GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / phy / sfp.c
1 #include <linux/ctype.h>
2 #include <linux/delay.h>
3 #include <linux/gpio/consumer.h>
4 #include <linux/hwmon.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/jiffies.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 #include <linux/phy.h>
12 #include <linux/platform_device.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16
17 #include "mdio-i2c.h"
18 #include "sfp.h"
19 #include "swphy.h"
20
21 enum {
22         GPIO_MODDEF0,
23         GPIO_LOS,
24         GPIO_TX_FAULT,
25         GPIO_TX_DISABLE,
26         GPIO_RATE_SELECT,
27         GPIO_MAX,
28
29         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
30         SFP_F_LOS = BIT(GPIO_LOS),
31         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
32         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
33         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
34
35         SFP_E_INSERT = 0,
36         SFP_E_REMOVE,
37         SFP_E_DEV_DOWN,
38         SFP_E_DEV_UP,
39         SFP_E_TX_FAULT,
40         SFP_E_TX_CLEAR,
41         SFP_E_LOS_HIGH,
42         SFP_E_LOS_LOW,
43         SFP_E_TIMEOUT,
44
45         SFP_MOD_EMPTY = 0,
46         SFP_MOD_PROBE,
47         SFP_MOD_HPOWER,
48         SFP_MOD_PRESENT,
49         SFP_MOD_ERROR,
50
51         SFP_DEV_DOWN = 0,
52         SFP_DEV_UP,
53
54         SFP_S_DOWN = 0,
55         SFP_S_INIT,
56         SFP_S_WAIT_LOS,
57         SFP_S_LINK_UP,
58         SFP_S_TX_FAULT,
59         SFP_S_REINIT,
60         SFP_S_TX_DISABLE,
61 };
62
63 static const char  * const mod_state_strings[] = {
64         [SFP_MOD_EMPTY] = "empty",
65         [SFP_MOD_PROBE] = "probe",
66         [SFP_MOD_HPOWER] = "hpower",
67         [SFP_MOD_PRESENT] = "present",
68         [SFP_MOD_ERROR] = "error",
69 };
70
71 static const char *mod_state_to_str(unsigned short mod_state)
72 {
73         if (mod_state >= ARRAY_SIZE(mod_state_strings))
74                 return "Unknown module state";
75         return mod_state_strings[mod_state];
76 }
77
78 static const char * const dev_state_strings[] = {
79         [SFP_DEV_DOWN] = "down",
80         [SFP_DEV_UP] = "up",
81 };
82
83 static const char *dev_state_to_str(unsigned short dev_state)
84 {
85         if (dev_state >= ARRAY_SIZE(dev_state_strings))
86                 return "Unknown device state";
87         return dev_state_strings[dev_state];
88 }
89
90 static const char * const event_strings[] = {
91         [SFP_E_INSERT] = "insert",
92         [SFP_E_REMOVE] = "remove",
93         [SFP_E_DEV_DOWN] = "dev_down",
94         [SFP_E_DEV_UP] = "dev_up",
95         [SFP_E_TX_FAULT] = "tx_fault",
96         [SFP_E_TX_CLEAR] = "tx_clear",
97         [SFP_E_LOS_HIGH] = "los_high",
98         [SFP_E_LOS_LOW] = "los_low",
99         [SFP_E_TIMEOUT] = "timeout",
100 };
101
102 static const char *event_to_str(unsigned short event)
103 {
104         if (event >= ARRAY_SIZE(event_strings))
105                 return "Unknown event";
106         return event_strings[event];
107 }
108
109 static const char * const sm_state_strings[] = {
110         [SFP_S_DOWN] = "down",
111         [SFP_S_INIT] = "init",
112         [SFP_S_WAIT_LOS] = "wait_los",
113         [SFP_S_LINK_UP] = "link_up",
114         [SFP_S_TX_FAULT] = "tx_fault",
115         [SFP_S_REINIT] = "reinit",
116         [SFP_S_TX_DISABLE] = "tx_disable",
117 };
118
119 static const char *sm_state_to_str(unsigned short sm_state)
120 {
121         if (sm_state >= ARRAY_SIZE(sm_state_strings))
122                 return "Unknown state";
123         return sm_state_strings[sm_state];
124 }
125
126 static const char *gpio_of_names[] = {
127         "mod-def0",
128         "los",
129         "tx-fault",
130         "tx-disable",
131         "rate-select0",
132 };
133
134 static const enum gpiod_flags gpio_flags[] = {
135         GPIOD_IN,
136         GPIOD_IN,
137         GPIOD_IN,
138         GPIOD_ASIS,
139         GPIOD_ASIS,
140 };
141
142 #define T_INIT_JIFFIES  msecs_to_jiffies(300)
143 #define T_RESET_US      10
144 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
145
146 /* SFP module presence detection is poor: the three MOD DEF signals are
147  * the same length on the PCB, which means it's possible for MOD DEF 0 to
148  * connect before the I2C bus on MOD DEF 1/2.
149  *
150  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
151  * be deasserted) but makes no mention of the earliest time before we can
152  * access the I2C EEPROM.  However, Avago modules require 300ms.
