GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "ce.h"
20 #include "debug.h"
21
22 /*
23  * Support for Copy Engine hardware, which is mainly used for
24  * communication between Host and Target over a PCIe interconnect.
25  */
26
27 /*
28  * A single CopyEngine (CE) comprises two "rings":
29  *   a source ring
30  *   a destination ring
31  *
32  * Each ring consists of a number of descriptors which specify
33  * an address, length, and meta-data.
34  *
35  * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
36  * controls one ring and the other side controls the other ring.
37  * The source side chooses when to initiate a transfer and it
38  * chooses what to send (buffer address, length). The destination
39  * side keeps a supply of "anonymous receive buffers" available and
40  * it handles incoming data as it arrives (when the destination
41  * receives an interrupt).
42  *
43  * The sender may send a simple buffer (address/length) or it may
44  * send a small list of buffers.  When a small list is sent, hardware
45  * "gathers" these and they end up in a single destination buffer
46  * with a single interrupt.
47  *
48  * There are several "contexts" managed by this layer -- more, it
49  * may seem -- than should be needed. These are provided mainly for
50  * maximum flexibility and especially to facilitate a simpler HIF
51  * implementation. There are per-CopyEngine recv, send, and watermark
52  * contexts. These are supplied by the caller when a recv, send,
53  * or watermark handler is established and they are echoed back to
54  * the caller when the respective callbacks are invoked. There is
55  * also a per-transfer context supplied by the caller when a buffer
56  * (or sendlist) is sent and when a buffer is enqueued for recv.
57  * These per-transfer contexts are echoed back to the caller when
58  * the buffer is sent/received.
59  */
60
61 static inline unsigned int
62 ath10k_set_ring_byte(unsigned int offset,
63                      struct ath10k_hw_ce_regs_addr_map *addr_map)
64 {
65         return ((offset << addr_map->lsb) & addr_map->mask);
66 }
67
68 static inline unsigned int
69 ath10k_get_ring_byte(unsigned int offset,
70                      struct ath10k_hw_ce_regs_addr_map *addr_map)
71 {
72         return ((offset & addr_map->mask) >> (addr_map->lsb));
73 }
74
75 static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
76 {
77         struct ath10k_ce *ce = ath10k_ce_priv(ar);
78
79         return ce->bus_ops->read32(ar, offset);
80 }
81
82 static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
83 {
84         struct ath10k_ce *ce = ath10k_ce_priv(ar);
85
86         ce->bus_ops->write32(ar, offset, value);
87 }
88
89 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
90                                                        u32 ce_ctrl_addr,
91                                                        unsigned int n)
92 {
93         ath10k_ce_write32(ar, ce_ctrl_addr +
94                           ar->hw_ce_regs->dst_wr_index_addr, n);
95 }
96
97 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
98                                                       u32 ce_ctrl_addr)
99 {
100         return ath10k_ce_read32(ar, ce_ctrl_addr +
101                                 ar->hw_ce_regs->dst_wr_index_addr);
102 }
103
104 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
105                                                       u32 ce_ctrl_addr,
106                                                       unsigned int n)
107 {
108         ath10k_ce_write32(ar, ce_ctrl_addr +
109                           ar->hw_ce_regs->sr_wr_index_addr, n);
110 }
111
112 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
113                                                      u32 ce_ctrl_addr)
114 {
115         return ath10k_ce_read32(ar, ce_ctrl_addr +
116                                 ar->hw_ce_regs->sr_wr_index_addr);
117 }
118
119 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
120                                                     u32 ce_ctrl_addr)
121 {
122         return ath10k_ce_read32(ar, ce_ctrl_addr +
123                                 ar->hw_ce_regs->current_srri_addr);
124 }
125
126 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
127                                                     u32 ce_ctrl_addr,
128                                                     unsigned int addr)
129 {
130         ath10k_ce_write32(ar, ce_ctrl_addr +
131                           ar->hw_ce_regs->sr_base_addr, addr);
132 }
133
134 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
135                                                u32 ce_ctrl_addr,
136                                                unsigned int n)
137 {
138         ath10k_ce_write32(ar, ce_ctrl_addr +
139                           ar->hw_ce_regs->sr_size_addr, n);
140 }
141
142 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
143                                                u32 ce_ctrl_addr,
144                                                unsigned int n)
145 {
146         struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
147
148         u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
149                                           ctrl_regs->addr);
150
151         ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
152                           (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
153                           ath10k_set_ring_byte(n, ctrl_regs->dmax));
154 }
155
156 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
157                                                     u32 ce_ctrl_addr,
158                                                     unsigned int n)
159 {
160         struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
161
162         u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
163                                           ctrl_regs->addr);
164
165         ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
166                           (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
167                           ath10k_set_ring_byte(n, ctrl_regs->src_ring));
168 }
169
170 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
171                                                      u32 ce_ctrl_addr,
172                                                      unsigned int n)
173 {
174         struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
175
176         u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
177                                           ctrl_regs->addr);
178
