == rlim_ch_num) {
871                 max_rate = consumed_rate;
872         } else if (!rlim_ch_num) {
873                 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
874                 bigest_rate = 0;
875                 max_rate = consumed_rate;
876         } else {
877                 max_rate = cpsw->speed * 1000;
878
879                 /* if max_rate is less then expected due to reduced link speed,
880                  * split proportionally according next potential max speed
881                  */
882                 if (max_rate < consumed_rate)
883                         max_rate *= 10;
884
885                 if (max_rate < consumed_rate)
886                         max_rate *= 10;
887
888                 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
889                 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
890                             (cpsw->tx_ch_num - rlim_ch_num);
891                 bigest_rate = (max_rate - consumed_rate) /
892                               (cpsw->tx_ch_num - rlim_ch_num);
893         }
894
895         /* split tx weight/budget */
896         budget = CPSW_POLL_WEIGHT;
897         for (i = 0; i < cpsw->tx_ch_num; i++) {
898                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
899                 if (ch_rate) {
900                         txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
901                         if (!txv[i].budget)
902                                 txv[i].budget++;
903                         if (ch_rate > bigest_rate) {
904                                 bigest_rate_ch = i;
905                                 bigest_rate = ch_rate;
906                         }
907
908                         ch_weight = (ch_rate * 100) / max_rate;
909                         if (!ch_weight)
910                                 ch_weight++;
911                         cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
912                 } else {
913                         txv[i].budget = ch_budget;
914                         if (!bigest_rate_ch)
915                                 bigest_rate_ch = i;
916                         cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
917                 }
918
919                 budget -= txv[i].budget;
920         }
921
922         if (budget)
923                 txv[bigest_rate_ch].budget += budget;
924
925         /* split rx budget */
926         budget = CPSW_POLL_WEIGHT;
927         ch_budget = budget / cpsw->rx_ch_num;
928         for (i = 0; i < cpsw->rx_ch_num; i++) {
929                 cpsw->rxv[i].budget = ch_budget;
930                 budget -= ch_budget;
931         }
932
933         if (budget)
934                 cpsw->rxv[0].budget += budget;
935 }
936
937 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
938 {
939         struct cpsw_common *cpsw = dev_id;
940
941         writel(0, &cpsw->wr_regs->tx_en);
942         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
943
944         if (cpsw->quirk_irq) {
945                 disable_irq_nosync(cpsw->irqs_table[1]);
946                 cpsw->tx_irq_disabled = true;
947         }
948
949         napi_schedule(&cpsw->napi_tx);
950         return IRQ_HANDLED;
951 }
952
953 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
954 {
955         struct cpsw_common *cpsw = dev_id;
956
957         writel(0, &cpsw->wr_regs->rx_en);
958         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
959
960         if (cpsw->quirk_irq) {
961                 disable_irq_nosync(cpsw->irqs_table[0]);
962                 cpsw->rx_irq_disabled = true;
963         }
964
965         napi_schedule(&cpsw->napi_rx);
966         return IRQ_HANDLED;
967 }
968
969 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
970 {
971         u32                     ch_map;
972         int                     num_tx, cur_budget, ch;
973         struct cpsw_common      *cpsw = napi_to_cpsw(napi_tx);
974         struct cpsw_vector      *txv;
975
976         /* process every unprocessed channel */
977         ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
978         for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
979                 if (!(ch_map & 0x80))
980                         continue;
981
982                 txv = &cpsw->txv[ch];
983                 if (unlikely(txv->budget > budget - num_tx))
984                         cur_budget = budget - num_tx;
985                 else
986                         cur_budget = txv->budget;
987
988                 num_tx += cpdma_chan_process(txv->ch, cur_budget);
989                 if (num_tx >= budget)
990                         break;
991         }
992
993         if (num_tx < budget) {
994                 napi_complete(napi_tx);
995                 writel(0xff, &cpsw->wr_regs->tx_en);
996         }
997
998         return num_tx;
999 }
1000
1001 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
1002 {
1003         struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1004         int num_tx;
1005
1006         num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1007         if (num_tx < budget) {
1008                 napi_complete(napi_tx);
1009                 writel(0xff, &cpsw->wr_regs->tx_en);
1010                 if (cpsw->tx_irq_disabled) {
1011                         cpsw->tx_irq_disabled = false;
1012                         enable_irq(cpsw->irqs_table[1]);
1013                 }
1014         }
1015
1016         return num_tx;
1017 }
1018
1019 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1020 {
1021         u32                     ch_map;
1022         int                     num_rx, cur_budget, ch;
1023         struct cpsw_common      *cpsw = napi_to_cpsw(napi_rx);
1024         struct cpsw_vector      *rxv;
1025
1026         /* process every unprocessed channel */
1027         ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1028         for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1029                 if (!(ch_map & 0x01))
1030                         continue;
1031
1032                 rxv = &cpsw->rxv[ch];
1033                 if (unlikely(rxv->budget > budget - num_rx))
1034                         cur_budget = budget - num_rx;
1035                 else
1036                         cur_budget = rxv->budget;
1037
1038                 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1039                 if (num_rx >= budget)
1040                         break;
1041         }
1042
1043         if (num_rx < budget) {
1044                 napi_complete_done(napi_rx, num_rx);
1045                 writel(0xff, &cpsw->wr_regs->rx_en);
1046         }
1047
1048         return num_rx;
1049 }
1050
1051 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1052 {
1053         struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1054         int num_rx;
1055
1056         num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1057         if (num_rx < budget) {
1058                 napi_complete_done(napi_rx, num_rx);
1059                 writel(0xff, &cpsw->wr_regs->rx_en);
1060                 if (cpsw->rx_irq_disabled) {
1061                         cpsw->rx_irq_disabled = false;
1062                         enable_irq(cpsw->irqs_table[0]);
1063                 }
1064         }
1065
1066         return num_rx;
1067 }
1068
1069 static inline void soft_reset(const char *module, void __iomem *reg)
1070 {
1071         unsigned long timeout = jiffies + HZ;
1072
1073         writel_relaxed(1, reg);
1074         do {
1075                 cpu_relax();
1076         } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1077
1078         WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1079 }
1080
1081 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1082                                struct cpsw_priv *priv)
1083 {
1084         slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1085         slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1086 }
1087
1088 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1089 {
1090         struct cpsw_common *cpsw = priv->cpsw;
1091         struct cpsw_slave *slave;
1092         u32 shift, mask, val;
1093
1094         val = readl_relaxed(&cpsw->regs->ptype);
1095
1096         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1097         shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1098         mask = 7 << shift;
1099         val = val & mask;
1100
1101         return !val;
1102 }
1103
1104 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1105 {
1106         struct cpsw_common *cpsw = priv->cpsw;
1107         struct cpsw_slave *slave;
1108         u32 shift, mask, val;
1109
1110         val = readl_relaxed(&cpsw->regs->ptype);
1111
1112         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1113         shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1114         mask = (1 << --fifo) << shift;
1115         val = on ? val | mask : val & ~mask;
1116
1117         writel_relaxed(val, &cpsw->regs->ptype);
1118 }
1119
1120 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1121                               struct cpsw_priv *priv, bool *link)
1122 {
1123         struct phy_device       *phy = slave->phy;
1124         u32                     mac_control = 0;
1125         u32                     slave_port;
1126         struct cpsw_common *cpsw = priv->cpsw;
1127
1128         if (!phy)
1129                 return;
1130
1131         slave_port = cpsw_get_slave_port(slave->slave_num);
1132
1133         if (phy->link) {
1134                 mac_control = cpsw->data.mac_control;
1135
1136                 /* enable forwarding */
1137                 cpsw_ale_control_set(cpsw->ale, slave_port,
1138                                      ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1139
1140                 if (phy->speed == 1000)
1141                         mac_control |= BIT(7);  /* GIGABITEN    */
1142                 if (phy->duplex)
1143                         mac_control |= BIT(0);  /* FULLDUPLEXEN */
1144
1145                 /* set speed_in input in case RMII mode is used in 100Mbps */
1146                 if (phy->speed == 100)
1147                         mac_control |= BIT(15);
1148                 /* in band mode only works in 10Mbps RGMII mode */
1149                 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1150                         mac_control |= BIT(18); /* In Band mode */
1151
1152                 if (priv->rx_pause)
1153                         mac_control |= BIT(3);
1154
1155                 if (priv->tx_pause)
1156                         mac_control |= BIT(4);
1157
1158                 *link = true;
1159
1160                 if (priv->shp_cfg_speed &&
1161                     priv->shp_cfg_speed != slave->phy->speed &&
1162                     !cpsw_shp_is_off(priv))
1163                         dev_warn(priv->dev,
1164                                  "Speed was changed, CBS shaper speeds are changed!");
1165         } else {
1166                 mac_control = 0;
1167                 /* disable forwarding */
1168                 cpsw_ale_control_set(cpsw->ale, slave_port,
1169                                      ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1170         }
1171
1172         if (mac_control != slave->mac_control) {
1173                 phy_print_status(phy);
1174                 writel_relaxed(mac_control, &slave->sliver->mac_control);
1175         }
1176
1177         slave->mac_control = mac_control;
1178 }
1179
1180 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1181 {
1182         int i, speed;
1183
1184         for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1185                 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1186                         speed += cpsw->slaves[i].phy->speed;
1187
1188         return speed;
1189 }
1190
1191 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1192 {
1193         int i, rlim_ch_num;
1194         int speed, ch_rate;
1195
1196         /* re-split resources only in case speed was changed */
1197         speed = cpsw_get_common_speed(cpsw);
1198         if (speed == cpsw->speed || !speed)
1199                 return 0;
1200
1201         cpsw->speed = speed;
1202
1203         for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1204                 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1205                 if (!ch_rate)
1206                         break;
1207
1208                 rlim_ch_num++;
1209         }
1210
1211         /* cases not dependent on speed */
1212         if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1213                 return 0;
1214
1215         return 1;
1216 }
1217
1218 static void cpsw_adjust_link(struct net_device *ndev)
1219 {
1220         struct cpsw_priv        *priv = netdev_priv(ndev);
1221         struct cpsw_common      *cpsw = priv->cpsw;
1222         bool                    link = false;
1223
1224         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1225
1226         if (link) {
1227                 if (cpsw_need_resplit(cpsw))
1228                         cpsw_split_res(ndev);
1229
1230                 netif_carrier_on(ndev);
1231                 if (netif_running(ndev))
1232                         netif_tx_wake_all_queues(ndev);
1233         } else {
1234                 netif_carrier_off(ndev);
1235                 netif_tx_stop_all_queues(ndev);
1236         }
1237 }
1238
1239 static int cpsw_get_coalesce(struct net_device *ndev,
1240                                 struct ethtool_coalesce *coal)
1241 {
1242         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1243
1244         coal->rx_coalesce_usecs = cpsw->coal_intvl;
1245         return 0;
1246 }
1247
1248 static int cpsw_set_coalesce(struct net_device *ndev,
1249                                 struct ethtool_coalesce *coal)
1250 {
1251         struct cpsw_priv *priv = netdev_priv(ndev);
1252         u32 int_ctrl;
1253         u32 num_interrupts = 0;
1254         u32 prescale = 0;
1255         u32 addnl_dvdr = 1;
1256         u32 coal_intvl = 0;
1257         struct cpsw_common *cpsw = priv->cpsw;
1258
1259         coal_intvl = coal->rx_coalesce_usecs;
1260
1261         int_ctrl =  readl(&cpsw->wr_regs->int_control);
1262         prescale = cpsw->bus_freq_mhz * 4;
1263
1264         if (!coal->rx_coalesce_usecs) {
1265                 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1266                 goto update_return;
1267         }
1268
1269         if (coal_intvl < CPSW_CMINTMIN_INTVL)
1270                 coal_intvl = CPSW_CMINTMIN_INTVL;
1271
1272         if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1273                 /* Interrupt pacer works with 4us Pulse, we can
1274                  * throttle further by dilating the 4us pulse.