153  */
154 #define T_PROBE_INIT    msecs_to_jiffies(300)
155 #define T_HPOWER_LEVEL  msecs_to_jiffies(300)
156 #define T_PROBE_RETRY   msecs_to_jiffies(100)
157
158 /* SFP modules appear to always have their PHY configured for bus address
159  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
160  */
161 #define SFP_PHY_ADDR    22
162
163 /* Give this long for the PHY to reset. */
164 #define T_PHY_RESET_MS  50
165
166 struct sff_data {
167         unsigned int gpios;
168         bool (*module_supported)(const struct sfp_eeprom_id *id);
169 };
170
171 struct sfp {
172         struct device *dev;
173         struct i2c_adapter *i2c;
174         struct mii_bus *i2c_mii;
175         struct sfp_bus *sfp_bus;
176         struct phy_device *mod_phy;
177         const struct sff_data *type;
178         u32 max_power_mW;
179
180         unsigned int (*get_state)(struct sfp *);
181         void (*set_state)(struct sfp *, unsigned int);
182         int (*read)(struct sfp *, bool, u8, void *, size_t);
183         int (*write)(struct sfp *, bool, u8, void *, size_t);
184
185         struct gpio_desc *gpio[GPIO_MAX];
186
187         bool attached;
188         struct mutex st_mutex;                  /* Protects state */
189         unsigned int state;
190         struct delayed_work poll;
191         struct delayed_work timeout;
192         struct mutex sm_mutex;                  /* Protects state machine */
193         unsigned char sm_mod_state;
194         unsigned char sm_dev_state;
195         unsigned short sm_state;
196         unsigned int sm_retries;
197
198         struct sfp_eeprom_id id;
199 #if IS_ENABLED(CONFIG_HWMON)
200         struct sfp_diag diag;
201         struct device *hwmon_dev;
202         char *hwmon_name;
203 #endif
204
205 };
206
207 static bool sff_module_supported(const struct sfp_eeprom_id *id)
208 {
209         return id->base.phys_id == SFP_PHYS_ID_SFF &&
210                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
211 }
212
213 static const struct sff_data sff_data = {
214         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
215         .module_supported = sff_module_supported,
216 };
217
218 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
219 {
220         return id->base.phys_id == SFP_PHYS_ID_SFP &&
221                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
222 }
223
224 static const struct sff_data sfp_data = {
225         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
226                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
227         .module_supported = sfp_module_supported,
228 };
229
230 static const struct of_device_id sfp_of_match[] = {
231         { .compatible = "sff,sff", .data = &sff_data, },
232         { .compatible = "sff,sfp", .data = &sfp_data, },
233         { },
234 };
235 MODULE_DEVICE_TABLE(of, sfp_of_match);
236
237 static unsigned long poll_jiffies;
238
239 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
240 {
241         unsigned int i, state, v;
242
243         for (i = state = 0; i < GPIO_MAX; i++) {
244                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
245                         continue;
246
247                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
248                 if (v)
249                         state |= BIT(i);
250         }
251
252         return state;
253 }
254
255 static unsigned int sff_gpio_get_state(struct sfp *sfp)
256 {
257         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
258 }
259
260 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
261 {
262         if (state & SFP_F_PRESENT) {
263                 /* If the module is present, drive the signals */
264                 if (sfp->gpio[GPIO_TX_DISABLE])
265                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
266                                                state & SFP_F_TX_DISABLE);
267                 if (state & SFP_F_RATE_SELECT)
268                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
269                                                state & SFP_F_RATE_SELECT);
270         } else {
271                 /* Otherwise, let them float to the pull-ups */
272                 if (sfp->gpio[GPIO_TX_DISABLE])
273                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
274                 if (state & SFP_F_RATE_SELECT)
275                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
276         }
277 }
278
279 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
280                         size_t len)
281 {
282         struct i2c_msg msgs[2];
283         u8 bus_addr = a2 ? 0x51 : 0x50;
284         size_t this_len;
285         int ret;
286
287         msgs[0].addr = bus_addr;
288         msgs[0].flags = 0;
289         msgs[0].len = 1;
290         msgs[0].buf = &dev_addr;
291         msgs[1].addr = bus_addr;
292         msgs[1].flags = I2C_M_RD;
293         msgs[1].len = len;
294         msgs[1].buf = buf;
295
296         while (len) {
297                 this_len = len;
298                 if (this_len > 16)
299                         this_len = 16;
300
301                 msgs[1].len = this_len;
302
303                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
304                 if (ret < 0)
305                         return ret;
306
307                 if (ret != ARRAY_SIZE(msgs))
308                         break;
309
310                 msgs[1].buf += this_len;
311                 dev_addr += this_len;
312                 len -= this_len;
313         }
314
315         return msgs[1].buf - (u8 *)buf;
316 }
317
318 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
319         size_t len)
320 {
321         struct i2c_msg msgs[1];
322         u8 bus_addr = a2 ? 0x51 : 0x50;
323         int ret;
324
325         msgs[0].addr = bus_addr;
326         msgs[0].flags = 0;
327         msgs[0].len = 1 + len;
328         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
329         if (!msgs[0].buf)
330                 return -ENOMEM;
331
332         msgs[0].buf[0] = dev_addr;
333         memcpy(&msgs[0].buf[1], buf, len);
334
335         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
336
337         kfree(msgs[0].buf);
338
339         if (ret < 0)
340                 return ret;
341
342         return ret == ARRAY_SIZE(msgs) ? len : 0;
343 }
344
345 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
346 {
347         struct mii_bus *i2c_mii;
348         int ret;
349
350         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
351                 return -EINVAL;
352
353         sfp->i2c = i2c;
354         sfp->read = sfp_i2c_read;
355         sfp->write = sfp_i2c_write;
356
357         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
358         if (IS_ERR(i2c_mii))
359                 return PTR_ERR(i2c_mii);
360
361         i2c_mii->name = "SFP I2C Bus";
362         i2c_mii->phy_mask = ~0;
363
364         ret = mdiobus_register(i2c_mii);
365         if (ret < 0) {
366                 mdiobus_free(i2c_mii);
367                 return ret;
368         }
369
370         sfp->i2c_mii = i2c_mii;
371
372         return 0;
373 }
374
375 /* Interface */
376 static unsigned int sfp_get_state(struct sfp *sfp)
377 {
378         return sfp->get_state(sfp);
379 }
380
381 static void sfp_set_state(struct sfp *sfp, unsigned int state)
382 {
383         sfp->set_state(sfp, state);
384 }
385
386 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
387 {
388         return sfp->read(sfp, a2, addr, buf, len);
389 }
390
391 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
392 {
393         return sfp->write(sfp, a2, addr, buf, len);
394 }
395
396 static unsigned int sfp_check(void *buf, size_t len)
397 {
398         u8 *p, check;
399
400         for (p = buf, check = 0; len; p++, len--)
401                 check += *p;
402
403         return check;
404 }
405
406 /* hwmon */
407 #if IS_ENABLED(CONFIG_HWMON)
408 static umode_t sfp_hwmon_is_visible(const void *data,
409                                     enum hwmon_sensor_types type,
410                                     u32 attr, int channel)
411 {
412         const struct sfp *sfp = data;
413
414         switch (type) {
415         case hwmon_temp:
416                 switch (attr) {
417                 case hwmon_temp_min_alarm:
418                 case hwmon_temp_max_alarm:
419                 case hwmon_temp_lcrit_alarm:
420                 case hwmon_temp_crit_alarm:
421                 case hwmon_temp_min:
422                 case hwmon_temp_max:
423                 case hwmon_temp_lcrit:
424                 case hwmon_temp_crit:
425                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
426                                 return 0;
427                         /* fall through */
428                 case hwmon_temp_input:
429                         return 0444;
430                 default:
431                         return 0;
432                 }
433         case hwmon_in:
434                 switch (attr) {
435                 case hwmon_in_min_alarm:
436                 case hwmon_in_max_alarm:
437                 case hwmon_in_lcrit_alarm:
438                 case hwmon_in_crit_alarm:
439                 case hwmon_in_min:
440                 case hwmon_in_max:
441                 case hwmon_in_lcrit:
442                 case hwmon_in_crit:
443                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
444                                 return 0;
445                         /* fall through */
446                 case hwmon_in_input:
447                         return 0444;
448                 default:
449                         return 0;
450                 }
451         case hwmon_curr:
452                 switch (attr) {
453                 case hwmon_curr_min_alarm:
454                 case hwmon_curr_max_alarm:
455                 case hwmon_curr_lcrit_alarm:
456                 case hwmon_curr_crit_alarm:
457                 case hwmon_curr_min:
458                 case hwmon_curr_max:
459                 case hwmon_curr_lcrit:
460                 case hwmon_curr_crit:
461                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
462                                 return 0;
463                         /* fall through */
464                 case hwmon_curr_input:
465                         return 0444;
466                 default:
467                         return 0;
468                 }
469         case hwmon_power:
470                 /* External calibration of receive power requires
471                  * floating point arithmetic. Doing that in the kernel
472                  * is not easy, so just skip it. If the module does
473                  * not require external calibration, we can however
474                  * show receiver power, since FP is then not needed.
