GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/slab.h>
27
28 #include "ath5k.h"
29 #include "reg.h"
30 #include "debug.h"
31
32
33 /******************\
34 * Helper functions *
35 \******************/
36
37 /*
38  * Translate binary channel representation in EEPROM to frequency
39  */
40 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
41                                                         unsigned int mode)
42 {
43         u16 val;
44
45         if (bin == AR5K_EEPROM_CHANNEL_DIS)
46                 return bin;
47
48         if (mode == AR5K_EEPROM_MODE_11A) {
49                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
50                         val = (5 * bin) + 4800;
51                 else
52                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
53                                 (bin * 10) + 5100;
54         } else {
55                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
56                         val = bin + 2300;
57                 else
58                         val = bin + 2400;
59         }
60
61         return val;
62 }
63
64
65 /*********\
66 * Parsers *
67 \*********/
68
69 /*
70  * Initialize eeprom & capabilities structs
71  */
72 static int
73 ath5k_eeprom_init_header(struct ath5k_hw *ah)
74 {
75         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
76         u16 val;
77         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
78
79         /*
80          * Read values from EEPROM and store them in the capability structure
81          */
82         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87
88         /* Return if we have an old EEPROM */
89         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90                 return 0;
91
92         /*
93          * Validate the checksum of the EEPROM date. There are some
94          * devices with invalid EEPROMs.
95          */
96         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97         if (val) {
98                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
102
103                 /*
104                  * Fail safe check to prevent stupid loops due
105                  * to busted EEPROMs. XXX: This value is likely too
106                  * big still, waiting on a better value.
107                  */
108                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109                         ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
110                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
111                                   eep_max, eep_max,
112                                   3 * AR5K_EEPROM_INFO_MAX,
113                                   3 * AR5K_EEPROM_INFO_MAX);
114                         return -EIO;
115                 }
116         }
117
118         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120                 cksum ^= val;
121         }
122         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123                 ATH5K_ERR(ah, "Invalid EEPROM "
124                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125                           cksum, eep_max,
126                           eep_max == AR5K_EEPROM_INFO_MAX ?
127                                 "default size" : "custom size");
128                 return -EIO;
129         }
130
131         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132             ee_ant_gain);
133
134         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137
138                 /* XXX: Don't know which versions include these two */
139                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140
141                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143
144                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
148                 }
149         }
150
151         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155
156                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
159         }
160
161         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162
163         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164                 ee->ee_is_hb63 = true;
165         else
166                 ee->ee_is_hb63 = false;
167
168         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171
172         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173          * and enable serdes programming if needed.
174          *
175          * XXX: Serdes values seem to be fixed so
176          * no need to read them here, we write them
177          * during ath5k_hw_init */
178         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180                                                         true : false;
181
182         return 0;
183 }
184
185
186 /*
187  * Read antenna infos from eeprom
188  */
189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190                 unsigned int mode)
191 {
192         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193         u32 o = *offset;
194         u16 val;
195         int i = 0;
196
197         AR5K_EEPROM_READ(o++, val);
198         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
199         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
200         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
201
202         AR5K_EEPROM_READ(o++, val);
203         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
204         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
205         ee->ee_ant_control[mode][i++]   = val & 0x3f;
206
207         AR5K_EEPROM_READ(o++, val);
208         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
209         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
210         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
211
212         AR5K_EEPROM_READ(o++, val);
213         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
214         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
215         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
216         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
217
218         AR5K_EEPROM_READ(o++, val);
219         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
220         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
221         ee->ee_ant_control[mode][i++]   = val & 0x3f;
222
223         /* Get antenna switch tables */
224         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225             (ee->ee_ant_control[mode][0] << 4);
226         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227              ee->ee_ant_control[mode][1]        |
228             (ee->ee_ant_control[mode][2] << 6)  |
229             (ee->ee_ant_control[mode][3] << 12) |