179         ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
180                           (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
181                           ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
182 }
183
184 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
185                                                      u32 ce_ctrl_addr)
186 {
187         return ath10k_ce_read32(ar, ce_ctrl_addr +
188                                 ar->hw_ce_regs->current_drri_addr);
189 }
190
191 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
192                                                      u32 ce_ctrl_addr,
193                                                      u32 addr)
194 {
195         ath10k_ce_write32(ar, ce_ctrl_addr +
196                           ar->hw_ce_regs->dr_base_addr, addr);
197 }
198
199 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
200                                                 u32 ce_ctrl_addr,
201                                                 unsigned int n)
202 {
203         ath10k_ce_write32(ar, ce_ctrl_addr +
204                           ar->hw_ce_regs->dr_size_addr, n);
205 }
206
207 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
208                                                    u32 ce_ctrl_addr,
209                                                    unsigned int n)
210 {
211         struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
212         u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
213
214         ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
215                           (addr & ~(srcr_wm->wm_high->mask)) |
216                           (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
217 }
218
219 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
220                                                   u32 ce_ctrl_addr,
221                                                   unsigned int n)
222 {
223         struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
224         u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
225
226         ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
227                           (addr & ~(srcr_wm->wm_low->mask)) |
228                           (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
229 }
230
231 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
232                                                     u32 ce_ctrl_addr,
233                                                     unsigned int n)
234 {
235         struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
236         u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
237
238         ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
239                           (addr & ~(dstr_wm->wm_high->mask)) |
240                           (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
241 }
242
243 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
244                                                    u32 ce_ctrl_addr,
245                                                    unsigned int n)
246 {
247         struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
248         u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
249
250         ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
251                           (addr & ~(dstr_wm->wm_low->mask)) |
252                           (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
253 }
254
255 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
256                                                         u32 ce_ctrl_addr)
257 {
258         struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
259
260         u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
261                                             ar->hw_ce_regs->host_ie_addr);
262
263         ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
264                           host_ie_addr | host_ie->copy_complete->mask);
265 }
266
267 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
268                                                         u32 ce_ctrl_addr)
269 {
270         struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
271
272         u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
273                                             ar->hw_ce_regs->host_ie_addr);
274
275         ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
276                           host_ie_addr & ~(host_ie->copy_complete->mask));
277 }
278
279 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
280                                                     u32 ce_ctrl_addr)
281 {
282         struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
283
284         u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
285                                             ar->hw_ce_regs->host_ie_addr);
286
287         ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
288                           host_ie_addr & ~(wm_regs->wm_mask));
289 }
290
291 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
292                                                u32 ce_ctrl_addr)
293 {
294         struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
295
296         u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
297                                             ar->hw_ce_regs->misc_ie_addr);
298
299         ath10k_ce_write32(ar,
300                           ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
301                           misc_ie_addr | misc_regs->err_mask);
302 }
303
304 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
305                                                 u32 ce_ctrl_addr)
306 {
307         struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
308
309         u32 misc_ie_addr = ath10k_ce_read32(ar,
310                         ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
311
312         ath10k_ce_write32(ar,
313                           ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
314                           misc_ie_addr & ~(misc_regs->err_mask));
315 }
316
317 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
318                                                      u32 ce_ctrl_addr,
319                                                      unsigned int mask)
320 {
321         struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
322
323         ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
324 }
325
326 /*
327  * Guts of ath10k_ce_send.
328  * The caller takes responsibility for any needed locking.