475                  */
476                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
477                     channel == 1)
478                         return 0;
479                 switch (attr) {
480                 case hwmon_power_min_alarm:
481                 case hwmon_power_max_alarm:
482                 case hwmon_power_lcrit_alarm:
483                 case hwmon_power_crit_alarm:
484                 case hwmon_power_min:
485                 case hwmon_power_max:
486                 case hwmon_power_lcrit:
487                 case hwmon_power_crit:
488                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
489                                 return 0;
490                         /* fall through */
491                 case hwmon_power_input:
492                         return 0444;
493                 default:
494                         return 0;
495                 }
496         default:
497                 return 0;
498         }
499 }
500
501 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
502 {
503         __be16 val;
504         int err;
505
506         err = sfp_read(sfp, true, reg, &val, sizeof(val));
507         if (err < 0)
508                 return err;
509
510         *value = be16_to_cpu(val);
511
512         return 0;
513 }
514
515 static void sfp_hwmon_to_rx_power(long *value)
516 {
517         *value = DIV_ROUND_CLOSEST(*value, 10);
518 }
519
520 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
521                                 long *value)
522 {
523         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
524                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
525 }
526
527 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
528 {
529         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
530                             be16_to_cpu(sfp->diag.cal_t_offset), value);
531
532         if (*value >= 0x8000)
533                 *value -= 0x10000;
534
535         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
536 }
537
538 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
539 {
540         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
541                             be16_to_cpu(sfp->diag.cal_v_offset), value);
542
543         *value = DIV_ROUND_CLOSEST(*value, 10);
544 }
545
546 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
547 {
548         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
549                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
550
551         *value = DIV_ROUND_CLOSEST(*value, 500);
552 }
553
554 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
555 {
556         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
557                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
558
559         *value = DIV_ROUND_CLOSEST(*value, 10);
560 }
561
562 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
563 {
564         int err;
565
566         err = sfp_hwmon_read_sensor(sfp, reg, value);
567         if (err < 0)
568                 return err;
569
570         sfp_hwmon_calibrate_temp(sfp, value);
571
572         return 0;
573 }
574
575 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
576 {
577         int err;
578
579         err = sfp_hwmon_read_sensor(sfp, reg, value);
580         if (err < 0)
581                 return err;
582
583         sfp_hwmon_calibrate_vcc(sfp, value);
584
585         return 0;
586 }
587
588 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
589 {
590         int err;
591
592         err = sfp_hwmon_read_sensor(sfp, reg, value);
593         if (err < 0)
594                 return err;
595
596         sfp_hwmon_calibrate_bias(sfp, value);
597
598         return 0;
599 }
600
601 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
602 {
603         int err;
604
605         err = sfp_hwmon_read_sensor(sfp, reg, value);
606         if (err < 0)
607                 return err;
608
609         sfp_hwmon_calibrate_tx_power(sfp, value);
610
611         return 0;
612 }
613
614 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
615 {
616         int err;
617
618         err = sfp_hwmon_read_sensor(sfp, reg, value);
619         if (err < 0)
620                 return err;
621
622         sfp_hwmon_to_rx_power(value);
623
624         return 0;
625 }
626
627 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
628 {
629         u8 status;
630         int err;
631
632         switch (attr) {
633         case hwmon_temp_input:
634                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
635
636         case hwmon_temp_lcrit:
637                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
638                 sfp_hwmon_calibrate_temp(sfp, value);
639                 return 0;
640
641         case hwmon_temp_min:
642                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
643                 sfp_hwmon_calibrate_temp(sfp, value);
644                 return 0;
645         case hwmon_temp_max:
646                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
647                 sfp_hwmon_calibrate_temp(sfp, value);
648                 return 0;
649
650         case hwmon_temp_crit:
651                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
652                 sfp_hwmon_calibrate_temp(sfp, value);
653                 return 0;
654
655         case hwmon_temp_lcrit_alarm:
656                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
657                 if (err < 0)
658                         return err;
659
660                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
661                 return 0;
662
663         case hwmon_temp_min_alarm:
664                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
665                 if (err < 0)
666                         return err;
667
668                 *value = !!(status & SFP_WARN0_TEMP_LOW);
669                 return 0;
670
671         case hwmon_temp_max_alarm:
672                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
673                 if (err < 0)
674                         return err;
675
676                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
677                 return 0;
678
679         case hwmon_temp_crit_alarm:
680                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
681                 if (err < 0)
682                         return err;
683
684                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
685                 return 0;
686         default:
687                 return -EOPNOTSUPP;
688         }
689
690         return -EOPNOTSUPP;
691 }
692
693 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
694 {
695         u8 status;
696         int err;
697
698         switch (attr) {
699         case hwmon_in_input:
700                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
701
702         case hwmon_in_lcrit:
703                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
704                 sfp_hwmon_calibrate_vcc(sfp, value);
705                 return 0;
706
707         case hwmon_in_min:
708                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
709                 sfp_hwmon_calibrate_vcc(sfp, value);
710                 return 0;
711
712         case hwmon_in_max:
713                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
714                 sfp_hwmon_calibrate_vcc(sfp, value);
715                 return 0;
716
717         case hwmon_in_crit:
718                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
719                 sfp_hwmon_calibrate_vcc(sfp, value);
720                 return 0;
721
722         case hwmon_in_lcrit_alarm:
723                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
724                 if (err < 0)
725                         return err;
726
727                 *value = !!(status & SFP_ALARM0_VCC_LOW);
728                 return 0;
729
730         case hwmon_in_min_alarm:
731                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
732                 if (err < 0)
733                         return err;
734
735                 *value = !!(status & SFP_WARN0_VCC_LOW);
736                 return 0;
737
738         case hwmon_in_max_alarm:
739                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
740                 if (err < 0)
741                         return err;
742
743                 *value = !!(status & SFP_WARN0_VCC_HIGH);
744                 return 0;
745
746         case hwmon_in_crit_alarm:
747                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
748                 if (err < 0)
749                         return err;
750
751                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
752                 return 0;
753         default:
754                 return -EOPNOTSUPP;
755         }
756
757         return -EOPNOTSUPP;
758 }
759
760 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
761 {
762         u8 status;
763         int err;
764
765         switch (attr) {
766         case hwmon_curr_input:
767                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
768
769         case hwmon_curr_lcrit:
770                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
771                 sfp_hwmon_calibrate_bias(sfp, value);
772                 return 0;
773
774         case hwmon_curr_min:
775                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
776                 sfp_hwmon_calibrate_bias(sfp, value);
777                 return 0;
778
779         case hwmon_curr_max:
780                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
781                 sfp_hwmon_calibrate_bias(sfp, value);
782                 return 0;
783
784         case hwmon_curr_crit:
785                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
786                 sfp_hwmon_calibrate_bias(sfp, value);
787                 return 0;
788
789         case hwmon_curr_lcrit_alarm:
790                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
791                 if (err < 0)
792                         return err;
793