230             (ee->ee_ant_control[mode][4] << 18) |
231             (ee->ee_ant_control[mode][5] << 24);
232         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233              ee->ee_ant_control[mode][6]        |
234             (ee->ee_ant_control[mode][7] << 6)  |
235             (ee->ee_ant_control[mode][8] << 12) |
236             (ee->ee_ant_control[mode][9] << 18) |
237             (ee->ee_ant_control[mode][10] << 24);
238
239         /* return new offset */
240         *offset = o;
241
242         return 0;
243 }
244
245 /*
246  * Read supported modes and some mode-specific calibration data
247  * from eeprom
248  */
249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250                 unsigned int mode)
251 {
252         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253         u32 o = *offset;
254         u16 val;
255
256         ee->ee_n_piers[mode] = 0;
257         AR5K_EEPROM_READ(o++, val);
258         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
259         switch (mode) {
260         case AR5K_EEPROM_MODE_11A:
261                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
262                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
263                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
264
265                 AR5K_EEPROM_READ(o++, val);
266                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
267                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
268                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
269                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
270                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
271                 ee->ee_db[mode][0]      = val & 0x7;
272                 break;
273         case AR5K_EEPROM_MODE_11G:
274         case AR5K_EEPROM_MODE_11B:
275                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
276                 ee->ee_db[mode][1]      = val & 0x7;
277                 break;
278         }
279
280         AR5K_EEPROM_READ(o++, val);
281         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
282         ee->ee_thr_62[mode]             = val & 0xff;
283
284         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
285                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
286
287         AR5K_EEPROM_READ(o++, val);
288         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
289         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
290
291         AR5K_EEPROM_READ(o++, val);
292         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
293
294         if ((val & 0xff) & 0x80)
295                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
296         else
297                 ee->ee_noise_floor_thr[mode] = val & 0xff;
298
299         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
300                 ee->ee_noise_floor_thr[mode] =
301                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
302
303         AR5K_EEPROM_READ(o++, val);
304         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
305         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
306         ee->ee_xpd[mode]                = val & 0x1;
307
308         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
309             mode != AR5K_EEPROM_MODE_11B)
310                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
311
312         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
313                 AR5K_EEPROM_READ(o++, val);
314                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
315
316                 if (mode == AR5K_EEPROM_MODE_11A)
317                         ee->ee_xr_power[mode] = val & 0x3f;
318                 else {
319                         /* b_DB_11[bg] and b_OB_11[bg] */
320                         ee->ee_ob[mode][0] = val & 0x7;
321                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
322                 }
323         }
324
325         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
326                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
327                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
328         } else {
329                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
330
331                 AR5K_EEPROM_READ(o++, val);
332                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
333
334                 if (mode == AR5K_EEPROM_MODE_11G) {
335                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
336                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
337                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
338                 }
339         }
340
341         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
342                         mode == AR5K_EEPROM_MODE_11A) {
343                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
344                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
345         }
346
347         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
348                 goto done;
349
350         /* Note: >= v5 have bg freq piers on another location
351          * so these freq piers are ignored for >= v5 (should be 0xff
352          * anyway) */
353         switch (mode) {
354         case AR5K_EEPROM_MODE_11A:
355                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
356                         break;
357
358                 AR5K_EEPROM_READ(o++, val);
359                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
360                 break;
361         case AR5K_EEPROM_MODE_11B:
362                 AR5K_EEPROM_READ(o++, val);
363
364                 ee->ee_pwr_cal_b[0].freq =
365                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
366                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
367                         ee->ee_n_piers[mode]++;
368
369                 ee->ee_pwr_cal_b[1].freq =
370                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
371                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
372                         ee->ee_n_piers[mode]++;
373
374                 AR5K_EEPROM_READ(o++, val);
375                 ee->ee_pwr_cal_b[2].freq =
376                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
377                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
378                         ee->ee_n_piers[mode]++;
379
380                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
381                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