329  */
330 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
331                           void *per_transfer_context,
332                           u32 buffer,
333                           unsigned int nbytes,
334                           unsigned int transfer_id,
335                           unsigned int flags)
336 {
337         struct ath10k *ar = ce_state->ar;
338         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
339         struct ce_desc *desc, sdesc;
340         unsigned int nentries_mask = src_ring->nentries_mask;
341         unsigned int sw_index = src_ring->sw_index;
342         unsigned int write_index = src_ring->write_index;
343         u32 ctrl_addr = ce_state->ctrl_addr;
344         u32 desc_flags = 0;
345         int ret = 0;
346
347         if (nbytes > ce_state->src_sz_max)
348                 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
349                             __func__, nbytes, ce_state->src_sz_max);
350
351         if (unlikely(CE_RING_DELTA(nentries_mask,
352                                    write_index, sw_index - 1) <= 0)) {
353                 ret = -ENOSR;
354                 goto exit;
355         }
356
357         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
358                                    write_index);
359
360         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
361
362         if (flags & CE_SEND_FLAG_GATHER)
363                 desc_flags |= CE_DESC_FLAGS_GATHER;
364         if (flags & CE_SEND_FLAG_BYTE_SWAP)
365                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
366
367         sdesc.addr   = __cpu_to_le32(buffer);
368         sdesc.nbytes = __cpu_to_le16(nbytes);
369         sdesc.flags  = __cpu_to_le16(desc_flags);
370
371         *desc = sdesc;
372
373         src_ring->per_transfer_context[write_index] = per_transfer_context;
374
375         /* Update Source Ring Write Index */
376         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
377
378         /* WORKAROUND */
379         if (!(flags & CE_SEND_FLAG_GATHER))
380                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
381
382         src_ring->write_index = write_index;
383 exit:
384         return ret;
385 }
386
387 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
388 {
389         struct ath10k *ar = pipe->ar;
390         struct ath10k_ce *ce = ath10k_ce_priv(ar);
391         struct ath10k_ce_ring *src_ring = pipe->src_ring;
392         u32 ctrl_addr = pipe->ctrl_addr;
393
394         lockdep_assert_held(&ce->ce_lock);
395
396         /*
397          * This function must be called only if there is an incomplete
398          * scatter-gather transfer (before index register is updated)
399          * that needs to be cleaned up.
400          */
401         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
402                 return;
403
404         if (WARN_ON_ONCE(src_ring->write_index ==
405                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
406                 return;
407
408         src_ring->write_index--;
409         src_ring->write_index &= src_ring->nentries_mask;
410
411         src_ring->per_transfer_context[src_ring->write_index] = NULL;
412 }
413
414 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
415                    void *per_transfer_context,
416                    u32 buffer,
417                    unsigned int nbytes,
418                    unsigned int transfer_id,
419                    unsigned int flags)
420 {
421         struct ath10k *ar = ce_state->ar;
422         struct ath10k_ce *ce = ath10k_ce_priv(ar);
423         int ret;
424
425         spin_lock_bh(&ce->ce_lock);
426         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
427                                     buffer, nbytes, transfer_id, flags);
428         spin_unlock_bh(&ce->ce_lock);
429
430         return ret;
431 }
432
433 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
434 {
435         struct ath10k *ar = pipe->ar;
436         struct ath10k_ce *ce = ath10k_ce_priv(ar);
437         int delta;
438
439         spin_lock_bh(&ce->ce_lock);
440         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
441                               pipe->src_ring->write_index,
442                               pipe->src_ring->sw_index - 1);
443         spin_unlock_bh(&ce->ce_lock);
444
445         return delta;
446 }
447
448 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
449 {
450         struct ath10k *ar = pipe->ar;
451         struct ath10k_ce *ce = ath10k_ce_priv(ar);
452         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
453         unsigned int nentries_mask = dest_ring->nentries_mask;
454         unsigned int write_index = dest_ring->write_index;
455         unsigned int sw_index = dest_ring->sw_index;
456
457         lockdep_assert_held(&ce->ce_lock);
458
459         return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
460 }
461
462 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
463 {
464         struct ath10k *ar = pipe->ar;
465         struct ath10k_ce *ce = ath10k_ce_priv(ar);
466         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
467         unsigned int nentries_mask = dest_ring->nentries_mask;
468         unsigned int write_index = dest_ring->write_index;
469         unsigned int sw_index = dest_ring->sw_index;
470         struct ce_desc *base = dest_ring->base_addr_owner_space;
471         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
472         u32 ctrl_addr = pipe->ctrl_addr;
473
474         lockdep_assert_held(&ce->ce_lock);
475
476         if ((pipe->id != 5) &&
477             CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
478                 return -ENOSPC;
479
480         desc->addr = __cpu_to_le32(paddr);
481         desc->nbytes = 0;
482
483         dest_ring->per_transfer_context[write_index] = ctx;
484         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
485         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
486         dest_ring->write_index = write_index;
487
488         return 0;
489 }
490
491 void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
492 {
493         struct ath10k *ar = pipe->ar;
494         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
495         unsigned int nentries_mask = dest_ring->nentries_mask;
496         unsigned int write_index = dest_ring->write_index;
497         u32 ctrl_addr = pipe->ctrl_addr;
498         u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
499
500         /* Prevent CE ring stuck issue that will occur when ring is full.