794                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
795                 return 0;
796
797         case hwmon_curr_min_alarm:
798                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
799                 if (err < 0)
800                         return err;
801
802                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
803                 return 0;
804
805         case hwmon_curr_max_alarm:
806                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
807                 if (err < 0)
808                         return err;
809
810                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
811                 return 0;
812
813         case hwmon_curr_crit_alarm:
814                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
815                 if (err < 0)
816                         return err;
817
818                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
819                 return 0;
820         default:
821                 return -EOPNOTSUPP;
822         }
823
824         return -EOPNOTSUPP;
825 }
826
827 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
828 {
829         u8 status;
830         int err;
831
832         switch (attr) {
833         case hwmon_power_input:
834                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
835
836         case hwmon_power_lcrit:
837                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
838                 sfp_hwmon_calibrate_tx_power(sfp, value);
839                 return 0;
840
841         case hwmon_power_min:
842                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
843                 sfp_hwmon_calibrate_tx_power(sfp, value);
844                 return 0;
845
846         case hwmon_power_max:
847                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
848                 sfp_hwmon_calibrate_tx_power(sfp, value);
849                 return 0;
850
851         case hwmon_power_crit:
852                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
853                 sfp_hwmon_calibrate_tx_power(sfp, value);
854                 return 0;
855
856         case hwmon_power_lcrit_alarm:
857                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
858                 if (err < 0)
859                         return err;
860
861                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
862                 return 0;
863
864         case hwmon_power_min_alarm:
865                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
866                 if (err < 0)
867                         return err;
868
869                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
870                 return 0;
871
872         case hwmon_power_max_alarm:
873                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
874                 if (err < 0)
875                         return err;
876
877                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
878                 return 0;
879
880         case hwmon_power_crit_alarm:
881                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
882                 if (err < 0)
883                         return err;
884
885                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
886                 return 0;
887         default:
888                 return -EOPNOTSUPP;
889         }
890
891         return -EOPNOTSUPP;
892 }
893
894 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
895 {
896         u8 status;
897         int err;
898
899         switch (attr) {
900         case hwmon_power_input:
901                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
902
903         case hwmon_power_lcrit:
904                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
905                 sfp_hwmon_to_rx_power(value);
906                 return 0;
907
908         case hwmon_power_min:
909                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
910                 sfp_hwmon_to_rx_power(value);
911                 return 0;
912
913         case hwmon_power_max:
914                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
915                 sfp_hwmon_to_rx_power(value);
916                 return 0;
917
918         case hwmon_power_crit:
919                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
920                 sfp_hwmon_to_rx_power(value);
921                 return 0;
922
923         case hwmon_power_lcrit_alarm:
924                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
925                 if (err < 0)
926                         return err;
927
928                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
929                 return 0;
930
931         case hwmon_power_min_alarm:
932                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
933                 if (err < 0)
934                         return err;
935
936                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
937                 return 0;
938
939         case hwmon_power_max_alarm:
940                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
941                 if (err < 0)
942                         return err;
943
944                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
945                 return 0;
946
947         case hwmon_power_crit_alarm:
948                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
949                 if (err < 0)
950                         return err;
951
952                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
953                 return 0;
954         default:
955                 return -EOPNOTSUPP;
956         }
957
958         return -EOPNOTSUPP;
959 }
960
961 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
962                           u32 attr, int channel, long *value)
963 {
964         struct sfp *sfp = dev_get_drvdata(dev);
965
966         switch (type) {
967         case hwmon_temp:
968                 return sfp_hwmon_temp(sfp, attr, value);
969         case hwmon_in:
970                 return sfp_hwmon_vcc(sfp, attr, value);
971         case hwmon_curr:
972                 return sfp_hwmon_bias(sfp, attr, value);
973         case hwmon_power:
974                 switch (channel) {
975                 case 0:
976                         return sfp_hwmon_tx_power(sfp, attr, value);
977                 case 1:
978                         return sfp_hwmon_rx_power(sfp, attr, value);
979                 default:
980                         return -EOPNOTSUPP;
981                 }
982         default:
983                 return -EOPNOTSUPP;
984         }
985 }
986
987 static const struct hwmon_ops sfp_hwmon_ops = {
988         .is_visible = sfp_hwmon_is_visible,
989         .read = sfp_hwmon_read,
990 };
991
992 static u32 sfp_hwmon_chip_config[] = {
993         HWMON_C_REGISTER_TZ,
994         0,
995 };
996
997 static const struct hwmon_channel_info sfp_hwmon_chip = {
998         .type = hwmon_chip,
999         .config = sfp_hwmon_chip_config,
1000 };
1001
1002 static u32 sfp_hwmon_temp_config[] = {
1003         HWMON_T_INPUT |
1004         HWMON_T_MAX | HWMON_T_MIN |
1005         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1006         HWMON_T_CRIT | HWMON_T_LCRIT |
1007         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
1008         0,
1009 };
1010
1011 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1012         .type = hwmon_temp,
1013         .config = sfp_hwmon_temp_config,
1014 };
1015
1016 static u32 sfp_hwmon_vcc_config[] = {
1017         HWMON_I_INPUT |
1018         HWMON_I_MAX | HWMON_I_MIN |
1019         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1020         HWMON_I_CRIT | HWMON_I_LCRIT |
1021         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1022         0,
1023 };
1024
1025 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1026         .type = hwmon_in,
1027         .config = sfp_hwmon_vcc_config,
1028 };
1029
1030 static u32 sfp_hwmon_bias_config[] = {
1031         HWMON_C_INPUT |
1032         HWMON_C_MAX | HWMON_C_MIN |
1033         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1034         HWMON_C_CRIT | HWMON_C_LCRIT |
1035         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1036         0,
1037 };
1038
1039 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1040         .type = hwmon_curr,
1041         .config = sfp_hwmon_bias_config,
1042 };
1043
1044 static u32 sfp_hwmon_power_config[] = {
1045         /* Transmit power */
1046         HWMON_P_INPUT |
1047         HWMON_P_MAX | HWMON_P_MIN |
1048         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1049         HWMON_P_CRIT | HWMON_P_LCRIT |
1050         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1051         /* Receive power */
1052         HWMON_P_INPUT |
1053         HWMON_P_MAX | HWMON_P_MIN |
1054         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1055         HWMON_P_CRIT | HWMON_P_LCRIT |
1056         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1057         0,
1058 };
1059
1060 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1061         .type = hwmon_power,
1062         .config = sfp_hwmon_power_config,
1063 };
1064
1065 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1066         &sfp_hwmon_chip,
1067         &sfp_hwmon_vcc_channel_info,
1068         &sfp_hwmon_temp_channel_info,
1069         &sfp_hwmon_bias_channel_info,
1070         &sfp_hwmon_power_channel_info,
1071         NULL,
1072 };
1073
1074 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1075         .ops = &sfp_hwmon_ops,
1076         .info = sfp_hwmon_info,
1077 };
1078
1079 static int sfp_hwmon_insert(struct sfp *sfp)
1080 {
1081         int err, i;
1082
1083         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1084                 return 0;
1085
1086         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1087                 return 0;
1088
1089         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1090                 /* This driver in general does not support address
1091                  * change.