382                 break;
383         case AR5K_EEPROM_MODE_11G:
384                 AR5K_EEPROM_READ(o++, val);
385
386                 ee->ee_pwr_cal_g[0].freq =
387                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
388                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389                         ee->ee_n_piers[mode]++;
390
391                 ee->ee_pwr_cal_g[1].freq =
392                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
393                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394                         ee->ee_n_piers[mode]++;
395
396                 AR5K_EEPROM_READ(o++, val);
397                 ee->ee_turbo_max_power[mode] = val & 0x7f;
398                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
399
400                 AR5K_EEPROM_READ(o++, val);
401                 ee->ee_pwr_cal_g[2].freq =
402                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
403                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404                         ee->ee_n_piers[mode]++;
405
406                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408
409                 AR5K_EEPROM_READ(o++, val);
410                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
411                 ee->ee_q_cal[mode] = val & 0x1f;
412
413                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
414                         AR5K_EEPROM_READ(o++, val);
415                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
416                 }
417                 break;
418         }
419
420         /*
421          * Read turbo mode information on newer EEPROM versions
422          */
423         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
424                 goto done;
425
426         switch (mode) {
427         case AR5K_EEPROM_MODE_11A:
428                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
429
430                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
431                 AR5K_EEPROM_READ(o++, val);
432                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
433                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
434
435                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
436                 AR5K_EEPROM_READ(o++, val);
437                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
438                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
439
440                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
441                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
442                 break;
443         case AR5K_EEPROM_MODE_11G:
444                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
445
446                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
447                 AR5K_EEPROM_READ(o++, val);
448                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
449                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
450
451                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
452                 AR5K_EEPROM_READ(o++, val);
453                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
454                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
455                 break;
456         }
457
458 done:
459         /* return new offset */
460         *offset = o;
461
462         return 0;
463 }
464
465 /* Read mode-specific data (except power calibration data) */
466 static int
467 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
468 {
469         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
470         u32 mode_offset[3];
471         unsigned int mode;
472         u32 offset;
473         int ret;
474
475         /*
476          * Get values for all modes
477          */
478         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
479         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
480         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
481
482         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
483                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
484
485         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
486                 offset = mode_offset[mode];
487
488                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
489                 if (ret)
490                         return ret;
491
492                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
493                 if (ret)
494                         return ret;
495         }
496
497         /* override for older eeprom versions for better performance */
498         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
502         }
503
504         return 0;
505 }
506
507 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
508  * frequency mask) */
509 static inline int
510 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
511                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
512 {
513         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
514         int o = *offset;
515         int i = 0;
516         u8 freq1, freq2;
517         u16 val;
518
519         ee->ee_n_piers[mode] = 0;
520         while (i < max) {
521                 AR5K_EEPROM_READ(o++, val);
522
523                 freq1 = val & 0xff;
524                 if (!freq1)
525                         break;
526
527                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
528                                 freq1, mode);
529                 ee->ee_n_piers[mode]++;
530
531                 freq2 = (val >> 8) & 0xff;
532                 if (!freq2)
533                         break;
534
535                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
536                                 freq2, mode);
537                 ee->ee_n_piers[mode]++;
538         }
539
540         /* return new offset */
541         *offset = o;
542
543         return 0;
544 }
545
546 /* Read frequency piers for 802.11a */
547 static int
548 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
549 {
550         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
551         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
552         int i;
553         u16 val;
554         u8 mask;
555
556         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
557                 ath5k_eeprom_read_freq_list(ah, &offset,
558                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
559                         AR5K_EEPROM_MODE_11A);
560         } else {
561                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