501          * Make sure that write index is 1 less than read index.
502          */
503         if ((cur_write_idx + nentries)  == dest_ring->sw_index)
504                 nentries -= 1;
505
506         write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
507         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
508         dest_ring->write_index = write_index;
509 }
510
511 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
512 {
513         struct ath10k *ar = pipe->ar;
514         struct ath10k_ce *ce = ath10k_ce_priv(ar);
515         int ret;
516
517         spin_lock_bh(&ce->ce_lock);
518         ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
519         spin_unlock_bh(&ce->ce_lock);
520
521         return ret;
522 }
523
524 /*
525  * Guts of ath10k_ce_completed_recv_next.
526  * The caller takes responsibility for any necessary locking.
527  */
528 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
529                                          void **per_transfer_contextp,
530                                          unsigned int *nbytesp)
531 {
532         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
533         unsigned int nentries_mask = dest_ring->nentries_mask;
534         unsigned int sw_index = dest_ring->sw_index;
535
536         struct ce_desc *base = dest_ring->base_addr_owner_space;
537         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
538         struct ce_desc sdesc;
539         u16 nbytes;
540
541         /* Copy in one go for performance reasons */
542         sdesc = *desc;
543
544         nbytes = __le16_to_cpu(sdesc.nbytes);
545         if (nbytes == 0) {
546                 /*
547                  * This closes a relatively unusual race where the Host
548                  * sees the updated DRRI before the update to the
549                  * corresponding descriptor has completed. We treat this
550                  * as a descriptor that is not yet done.
551                  */
552                 return -EIO;
553         }
554
555         desc->nbytes = 0;
556
557         /* Return data from completed destination descriptor */
558         *nbytesp = nbytes;
559
560         if (per_transfer_contextp)
561                 *per_transfer_contextp =
562                         dest_ring->per_transfer_context[sw_index];
563
564         /* Copy engine 5 (HTT Rx) will reuse the same transfer context.
565          * So update transfer context all CEs except CE5.
566          */
567         if (ce_state->id != 5)
568                 dest_ring->per_transfer_context[sw_index] = NULL;
569
570         /* Update sw_index */
571         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
572         dest_ring->sw_index = sw_index;
573
574         return 0;
575 }
576
577 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
578                                   void **per_transfer_contextp,
579                                   unsigned int *nbytesp)
580 {
581         struct ath10k *ar = ce_state->ar;
582         struct ath10k_ce *ce = ath10k_ce_priv(ar);
583         int ret;
584
585         spin_lock_bh(&ce->ce_lock);
586         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
587                                                    per_transfer_contextp,
588                                                    nbytesp);
589         spin_unlock_bh(&ce->ce_lock);
590
591         return ret;
592 }
593
594 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
595                                void **per_transfer_contextp,
596                                u32 *bufferp)
597 {
598         struct ath10k_ce_ring *dest_ring;
599         unsigned int nentries_mask;
600         unsigned int sw_index;
601         unsigned int write_index;
602         int ret;
603         struct ath10k *ar;
604         struct ath10k_ce *ce;
605
606         dest_ring = ce_state->dest_ring;
607
608         if (!dest_ring)
609                 return -EIO;
610
611         ar = ce_state->ar;
612         ce = ath10k_ce_priv(ar);
613
614         spin_lock_bh(&ce->ce_lock);
615
616         nentries_mask = dest_ring->nentries_mask;
617         sw_index = dest_ring->sw_index;
618         write_index = dest_ring->write_index;
619         if (write_index != sw_index) {
620                 struct ce_desc *base = dest_ring->base_addr_owner_space;
621                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
622
623                 /* Return data from completed destination descriptor */
624                 *bufferp = __le32_to_cpu(desc->addr);
625
626                 if (per_transfer_contextp)
627                         *per_transfer_contextp =
628                                 dest_ring->per_transfer_context[sw_index];
629
630                 /* sanity */
631                 dest_ring->per_transfer_context[sw_index] = NULL;
632                 desc->nbytes = 0;
633
634                 /* Update sw_index */
635                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
636                 dest_ring->sw_index = sw_index;
637                 ret = 0;
638         } else {
639                 ret = -EIO;
640         }
641
642         spin_unlock_bh(&ce->ce_lock);
643
644         return ret;
645 }
646
647 /*
648  * Guts of ath10k_ce_completed_send_next.