1092                  */
1093                 return 0;
1094
1095         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1096         if (err < 0)
1097                 return err;
1098
1099         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1100         if (!sfp->hwmon_name)
1101                 return -ENODEV;
1102
1103         for (i = 0; sfp->hwmon_name[i]; i++)
1104                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1105                         sfp->hwmon_name[i] = '_';
1106
1107         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1108                                                          sfp->hwmon_name, sfp,
1109                                                          &sfp_hwmon_chip_info,
1110                                                          NULL);
1111
1112         return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1113 }
1114
1115 static void sfp_hwmon_remove(struct sfp *sfp)
1116 {
1117         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1118                 hwmon_device_unregister(sfp->hwmon_dev);
1119                 sfp->hwmon_dev = NULL;
1120                 kfree(sfp->hwmon_name);
1121         }
1122 }
1123 #else
1124 static int sfp_hwmon_insert(struct sfp *sfp)
1125 {
1126         return 0;
1127 }
1128
1129 static void sfp_hwmon_remove(struct sfp *sfp)
1130 {
1131 }
1132 #endif
1133
1134 /* Helpers */
1135 static void sfp_module_tx_disable(struct sfp *sfp)
1136 {
1137         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1138                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1139         sfp->state |= SFP_F_TX_DISABLE;
1140         sfp_set_state(sfp, sfp->state);
1141 }
1142
1143 static void sfp_module_tx_enable(struct sfp *sfp)
1144 {
1145         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1146                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1147         sfp->state &= ~SFP_F_TX_DISABLE;
1148         sfp_set_state(sfp, sfp->state);
1149 }
1150
1151 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1152 {
1153         unsigned int state = sfp->state;
1154
1155         if (state & SFP_F_TX_DISABLE)
1156                 return;
1157
1158         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1159
1160         udelay(T_RESET_US);
1161
1162         sfp_set_state(sfp, state);
1163 }
1164
1165 /* SFP state machine */
1166 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1167 {
1168         if (timeout)
1169                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1170                                  timeout);
1171         else
1172                 cancel_delayed_work(&sfp->timeout);
1173 }
1174
1175 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1176                         unsigned int timeout)
1177 {
1178         sfp->sm_state = state;
1179         sfp_sm_set_timer(sfp, timeout);
1180 }
1181
1182 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1183                             unsigned int timeout)
1184 {
1185         sfp->sm_mod_state = state;
1186         sfp_sm_set_timer(sfp, timeout);
1187 }
1188
1189 static void sfp_sm_phy_detach(struct sfp *sfp)
1190 {
1191         phy_stop(sfp->mod_phy);
1192         sfp_remove_phy(sfp->sfp_bus);
1193         phy_device_remove(sfp->mod_phy);
1194         phy_device_free(sfp->mod_phy);
1195         sfp->mod_phy = NULL;
1196 }
1197
1198 static void sfp_sm_probe_phy(struct sfp *sfp)
1199 {
1200         struct phy_device *phy;
1201         int err;
1202
1203         msleep(T_PHY_RESET_MS);
1204
1205         phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1206         if (phy == ERR_PTR(-ENODEV)) {
1207                 dev_info(sfp->dev, "no PHY detected\n");
1208                 return;
1209         }
1210         if (IS_ERR(phy)) {
1211                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1212                 return;
1213         }
1214
1215         err = sfp_add_phy(sfp->sfp_bus, phy);
1216         if (err) {
1217                 phy_device_remove(phy);
1218                 phy_device_free(phy);
1219                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1220                 return;
1221         }
1222
1223         sfp->mod_phy = phy;
1224         phy_start(phy);
1225 }
1226
1227 static void sfp_sm_link_up(struct sfp *sfp)
1228 {
1229         sfp_link_up(sfp->sfp_bus);
1230         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1231 }
1232
1233 static void sfp_sm_link_down(struct sfp *sfp)
1234 {
1235         sfp_link_down(sfp->sfp_bus);
1236 }
1237
1238 static void sfp_sm_link_check_los(struct sfp *sfp)
1239 {
1240         unsigned int los = sfp->state & SFP_F_LOS;
1241
1242         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1243          * are set, we assume that no LOS signal is available.
1244          */
1245         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1246                 los ^= SFP_F_LOS;
1247         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1248                 los = 0;
1249
1250         if (los)
1251                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1252         else
1253                 sfp_sm_link_up(sfp);
1254 }
1255
1256 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1257 {
1258         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1259                 event == SFP_E_LOS_LOW) ||
1260                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1261                 event == SFP_E_LOS_HIGH);
1262 }
1263
1264 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1265 {
1266         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1267                 event == SFP_E_LOS_HIGH) ||
1268                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1269                 event == SFP_E_LOS_LOW);
1270 }
1271
1272 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1273 {
1274         if (sfp->sm_retries && !--sfp->sm_retries) {
1275                 dev_err(sfp->dev,
1276                         "module persistently indicates fault, disabling\n");
1277                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1278         } else {
1279                 if (warn)
1280                         dev_err(sfp->dev, "module transmit fault indicated\n");
1281
1282                 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1283         }
1284 }
1285
1286 static void sfp_sm_mod_init(struct sfp *sfp)
1287 {
1288         sfp_module_tx_enable(sfp);
1289
1290         /* Wait t_init before indicating that the link is up, provided the
1291          * current state indicates no TX_FAULT.  If TX_FAULT clears before
1292          * this time, that's fine too.