562
563                 AR5K_EEPROM_READ(offset++, val);
564                 pcal[0].freq  = (val >> 9) & mask;
565                 pcal[1].freq  = (val >> 2) & mask;
566                 pcal[2].freq  = (val << 5) & mask;
567
568                 AR5K_EEPROM_READ(offset++, val);
569                 pcal[2].freq |= (val >> 11) & 0x1f;
570                 pcal[3].freq  = (val >> 4) & mask;
571                 pcal[4].freq  = (val << 3) & mask;
572
573                 AR5K_EEPROM_READ(offset++, val);
574                 pcal[4].freq |= (val >> 13) & 0x7;
575                 pcal[5].freq  = (val >> 6) & mask;
576                 pcal[6].freq  = (val << 1) & mask;
577
578                 AR5K_EEPROM_READ(offset++, val);
579                 pcal[6].freq |= (val >> 15) & 0x1;
580                 pcal[7].freq  = (val >> 8) & mask;
581                 pcal[8].freq  = (val >> 1) & mask;
582                 pcal[9].freq  = (val << 6) & mask;
583
584                 AR5K_EEPROM_READ(offset++, val);
585                 pcal[9].freq |= (val >> 10) & 0x3f;
586
587                 /* Fixed number of piers */
588                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
589
590                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
591                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
592                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
593                 }
594         }
595
596         return 0;
597 }
598
599 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600 static inline int
601 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
602 {
603         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
604         struct ath5k_chan_pcal_info *pcal;
605
606         switch (mode) {
607         case AR5K_EEPROM_MODE_11B:
608                 pcal = ee->ee_pwr_cal_b;
609                 break;
610         case AR5K_EEPROM_MODE_11G:
611                 pcal = ee->ee_pwr_cal_g;
612                 break;
613         default:
614                 return -EINVAL;
615         }
616
617         ath5k_eeprom_read_freq_list(ah, &offset,
618                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
619                 mode);
620
621         return 0;
622 }
623
624
625 /*
626  * Read power calibration for RF5111 chips
627  *
628  * For RF5111 we have an XPD -eXternal Power Detector- curve
629  * for each calibrated channel. Each curve has 0,5dB Power steps
630  * on x axis and PCDAC steps (offsets) on y axis and looks like an
631  * exponential function. To recreate the curve we read 11 points
632  * here and interpolate later.
633  */
634
635 /* Used to match PCDAC steps with power values on RF5111 chips
636  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
637  * steps that match with the power values we read from eeprom. On
638  * older eeprom versions (< 3.2) these steps are equally spaced at
639  * 10% of the pcdac curve -until the curve reaches its maximum-
640  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
641  * these 11 steps are spaced in a different way. This function returns
642  * the pcdac steps based on eeprom version and curve min/max so that we
643  * can have pcdac/pwr points.
644  */
645 static inline void
646 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
647 {
648         static const u16 intercepts3[] = {
649                 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
650         };
651         static const u16 intercepts3_2[] = {
652                 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
653         };
654         const u16 *ip;
655         int i;
656
657         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658                 ip = intercepts3_2;
659         else
660                 ip = intercepts3;
661
662         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
664 }
665
666 static int
667 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
668 {
669         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670         struct ath5k_chan_pcal_info *chinfo;
671         u8 pier, pdg;
672
673         switch (mode) {
674         case AR5K_EEPROM_MODE_11A:
675                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
676                         return 0;
677                 chinfo = ee->ee_pwr_cal_a;
678                 break;
679         case AR5K_EEPROM_MODE_11B:
680                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
681                         return 0;
682                 chinfo = ee->ee_pwr_cal_b;
683                 break;
684         case AR5K_EEPROM_MODE_11G:
685                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
686                         return 0;
687                 chinfo = ee->ee_pwr_cal_g;
688                 break;
689         default:
690                 return -EINVAL;
691         }
692
693         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
694                 if (!chinfo[pier].pd_curves)
695                         continue;
696
697                 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
698                         struct ath5k_pdgain_info *pd =
699                                         &chinfo[pier].pd_curves[pdg];
700
701                         kfree(pd->pd_step);
702                         kfree(pd->pd_pwr);
703                 }
704
705                 kfree(chinfo[pier].pd_curves);
706         }
707
708         return 0;
709 }
710
711 /* Convert RF5111 specific data to generic raw data
712  * used by interpolation code */
713 static int
714 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
715                                 struct ath5k_chan_pcal_info *chinfo)
716 {
717         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
718         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
719         struct ath5k_pdgain_info *pd;
720         u8 pier, point, idx;
721         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
722
723         /* Fill raw data for each calibration pier */
724         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
725
726                 pcinfo = &chinfo[pier].rf5111_info;
727
728                 /* Allocate pd_curves for this cal pier */
729                 chinfo[pier].pd_curves =
730                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
731                                 sizeof(struct ath5k_pdgain_info),
732                                 GFP_KERNEL);
733
734                 if (!chinfo[pier].pd_curves)
735                         goto err_out;
736
737                 /* Only one curve for RF5111
738                  * find out which one and place
739                  * in pd_curves.