649  * The caller takes responsibility for any necessary locking.
650  */
651 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
652                                          void **per_transfer_contextp)
653 {
654         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
655         u32 ctrl_addr = ce_state->ctrl_addr;
656         struct ath10k *ar = ce_state->ar;
657         unsigned int nentries_mask = src_ring->nentries_mask;
658         unsigned int sw_index = src_ring->sw_index;
659         unsigned int read_index;
660         struct ce_desc *desc;
661
662         if (src_ring->hw_index == sw_index) {
663                 /*
664                  * The SW completion index has caught up with the cached
665                  * version of the HW completion index.
666                  * Update the cached HW completion index to see whether
667                  * the SW has really caught up to the HW, or if the cached
668                  * value of the HW index has become stale.
669                  */
670
671                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
672                 if (read_index == 0xffffffff)
673                         return -ENODEV;
674
675                 read_index &= nentries_mask;
676                 src_ring->hw_index = read_index;
677         }
678
679         read_index = src_ring->hw_index;
680
681         if (read_index == sw_index)
682                 return -EIO;
683
684         if (per_transfer_contextp)
685                 *per_transfer_contextp =
686                         src_ring->per_transfer_context[sw_index];
687
688         /* sanity */
689         src_ring->per_transfer_context[sw_index] = NULL;
690         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
691                                    sw_index);
692         desc->nbytes = 0;
693
694         /* Update sw_index */
695         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
696         src_ring->sw_index = sw_index;
697
698         return 0;
699 }
700
701 /* NB: Modeled after ath10k_ce_completed_send_next */
702 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
703                                void **per_transfer_contextp,
704                                u32 *bufferp,
705                                unsigned int *nbytesp,
706                                unsigned int *transfer_idp)
707 {
708         struct ath10k_ce_ring *src_ring;
709         unsigned int nentries_mask;
710         unsigned int sw_index;
711         unsigned int write_index;
712         int ret;
713         struct ath10k *ar;
714         struct ath10k_ce *ce;
715
716         src_ring = ce_state->src_ring;
717
718         if (!src_ring)
719                 return -EIO;
720
721         ar = ce_state->ar;
722         ce = ath10k_ce_priv(ar);
723
724         spin_lock_bh(&ce->ce_lock);
725
726         nentries_mask = src_ring->nentries_mask;
727         sw_index = src_ring->sw_index;
728         write_index = src_ring->write_index;
729
730         if (write_index != sw_index) {
731                 struct ce_desc *base = src_ring->base_addr_owner_space;
732                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
733
734                 /* Return data from completed source descriptor */
735                 *bufferp = __le32_to_cpu(desc->addr);
736                 *nbytesp = __le16_to_cpu(desc->nbytes);
737                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
738                                                 CE_DESC_FLAGS_META_DATA);
739
740                 if (per_transfer_contextp)
741                         *per_transfer_contextp =
742                                 src_ring->per_transfer_context[sw_index];
743
744                 /* sanity */
745                 src_ring->per_transfer_context[sw_index] = NULL;
746
747                 /* Update sw_index */
748                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
749                 src_ring->sw_index = sw_index;
750                 ret = 0;
751         } else {
752                 ret = -EIO;
753         }
754
755         spin_unlock_bh(&ce->ce_lock);
756
757         return ret;
758 }
759
760 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
761                                   void **per_transfer_contextp)
762 {
763         struct ath10k *ar = ce_state->ar;
764         struct ath10k_ce *ce = ath10k_ce_priv(ar);
765         int ret;
766
767         spin_lock_bh(&ce->ce_lock);
768         ret = ath10k_ce_completed_send_next_nolock(ce_state,
769                                                    per_transfer_contextp);
770         spin_unlock_bh(&ce->ce_lock);
771
772         return ret;
773 }
774
775 /*
776  * Guts of interrupt handler for per-engine interrupts on a particular CE.
777  *
778  * Invokes registered callbacks for recv_complete,
779  * send_complete, and watermarks.