1293          */
1294         sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1295         sfp->sm_retries = 5;
1296
1297         /* Setting the serdes link mode is guesswork: there's no
1298          * field in the EEPROM which indicates what mode should
1299          * be used.
1300          *
1301          * If it's a gigabit-only fiber module, it probably does
1302          * not have a PHY, so switch to 802.3z negotiation mode.
1303          * Otherwise, switch to SGMII mode (which is required to
1304          * support non-gigabit speeds) and probe for a PHY.
1305          */
1306         if (sfp->id.base.e1000_base_t ||
1307             sfp->id.base.e100_base_lx ||
1308             sfp->id.base.e100_base_fx)
1309                 sfp_sm_probe_phy(sfp);
1310 }
1311
1312 static int sfp_sm_mod_hpower(struct sfp *sfp)
1313 {
1314         u32 power;
1315         u8 val;
1316         int err;
1317
1318         power = 1000;
1319         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1320                 power = 1500;
1321         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1322                 power = 2000;
1323
1324         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1325             (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1326             SFP_DIAGMON_DDM) {
1327                 /* The module appears not to implement bus address 0xa2,
1328                  * or requires an address change sequence, so assume that
1329                  * the module powers up in the indicated power mode.
1330                  */
1331                 if (power > sfp->max_power_mW) {
1332                         dev_err(sfp->dev,
1333                                 "Host does not support %u.%uW modules\n",
1334                                 power / 1000, (power / 100) % 10);
1335                         return -EINVAL;
1336                 }
1337                 return 0;
1338         }
1339
1340         if (power > sfp->max_power_mW) {
1341                 dev_warn(sfp->dev,
1342                          "Host does not support %u.%uW modules, module left in power mode 1\n",
1343                          power / 1000, (power / 100) % 10);
1344                 return 0;
1345         }
1346
1347         if (power <= 1000)
1348                 return 0;
1349
1350         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1351         if (err != sizeof(val)) {
1352                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1353                 err = -EAGAIN;
1354                 goto err;
1355         }
1356
1357         val |= BIT(0);
1358
1359         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1360         if (err != sizeof(val)) {
1361                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1362                 err = -EAGAIN;
1363                 goto err;
1364         }
1365
1366         dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1367                  power / 1000, (power / 100) % 10);
1368         return T_HPOWER_LEVEL;
1369
1370 err:
1371         return err;
1372 }
1373
1374 static int sfp_sm_mod_probe(struct sfp *sfp)
1375 {
1376         /* SFP module inserted - read I2C data */
1377         struct sfp_eeprom_id id;
1378         bool cotsworks;
1379         u8 check;
1380         int ret;
1381
1382         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1383         if (ret < 0) {
1384                 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1385                 return -EAGAIN;
1386         }
1387
1388         if (ret != sizeof(id)) {
1389                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1390                 return -EAGAIN;
1391         }
1392
1393         /* Cotsworks do not seem to update the checksums when they
1394          * do the final programming with the final module part number,
1395          * serial number and date code.
1396          */
1397         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1398
1399         /* Validate the checksum over the base structure */
1400         check = sfp_check(&id.base, sizeof(id.base) - 1);
1401         if (check != id.base.cc_base) {
1402                 if (cotsworks) {
1403                         dev_warn(sfp->dev,
1404                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1405                                  check, id.base.cc_base);
1406                 } else {
1407                         dev_err(sfp->dev,
1408                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1409                                 check, id.base.cc_base);
1410                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1411                                        16, 1, &id, sizeof(id), true);
1412                         return -EINVAL;
1413                 }
1414         }
1415
1416         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1417         if (check != id.ext.cc_ext) {
1418                 if (cotsworks) {
1419                         dev_warn(sfp->dev,
1420                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1421                                  check, id.ext.cc_ext);
1422                 } else {
1423                         dev_err(sfp->dev,
1424                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1425                                 check, id.ext.cc_ext);
1426                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1427                                        16, 1, &id, sizeof(id), true);
1428                         memset(&id.ext, 0, sizeof(id.ext));
1429                 }
1430         }
1431
1432         sfp->id = id;
1433
1434         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1435                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1436                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1437                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1438                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1439                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1440
1441         /* Check whether we support this module */
1442         if (!sfp->type->module_supported(&sfp->id)) {
1443                 dev_err(sfp->dev,
1444                         "module is not supported - phys id 0x%02x 0x%02x\n",
1445                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1446                 return -EINVAL;
1447         }
1448
1449         /* If the module requires address swap mode, warn about it */
1450         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1451                 dev_warn(sfp->dev,
1452                          "module address swap to access page 0xA2 is not supported.\n");
1453
1454         ret = sfp_hwmon_insert(sfp);
1455         if (ret < 0)
1456                 return ret;
1457
1458         ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1459         if (ret < 0)
1460                 return ret;
1461
1462         return sfp_sm_mod_hpower(sfp);
1463 }
1464
1465 static void sfp_sm_mod_remove(struct sfp *sfp)
1466 {
1467         sfp_module_remove(sfp->sfp_bus);
1468
1469         sfp_hwmon_remove(sfp);
1470
1471         if (sfp->mod_phy)
1472                 sfp_sm_phy_detach(sfp);
1473
1474         sfp_module_tx_disable(sfp);
1475
1476         memset(&sfp->id, 0, sizeof(sfp->id));
1477
1478         dev_info(sfp->dev, "module removed\n");
1479 }
1480
1481 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1482 {
1483         mutex_lock(&sfp->sm_mutex);
1484
1485         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1486                 mod_state_to_str(sfp->sm_mod_state),
1487                 dev_state_to_str(sfp->sm_dev_state),
1488                 sm_state_to_str(sfp->sm_state),
1489                 event_to_str(event));
1490
1491         /* This state machine tracks the insert/remove state of
1492          * the module, and handles probing the on-board EEPROM.
1493          */
1494         switch (sfp->sm_mod_state) {
1495         default:
1496                 if (event == SFP_E_INSERT && sfp->attached) {
1497                         sfp_module_tx_disable(sfp);
1498                         sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1499                 }
1500                 break;
1501
1502         case SFP_MOD_PROBE:
1503                 if (event == SFP_E_REMOVE) {
1504                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1505                 } else if (event == SFP_E_TIMEOUT) {
1506                         int val = sfp_sm_mod_probe(sfp);
1507
1508                         if (val == 0)
1509                                 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1510                         else if (val > 0)
1511                                 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1512                         else if (val != -EAGAIN)
1513                                 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1514                         else
1515                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1516                 }
1517                 break;
1518
1519         case SFP_MOD_HPOWER:
1520                 if (event == SFP_E_TIMEOUT) {
1521                         sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1522                         break;
1523                 }
1524                 /* fallthrough */
1525         case SFP_MOD_PRESENT:
1526         case SFP_MOD_ERROR:
1527                 if (event == SFP_E_REMOVE) {
1528                         sfp_sm_mod_remove(sfp);
1529                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1530                 }
1531                 break;
1532         }
1533
1534         /* This state machine tracks the netdev up/down state */
1535         switch (sfp->sm_dev_state) {
1536         default:
1537                 if (event == SFP_E_DEV_UP)
1538                         sfp->sm_dev_state = SFP_DEV_UP;
1539                 break;
1540
1541         case SFP_DEV_UP:
1542                 if (event == SFP_E_DEV_DOWN) {
1543                         /* If the module has a PHY, avoid raising TX disable
1544                          * as this resets the PHY. Otherwise, raise it to
1545                          * turn the laser off.