740                  * Note: ee_x_gain is reversed here */
741                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
742
743                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
744                                 pdgain_idx[0] = idx;
745                                 break;
746                         }
747                 }
748
749                 if (idx == AR5K_EEPROM_N_PD_CURVES)
750                         goto err_out;
751
752                 ee->ee_pd_gains[mode] = 1;
753
754                 pd = &chinfo[pier].pd_curves[idx];
755
756                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
757
758                 /* Allocate pd points for this curve */
759                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
760                                         sizeof(u8), GFP_KERNEL);
761                 if (!pd->pd_step)
762                         goto err_out;
763
764                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
765                                         sizeof(s16), GFP_KERNEL);
766                 if (!pd->pd_pwr)
767                         goto err_out;
768
769                 /* Fill raw dataset
770                  * (convert power to 0.25dB units
771                  * for RF5112 compatibility) */
772                 for (point = 0; point < pd->pd_points; point++) {
773
774                         /* Absolute values */
775                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
776
777                         /* Already sorted */
778                         pd->pd_step[point] = pcinfo->pcdac[point];
779                 }
780
781                 /* Set min/max pwr */
782                 chinfo[pier].min_pwr = pd->pd_pwr[0];
783                 chinfo[pier].max_pwr = pd->pd_pwr[10];
784
785         }
786
787         return 0;
788
789 err_out:
790         ath5k_eeprom_free_pcal_info(ah, mode);
791         return -ENOMEM;
792 }
793
794 /* Parse EEPROM data */
795 static int
796 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
797 {
798         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
799         struct ath5k_chan_pcal_info *pcal;
800         int offset, ret;
801         int i;
802         u16 val;
803
804         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
805         switch (mode) {
806         case AR5K_EEPROM_MODE_11A:
807                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
808                         return 0;
809
810                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
811                         offset + AR5K_EEPROM_GROUP1_OFFSET);
812                 if (ret < 0)
813                         return ret;
814
815                 offset += AR5K_EEPROM_GROUP2_OFFSET;
816                 pcal = ee->ee_pwr_cal_a;
817                 break;
818         case AR5K_EEPROM_MODE_11B:
819                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
820                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
821                         return 0;
822
823                 pcal = ee->ee_pwr_cal_b;
824                 offset += AR5K_EEPROM_GROUP3_OFFSET;
825
826                 /* fixed piers */
827                 pcal[0].freq = 2412;
828                 pcal[1].freq = 2447;
829                 pcal[2].freq = 2484;
830                 ee->ee_n_piers[mode] = 3;
831                 break;
832         case AR5K_EEPROM_MODE_11G:
833                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
834                         return 0;
835
836                 pcal = ee->ee_pwr_cal_g;
837                 offset += AR5K_EEPROM_GROUP4_OFFSET;
838
839                 /* fixed piers */
840                 pcal[0].freq = 2312;
841                 pcal[1].freq = 2412;
842                 pcal[2].freq = 2484;
843                 ee->ee_n_piers[mode] = 3;
844                 break;
845         default:
846                 return -EINVAL;
847         }
848
849         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
850                 struct ath5k_chan_pcal_info_rf5111 *cdata =
851                         &pcal[i].rf5111_info;
852
853                 AR5K_EEPROM_READ(offset++, val);
854                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
855                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
856                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
857
858                 AR5K_EEPROM_READ(offset++, val);
859                 cdata->pwr[0] |= ((val >> 14) & 0x3);
860                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
861                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
862                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
863
864                 AR5K_EEPROM_READ(offset++, val);
865                 cdata->pwr[3] |= ((val >> 12) & 0xf);
866                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
867                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
868
869                 AR5K_EEPROM_READ(offset++, val);
870                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
871                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
872                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
873
874                 AR5K_EEPROM_READ(offset++, val);
875                 cdata->pwr[8] |= ((val >> 14) & 0x3);
876                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
877                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
878
879                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
880                         cdata->pcdac_max, cdata->pcdac);