1275                  */
1276                 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1277
1278                 if (addnl_dvdr > 1) {
1279                         prescale *= addnl_dvdr;
1280                         if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1281                                 coal_intvl = (CPSW_CMINTMAX_INTVL
1282                                                 * addnl_dvdr);
1283                 } else {
1284                         addnl_dvdr = 1;
1285                         coal_intvl = CPSW_CMINTMAX_INTVL;
1286                 }
1287         }
1288
1289         num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1290         writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1291         writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1292
1293         int_ctrl |= CPSW_INTPACEEN;
1294         int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1295         int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1296
1297 update_return:
1298         writel(int_ctrl, &cpsw->wr_regs->int_control);
1299
1300         cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1301         cpsw->coal_intvl = coal_intvl;
1302
1303         return 0;
1304 }
1305
1306 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1307 {
1308         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1309
1310         switch (sset) {
1311         case ETH_SS_STATS:
1312                 return (CPSW_STATS_COMMON_LEN +
1313                        (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1314                        CPSW_STATS_CH_LEN);
1315         default:
1316                 return -EOPNOTSUPP;
1317         }
1318 }
1319
1320 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1321 {
1322         int ch_stats_len;
1323         int line;
1324         int i;
1325
1326         ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1327         for (i = 0; i < ch_stats_len; i++) {
1328                 line = i % CPSW_STATS_CH_LEN;
1329                 snprintf(*p, ETH_GSTRING_LEN,
1330                          "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1331                          (long)(i / CPSW_STATS_CH_LEN),
1332                          cpsw_gstrings_ch_stats[line].stat_string);
1333                 *p += ETH_GSTRING_LEN;
1334         }
1335 }
1336
1337 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1338 {
1339         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1340         u8 *p = data;
1341         int i;
1342
1343         switch (stringset) {
1344         case ETH_SS_STATS:
1345                 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1346                         memcpy(p, cpsw_gstrings_stats[i].stat_string,
1347                                ETH_GSTRING_LEN);
1348                         p += ETH_GSTRING_LEN;
1349                 }
1350
1351                 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1352                 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1353                 break;
1354         }
1355 }
1356
1357 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1358                                     struct ethtool_stats *stats, u64 *data)
1359 {
1360         u8 *p;
1361         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1362         struct cpdma_chan_stats ch_stats;
1363         int i, l, ch;
1364
1365         /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1366         for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1367                 data[l] = readl(cpsw->hw_stats +
1368                                 cpsw_gstrings_stats[l].stat_offset);
1369
1370         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1371                 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1372                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1373                         p = (u8 *)&ch_stats +
1374                                 cpsw_gstrings_ch_stats[i].stat_offset;
1375                         data[l] = *(u32 *)p;
1376                 }
1377         }
1378
1379         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1380                 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1381                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1382                         p = (u8 *)&ch_stats +
1383                                 cpsw_gstrings_ch_stats[i].stat_offset;
1384                         data[l] = *(u32 *)p;
1385                 }
1386         }
1387 }
1388
1389 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1390                                         struct sk_buff *skb,
1391                                         struct cpdma_chan *txch)
1392 {
1393         struct cpsw_common *cpsw = priv->cpsw;
1394
1395         skb_tx_timestamp(skb);
1396         return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1397                                  priv->emac_port + cpsw->data.dual_emac);
1398 }
1399
1400 static inline void cpsw_add_dual_emac_def_ale_entries(
1401                 struct cpsw_priv *priv, struct cpsw_slave *slave,
1402                 u32 slave_port)
1403 {
1404         struct cpsw_common *cpsw = priv->cpsw;
1405         u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1406
1407         if (cpsw->version == CPSW_VERSION_1)
1408                 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1409         else
1410                 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1411         cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1412                           port_mask, port_mask, 0);
1413         cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1414                            port_mask, ALE_VLAN, slave->port_vlan, 0);
1415         cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1416                            HOST_PORT_NUM, ALE_VLAN |
1417                            ALE_SECURE, slave->port_vlan);
1418         cpsw_ale_control_set(cpsw->ale, slave_port,
1419                              ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1420 }
1421
1422 static void soft_reset_slave(struct cpsw_slave *slave)
1423 {
1424         char name[32];
1425
1426         snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1427         soft_reset(name, &slave->sliver->soft_reset);
1428 }
1429
1430 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1431 {
1432         u32 slave_port;
1433         struct phy_device *phy;
1434         struct cpsw_common *cpsw = priv->cpsw;
1435
1436         soft_reset_slave(slave);
1437
1438         /* setup priority mapping */
1439         writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1440
1441         switch (cpsw->version) {
1442         case CPSW_VERSION_1:
1443                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1444                 /* Increase RX FIFO size to 5 for supporting fullduplex
1445                  * flow control mode
1446                  */
1447                 slave_write(slave,
1448                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1449                             CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1450                 break;
1451         case CPSW_VERSION_2:
1452         case CPSW_VERSION_3:
1453         case CPSW_VERSION_4:
1454                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1455                 /* Increase RX FIFO size to 5 for supporting fullduplex
1456                  * flow control mode
1457                  */
1458                 slave_write(slave,
1459                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1460                             CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1461                 break;
1462         }
1463
1464         /* setup max packet size, and mac address */
1465         writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1466         cpsw_set_slave_mac(slave, priv);
1467
1468         slave->mac_control = 0; /* no link yet */
1469
1470         slave_port = cpsw_get_slave_port(slave->slave_num);
1471
1472         if (cpsw->data.dual_emac)
1473                 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1474         else
1475                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1476                                    1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1477
1478         if (slave->data->phy_node) {
1479                 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1480                                  &cpsw_adjust_link, 0, slave->data->phy_if);
1481                 if (!phy) {
1482                         dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1483                                 slave->data->phy_node,
1484                                 slave->slave_num);
1485                         return;
1486                 }
1487         } else {
1488                 phy = phy_connect(priv->ndev, slave->data->phy_id,
1489                                  &cpsw_adjust_link, slave->data->phy_if);
1490                 if (IS_ERR(phy)) {
1491                         dev_err(priv->dev,
1492                                 "phy \"%s\" not found on slave %d, err %ld\n",
1493                                 slave->data->phy_id, slave->slave_num,
1494                                 PTR_ERR(phy));
1495                         return;
1496                 }
1497         }
1498
1499         slave->phy = phy;
1500
1501         phy_attached_info(slave->phy);
1502
1503         phy_start(slave->phy);
1504
1505         /* Configure GMII_SEL register */
1506         cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1507 }
1508
1509 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1510 {
1511         struct cpsw_common *cpsw = priv->cpsw;
1512         const int vlan = cpsw->data.default_vlan;
1513         u32 reg;
1514         int i;
1515         int unreg_mcast_mask;
1516
1517         reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1518                CPSW2_PORT_VLAN;
1519
1520         writel(vlan, &cpsw->host_port_regs->port_vlan);
1521
1522         for (i = 0; i < cpsw->data.slaves; i++)
1523                 slave_write(cpsw->slaves + i, vlan, reg);
1524
1525         if (priv->ndev->flags & IFF_ALLMULTI)
1526                 unreg_mcast_mask = ALE_ALL_PORTS;
1527         else
1528                 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1529
1530         cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1531                           ALE_ALL_PORTS, ALE_ALL_PORTS,
1532                           unreg_mcast_mask);
1533 }
1534
1535 static void cpsw_init_host_port(struct cpsw_priv *priv)
1536 {
1537         u32 fifo_mode;
1538         u32 control_reg;
1539         struct cpsw_common *cpsw = priv->cpsw;
1540
1541         /* soft reset the controller and initialize ale */
1542         soft_reset("cpsw", &cpsw->regs->soft_reset);
1543         cpsw_ale_start(cpsw->ale);
1544
1545         /* switch to vlan unaware mode */
1546         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1547                              CPSW_ALE_VLAN_AWARE);
1548         control_reg = readl(&cpsw->regs->control);
1549         control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1550         writel(control_reg, &cpsw->regs->control);
1551         fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1552                      CPSW_FIFO_NORMAL_MODE;
1553         writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1554
1555         /* setup host port priority mapping */
1556         writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1557                        &cpsw->host_port_regs->cpdma_tx_pri_map);
1558         writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1559
1560         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1561                              ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1562
1563         if (!cpsw->data.dual_emac) {
1564                 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1565                                    0, 0);
1566                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1567                                    ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1568         }
1569 }
1570
1571 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1572 {
1573         struct cpsw_common *cpsw = priv->cpsw;
1574         struct sk_buff *skb;
1575         int ch_buf_num;
1576         int ch, i, ret;
1577
1578         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1579                 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1580                 for (i = 0; i < ch_buf_num; i++) {
1581                         skb = __netdev_alloc_skb_ip_align(priv->ndev,
1582                                                           cpsw->rx_packet_max,
1583                                                           GFP_KERNEL);
1584                         if (!skb) {
1585                                 cpsw_err(priv, ifup, "cannot allocate skb\n");
1586                                 return -ENOMEM;
1587                         }
1588
1589                         skb_set_queue_mapping(skb, ch);
1590                         ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1591                                                 skb->data, skb_tailroom(skb),
1592                                                 0);
1593                         if (ret < 0) {
1594                                 cpsw_err(priv, ifup,
1595                                          "cannot submit skb to channel %d rx, error %d\n",
1596                                          ch, ret);
1597                                 kfree_skb(skb);
1598                                 return ret;
1599                         }
1600                         kmemleak_not_leak(skb);
1601                 }
1602
1603                 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1604                           ch, ch_buf_num);
1605         }
1606
1607         return 0;
1608 }
1609
1610 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1611 {
1612         u32 slave_port;
1613
1614         slave_port = cpsw_get_slave_port(slave->slave_num);
1615
1616         if (!slave->phy)
1617                 return;
1618         phy_stop(slave->phy);
1619         phy_disconnect(slave->phy);
1620         slave->phy = NULL;
1621         cpsw_ale_control_set(cpsw->ale, slave_port,
1622                              ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1623         soft_reset_slave(slave);
1624 }
1625
1626 static int cpsw_tc_to_fifo(int tc, int num_tc)
1627 {
1628         if (tc == num_tc - 1)
1629                 return 0;
1630
1631         return CPSW_FIFO_SHAPERS_NUM - tc;
1632 }
1633
1634 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1635 {
1636         struct cpsw_common *cpsw = priv->cpsw;
1637         u32 val = 0, send_pct, shift;
1638         struct cpsw_slave *slave;
1639         int pct = 0, i;
1640
1641         if (bw > priv->shp_cfg_speed * 1000)
1642                 goto err;
1643
1644         /* shaping has to stay enabled for highest fifos linearly
1645          * and fifo bw no more then interface can allow
1646          */
1647         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1648         send_pct = slave_read(slave, SEND_PERCENT);
1649         for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1650                 if (!bw) {
1651                         if (i >= fifo || !priv->fifo_bw[i])
1652                                 continue;
1653
1654                         dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1655                         continue;
1656                 }
1657
1658                 if (!priv->fifo_bw[i] && i > fifo) {
1659                         dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1660                         return -EINVAL;
1661                 }
1662
1663                 shift = (i - 1) * 8;
1664                 if (i == fifo) {
1665                         send_pct &= ~(CPSW_PCT_MASK << shift);
1666                         val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1667                         if (!val)
1668                                 val = 1;
1669
1670                         send_pct |= val << shift;
1671                         pct += val;
1672                         continue;
1673                 }
1674
1675                 if (priv->fifo_bw[i])
1676                         pct += (send_pct >> shift) & CPSW_PCT_MASK;
1677         }
1678
1679         if (pct >= 100)
1680                 goto err;
1681
1682         slave_write(slave, send_pct, SEND_PERCENT);
1683         priv->fifo_bw[fifo] = bw;
1684
1685         dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1686                  DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1687
1688         return 0;
1689 err:
1690         dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1691         return -EINVAL;
1692 }
1693
1694 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1695 {
1696         struct cpsw_common *cpsw = priv->cpsw;
1697         struct cpsw_slave *slave;
1698         u32 tx_in_ctl_rg, val;
1699         int ret;
1700
1701         ret = cpsw_set_fifo_bw(priv, fifo, bw);
1702         if (ret)
1703                 return ret;
1704
1705         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1706         tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1707                        CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1708
1709         if (!bw)
1710                 cpsw_fifo_shp_on(priv, fifo, bw);
1711
1712         val = slave_read(slave, tx_in_ctl_rg);
1713         if (cpsw_shp_is_off(priv)) {
1714                 /* disable FIFOs rate limited queues */
1715                 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1716
1717                 /* set type of FIFO queues to normal priority mode */
1718                 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1719
1720                 /* set type of FIFO queues to be rate limited */
1721                 if (bw)
1722                         val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1723                 else
1724                         priv->shp_cfg_speed = 0;
1725         }
1726
1727         /* toggle a FIFO rate limited queue */
1728         if (bw)
1729                 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1730         else
1731                 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1732         slave_write(slave, val, tx_in_ctl_rg);
1733
1734         /* FIFO transmit shape enable */
1735         cpsw_fifo_shp_on(priv, fifo, bw);
1736         return 0;
1737 }
1738
1739 /* Defaults:
1740  * class A - prio 3
1741  * class B - prio 2
1742  * shaping for class A should be set first
1743  */
1744 static int cpsw_set_cbs(struct net_device *ndev,
1745                         struct tc_cbs_qopt_offload *qopt)
1746 {
1747         struct cpsw_priv *priv = netdev_priv(ndev);
1748         struct cpsw_common *cpsw = priv->cpsw;
1749         struct cpsw_slave *slave;
1750         int prev_speed = 0;
1751         int tc, ret, fifo;
1752         u32 bw = 0;
1753
1754         tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1755
1756         /* enable channels in backward order, as highest FIFOs must be rate
1757          * limited first and for compliance with CPDMA rate limited channels
1758          * that also used in bacward order. FIFO0 cannot be rate limited.