780  */
781 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
782 {
783         struct ath10k_ce *ce = ath10k_ce_priv(ar);
784         struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
785         struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
786         u32 ctrl_addr = ce_state->ctrl_addr;
787
788         spin_lock_bh(&ce->ce_lock);
789
790         /* Clear the copy-complete interrupts that will be handled here. */
791         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
792                                           wm_regs->cc_mask);
793
794         spin_unlock_bh(&ce->ce_lock);
795
796         if (ce_state->recv_cb)
797                 ce_state->recv_cb(ce_state);
798
799         if (ce_state->send_cb)
800                 ce_state->send_cb(ce_state);
801
802         spin_lock_bh(&ce->ce_lock);
803
804         /*
805          * Misc CE interrupts are not being handled, but still need
806          * to be cleared.
807          */
808         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
809
810         spin_unlock_bh(&ce->ce_lock);
811 }
812
813 /*
814  * Handler for per-engine interrupts on ALL active CEs.
815  * This is used in cases where the system is sharing a
816  * single interrput for all CEs
817  */
818
819 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
820 {
821         int ce_id;
822         u32 intr_summary;
823
824         intr_summary = ath10k_ce_interrupt_summary(ar);
825
826         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
827                 if (intr_summary & (1 << ce_id))
828                         intr_summary &= ~(1 << ce_id);
829                 else
830                         /* no intr pending on this CE */
831                         continue;
832
833                 ath10k_ce_per_engine_service(ar, ce_id);
834         }
835 }
836
837 /*
838  * Adjust interrupts for the copy complete handler.
839  * If it's needed for either send or recv, then unmask
840  * this interrupt; otherwise, mask it.
841  *
842  * Called with ce_lock held.
843  */
844 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
845 {
846         u32 ctrl_addr = ce_state->ctrl_addr;
847         struct ath10k *ar = ce_state->ar;
848         bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
849
850         if ((!disable_copy_compl_intr) &&
851             (ce_state->send_cb || ce_state->recv_cb))
852                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
853         else
854                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
855
856         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
857 }
858
859 int ath10k_ce_disable_interrupts(struct ath10k *ar)
860 {
861         int ce_id;
862
863         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
864                 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
865
866                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
867                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
868                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
869         }
870
871         return 0;
872 }
873
874 void ath10k_ce_enable_interrupts(struct ath10k *ar)
875 {
876         struct ath10k_ce *ce = ath10k_ce_priv(ar);
877         int ce_id;
878         struct ath10k_ce_pipe *ce_state;
879
880         /* Skip the last copy engine, CE7 the diagnostic window, as that
881          * uses polling and isn't initialized for interrupts.
882          */
883         for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) {
884                 ce_state  = &ce->ce_states[ce_id];
885                 ath10k_ce_per_engine_handler_adjust(ce_state);
886         }
887 }
888
889 static int ath10k_ce_init_src_ring(struct ath10k *ar,
890                                    unsigned int ce_id,
891                                    const struct ce_attr *attr)
892 {
893         struct ath10k_ce *ce = ath10k_ce_priv(ar);
894         struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
895         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
896         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
897
898         nentries = roundup_pow_of_two(attr->src_nentries);
899
900         memset(src_ring->base_addr_owner_space, 0,
901                nentries * sizeof(struct ce_desc));
902
903         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
904         src_ring->sw_index &= src_ring->nentries_mask;
905         src_ring->hw_index = src_ring->sw_index;
906
907         src_ring->write_index =
908                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
909         src_ring->write_index &= src_ring->nentries_mask;
910
911         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
912                                          src_ring->base_addr_ce_space);
913         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
914         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
915         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
916         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
917         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
918
919         ath10k_dbg(ar, ATH10K_DBG_BOOT,
920                    "boot init ce src ring id %d entries %d base_addr %pK\n",
921                    ce_id, nentries, src_ring->base_addr_owner_space);
922
923         return 0;
924 }
925
926 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
927                                     unsigned int ce_id,
928                                     const struct ce_attr *attr)
929 {
930         struct ath10k_ce *ce = ath10k_ce_priv(ar);
931         struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
932         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
933         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
934
935         nentries = roundup_pow_of_two(attr->dest_nentries);
936
937         memset(dest_ring->base_addr_owner_space, 0,
938                nentries * sizeof(struct ce_desc));
939
940         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
941         dest_ring->sw_index &= dest_ring->nentries_mask;
942         dest_ring->write_index =
943                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
944         dest_ring->write_index &= dest_ring->nentries_mask;
945
946         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
947                                           dest_ring->base_addr_ce_space);
948         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
949         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