881         }
882
883         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
884 }
885
886
887 /*
888  * Read power calibration for RF5112 chips
889  *
890  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
891  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
892  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
893  * power steps on x axis and PCDAC steps on y axis and looks like a
894  * linear function. To recreate the curve and pass the power values
895  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
896  * and 3 points for xpd 3 (higher gain -> lower power) here and
897  * interpolate later.
898  *
899  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
900  */
901
902 /* Convert RF5112 specific data to generic raw data
903  * used by interpolation code */
904 static int
905 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
906                                 struct ath5k_chan_pcal_info *chinfo)
907 {
908         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
909         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
910         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
911         unsigned int pier, pdg, point;
912
913         /* Fill raw data for each calibration pier */
914         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
915
916                 pcinfo = &chinfo[pier].rf5112_info;
917
918                 /* Allocate pd_curves for this cal pier */
919                 chinfo[pier].pd_curves =
920                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
921                                         sizeof(struct ath5k_pdgain_info),
922                                         GFP_KERNEL);
923
924                 if (!chinfo[pier].pd_curves)
925                         goto err_out;
926
927                 /* Fill pd_curves */
928                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
929
930                         u8 idx = pdgain_idx[pdg];
931                         struct ath5k_pdgain_info *pd =
932                                         &chinfo[pier].pd_curves[idx];
933
934                         /* Lowest gain curve (max power) */
935                         if (pdg == 0) {
936                                 /* One more point for better accuracy */
937                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
938
939                                 /* Allocate pd points for this curve */
940                                 pd->pd_step = kcalloc(pd->pd_points,
941                                                 sizeof(u8), GFP_KERNEL);
942
943                                 if (!pd->pd_step)
944                                         goto err_out;
945
946                                 pd->pd_pwr = kcalloc(pd->pd_points,
947                                                 sizeof(s16), GFP_KERNEL);
948
949                                 if (!pd->pd_pwr)
950                                         goto err_out;
951
952                                 /* Fill raw dataset
953                                  * (all power levels are in 0.25dB units) */
954                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
955                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
956
957                                 for (point = 1; point < pd->pd_points;
958                                 point++) {
959                                         /* Absolute values */
960                                         pd->pd_pwr[point] =
961                                                 pcinfo->pwr_x0[point];
962
963                                         /* Deltas */
964                                         pd->pd_step[point] =
965                                                 pd->pd_step[point - 1] +
966                                                 pcinfo->pcdac_x0[point];
967                                 }
968
969                                 /* Set min power for this frequency */
970                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
971
972                         /* Highest gain curve (min power) */
973                         } else if (pdg == 1) {
974
975                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
976
977                                 /* Allocate pd points for this curve */
978                                 pd->pd_step = kcalloc(pd->pd_points,
979                                                 sizeof(u8), GFP_KERNEL);
980
981                                 if (!pd->pd_step)
982                                         goto err_out;
983
984                                 pd->pd_pwr = kcalloc(pd->pd_points,
985                                                 sizeof(s16), GFP_KERNEL);
986
987                                 if (!pd->pd_pwr)
988                                         goto err_out;
989
990                                 /* Fill raw dataset
991                                  * (all power levels are in 0.25dB units) */
992                                 for (point = 0; point < pd->pd_points;
993                                 point++) {
994                                         /* Absolute values */
995                                         pd->pd_pwr[point] =
996                                                 pcinfo->pwr_x3[point];
997
998                                         /* Fixed points */
999                                         pd->pd_step[point] =
1000                                                 pcinfo->pcdac_x3[point];
1001                                 }
1002
1003                                 /* Since we have a higher gain curve
1004                                  * override min power */