1759          */
1760         fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1761         if (!fifo) {
1762                 dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1763                 return -EINVAL;
1764         }
1765
1766         /* do nothing, it's disabled anyway */
1767         if (!qopt->enable && !priv->fifo_bw[fifo])
1768                 return 0;
1769
1770         /* shapers can be set if link speed is known */
1771         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1772         if (slave->phy && slave->phy->link) {
1773                 if (priv->shp_cfg_speed &&
1774                     priv->shp_cfg_speed != slave->phy->speed)
1775                         prev_speed = priv->shp_cfg_speed;
1776
1777                 priv->shp_cfg_speed = slave->phy->speed;
1778         }
1779
1780         if (!priv->shp_cfg_speed) {
1781                 dev_err(priv->dev, "Link speed is not known");
1782                 return -1;
1783         }
1784
1785         ret = pm_runtime_get_sync(cpsw->dev);
1786         if (ret < 0) {
1787                 pm_runtime_put_noidle(cpsw->dev);
1788                 return ret;
1789         }
1790
1791         bw = qopt->enable ? qopt->idleslope : 0;
1792         ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1793         if (ret) {
1794                 priv->shp_cfg_speed = prev_speed;
1795                 prev_speed = 0;
1796         }
1797
1798         if (bw && prev_speed)
1799                 dev_warn(priv->dev,
1800                          "Speed was changed, CBS shaper speeds are changed!");
1801
1802         pm_runtime_put_sync(cpsw->dev);
1803         return ret;
1804 }
1805
1806 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1807 {
1808         int fifo, bw;
1809
1810         for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1811                 bw = priv->fifo_bw[fifo];
1812                 if (!bw)
1813                         continue;
1814
1815                 cpsw_set_fifo_rlimit(priv, fifo, bw);
1816         }
1817 }
1818
1819 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1820 {
1821         struct cpsw_common *cpsw = priv->cpsw;
1822         u32 tx_prio_map = 0;
1823         int i, tc, fifo;
1824         u32 tx_prio_rg;
1825
1826         if (!priv->mqprio_hw)
1827                 return;
1828
1829         for (i = 0; i < 8; i++) {
1830                 tc = netdev_get_prio_tc_map(priv->ndev, i);
1831                 fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1832                 tx_prio_map |= fifo << (4 * i);
1833         }
1834
1835         tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1836                      CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1837
1838         slave_write(slave, tx_prio_map, tx_prio_rg);
1839 }
1840
1841 /* restore resources after port reset */
1842 static void cpsw_restore(struct cpsw_priv *priv)
1843 {
1844         /* restore MQPRIO offload */
1845         for_each_slave(priv, cpsw_mqprio_resume, priv);
1846
1847         /* restore CBS offload */
1848         for_each_slave(priv, cpsw_cbs_resume, priv);
1849 }
1850
1851 static int cpsw_ndo_open(struct net_device *ndev)
1852 {
1853         struct cpsw_priv *priv = netdev_priv(ndev);
1854         struct cpsw_common *cpsw = priv->cpsw;
1855         int ret;
1856         u32 reg;
1857
1858         ret = pm_runtime_get_sync(cpsw->dev);
1859         if (ret < 0) {
1860                 pm_runtime_put_noidle(cpsw->dev);
1861                 return ret;
1862         }
1863
1864         netif_carrier_off(ndev);
1865
1866         /* Notify the stack of the actual queue counts. */
1867         ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1868         if (ret) {
1869                 dev_err(priv->dev, "cannot set real number of tx queues\n");
1870                 goto err_cleanup;
1871         }
1872
1873         ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1874         if (ret) {
1875                 dev_err(priv->dev, "cannot set real number of rx queues\n");
1876                 goto err_cleanup;
1877         }
1878
1879         reg = cpsw->version;
1880
1881         dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1882                  CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1883                  CPSW_RTL_VERSION(reg));
1884
1885         /* Initialize host and slave ports */
1886         if (!cpsw->usage_count)
1887                 cpsw_init_host_port(priv);
1888         for_each_slave(priv, cpsw_slave_open, priv);
1889
1890         /* Add default VLAN */
1891         if (!cpsw->data.dual_emac)
1892                 cpsw_add_default_vlan(priv);
1893         else
1894                 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1895                                   ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1896
1897         /* initialize shared resources for every ndev */
1898         if (!cpsw->usage_count) {
1899                 /* disable priority elevation */
1900                 writel_relaxed(0, &cpsw->regs->ptype);
1901
1902                 /* enable statistics collection only on all ports */
1903                 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1904
1905                 /* Enable internal fifo flow control */
1906                 writel(0x7, &cpsw->regs->flow_control);
1907
1908                 napi_enable(&cpsw->napi_rx);
1909                 napi_enable(&cpsw->napi_tx);
1910
1911                 if (cpsw->tx_irq_disabled) {
1912                         cpsw->tx_irq_disabled = false;
1913                         enable_irq(cpsw->irqs_table[1]);
1914                 }
1915
1916                 if (cpsw->rx_irq_disabled) {
1917                         cpsw->rx_irq_disabled = false;
1918                         enable_irq(cpsw->irqs_table[0]);
1919                 }
1920
1921                 ret = cpsw_fill_rx_channels(priv);
1922                 if (ret < 0)
1923                         goto err_cleanup;
1924
1925                 if (cpts_register(cpsw->cpts))
1926                         dev_err(priv->dev, "error registering cpts device\n");
1927
1928         }
1929
1930         cpsw_restore(priv);
1931
1932         /* Enable Interrupt pacing if configured */
1933         if (cpsw->coal_intvl != 0) {
1934                 struct ethtool_coalesce coal;
1935
1936                 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1937                 cpsw_set_coalesce(ndev, &coal);
1938         }
1939
1940         cpdma_ctlr_start(cpsw->dma);
1941         cpsw_intr_enable(cpsw);
1942         cpsw->usage_count++;
1943
1944         return 0;
1945
1946 err_cleanup:
1947         cpdma_ctlr_stop(cpsw->dma);
1948         for_each_slave(priv, cpsw_slave_stop, cpsw);
1949         pm_runtime_put_sync(cpsw->dev);
1950         netif_carrier_off(priv->ndev);
1951         return ret;
1952 }
1953
1954 static int cpsw_ndo_stop(struct net_device *ndev)
1955 {
1956         struct cpsw_priv *priv = netdev_priv(ndev);
1957         struct cpsw_common *cpsw = priv->cpsw;
1958
1959         cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1960         netif_tx_stop_all_queues(priv->ndev);
1961         netif_carrier_off(priv->ndev);
1962
1963         if (cpsw->usage_count <= 1) {
1964                 napi_disable(&cpsw->napi_rx);
1965                 napi_disable(&cpsw->napi_tx);
1966                 cpts_unregister(cpsw->cpts);
1967                 cpsw_intr_disable(cpsw);
1968                 cpdma_ctlr_stop(cpsw->dma);
1969                 cpsw_ale_stop(cpsw->ale);
1970         }
1971         for_each_slave(priv, cpsw_slave_stop, cpsw);
1972
1973         if (cpsw_need_resplit(cpsw))
1974                 cpsw_split_res(ndev);
1975
1976         cpsw->usage_count--;
1977         pm_runtime_put_sync(cpsw->dev);
1978         return 0;
1979 }
1980
1981 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1982                                        struct net_device *ndev)
1983 {
1984         struct cpsw_priv *priv = netdev_priv(ndev);
1985         struct cpsw_common *cpsw = priv->cpsw;
1986         struct cpts *cpts = cpsw->cpts;
1987         struct netdev_queue *txq;
1988         struct cpdma_chan *txch;
1989         int ret, q_idx;
1990
1991         if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1992                 cpsw_err(priv, tx_err, "packet pad failed\n");
1993                 ndev->stats.tx_dropped++;
1994                 return NET_XMIT_DROP;
1995         }
1996
1997         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1998             cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1999                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2000
2001         q_idx = skb_get_queue_mapping(skb);
2002         if (q_idx >= cpsw->tx_ch_num)
2003                 q_idx = q_idx % cpsw->tx_ch_num;
2004
2005         txch = cpsw->txv[q_idx].ch;
2006         txq = netdev_get_tx_queue(ndev, q_idx);
2007         ret = cpsw_tx_packet_submit(priv, skb, txch);
2008         if (unlikely(ret != 0)) {
2009                 cpsw_err(priv, tx_err, "desc submit failed\n");
2010                 goto fail;
2011         }
2012
2013         /* If there is no more tx desc left free then we need to
2014          * tell the kernel to stop sending us tx frames.