950         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
951         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
952
953         ath10k_dbg(ar, ATH10K_DBG_BOOT,
954                    "boot ce dest ring id %d entries %d base_addr %pK\n",
955                    ce_id, nentries, dest_ring->base_addr_owner_space);
956
957         return 0;
958 }
959
960 static struct ath10k_ce_ring *
961 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
962                          const struct ce_attr *attr)
963 {
964         struct ath10k_ce_ring *src_ring;
965         u32 nentries = attr->src_nentries;
966         dma_addr_t base_addr;
967
968         nentries = roundup_pow_of_two(nentries);
969
970         src_ring = kzalloc(sizeof(*src_ring) +
971                            (nentries *
972                             sizeof(*src_ring->per_transfer_context)),
973                            GFP_KERNEL);
974         if (src_ring == NULL)
975                 return ERR_PTR(-ENOMEM);
976
977         src_ring->nentries = nentries;
978         src_ring->nentries_mask = nentries - 1;
979
980         /*
981          * Legacy platforms that do not support cache
982          * coherent DMA are unsupported
983          */
984         src_ring->base_addr_owner_space_unaligned =
985                 dma_alloc_coherent(ar->dev,
986                                    (nentries * sizeof(struct ce_desc) +
987                                     CE_DESC_RING_ALIGN),
988                                    &base_addr, GFP_KERNEL);
989         if (!src_ring->base_addr_owner_space_unaligned) {
990                 kfree(src_ring);
991                 return ERR_PTR(-ENOMEM);
992         }
993
994         src_ring->base_addr_ce_space_unaligned = base_addr;
995
996         src_ring->base_addr_owner_space = PTR_ALIGN(
997                         src_ring->base_addr_owner_space_unaligned,
998                         CE_DESC_RING_ALIGN);
999         src_ring->base_addr_ce_space = ALIGN(
1000                         src_ring->base_addr_ce_space_unaligned,
1001                         CE_DESC_RING_ALIGN);
1002
1003         return src_ring;
1004 }
1005
1006 static struct ath10k_ce_ring *
1007 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1008                           const struct ce_attr *attr)
1009 {
1010         struct ath10k_ce_ring *dest_ring;
1011         u32 nentries;
1012         dma_addr_t base_addr;
1013
1014         nentries = roundup_pow_of_two(attr->dest_nentries);
1015
1016         dest_ring = kzalloc(sizeof(*dest_ring) +
1017                             (nentries *
1018                              sizeof(*dest_ring->per_transfer_context)),
1019                             GFP_KERNEL);
1020         if (dest_ring == NULL)
1021                 return ERR_PTR(-ENOMEM);
1022
1023         dest_ring->nentries = nentries;
1024         dest_ring->nentries_mask = nentries - 1;
1025
1026         /*
1027          * Legacy platforms that do not support cache
1028          * coherent DMA are unsupported
1029          */
1030         dest_ring->base_addr_owner_space_unaligned =
1031                 dma_zalloc_coherent(ar->dev,
1032                                     (nentries * sizeof(struct ce_desc) +
1033                                      CE_DESC_RING_ALIGN),
1034                                     &base_addr, GFP_KERNEL);
1035         if (!dest_ring->base_addr_owner_space_unaligned) {
1036                 kfree(dest_ring);
1037                 return ERR_PTR(-ENOMEM);
1038         }
1039
1040         dest_ring->base_addr_ce_space_unaligned = base_addr;
1041
1042         dest_ring->base_addr_owner_space = PTR_ALIGN(
1043                         dest_ring->base_addr_owner_space_unaligned,
1044                         CE_DESC_RING_ALIGN);
1045         dest_ring->base_addr_ce_space = ALIGN(
1046                         dest_ring->base_addr_ce_space_unaligned,
1047                         CE_DESC_RING_ALIGN);
1048
1049         return dest_ring;
1050 }
1051
1052 /*
1053  * Initialize a Copy Engine based on caller-supplied attributes.
1054  * This may be called once to initialize both source and destination
1055  * rings or it may be called twice for separate source and destination
1056  * initialization. It may be that only one side or the other is
1057  * initialized by software/firmware.
1058  */
1059 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1060                         const struct ce_attr *attr)
1061 {
1062         int ret;
1063
1064         if (attr->src_nentries) {
1065                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1066                 if (ret) {
1067                         ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1068                                    ce_id, ret);
1069                         return ret;
1070                 }
1071         }
1072
1073         if (attr->dest_nentries) {
1074                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1075                 if (ret) {
1076                         ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1077                                    ce_id, ret);
1078                         return ret;
1079                 }
1080         }
1081
1082         return 0;
1083 }
1084
1085 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1086 {
1087         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1088
1089         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1090         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1091         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1092         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1093 }
1094
1095 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1096 {
1097         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1098
1099         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1100         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1101         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1102 }
1103
1104 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1105 {
1106         ath10k_ce_deinit_src_ring(ar, ce_id);
1107         ath10k_ce_deinit_dest_ring(ar, ce_id);
1108 }
1109
1110 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1111                          const struct ce_attr *attr)
1112 {
1113         struct ath10k_ce *ce = ath10k_ce_priv(ar);
1114         struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1115         int ret;
1116
1117         /*
1118          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1119          * additional TX locking checks.