1005                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1006                         }
1007                 }
1008         }
1009
1010         return 0;
1011
1012 err_out:
1013         ath5k_eeprom_free_pcal_info(ah, mode);
1014         return -ENOMEM;
1015 }
1016
1017 /* Parse EEPROM data */
1018 static int
1019 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1020 {
1021         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1022         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1023         struct ath5k_chan_pcal_info *gen_chan_info;
1024         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1025         u32 offset;
1026         u8 i, c;
1027         u16 val;
1028         u8 pd_gains = 0;
1029
1030         /* Count how many curves we have and
1031          * identify them (which one of the 4
1032          * available curves we have on each count).
1033          * Curves are stored from lower (x0) to
1034          * higher (x3) gain */
1035         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1036                 /* ee_x_gain[mode] is x gain mask */
1037                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1038                         pdgain_idx[pd_gains++] = i;
1039         }
1040         ee->ee_pd_gains[mode] = pd_gains;
1041
1042         if (pd_gains == 0 || pd_gains > 2)
1043                 return -EINVAL;
1044
1045         switch (mode) {
1046         case AR5K_EEPROM_MODE_11A:
1047                 /*
1048                  * Read 5GHz EEPROM channels
1049                  */
1050                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1051                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1052
1053                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1054                 gen_chan_info = ee->ee_pwr_cal_a;
1055                 break;
1056         case AR5K_EEPROM_MODE_11B:
1057                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1058                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1059                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1060
1061                 /* NB: frequency piers parsed during mode init */
1062                 gen_chan_info = ee->ee_pwr_cal_b;
1063                 break;
1064         case AR5K_EEPROM_MODE_11G:
1065                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1066                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1067                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1068                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1069                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1070
1071                 /* NB: frequency piers parsed during mode init */
1072                 gen_chan_info = ee->ee_pwr_cal_g;
1073                 break;
1074         default:
1075                 return -EINVAL;
1076         }
1077
1078         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1079                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1080
1081                 /* Power values in quarter dB
1082                  * for the lower xpd gain curve
1083                  * (0 dBm -> higher output power) */
1084                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1085                         AR5K_EEPROM_READ(offset++, val);
1086                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1087                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1088                 }
1089
1090                 /* PCDAC steps
1091                  * corresponding to the above power
1092                  * measurements */
1093                 AR5K_EEPROM_READ(offset++, val);
1094                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1095                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1096                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1097
1098                 /* Power values in quarter dB
1099                  * for the higher xpd gain curve
1100                  * (18 dBm -> lower output power) */
1101                 AR5K_EEPROM_READ(offset++, val);
1102                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1103                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1104
1105                 AR5K_EEPROM_READ(offset++, val);
1106                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1107
1108                 /* PCDAC steps
1109                  * corresponding to the above power
1110                  * measurements (fixed) */
1111                 chan_pcal_info->pcdac_x3[0] = 20;
1112                 chan_pcal_info->pcdac_x3[1] = 35;
1113                 chan_pcal_info->pcdac_x3[2] = 63;
1114
1115                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1116                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1117
1118                         /* Last xpd0 power level is also channel maximum */
1119                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1120                 } else {
1121                         chan_pcal_info->pcdac_x0[0] = 1;
1122                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1123                 }
1124
1125         }
1126
1127         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1128 }
1129
1130
1131 /*
1132  * Read power calibration for RF2413 chips
1133  *
1134  * For RF2413 we have a Power to PDDAC table (Power Detector)
1135  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1136  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1137  * axis and looks like an exponential function like the RF5111 curve.