2015          */
2016         if (unlikely(!cpdma_check_free_tx_desc(txch))) {
2017                 netif_tx_stop_queue(txq);
2018
2019                 /* Barrier, so that stop_queue visible to other cpus */
2020                 smp_mb__after_atomic();
2021
2022                 if (cpdma_check_free_tx_desc(txch))
2023                         netif_tx_wake_queue(txq);
2024         }
2025
2026         return NETDEV_TX_OK;
2027 fail:
2028         ndev->stats.tx_dropped++;
2029         netif_tx_stop_queue(txq);
2030
2031         /* Barrier, so that stop_queue visible to other cpus */
2032         smp_mb__after_atomic();
2033
2034         if (cpdma_check_free_tx_desc(txch))
2035                 netif_tx_wake_queue(txq);
2036
2037         return NETDEV_TX_BUSY;
2038 }
2039
2040 #if IS_ENABLED(CONFIG_TI_CPTS)
2041
2042 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2043 {
2044         struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2045         u32 ts_en, seq_id;
2046
2047         if (!cpts_is_tx_enabled(cpsw->cpts) &&
2048             !cpts_is_rx_enabled(cpsw->cpts)) {
2049                 slave_write(slave, 0, CPSW1_TS_CTL);
2050                 return;
2051         }
2052
2053         seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
2054         ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
2055
2056         if (cpts_is_tx_enabled(cpsw->cpts))
2057                 ts_en |= CPSW_V1_TS_TX_EN;
2058
2059         if (cpts_is_rx_enabled(cpsw->cpts))
2060                 ts_en |= CPSW_V1_TS_RX_EN;
2061
2062         slave_write(slave, ts_en, CPSW1_TS_CTL);
2063         slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
2064 }
2065
2066 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
2067 {
2068         struct cpsw_slave *slave;
2069         struct cpsw_common *cpsw = priv->cpsw;
2070         u32 ctrl, mtype;
2071
2072         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2073
2074         ctrl = slave_read(slave, CPSW2_CONTROL);
2075         switch (cpsw->version) {
2076         case CPSW_VERSION_2:
2077                 ctrl &= ~CTRL_V2_ALL_TS_MASK;
2078
2079                 if (cpts_is_tx_enabled(cpsw->cpts))
2080                         ctrl |= CTRL_V2_TX_TS_BITS;
2081
2082                 if (cpts_is_rx_enabled(cpsw->cpts))
2083                         ctrl |= CTRL_V2_RX_TS_BITS;
2084                 break;
2085         case CPSW_VERSION_3:
2086         default:
2087                 ctrl &= ~CTRL_V3_ALL_TS_MASK;
2088
2089                 if (cpts_is_tx_enabled(cpsw->cpts))
2090                         ctrl |= CTRL_V3_TX_TS_BITS;
2091
2092                 if (cpts_is_rx_enabled(cpsw->cpts))
2093                         ctrl |= CTRL_V3_RX_TS_BITS;
2094                 break;
2095         }
2096
2097         mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
2098
2099         slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
2100         slave_write(slave, ctrl, CPSW2_CONTROL);
2101         writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2102 }
2103
2104 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2105 {
2106         struct cpsw_priv *priv = netdev_priv(dev);
2107         struct hwtstamp_config cfg;
2108         struct cpsw_common *cpsw = priv->cpsw;
2109         struct cpts *cpts = cpsw->cpts;
2110
2111         if (cpsw->version != CPSW_VERSION_1 &&
2112             cpsw->version != CPSW_VERSION_2 &&
2113             cpsw->version != CPSW_VERSION_3)
2114                 return -EOPNOTSUPP;
2115
2116         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
2117                 return -EFAULT;
2118
2119         /* reserved for future extensions */
2120         if (cfg.flags)
2121                 return -EINVAL;
2122
2123         if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2124                 return -ERANGE;
2125
2126         switch (cfg.rx_filter) {
2127         case HWTSTAMP_FILTER_NONE:
2128                 cpts_rx_enable(cpts, 0);
2129                 break;
2130         case HWTSTAMP_FILTER_ALL:
2131         case HWTSTAMP_FILTER_NTP_ALL:
2132                 return -ERANGE;
2133         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2134         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2135         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2136                 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
2137                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2138                 break;
2139         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2140         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2141         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2142         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2143         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2144         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2145         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2146         case HWTSTAMP_FILTER_PTP_V2_SYNC:
2147         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2148                 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2149                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
2150                 break;
2151         default:
2152                 return -ERANGE;
2153         }
2154
2155         cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2156
2157         switch (cpsw->version) {
2158         case CPSW_VERSION_1:
2159                 cpsw_hwtstamp_v1(cpsw);
2160                 break;
2161         case CPSW_VERSION_2:
2162         case CPSW_VERSION_3:
2163                 cpsw_hwtstamp_v2(priv);
2164                 break;
2165         default:
2166                 WARN_ON(1);
2167         }
2168
2169         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2170 }
2171
2172 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2173 {
2174         struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2175         struct cpts *cpts = cpsw->cpts;
2176         struct hwtstamp_config cfg;
2177
2178         if (cpsw->version != CPSW_VERSION_1 &&
2179             cpsw->version != CPSW_VERSION_2 &&
2180             cpsw->version != CPSW_VERSION_3)
2181                 return -EOPNOTSUPP;
2182
2183         cfg.flags = 0;
2184         cfg.tx_type = cpts_is_tx_enabled(cpts) ?
2185                       HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2186         cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2187                          cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2188
2189         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2190 }
2191 #else
2192 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2193 {
2194         return -EOPNOTSUPP;
2195 }
2196
2197 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2198 {
2199         return -EOPNOTSUPP;
2200 }
2201 #endif /*CONFIG_TI_CPTS*/
2202
2203 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2204 {
2205         struct cpsw_priv *priv = netdev_priv(dev);
2206         struct cpsw_common *cpsw = priv->cpsw;
2207         int slave_no = cpsw_slave_index(cpsw, priv);
2208
2209         if (!netif_running(dev))
2210                 return -EINVAL;
2211
2212         switch (cmd) {
2213         case SIOCSHWTSTAMP:
2214                 return cpsw_hwtstamp_set(dev, req);
2215         case SIOCGHWTSTAMP:
2216                 return cpsw_hwtstamp_get(dev, req);
2217         }
2218
2219         if (!cpsw->slaves[slave_no].phy)
2220                 return -EOPNOTSUPP;
2221         return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2222 }
2223
2224 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2225 {
2226         struct cpsw_priv *priv = netdev_priv(ndev);
2227         struct cpsw_common *cpsw = priv->cpsw;
2228         int ch;
2229
2230         cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2231         ndev->stats.tx_errors++;
2232         cpsw_intr_disable(cpsw);
2233         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2234                 cpdma_chan_stop(cpsw->txv[ch].ch);
2235                 cpdma_chan_start(cpsw->txv[ch].ch);
2236         }
2237
2238         cpsw_intr_enable(cpsw);
2239         netif_trans_update(ndev);
2240         netif_tx_wake_all_queues(ndev);
2241 }
2242
2243 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2244 {
2245         struct cpsw_priv *priv = netdev_priv(ndev);
2246         struct sockaddr *addr = (struct sockaddr *)p;
2247         struct cpsw_common *cpsw = priv->cpsw;
2248         int flags = 0;
2249         u16 vid = 0;
2250         int ret;
2251
2252         if (!is_valid_ether_addr(addr->sa_data))
2253                 return -EADDRNOTAVAIL;
2254
2255         ret = pm_runtime_get_sync(cpsw->dev);
2256         if (ret < 0) {
2257                 pm_runtime_put_noidle(cpsw->dev);
2258                 return ret;
2259         }
2260
2261         if (cpsw->data.dual_emac) {
2262                 vid = cpsw->slaves[priv->emac_port].port_vlan;
2263                 flags = ALE_VLAN;
2264         }
2265
2266         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2267                            flags, vid);
2268         cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2269                            flags, vid);
2270
2271         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2272         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2273         for_each_slave(priv, cpsw_set_slave_mac, priv);
2274
2275         pm_runtime_put(cpsw->dev);
2276
2277         return 0;
2278 }
2279
2280 #ifdef CONFIG_NET_POLL_CONTROLLER
2281 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2282 {
2283         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2284
2285         cpsw_intr_disable(cpsw);
2286         cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2287         cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2288         cpsw_intr_enable(cpsw);
2289 }
2290 #endif
2291
2292 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2293                                 unsigned short vid)
2294 {
2295         int ret;
2296         int unreg_mcast_mask = 0;
2297         u32 port_mask;
2298         struct cpsw_common *cpsw = priv->cpsw;
2299
2300         if (cpsw->data.dual_emac) {
2301                 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2302
2303                 if (priv->ndev->flags & IFF_ALLMULTI)
2304                         unreg_mcast_mask = port_mask;
2305         } else {
2306                 port_mask = ALE_ALL_PORTS;
2307
2308                 if (priv->ndev->flags & IFF_ALLMULTI)
2309                         unreg_mcast_mask = ALE_ALL_PORTS;
2310                 else
2311                         unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2312         }
2313
2314         ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2315                                 unreg_mcast_mask);
2316         if (ret != 0)
2317                 return ret;
2318
2319         ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2320                                  HOST_PORT_NUM, ALE_VLAN, vid);
2321         if (ret != 0)
2322                 goto clean_vid;
2323
2324         ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2325                                  port_mask, ALE_VLAN, vid, 0);
2326         if (ret != 0)
2327                 goto clean_vlan_ucast;
2328         return 0;
2329
2330 clean_vlan_ucast:
2331         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2332                            HOST_PORT_NUM, ALE_VLAN, vid);
2333 clean_vid:
2334         cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2335         return ret;
2336 }
2337
2338 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2339                                     __be16 proto, u16 vid)
2340 {
2341         struct cpsw_priv *priv = netdev_priv(ndev);
2342         struct cpsw_common *cpsw = priv->cpsw;
2343         int ret;
2344
2345         if (vid == cpsw->data.default_vlan)
2346                 return 0;
2347
2348         ret = pm_runtime_get_sync(cpsw->dev);
2349         if (ret < 0) {
2350                 pm_runtime_put_noidle(cpsw->dev);
2351                 return ret;
2352         }
2353
2354         if (cpsw->data.dual_emac) {
2355                 /* In dual EMAC, reserved VLAN id should not be used for
2356                  * creating VLAN interfaces as this can break the dual
2357                  * EMAC port separation
2358                  */
2359                 int i;
2360
2361                 for (i = 0; i < cpsw->data.slaves; i++) {
2362                         if (vid == cpsw->slaves[i].port_vlan) {
2363                                 ret = -EINVAL;
2364                                 goto err;
2365                         }
2366                 }
2367         }
2368
2369         dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2370         ret = cpsw_add_vlan_ale_entry(priv, vid);
2371 err:
2372         pm_runtime_put(cpsw->dev);
2373         return ret;
2374 }
2375
2376 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2377                                      __be16 proto, u16 vid)
2378 {
2379         struct cpsw_priv *priv = netdev_priv(ndev);
2380         struct cpsw_common *cpsw = priv->cpsw;
2381         int ret;
2382
2383         if (vid == cpsw->data.default_vlan)
2384                 return 0;
2385
2386         ret = pm_runtime_get_sync(cpsw->dev);
2387         if (ret < 0) {