1546                          */
1547                         if (!sfp->mod_phy)
1548                                 sfp_module_tx_disable(sfp);
1549                         sfp->sm_dev_state = SFP_DEV_DOWN;
1550                 }
1551                 break;
1552         }
1553
1554         /* Some events are global */
1555         if (sfp->sm_state != SFP_S_DOWN &&
1556             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1557              sfp->sm_dev_state != SFP_DEV_UP)) {
1558                 if (sfp->sm_state == SFP_S_LINK_UP &&
1559                     sfp->sm_dev_state == SFP_DEV_UP)
1560                         sfp_sm_link_down(sfp);
1561                 if (sfp->mod_phy)
1562                         sfp_sm_phy_detach(sfp);
1563                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1564                 mutex_unlock(&sfp->sm_mutex);
1565                 return;
1566         }
1567
1568         /* The main state machine */
1569         switch (sfp->sm_state) {
1570         case SFP_S_DOWN:
1571                 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1572                     sfp->sm_dev_state == SFP_DEV_UP)
1573                         sfp_sm_mod_init(sfp);
1574                 break;
1575
1576         case SFP_S_INIT:
1577                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1578                         sfp_sm_fault(sfp, true);
1579                 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1580                         sfp_sm_link_check_los(sfp);
1581                 break;
1582
1583         case SFP_S_WAIT_LOS:
1584                 if (event == SFP_E_TX_FAULT)
1585                         sfp_sm_fault(sfp, true);
1586                 else if (sfp_los_event_inactive(sfp, event))
1587                         sfp_sm_link_up(sfp);
1588                 break;
1589
1590         case SFP_S_LINK_UP:
1591                 if (event == SFP_E_TX_FAULT) {
1592                         sfp_sm_link_down(sfp);
1593                         sfp_sm_fault(sfp, true);
1594                 } else if (sfp_los_event_active(sfp, event)) {
1595                         sfp_sm_link_down(sfp);
1596                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1597                 }
1598                 break;
1599
1600         case SFP_S_TX_FAULT:
1601                 if (event == SFP_E_TIMEOUT) {
1602                         sfp_module_tx_fault_reset(sfp);
1603                         sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1604                 }
1605                 break;
1606
1607         case SFP_S_REINIT:
1608                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1609                         sfp_sm_fault(sfp, false);
1610                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1611                         dev_info(sfp->dev, "module transmit fault recovered\n");
1612                         sfp_sm_link_check_los(sfp);
1613                 }
1614                 break;
1615
1616         case SFP_S_TX_DISABLE:
1617                 break;
1618         }
1619
1620         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1621                 mod_state_to_str(sfp->sm_mod_state),
1622                 dev_state_to_str(sfp->sm_dev_state),
1623                 sm_state_to_str(sfp->sm_state));
1624
1625         mutex_unlock(&sfp->sm_mutex);
1626 }
1627
1628 static void sfp_attach(struct sfp *sfp)
1629 {
1630         sfp->attached = true;
1631         if (sfp->state & SFP_F_PRESENT)
1632                 sfp_sm_event(sfp, SFP_E_INSERT);
1633 }
1634
1635 static void sfp_detach(struct sfp *sfp)
1636 {
1637         sfp->attached = false;
1638         sfp_sm_event(sfp, SFP_E_REMOVE);
1639 }
1640
1641 static void sfp_start(struct sfp *sfp)
1642 {
1643         sfp_sm_event(sfp, SFP_E_DEV_UP);
1644 }
1645
1646 static void sfp_stop(struct sfp *sfp)
1647 {
1648         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1649 }
1650
1651 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1652 {
1653         /* locking... and check module is present */
1654
1655         if (sfp->id.ext.sff8472_compliance &&
1656             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1657                 modinfo->type = ETH_MODULE_SFF_8472;
1658                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1659         } else {
1660                 modinfo->type = ETH_MODULE_SFF_8079;
1661                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1662         }
1663         return 0;
1664 }
1665
1666 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1667                              u8 *data)
1668 {
1669         unsigned int first, last, len;
1670         int ret;
1671
1672         if (ee->len == 0)
1673                 return -EINVAL;
1674
1675         first = ee->offset;
1676         last = ee->offset + ee->len;
1677         if (first < ETH_MODULE_SFF_8079_LEN) {
1678                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1679                 len -= first;
1680
1681                 ret = sfp_read(sfp, false, first, data, len);
1682                 if (ret < 0)
1683                         return ret;
1684
1685                 first += len;
1686                 data += len;
1687         }
1688         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1689                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1690                 len -= first;
1691                 first -= ETH_MODULE_SFF_8079_LEN;
1692
1693                 ret = sfp_read(sfp, true, first, data, len);
1694                 if (ret < 0)
1695                         return ret;
1696         }
1697         return 0;
1698 }
1699
1700 static const struct sfp_socket_ops sfp_module_ops = {
1701         .attach = sfp_attach,
1702         .detach = sfp_detach,
1703         .start = sfp_start,
1704         .stop = sfp_stop,
1705         .module_info = sfp_module_info,
1706         .module_eeprom = sfp_module_eeprom,
1707 };
1708
1709 static void sfp_timeout(struct work_struct *work)
1710 {
1711         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1712
1713         rtnl_lock();
1714         sfp_sm_event(sfp, SFP_E_TIMEOUT);
1715         rtnl_unlock();
1716 }
1717
1718 static void sfp_check_state(struct sfp *sfp)
1719 {
1720         unsigned int state, i, changed;
1721
1722         mutex_lock(&sfp->st_mutex);
1723         state = sfp_get_state(sfp);
1724         changed = state ^ sfp->state;
1725         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1726
1727         for (i = 0; i < GPIO_MAX; i++)
1728                 if (changed & BIT(i))
1729                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1730                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1731
1732         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1733         sfp->state = state;
1734
1735         rtnl_lock();
1736         if (changed & SFP_F_PRESENT)
1737                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1738                                 SFP_E_INSERT : SFP_E_REMOVE);
1739
1740         if (changed & SFP_F_TX_FAULT)
1741                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1742                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1743
1744         if (changed & SFP_F_LOS)
1745                 sfp_sm_event(sfp, state & SFP_F_LOS ?