1120          *
1121          * For the lack of a better place do the check here.
1122          */
1123         BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1124                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1125         BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1126                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1127         BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1128                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1129
1130         ce_state->ar = ar;
1131         ce_state->id = ce_id;
1132         ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1133         ce_state->attr_flags = attr->flags;
1134         ce_state->src_sz_max = attr->src_sz_max;
1135
1136         if (attr->src_nentries)
1137                 ce_state->send_cb = attr->send_cb;
1138
1139         if (attr->dest_nentries)
1140                 ce_state->recv_cb = attr->recv_cb;
1141
1142         if (attr->src_nentries) {
1143                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1144                 if (IS_ERR(ce_state->src_ring)) {
1145                         ret = PTR_ERR(ce_state->src_ring);
1146                         ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1147                                    ce_id, ret);
1148                         ce_state->src_ring = NULL;
1149                         return ret;
1150                 }
1151         }
1152
1153         if (attr->dest_nentries) {
1154                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1155                                                                 attr);
1156                 if (IS_ERR(ce_state->dest_ring)) {
1157                         ret = PTR_ERR(ce_state->dest_ring);
1158                         ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1159                                    ce_id, ret);
1160                         ce_state->dest_ring = NULL;
1161                         return ret;
1162                 }
1163         }
1164
1165         return 0;
1166 }
1167
1168 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1169 {
1170         struct ath10k_ce *ce = ath10k_ce_priv(ar);
1171         struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1172
1173         if (ce_state->src_ring) {
1174                 dma_free_coherent(ar->dev,
1175                                   (ce_state->src_ring->nentries *
1176                                    sizeof(struct ce_desc) +
1177                                    CE_DESC_RING_ALIGN),
1178                                   ce_state->src_ring->base_addr_owner_space,
1179                                   ce_state->src_ring->base_addr_ce_space);
1180                 kfree(ce_state->src_ring);
1181         }
1182
1183         if (ce_state->dest_ring) {
1184                 dma_free_coherent(ar->dev,
1185                                   (ce_state->dest_ring->nentries *
1186                                    sizeof(struct ce_desc) +
1187                                    CE_DESC_RING_ALIGN),
1188                                   ce_state->dest_ring->base_addr_owner_space,
1189                                   ce_state->dest_ring->base_addr_ce_space);
1190                 kfree(ce_state->dest_ring);
1191         }
1192
1193         ce_state->src_ring = NULL;
1194         ce_state->dest_ring = NULL;
1195 }
1196
1197 void ath10k_ce_dump_registers(struct ath10k *ar,
1198                               struct ath10k_fw_crash_data *crash_data)
1199 {
1200         struct ath10k_ce *ce = ath10k_ce_priv(ar);
1201         struct ath10k_ce_crash_data ce_data;
1202         u32 addr, id;
1203
1204         lockdep_assert_held(&ar->data_lock);
1205
1206         ath10k_err(ar, "Copy Engine register dump:\n");
1207
1208         spin_lock_bh(&ce->ce_lock);
1209         for (id = 0; id < CE_COUNT; id++) {
1210                 addr = ath10k_ce_base_address(ar, id);
1211                 ce_data.base_addr = cpu_to_le32(addr);
1212
1213                 ce_data.src_wr_idx =
1214                         cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1215                 ce_data.src_r_idx =
1216                         cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1217                 ce_data.dst_wr_idx =
1218                         cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1219                 ce_data.dst_r_idx =
1220                         cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1221
1222                 if (crash_data)
1223                         crash_data->ce_crash_data[id] = ce_data;
1224
1225                 ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1226                            le32_to_cpu(ce_data.base_addr),
1227                            le32_to_cpu(ce_data.src_wr_idx),
1228                            le32_to_cpu(ce_data.src_r_idx),
1229                            le32_to_cpu(ce_data.dst_wr_idx),
1230                            le32_to_cpu(ce_data.dst_r_idx));
1231         }
1232
1233         spin_unlock_bh(&ce->ce_lock);
1234 }