2388                 pm_runtime_put_noidle(cpsw->dev);
2389                 return ret;
2390         }
2391
2392         if (cpsw->data.dual_emac) {
2393                 int i;
2394
2395                 for (i = 0; i < cpsw->data.slaves; i++) {
2396                         if (vid == cpsw->slaves[i].port_vlan)
2397                                 goto err;
2398                 }
2399         }
2400
2401         dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2402         ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2403         ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2404                                   HOST_PORT_NUM, ALE_VLAN, vid);
2405         ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2406                                   0, ALE_VLAN, vid);
2407 err:
2408         pm_runtime_put(cpsw->dev);
2409         return ret;
2410 }
2411
2412 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2413 {
2414         struct cpsw_priv *priv = netdev_priv(ndev);
2415         struct cpsw_common *cpsw = priv->cpsw;
2416         struct cpsw_slave *slave;
2417         u32 min_rate;
2418         u32 ch_rate;
2419         int i, ret;
2420
2421         ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2422         if (ch_rate == rate)
2423                 return 0;
2424
2425         ch_rate = rate * 1000;
2426         min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2427         if ((ch_rate < min_rate && ch_rate)) {
2428                 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2429                         min_rate);
2430                 return -EINVAL;
2431         }
2432
2433         if (rate > cpsw->speed) {
2434                 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2435                 return -EINVAL;
2436         }
2437
2438         ret = pm_runtime_get_sync(cpsw->dev);
2439         if (ret < 0) {
2440                 pm_runtime_put_noidle(cpsw->dev);
2441                 return ret;
2442         }
2443
2444         ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2445         pm_runtime_put(cpsw->dev);
2446
2447         if (ret)
2448                 return ret;
2449
2450         /* update rates for slaves tx queues */
2451         for (i = 0; i < cpsw->data.slaves; i++) {
2452                 slave = &cpsw->slaves[i];
2453                 if (!slave->ndev)
2454                         continue;
2455
2456                 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2457         }
2458
2459         cpsw_split_res(ndev);
2460         return ret;
2461 }
2462
2463 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2464 {
2465         struct tc_mqprio_qopt_offload *mqprio = type_data;
2466         struct cpsw_priv *priv = netdev_priv(ndev);
2467         struct cpsw_common *cpsw = priv->cpsw;
2468         int fifo, num_tc, count, offset;
2469         struct cpsw_slave *slave;
2470         u32 tx_prio_map = 0;
2471         int i, tc, ret;
2472
2473         num_tc = mqprio->qopt.num_tc;
2474         if (num_tc > CPSW_TC_NUM)
2475                 return -EINVAL;
2476
2477         if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2478                 return -EINVAL;
2479
2480         ret = pm_runtime_get_sync(cpsw->dev);
2481         if (ret < 0) {
2482                 pm_runtime_put_noidle(cpsw->dev);
2483                 return ret;
2484         }
2485
2486         if (num_tc) {
2487                 for (i = 0; i < 8; i++) {
2488                         tc = mqprio->qopt.prio_tc_map[i];
2489                         fifo = cpsw_tc_to_fifo(tc, num_tc);
2490                         tx_prio_map |= fifo << (4 * i);
2491                 }
2492
2493                 netdev_set_num_tc(ndev, num_tc);
2494                 for (i = 0; i < num_tc; i++) {
2495                         count = mqprio->qopt.count[i];
2496                         offset = mqprio->qopt.offset[i];
2497                         netdev_set_tc_queue(ndev, i, count, offset);
2498                 }
2499         }
2500
2501         if (!mqprio->qopt.hw) {
2502                 /* restore default configuration */
2503                 netdev_reset_tc(ndev);
2504                 tx_prio_map = TX_PRIORITY_MAPPING;
2505         }
2506
2507         priv->mqprio_hw = mqprio->qopt.hw;
2508
2509         offset = cpsw->version == CPSW_VERSION_1 ?
2510                  CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2511
2512         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2513         slave_write(slave, tx_prio_map, offset);
2514
2515         pm_runtime_put_sync(cpsw->dev);
2516
2517         return 0;
2518 }
2519
2520 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2521                              void *type_data)
2522 {
2523         switch (type) {
2524         case TC_SETUP_QDISC_CBS:
2525                 return cpsw_set_cbs(ndev, type_data);
2526
2527         case TC_SETUP_QDISC_MQPRIO:
2528                 return cpsw_set_mqprio(ndev, type_data);
2529
2530         default:
2531                 return -EOPNOTSUPP;
2532         }
2533 }
2534
2535 static const struct net_device_ops cpsw_netdev_ops = {
2536         .ndo_open               = cpsw_ndo_open,
2537         .ndo_stop               = cpsw_ndo_stop,
2538         .ndo_start_xmit         = cpsw_ndo_start_xmit,
2539         .ndo_set_mac_address    = cpsw_ndo_set_mac_address,
2540         .ndo_do_ioctl           = cpsw_ndo_ioctl,
2541         .ndo_validate_addr      = eth_validate_addr,
2542         .ndo_tx_timeout         = cpsw_ndo_tx_timeout,
2543         .ndo_set_rx_mode        = cpsw_ndo_set_rx_mode,
2544         .ndo_set_tx_maxrate     = cpsw_ndo_set_tx_maxrate,
2545 #ifdef CONFIG_NET_POLL_CONTROLLER
2546         .ndo_poll_controller    = cpsw_ndo_poll_controller,
2547 #endif
2548         .ndo_vlan_rx_add_vid    = cpsw_ndo_vlan_rx_add_vid,
2549         .ndo_vlan_rx_kill_vid   = cpsw_ndo_vlan_rx_kill_vid,
2550         .ndo_setup_tc           = cpsw_ndo_setup_tc,
2551 };
2552
2553 static int cpsw_get_regs_len(struct net_device *ndev)
2554 {
2555         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2556
2557         return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2558 }
2559
2560 static void cpsw_get_regs(struct net_device *ndev,
2561                           struct ethtool_regs *regs, void *p)
2562 {
2563         u32 *reg = p;
2564         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2565
2566         /* update CPSW IP version */
2567         regs->version = cpsw->version;
2568
2569         cpsw_ale_dump(cpsw->ale, reg);
2570 }
2571
2572 static void cpsw_get_drvinfo(struct net_device *ndev,
2573                              struct ethtool_drvinfo *info)
2574 {
2575         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2576         struct platform_device  *pdev = to_platform_device(cpsw->dev);
2577
2578         strlcpy(info->driver, "cpsw", sizeof(info->driver));
2579         strlcpy(info->version, "1.0", sizeof(info->version));
2580         strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2581 }
2582
2583 static u32 cpsw_get_msglevel(struct net_device *ndev)
2584 {
2585         struct cpsw_priv *priv = netdev_priv(ndev);
2586         return priv->msg_enable;
2587 }
2588
2589 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2590 {
2591         struct cpsw_priv *priv = netdev_priv(ndev);
2592         priv->msg_enable = value;
2593 }
2594
2595 #if IS_ENABLED(CONFIG_TI_CPTS)
2596 static int cpsw_get_ts_info(struct net_device *ndev,
2597                             struct ethtool_ts_info *info)
2598 {
2599         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2600
2601         info->so_timestamping =
2602                 SOF_TIMESTAMPING_TX_HARDWARE |
2603                 SOF_TIMESTAMPING_TX_SOFTWARE |
2604                 SOF_TIMESTAMPING_RX_HARDWARE |
2605                 SOF_TIMESTAMPING_RX_SOFTWARE |
2606                 SOF_TIMESTAMPING_SOFTWARE |
2607                 SOF_TIMESTAMPING_RAW_HARDWARE;
2608         info->phc_index = cpsw->cpts->phc_index;
2609         info->tx_types =
2610                 (1 << HWTSTAMP_TX_OFF) |
2611                 (1 << HWTSTAMP_TX_ON);
2612         info->rx_filters =
2613                 (1 << HWTSTAMP_FILTER_NONE) |
2614                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2615                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2616         return 0;
2617 }
2618 #else
2619 static int cpsw_get_ts_info(struct net_device *ndev,
2620                             struct ethtool_ts_info *info)
2621 {
2622         info->so_timestamping =
2623                 SOF_TIMESTAMPING_TX_SOFTWARE |
2624                 SOF_TIMESTAMPING_RX_SOFTWARE |
2625                 SOF_TIMESTAMPING_SOFTWARE;
2626         info->phc_index = -1;
2627         info->tx_types = 0;
2628         info->rx_filters = 0;
2629         return 0;
2630 }
2631 #endif
2632
2633 static int cpsw_get_link_ksettings(struct net_device *ndev,
2634                                    struct ethtool_link_ksettings *ecmd)
2635 {
2636         struct cpsw_priv *priv = netdev_priv(ndev);
2637         struct cpsw_common *cpsw = priv->cpsw;
2638         int slave_no = cpsw_slave_index(cpsw, priv);
2639
2640         if (!cpsw->slaves[slave_no].phy)
2641                 return -EOPNOTSUPP;
2642
2643         phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2644         return 0;
2645 }
2646
2647 static int cpsw_set_link_ksettings(struct net_device *ndev,
2648                                    const struct ethtool_link_ksettings *ecmd)
2649 {
2650         struct cpsw_priv *priv = netdev_priv(ndev);
2651         struct cpsw_common *cpsw = priv->cpsw;
2652         int slave_no = cpsw_slave_index(cpsw, priv);
2653
2654         if (cpsw->slaves[slave_no].phy)
2655                 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2656                                                  ecmd);
2657         else
2658                 return -EOPNOTSUPP;
2659 }
2660
2661 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2662 {
2663         struct cpsw_priv *priv = netdev_priv(ndev);
2664         struct cpsw_common *cpsw = priv->cpsw;
2665         int slave_no = cpsw_slave_index(cpsw, priv);
2666
2667         wol->supported = 0;
2668         wol->wolopts = 0;
2669
2670         if (cpsw->slaves[slave_no].phy)
2671                 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2672 }
2673
2674 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2675 {
2676         struct cpsw_priv *priv = netdev_priv(ndev);
2677         struct cpsw_common *cpsw = priv->cpsw;
2678         int slave_no = cpsw_slave_index(cpsw, priv);
2679
2680         if (cpsw->slaves[slave_no].phy)
2681                 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2682         else
2683                 return -EOPNOTSUPP;
2684 }
2685
2686 static void cpsw_get_pauseparam(struct net_device *ndev,
2687                                 struct ethtool_pauseparam *pause)
2688 {
2689         struct cpsw_priv *priv = netdev_priv(ndev);
2690
2691         pause->autoneg = AUTONEG_DISABLE;
2692         pause->rx_pause = priv->rx_pause ? true : false;
2693         pause->tx_pause = priv->tx_pause ? true : false;
2694 }
2695
2696 static int cpsw_set_pauseparam(struct net_device *ndev,
2697                                struct ethtool_pauseparam *pause)
2698 {
2699         struct cpsw_priv *priv = netdev_priv(ndev);
2700         bool link;
2701
2702         priv->rx_pause = pause->rx_pause ? true : false;
2703         priv->tx_pause = pause->tx_pause ? true : false;
2704
2705         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2706         return 0;
2707 }
2708
2709 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2710 {
2711         struct cpsw_priv *priv = netdev_priv(ndev);
2712         struct cpsw_common *cpsw = priv->cpsw;
2713         int ret;
2714
2715         ret = pm_runtime_get_sync(cpsw->dev);
2716         if (ret < 0) {
2717                 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2718                 pm_runtime_put_noidle(cpsw->dev);
2719         }
2720
2721         return ret;
2722 }
2723
2724 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2725 {
2726         struct cpsw_priv *priv = netdev_priv(ndev);
2727         int ret;
2728
2729         ret = pm_runtime_put(priv->cpsw->dev);
2730         if (ret < 0)
2731                 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2732 }
2733
2734 static void cpsw_get_channels(struct net_device *ndev,
2735                               struct ethtool_channels *ch)
2736 {
2737         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2738
2739         ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2740         ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2741         ch->max_combined = 0;
2742         ch->max_other = 0;
2743         ch->other_count = 0;
2744         ch->rx_count = cpsw->rx_ch_num;
2745         ch->tx_count = cpsw->tx_ch_num;
2746         ch->combined_count = 0;
2747 }
2748
2749 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2750                                   struct ethtool_channels *ch)
2751 {
2752         if (cpsw->quirk_irq) {
2753                 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2754                 return -EOPNOTSUPP;
2755         }
2756
2757         if (ch->combined_count)
2758                 return -EINVAL;
2759
2760         /* verify we have at least one channel in each direction */