1746                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1747         rtnl_unlock();
1748         mutex_unlock(&sfp->st_mutex);
1749 }
1750
1751 static irqreturn_t sfp_irq(int irq, void *data)
1752 {
1753         struct sfp *sfp = data;
1754
1755         sfp_check_state(sfp);
1756
1757         return IRQ_HANDLED;
1758 }
1759
1760 static void sfp_poll(struct work_struct *work)
1761 {
1762         struct sfp *sfp = container_of(work, struct sfp, poll.work);
1763
1764         sfp_check_state(sfp);
1765         mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1766 }
1767
1768 static struct sfp *sfp_alloc(struct device *dev)
1769 {
1770         struct sfp *sfp;
1771
1772         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1773         if (!sfp)
1774                 return ERR_PTR(-ENOMEM);
1775
1776         sfp->dev = dev;
1777
1778         mutex_init(&sfp->sm_mutex);
1779         mutex_init(&sfp->st_mutex);
1780         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1781         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1782
1783         return sfp;
1784 }
1785
1786 static void sfp_cleanup(void *data)
1787 {
1788         struct sfp *sfp = data;
1789
1790         cancel_delayed_work_sync(&sfp->poll);
1791         cancel_delayed_work_sync(&sfp->timeout);
1792         if (sfp->i2c_mii) {
1793                 mdiobus_unregister(sfp->i2c_mii);
1794                 mdiobus_free(sfp->i2c_mii);
1795         }
1796         if (sfp->i2c)
1797                 i2c_put_adapter(sfp->i2c);
1798         kfree(sfp);
1799 }
1800
1801 static int sfp_probe(struct platform_device *pdev)
1802 {
1803         const struct sff_data *sff;
1804         struct sfp *sfp;
1805         bool poll = false;
1806         int irq, err, i;
1807
1808         sfp = sfp_alloc(&pdev->dev);
1809         if (IS_ERR(sfp))
1810                 return PTR_ERR(sfp);
1811
1812         platform_set_drvdata(pdev, sfp);
1813
1814         err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
1815         if (err < 0)
1816                 return err;
1817
1818         sff = sfp->type = &sfp_data;
1819
1820         if (pdev->dev.of_node) {
1821                 struct device_node *node = pdev->dev.of_node;
1822                 const struct of_device_id *id;
1823                 struct i2c_adapter *i2c;
1824                 struct device_node *np;
1825
1826                 id = of_match_node(sfp_of_match, node);
1827                 if (WARN_ON(!id))
1828                         return -EINVAL;
1829
1830                 sff = sfp->type = id->data;
1831
1832                 np = of_parse_phandle(node, "i2c-bus", 0);
1833                 if (!np) {
1834                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1835                         return -ENODEV;
1836                 }
1837
1838                 i2c = of_find_i2c_adapter_by_node(np);
1839                 of_node_put(np);
1840                 if (!i2c)
1841                         return -EPROBE_DEFER;
1842
1843                 err = sfp_i2c_configure(sfp, i2c);
1844                 if (err < 0) {
1845                         i2c_put_adapter(i2c);
1846                         return err;
1847                 }
1848         }
1849
1850         for (i = 0; i < GPIO_MAX; i++)
1851                 if (sff->gpios & BIT(i)) {
1852                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1853                                            gpio_of_names[i], gpio_flags[i]);
1854                         if (IS_ERR(sfp->gpio[i]))
1855                                 return PTR_ERR(sfp->gpio[i]);
1856                 }
1857
1858         sfp->get_state = sfp_gpio_get_state;
1859         sfp->set_state = sfp_gpio_set_state;
1860
1861         /* Modules that have no detect signal are always present */
1862         if (!(sfp->gpio[GPIO_MODDEF0]))
1863                 sfp->get_state = sff_gpio_get_state;
1864
1865         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1866                                  &sfp->max_power_mW);
1867         if (!sfp->max_power_mW)
1868                 sfp->max_power_mW = 1000;
1869
1870         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1871                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1872
1873         /* Get the initial state, and always signal TX disable,
1874          * since the network interface will not be up.
1875          */
1876         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1877
1878         if (sfp->gpio[GPIO_RATE_SELECT] &&
1879             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1880                 sfp->state |= SFP_F_RATE_SELECT;
1881         sfp_set_state(sfp, sfp->state);
1882         sfp_module_tx_disable(sfp);
1883
1884         for (i = 0; i < GPIO_MAX; i++) {
1885                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1886                         continue;
1887
1888                 irq = gpiod_to_irq(sfp->gpio[i]);
1889                 if (irq < 0) {
1890                         irq = 0;
1891                         poll = true;
1892                         continue;
1893                 }
1894
1895                 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1896                                                 IRQF_ONESHOT |
1897                                                 IRQF_TRIGGER_RISING |
1898                                                 IRQF_TRIGGER_FALLING,
1899                                                 dev_name(sfp->dev), sfp);
1900                 if (err)
1901                         poll = true;
1902         }
1903
1904         if (poll)
1905                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1906
1907         /* We could have an issue in cases no Tx disable pin is available or
1908          * wired as modules using a laser as their light source will continue to
1909          * be active when the fiber is removed. This could be a safety issue and
1910          * we should at least warn the user about that.
1911          */
1912         if (!sfp->gpio[GPIO_TX_DISABLE])
1913                 dev_warn(sfp->dev,
1914                          "No tx_disable pin: SFP modules will always be emitting.\n");
1915
1916         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1917         if (!sfp->sfp_bus)
1918                 return -ENOMEM;
1919
1920         return 0;
1921 }
1922
1923 static int sfp_remove(struct platform_device *pdev)
1924 {
1925         struct sfp *sfp = platform_get_drvdata(pdev);
1926
1927         sfp_unregister_socket(sfp->sfp_bus);
1928
1929         return 0;
1930 }
1931
1932 static struct platform_driver sfp_driver = {
1933         .probe = sfp_probe,
1934         .remove = sfp_remove,
1935         .driver = {
1936                 .name = "sfp",
1937                 .of_match_table = sfp_of_match,
1938         },
1939 };
1940
1941 static int sfp_init(void)
1942 {
1943         poll_jiffies = msecs_to_jiffies(100);
1944
1945         return platform_driver_register(&sfp_driver);
1946 }
1947 module_init(sfp_init);
1948
1949 static void sfp_exit(void)
1950 {
1951         platform_driver_unregister(&sfp_driver);
1952 }
1953 module_exit(sfp_exit);
1954
1955 MODULE_ALIAS("platform:sfp");
1956 MODULE_AUTHOR("Russell King");
1957 MODULE_LICENSE("GPL v2");