2761         if (!ch->rx_count || !ch->tx_count)
2762                 return -EINVAL;
2763
2764         if (ch->rx_count > cpsw->data.channels ||
2765             ch->tx_count > cpsw->data.channels)
2766                 return -EINVAL;
2767
2768         return 0;
2769 }
2770
2771 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2772 {
2773         struct cpsw_common *cpsw = priv->cpsw;
2774         void (*handler)(void *, int, int);
2775         struct netdev_queue *queue;
2776         struct cpsw_vector *vec;
2777         int ret, *ch, vch;
2778
2779         if (rx) {
2780                 ch = &cpsw->rx_ch_num;
2781                 vec = cpsw->rxv;
2782                 handler = cpsw_rx_handler;
2783         } else {
2784                 ch = &cpsw->tx_ch_num;
2785                 vec = cpsw->txv;
2786                 handler = cpsw_tx_handler;
2787         }
2788
2789         while (*ch < ch_num) {
2790                 vch = rx ? *ch : 7 - *ch;
2791                 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2792                 queue = netdev_get_tx_queue(priv->ndev, *ch);
2793                 queue->tx_maxrate = 0;
2794
2795                 if (IS_ERR(vec[*ch].ch))
2796                         return PTR_ERR(vec[*ch].ch);
2797
2798                 if (!vec[*ch].ch)
2799                         return -EINVAL;
2800
2801                 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2802                           (rx ? "rx" : "tx"));
2803                 (*ch)++;
2804         }
2805
2806         while (*ch > ch_num) {
2807                 (*ch)--;
2808
2809                 ret = cpdma_chan_destroy(vec[*ch].ch);
2810                 if (ret)
2811                         return ret;
2812
2813                 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2814                           (rx ? "rx" : "tx"));
2815         }
2816
2817         return 0;
2818 }
2819
2820 static int cpsw_update_channels(struct cpsw_priv *priv,
2821                                 struct ethtool_channels *ch)
2822 {
2823         int ret;
2824
2825         ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2826         if (ret)
2827                 return ret;
2828
2829         ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2830         if (ret)
2831                 return ret;
2832
2833         return 0;
2834 }
2835
2836 static void cpsw_suspend_data_pass(struct net_device *ndev)
2837 {
2838         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2839         struct cpsw_slave *slave;
2840         int i;
2841
2842         /* Disable NAPI scheduling */
2843         cpsw_intr_disable(cpsw);
2844
2845         /* Stop all transmit queues for every network device.
2846          * Disable re-using rx descriptors with dormant_on.
2847          */
2848         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2849                 if (!(slave->ndev && netif_running(slave->ndev)))
2850                         continue;
2851
2852                 netif_tx_stop_all_queues(slave->ndev);
2853                 netif_dormant_on(slave->ndev);
2854         }
2855
2856         /* Handle rest of tx packets and stop cpdma channels */
2857         cpdma_ctlr_stop(cpsw->dma);
2858 }
2859
2860 static int cpsw_resume_data_pass(struct net_device *ndev)
2861 {
2862         struct cpsw_priv *priv = netdev_priv(ndev);
2863         struct cpsw_common *cpsw = priv->cpsw;
2864         struct cpsw_slave *slave;
2865         int i, ret;
2866
2867         /* Allow rx packets handling */
2868         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2869                 if (slave->ndev && netif_running(slave->ndev))
2870                         netif_dormant_off(slave->ndev);
2871
2872         /* After this receive is started */
2873         if (cpsw->usage_count) {
2874                 ret = cpsw_fill_rx_channels(priv);
2875                 if (ret)
2876                         return ret;
2877
2878                 cpdma_ctlr_start(cpsw->dma);
2879                 cpsw_intr_enable(cpsw);
2880         }
2881
2882         /* Resume transmit for every affected interface */
2883         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2884                 if (slave->ndev && netif_running(slave->ndev))
2885                         netif_tx_start_all_queues(slave->ndev);
2886
2887         return 0;
2888 }
2889
2890 static int cpsw_set_channels(struct net_device *ndev,
2891                              struct ethtool_channels *chs)
2892 {
2893         struct cpsw_priv *priv = netdev_priv(ndev);
2894         struct cpsw_common *cpsw = priv->cpsw;
2895         struct cpsw_slave *slave;
2896         int i, ret;
2897
2898         ret = cpsw_check_ch_settings(cpsw, chs);
2899         if (ret < 0)
2900                 return ret;
2901
2902         cpsw_suspend_data_pass(ndev);
2903         ret = cpsw_update_channels(priv, chs);
2904         if (ret)
2905                 goto err;
2906
2907         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2908                 if (!(slave->ndev && netif_running(slave->ndev)))
2909                         continue;
2910
2911                 /* Inform stack about new count of queues */
2912                 ret = netif_set_real_num_tx_queues(slave->ndev,
2913                                                    cpsw->tx_ch_num);
2914                 if (ret) {
2915                         dev_err(priv->dev, "cannot set real number of tx queues\n");
2916                         goto err;
2917                 }
2918
2919                 ret = netif_set_real_num_rx_queues(slave->ndev,
2920                                                    cpsw->rx_ch_num);
2921                 if (ret) {
2922                         dev_err(priv->dev, "cannot set real number of rx queues\n");
2923                         goto err;
2924                 }
2925         }
2926
2927         if (cpsw->usage_count)
2928                 cpsw_split_res(ndev);
2929
2930         ret = cpsw_resume_data_pass(ndev);
2931         if (!ret)
2932                 return 0;
2933 err:
2934         dev_err(priv->dev, "cannot update channels number, closing device\n");
2935         dev_close(ndev);
2936         return ret;
2937 }
2938
2939 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2940 {
2941         struct cpsw_priv *priv = netdev_priv(ndev);
2942         struct cpsw_common *cpsw = priv->cpsw;
2943         int slave_no = cpsw_slave_index(cpsw, priv);
2944
2945         if (cpsw->slaves[slave_no].phy)
2946                 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2947         else
2948                 return -EOPNOTSUPP;
2949 }
2950
2951 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2952 {
2953         struct cpsw_priv *priv = netdev_priv(ndev);
2954         struct cpsw_common *cpsw = priv->cpsw;
2955         int slave_no = cpsw_slave_index(cpsw, priv);
2956
2957         if (cpsw->slaves[slave_no].phy)
2958                 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2959         else
2960                 return -EOPNOTSUPP;
2961 }
2962
2963 static int cpsw_nway_reset(struct net_device *ndev)
2964 {
2965         struct cpsw_priv *priv = netdev_priv(ndev);
2966         struct cpsw_common *cpsw = priv->cpsw;
2967         int slave_no = cpsw_slave_index(cpsw, priv);
2968
2969         if (cpsw->slaves[slave_no].phy)
2970                 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2971         else
2972                 return -EOPNOTSUPP;
2973 }
2974
2975 static void cpsw_get_ringparam(struct net_device *ndev,
2976                                struct ethtool_ringparam *ering)
2977 {
2978         struct cpsw_priv *priv = netdev_priv(ndev);
2979         struct cpsw_common *cpsw = priv->cpsw;
2980
2981         /* not supported */
2982         ering->tx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2983         ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2984         ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2985         ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2986 }
2987
2988 static int cpsw_set_ringparam(struct net_device *ndev,
2989                               struct ethtool_ringparam *ering)
2990 {
2991         struct cpsw_priv *priv = netdev_priv(ndev);
2992         struct cpsw_common *cpsw = priv->cpsw;
2993         int ret;
2994
2995         /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2996
2997         if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2998             ering->rx_pending < CPSW_MAX_QUEUES ||
2999             ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3000                 return -EINVAL;
3001
3002         if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
3003                 return 0;
3004
3005         cpsw_suspend_data_pass(ndev);
3006
3007         cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
3008
3009         if (cpsw->usage_count)
3010                 cpdma_chan_split_pool(cpsw->dma);
3011
3012         ret = cpsw_resume_data_pass(ndev);
3013         if (!ret)
3014                 return 0;
3015
3016         dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3017         dev_close(ndev);
3018         return ret;
3019 }
3020
3021 static const struct ethtool_ops cpsw_ethtool_ops = {
3022         .get_drvinfo    = cpsw_get_drvinfo,
3023         .get_msglevel   = cpsw_get_msglevel,
3024         .set_msglevel   = cpsw_set_msglevel,
3025         .get_link       = ethtool_op_get_link,
3026         .get_ts_info    = cpsw_get_ts_info,
3027         .get_coalesce   = cpsw_get_coalesce,
3028         .set_coalesce   = cpsw_set_coalesce,
3029         .get_sset_count         = cpsw_get_sset_count,
3030         .get_strings            = cpsw_get_strings,
3031         .get_ethtool_stats      = cpsw_get_ethtool_stats,
3032         .get_pauseparam         = cpsw_get_pauseparam,
3033         .set_pauseparam         = cpsw_set_pauseparam,
3034         .get_wol        = cpsw_get_wol,
3035         .set_wol        = cpsw_set_wol,
3036         .get_regs_len   = cpsw_get_regs_len,
3037         .get_regs       = cpsw_get_regs,
3038         .begin          = cpsw_ethtool_op_begin,
3039         .complete       = cpsw_ethtool_op_complete,
3040         .get_channels   = cpsw_get_channels,
3041         .set_channels   = cpsw_set_channels,
3042         .get_link_ksettings     = cpsw_get_link_ksettings,
3043         .set_link_ksettings     = cpsw_set_link_ksettings,
3044         .get_eee        = cpsw_get_eee,
3045         .set_eee        = cpsw_set_eee,
3046         .nway_reset     = cpsw_nway_reset,
3047         .get_ringparam = cpsw_get_ringparam,
3048         .set_ringparam = cpsw_set_ringparam,
3049 };
3050
3051 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3052                             u32 slave_reg_ofs, u32 sliver_reg_ofs)
3053 {
3054         void __iomem            *regs = cpsw->regs;
3055         int                     slave_num = slave->slave_num;
3056         struct cpsw_slave_data  *data = cpsw->data.slave_data + slave_num;
3057
3058         slave->data     = data;
3059         slave->regs     = regs + slave_reg_ofs;
3060         slave->sliver   = regs + sliver_reg_ofs;
3061         slave->port_vlan = data->dual_emac_res_vlan;
3062 }
3063
3064 static int cpsw_probe_dt(struct cpsw_platform_data *data,
3065                          struct platform_device *pdev)
3066 {
3067         struct device_node *node = pdev->dev.of_node;
3068         struct device_node *slave_node;
3069         int i = 0, ret;
3070         u32 prop;
3071
3072         if (!node)
3073                 return -EINVAL;
3074
3075         if (of_property_read_u32(node, "slaves", &prop)) {
3076                 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3077                 return -EINVAL;
3078         }
3079         data->slaves = prop;
3080
3081         if (of_property_read_u32(node, "active_slave", &prop)) {
3082                 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3083                 return -EINVAL;
3084         }
3085         data->active_slave = prop;
3086
3087         data->slave_data = devm_kcalloc(&pdev->dev,
3088                                         data->slaves,
3089                                         sizeof(struct cpsw_slave_data),
3090                                         GFP_KERNEL);
3091         if (!data->slave_data)
3092                 return -ENOMEM;
3093
3094         if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3095                 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3096                 return -EINVAL;
3097         }
3098         data->channels = prop;
3099
3100         if (of_property_read_u32(node, "ale_entries", &prop)) {
3101                 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3102                 return -EINVAL;
3103         }
3104         data->ale_entries = prop;
3105
3106         if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3107                 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3108                 return -EINVAL;
3109         }
3110         data->bd_ram_size = prop;
3111
3112         if (of_property_read_u32(node, "mac_control", &prop)) {
3113                 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3114                 return -EINVAL;
3115         }
3116         data->mac_control = prop;
3117
3118         if (of_property_read_bool(node, "dual_emac"))
3119                 data->dual_emac = 1;
3120
3121         /*
3122          * Populate all the child nodes here...
3123          */
3124         ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
3125         /* We do not want to force this, as in some cases may not have child */
3126         if (ret)
3127                 dev_warn(&pdev->dev, "Doesn't have any child node\n");
3128
3129         for_each_available_child_of_node(node, slave_node) {
3130                 struct cpsw_slave_data *slave_data = data->slave_data + i;
3131                 const void *mac_addr = NULL;
3132                 int lenp;
3133                 const __be32 *parp;
3134
3135                 /* This is no slave child node, continue */
3136                 if (strcmp(slave_node->name, "slave"))
3137                         continue;
3138
3139                 slave_data->phy_node = of_parse_phandle(slave_node,
3140                                                         "phy-handle", 0);
3141                 parp = of_get_property(slave_node, "phy_id", &lenp);
3142                 if (slave_data->phy_node) {
3143                         dev_dbg(&pdev->dev,
3144                                 "slave[%d] using phy-handle=\"%pOF\"\n",
3145                                 i, slave_data->phy_node);
3146                 } else if (of_phy_is_fixed_link(slave_node)) {
3147                         /* In the case of a fixed PHY, the DT node associated
3148                          * to the PHY is the Ethernet MAC DT node.
3149                          */
3150                         ret = of_phy_register_fixed_link(slave_node);
3151                         if (ret) {
3152                                 if (ret != -EPROBE_DEFER)
3153                                         dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3154                                 return ret;
3155                         }
3156                         slave_data->phy_node = of_node_get(slave_node);
3157                 } else if (parp) {
3158                         u32 phyid;
3159                         struct device_node *mdio_node;
3160                         struct platform_device *mdio;
3161
3162                         if (lenp != (sizeof(__be32) * 2)) {
3163                                 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
3164                                 goto no_phy_slave;
3165                         }
3166                         mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
3167                         phyid = be32_to_cpup(parp+1);
3168                         mdio = of_find_device_by_node(mdio_node);
3169                         of_node_put(mdio_node);
3170                         if (!mdio) {
3171                                 dev_err(&pdev->dev, "Missing mdio platform device\n");
3172                                 return -EINVAL;
3173                         }
3174                         snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
3175                                  PHY_ID_FMT, mdio->name, phyid);
3176                         put_device(&mdio->dev);
3177                 } else {
3178                         dev_err(&pdev->dev,
3179                                 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
3180                                 i);
3181                         goto no_phy_slave;
3182                 }
3183                 slave_data->phy_if = of_get_phy_mode(slave_node);
3184                 if (slave_data->phy_if < 0) {
3185                         dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
3186                                 i);
3187                         return slave_data->phy_if;
3188                 }
3189
3190 no_phy_slave:
3191                 mac_addr = of_get_mac_address(slave_node);
3192                 if (mac_addr) {
3193                         memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3194                 } else {
3195                         ret = ti_cm_get_macid(&pdev->dev, i,
3196                                               slave_data->mac_addr);
3197                         if (ret)
3198                                 return ret;
3199                 }
3200                 if (data->dual_emac) {
3201                         if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3202                                                  &prop)) {
3203                                 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3204                                 slave_data->dual_emac_res_vlan = i+1;
3205                                 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
3206                                         slave_data->dual_emac_res_vlan, i);
3207                         } else {
3208                                 slave_data->dual_emac_res_vlan = prop;
3209                         }
3210                 }
3211
3212                 i++;
3213                 if (i == data->slaves)
3214                         break;
3215         }
3216
3217         return 0;
3218 }
3219
3220 static void cpsw_remove_dt(struct platform_device *pdev)
3221 {
3222         struct net_device *ndev = platform_get_drvdata(pdev);
3223         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3224         struct cpsw_platform_data *data = &cpsw->data;
3225         struct device_node *node = pdev->dev.of_node;
3226         struct device_node *slave_node;
3227         int i = 0;
3228
3229         for_each_available_child_of_node(node, slave_node) {
3230                 struct cpsw_slave_data *slave_data = &data->slave_data[i];
3231
3232                 if (strcmp(slave_node->name, "slave"))
3233                         continue;
3234
3235                 if (of_phy_is_fixed_link(slave_node))
3236                         of_phy_deregister_fixed_link(slave_node);
3237
3238                 of_node_put(slave_data->phy_node);
3239
3240                 i++;
3241                 if (i == data->slaves)
3242                         break;
3243         }
3244
3245         of_platform_depopulate(&pdev->dev);
3246 }
3247
3248 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3249 {
3250         struct cpsw_common              *cpsw = priv->cpsw;
3251         struct cpsw_platform_data       *data = &cpsw->data;
3252         struct net_device               *ndev;
3253         struct cpsw_priv                *priv_sl2;
3254         int ret = 0;
3255
3256         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3257         if (!ndev) {
3258                 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3259                 return -ENOMEM;
3260         }
3261
3262         priv_sl2 = netdev_priv(ndev);
3263         priv_sl2->cpsw = cpsw;
3264         priv_sl2->ndev = ndev;
3265         priv_sl2->dev  = &ndev->dev;
3266         priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3267
3268         if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
3269                 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
3270                         ETH_ALEN);
3271                 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
3272                          priv_sl2->mac_addr);
3273         } else {
3274                 eth_random_addr(priv_sl2->mac_addr);
3275                 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
3276                          priv_sl2->mac_addr);
3277         }
3278         memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
3279
3280         priv_sl2->emac_port = 1;
3281         cpsw->slaves[1].ndev = ndev;
3282         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3283
3284         ndev->netdev_ops = &cpsw_netdev_ops;
3285         ndev->ethtool_ops = &cpsw_ethtool_ops;
3286
3287         /* register the network device */
3288         SET_NETDEV_DEV(ndev, cpsw->dev);
3289         ret = register_netdev(ndev);
3290         if (ret) {
3291                 dev_err(cpsw->dev, "cpsw: error registering net device\n");
3292                 free_netdev(ndev);
3293                 ret = -ENODEV;
3294         }
3295
3296         return ret;
3297 }
3298
3299 static const struct of_device_id cpsw_of_mtable[] = {
3300         { .compatible = "ti,cpsw"},
3301         { .compatible = "ti,am335x-cpsw"},
3302         { .compatible = "ti,am4372-cpsw"},
3303         { .compatible = "ti,dra7-cpsw"},
3304         { /* sentinel */ },
3305 };
3306 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
3307
3308 static const struct soc_device_attribute cpsw_soc_devices[] = {
3309         { .family = "AM33xx", .revision = "ES1.0"},
3310         { /* sentinel */ }
3311 };
3312
3313 static int cpsw_probe(struct platform_device *pdev)
3314 {
3315         struct clk                      *clk;
3316         struct cpsw_platform_data       *data;
3317         struct net_device               *ndev;
3318         struct cpsw_priv                *priv;
3319         struct cpdma_params             dma_params;
3320         struct cpsw_ale_params          ale_params;
3321         void __iomem                    *ss_regs;
3322         void __iomem                    *cpts_regs;
3323         struct resource                 *res, *ss_res;
3324         struct gpio_descs               *mode;
3325         u32 slave_offset, sliver_offset, slave_size;
3326         const struct soc_device_attribute *soc;
3327         struct cpsw_common              *cpsw;
3328         int ret = 0, i, ch;
3329         int irq;
3330
3331         cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3332         if (!cpsw)
3333                 return -ENOMEM;
3334
3335         cpsw->dev = &pdev->dev;
3336
3337         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3338         if (!ndev) {
3339                 dev_err(&pdev->dev, "error allocating net_device\n");
3340                 return -ENOMEM;
3341         }
3342
3343         platform_set_drvdata(pdev, ndev);
3344         priv = netdev_priv(ndev);
3345         priv->cpsw = cpsw;
3346         priv->ndev = ndev;
3347         priv->dev  = &ndev->dev;
3348         priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3349         cpsw->rx_packet_max = max(rx_packet_max, 128);
3350
3351         mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3352         if (IS_ERR(mode)) {
3353                 ret = PTR_ERR(mode);
3354                 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3355                 goto clean_ndev_ret;
3356         }
3357
3358         /*
3359          * This may be required here for child devices.
3360          */
3361         pm_runtime_enable(&pdev->dev);
3362
3363         /* Select default pin state */
3364         pinctrl_pm_select_default_state(&pdev->dev);
3365
3366         /* Need to enable clocks with runtime PM api to access module
3367          * registers
3368          */
3369         ret = pm_runtime_get_sync(&pdev->dev);
3370         if (ret < 0) {
3371                 pm_runtime_put_noidle(&pdev->dev);
3372                 goto clean_runtime_disable_ret;
3373         }
3374
3375         ret = cpsw_probe_dt(&cpsw->data, pdev);
3376         if (ret)
3377                 goto clean_dt_ret;
3378
3379         data = &cpsw->data;
3380         cpsw->rx_ch_num = 1;
3381         cpsw->tx_ch_num = 1;
3382
3383         if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3384                 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3385                 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3386         } else {
3387                 eth_random_addr(priv->mac_addr);
3388                 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3389         }
3390
3391         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3392
3393         cpsw->slaves = devm_kcalloc(&pdev->dev,
3394                                     data->slaves, sizeof(struct cpsw_slave),
3395                                     GFP_KERNEL);
3396         if (!cpsw->slaves) {
3397                 ret = -ENOMEM;
3398                 goto clean_dt_ret;
3399         }
3400         for (i = 0; i < data->slaves; i++)
3401                 cpsw->slaves[i].slave_num = i;
3402
3403         cpsw->slaves[0].ndev = ndev;
3404         priv->emac_port = 0;
3405
3406         clk = devm_clk_get(&pdev->dev, "fck");
3407         if (IS_ERR(clk)) {
3408                 dev_err(priv->dev, "fck is not found\n");
3409                 ret = -ENODEV;
3410                 goto clean_dt_ret;
3411         }
3412         cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3413
3414         ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3415         ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3416         if (IS_ERR(ss_regs)) {
3417                 ret = PTR_ERR(ss_regs);
3418                 goto clean_dt_ret;
3419         }
3420         cpsw->regs = ss_regs;
3421
3422         cpsw->version = readl(&cpsw->regs->id_ver);
3423
3424         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3425         cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3426         if (IS_ERR(cpsw->wr_regs)) {
3427                 ret = PTR_ERR(cpsw->wr_regs);
3428                 goto clean_dt_ret;
3429         }
3430
3431         memset(&dma_params, 0, sizeof(dma_params));
3432         memset(&ale_params, 0, sizeof(ale_params));
3433
3434         switch (cpsw->version) {
3435         case CPSW_VERSION_1:
3436                 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3437                 cpts_regs               = ss_regs + CPSW1_CPTS_OFFSET;
3438                 cpsw->hw_stats       = ss_regs + CPSW1_HW_STATS;
3439                 dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3440                 dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3441                 ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3442                 slave_offset         = CPSW1_SLAVE_OFFSET;
3443                 slave_size           = CPSW1_SLAVE_SIZE;
3444                 sliver_offset        = CPSW1_SLIVER_OFFSET;
3445                 dma_params.desc_mem_phys = 0;
3446                 break;
3447         case CPSW_VERSION_2:
3448         case CPSW_VERSION_3:
3449         case CPSW_VERSION_4:
3450                 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3451                 cpts_regs               = ss_regs + CPSW2_CPTS_OFFSET;
3452                 cpsw->hw_stats       = ss_regs + CPSW2_HW_STATS;
3453                 dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3454                 dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3455                 ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3456                 slave_offset         = CPSW2_SLAVE_OFFSET;
3457                 slave_size           = CPSW2_SLAVE_SIZE;
3458                 sliver_offset        = CPSW2_SLIVER_OFFSET;
3459                 dma_params.desc_mem_phys =
3460                         (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3461                 break;
3462         default:
3463                 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3464                 ret = -ENODEV;
3465                 goto clean_dt_ret;
3466         }
3467         for (i = 0; i < cpsw->data.slaves; i++) {
3468                 struct cpsw_slave *slave = &cpsw->slaves[i];
3469
3470                 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3471                 slave_offset  += slave_size;
3472                 sliver_offset += SLIVER_SIZE;
3473         }
3474
3475         dma_params.dev          = &pdev->dev;
3476         dma_params.rxthresh     = dma_params.dmaregs + CPDMA_RXTHRESH;
3477         dma_params.rxfree       = dma_params.dmaregs + CPDMA_RXFREE;
3478         dma_params.rxhdp        = dma_params.txhdp + CPDMA_RXHDP;
3479         dma_params.txcp         = dma_params.txhdp + CPDMA_TXCP;
3480         dma_params.rxcp         = dma_params.txhdp + CPDMA_RXCP;
3481
3482         dma_params.num_chan             = data->channels;
3483         dma_params.has_soft_reset       = true;
3484         dma_params.min_packet_size      = CPSW_MIN_PACKET_SIZE;
3485         dma_params.desc_mem_size        = data->bd_ram_size;
3486         dma_params.desc_align           = 16;
3487         dma_params.has_ext_regs         = true;
3488         dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3489         dma_params.bus_freq_mhz         = cpsw->bus_freq_mhz;
3490         dma_params.descs_pool_size      = descs_pool_size;
3491
3492         cpsw->dma = cpdma_ctlr_create(&dma_params);
3493         if (!cpsw->dma) {
3494                 dev_err(priv->dev, "error initializing dma\n");
3495                 ret = -ENOMEM;
3496                 goto clean_dt_ret;
3497         }
3498
3499         soc = soc_device_match(cpsw_soc_devices);
3500         if (soc)
3501                 cpsw->quirk_irq = 1;
3502
3503         ch = cpsw->quirk_irq ? 0 : 7;
3504         cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3505         if (IS_ERR(cpsw->txv[0].ch)) {
3506                 dev_err(priv->dev, "error initializing tx dma channel\n");
3507                 ret = PTR_ERR(cpsw->txv[0].ch);
3508                 goto clean_dma_ret;
3509         }
3510
3511         cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3512         if (IS_ERR(cpsw->rxv[0].ch)) {
3513                 dev_err(priv->dev, "error initializing rx dma channel\n");
3514                 ret = PTR_ERR(cpsw->rxv[0].ch);
3515                 goto clean_dma_ret;
3516         }
3517
3518         ale_params.dev                  = &pdev->dev;
3519         ale_params.ale_ageout           = ale_ageout;
3520         ale_params.ale_entries          = data->ale_entries;
3521         ale_params.ale_ports            = CPSW_ALE_PORTS_NUM;
3522
3523         cpsw->ale = cpsw_ale_create(&ale_params);
3524         if (!cpsw->ale) {
3525                 dev_err(priv->dev, "error initializing ale engine\n");
3526                 ret = -ENODEV;
3527                 goto clean_dma_ret;
3528         }
3529
3530         cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3531         if (IS_ERR(cpsw->cpts)) {
3532                 ret = PTR_ERR(cpsw->cpts);
3533                 goto clean_dma_ret;
3534         }
3535
3536         ndev->irq = platform_get_irq(pdev, 1);
3537         if (ndev->irq < 0) {
3538                 dev_err(priv->dev, "error getting irq resource\n");
3539                 ret = ndev->irq;
3540                 goto clean_dma_ret;
3541         }
3542
3543         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3544
3545         ndev->netdev_ops = &cpsw_netdev_ops;
3546         ndev->ethtool_ops = &cpsw_ethtool_ops;
3547         netif_napi_add(ndev, &cpsw->napi_rx,
3548                        cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3549                        CPSW_POLL_WEIGHT);
3550         netif_tx_napi_add(ndev, &cpsw->napi_tx,
3551                           cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3552                           CPSW_POLL_WEIGHT);
3553         cpsw_split_res(ndev);
3554
3555         /* register the network device */
3556         SET_NETDEV_DEV(ndev, &pdev->dev);
3557         ret = register_netdev(ndev);
3558         if (ret) {
3559                 dev_err(priv->dev, "error registering net device\n");
3560                 ret = -ENODEV;
3561                 goto clean_dma_ret;
3562         }
3563
3564         if (cpsw->data.dual_emac) {
3565                 ret = cpsw_probe_dual_emac(priv);
3566                 if (ret) {
3567                         cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3568                         goto clean_unregister_netdev_ret;
3569                 }
3570         }
3571
3572         /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3573          * MISC IRQs which are always kept disabled with this driver so
3574          * we will not request them.
3575          *
3576          * If anyone wants to implement support for those, make sure to
3577          * first request and append them to irqs_table array.
3578          */
3579
3580         /* RX IRQ */
3581         irq = platform_get_irq(pdev, 1);
3582         if (irq < 0) {
3583                 ret = irq;
3584                 goto clean_dma_ret;
3585         }
3586
3587         cpsw->irqs_table[0] = irq;
3588         ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3589                                0, dev_name(&pdev->dev), cpsw);
3590         if (ret < 0) {
3591                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3592                 goto clean_dma_ret;
3593         }
3594
3595         /* TX IRQ */
3596         irq = platform_get_irq(pdev, 2);
3597         if (irq < 0) {
3598                 ret = irq;
3599                 goto clean_dma_ret;
3600         }
3601
3602         cpsw->irqs_table[1] = irq;
3603         ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3604                                0, dev_name(&pdev->dev), cpsw);
3605         if (ret < 0) {
3606                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3607                 goto clean_dma_ret;
3608         }
3609
3610         cpsw_notice(priv, probe,
3611                     "initialized device (regs %pa, irq %d, pool size %d)\n",
3612                     &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3613
3614         pm_runtime_put(&pdev->dev);
3615
3616         return 0;
3617
3618 clean_unregister_netdev_ret:
3619         unregister_netdev(ndev);
3620 clean_dma_ret:
3621         cpdma_ctlr_destroy(cpsw->dma);
3622 clean_dt_ret:
3623         cpsw_remove_dt(pdev);
3624         pm_runtime_put_sync(&pdev->dev);
3625 clean_runtime_disable_ret:
3626         pm_runtime_disable(&pdev->dev);
3627 clean_ndev_ret:
3628         free_netdev(priv->ndev);
3629         return ret;
3630 }
3631
3632 static int cpsw_remove(struct platform_device *pdev)
3633 {
3634         struct net_device *ndev = platform_get_drvdata(pdev);
3635         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3636         int ret;
3637
3638         ret = pm_runtime_get_sync(&pdev->dev);
3639         if (ret < 0) {
3640                 pm_runtime_put_noidle(&pdev->dev);
3641                 return ret;
3642         }
3643
3644         if (cpsw->data.dual_emac)
3645                 unregister_netdev(cpsw->slaves[1].ndev);
3646         unregister_netdev(ndev);
3647
3648         cpts_release(cpsw->cpts);
3649         cpdma_ctlr_destroy(cpsw->dma);
3650         cpsw_remove_dt(pdev);
3651         pm_runtime_put_sync(&pdev->dev);
3652         pm_runtime_disable(&pdev->dev);
3653         if (cpsw->data.dual_emac)
3654                 free_netdev(cpsw->slaves[1].ndev);
3655         free_netdev(ndev);
3656         return 0;
3657 }
3658
3659 #ifdef CONFIG_PM_SLEEP
3660 static int cpsw_suspend(struct device *dev)
3661 {
3662         struct platform_device  *pdev = to_platform_device(dev);
3663         struct net_device       *ndev = platform_get_drvdata(pdev);
3664         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3665
3666         if (cpsw->data.dual_emac) {
3667                 int i;
3668
3669                 for (i = 0; i < cpsw->data.slaves; i++) {
3670                         if (netif_running(cpsw->slaves[i].ndev))
3671                                 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3672                 }
3673         } else {
3674                 if (netif_running(ndev))
3675                         cpsw_ndo_stop(ndev);
3676         }
3677
3678         /* Select sleep pin state */
3679         pinctrl_pm_select_sleep_state(dev);
3680
3681         return 0;
3682 }
3683
3684 static int cpsw_resume(struct device *dev)
3685 {
3686         struct platform_device  *pdev = to_platform_device(dev);
3687         struct net_device       *ndev = platform_get_drvdata(pdev);
3688         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3689
3690         /* Select default pin state */
3691         pinctrl_pm_select_default_state(dev);
3692
3693         /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3694         rtnl_lock();
3695         if (cpsw->data.dual_emac) {
3696                 int i;
3697
3698                 for (i = 0; i < cpsw->data.slaves; i++) {
3699                         if (netif_running(cpsw->slaves[i].ndev))
3700                                 cpsw_ndo_open(cpsw->slaves[i].ndev);
3701                 }
3702         } else {
3703                 if (netif_running(ndev))
3704                         cpsw_ndo_open(ndev);
3705         }
3706         rtnl_unlock();
3707
3708         return 0;
3709 }
3710 #endif
3711
3712 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3713
3714 static struct platform_driver cpsw_driver = {
3715         .driver = {
3716                 .name    = "cpsw",
3717                 .pm      = &cpsw_pm_ops,
3718                 .of_match_table = cpsw_of_mtable,
3719         },
3720         .probe = cpsw_probe,
3721         .remove = cpsw_remove,
3722 };
3723
3724 module_platform_driver(cpsw_driver);
3725
3726 MODULE_LICENSE("GPL");
3727 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3728 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3729 MODULE_DESCRIPTION("TI CPSW Ethernet driver");