1138  *
1139  * To recreate the curves we read here the points and interpolate
1140  * later. Note that in most cases only 2 (higher and lower) curves are
1141  * used (like RF5112) but vendors have the opportunity to include all
1142  * 4 curves on eeprom. The final curve (higher power) has an extra
1143  * point for better accuracy like RF5112.
1144  */
1145
1146 /* For RF2413 power calibration data doesn't start on a fixed location and
1147  * if a mode is not supported, its section is missing -not zeroed-.
1148  * So we need to calculate the starting offset for each section by using
1149  * these two functions */
1150
1151 /* Return the size of each section based on the mode and the number of pd
1152  * gains available (maximum 4). */
1153 static inline unsigned int
1154 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1155 {
1156         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1157         unsigned int sz;
1158
1159         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1160         sz *= ee->ee_n_piers[mode];
1161
1162         return sz;
1163 }
1164
1165 /* Return the starting offset for a section based on the modes supported
1166  * and each section's size. */
1167 static unsigned int
1168 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1169 {
1170         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1171
1172         switch (mode) {
1173         case AR5K_EEPROM_MODE_11G:
1174                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1175                         offset += ath5k_pdgains_size_2413(ee,
1176                                         AR5K_EEPROM_MODE_11B) +
1177                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1178                 /* fall through */
1179         case AR5K_EEPROM_MODE_11B:
1180                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1181                         offset += ath5k_pdgains_size_2413(ee,
1182                                         AR5K_EEPROM_MODE_11A) +
1183                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1184                 /* fall through */
1185         case AR5K_EEPROM_MODE_11A:
1186                 break;
1187         default:
1188                 break;
1189         }
1190
1191         return offset;
1192 }
1193
1194 /* Convert RF2413 specific data to generic raw data
1195  * used by interpolation code */
1196 static int
1197 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1198                                 struct ath5k_chan_pcal_info *chinfo)
1199 {
1200         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1201         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1202         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1203         unsigned int pier, pdg, point;
1204
1205         /* Fill raw data for each calibration pier */
1206         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1207
1208                 pcinfo = &chinfo[pier].rf2413_info;
1209
1210                 /* Allocate pd_curves for this cal pier */
1211                 chinfo[pier].pd_curves =
1212                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1213                                         sizeof(struct ath5k_pdgain_info),
1214                                         GFP_KERNEL);
1215
1216                 if (!chinfo[pier].pd_curves)
1217                         goto err_out;
1218
1219                 /* Fill pd_curves */
1220                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1221
1222                         u8 idx = pdgain_idx[pdg];
1223                         struct ath5k_pdgain_info *pd =
1224                                         &chinfo[pier].pd_curves[idx];
1225
1226                         /* One more point for the highest power
1227                          * curve (lowest gain) */
1228                         if (pdg == ee->ee_pd_gains[mode] - 1)
1229                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1230                         else
1231                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1232
1233                         /* Allocate pd points for this curve */
1234                         pd->pd_step = kcalloc(pd->pd_points,
1235                                         sizeof(u8), GFP_KERNEL);
1236
1237                         if (!pd->pd_step)
1238                                 goto err_out;
1239
1240                         pd->pd_pwr = kcalloc(pd->pd_points,
1241                                         sizeof(s16), GFP_KERNEL);
1242
1243                         if (!pd->pd_pwr)
1244                                 goto err_out;
1245
1246                         /* Fill raw dataset
1247                          * convert all pwr levels to
1248                          * quarter dB for RF5112 compatibility */
1249                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1250                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1251
1252                         for (point = 1; point < pd->pd_points; point++) {
1253
1254                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1255                                         2 * pcinfo->pwr[pdg][point - 1];
1256
1257                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1258                                                 pcinfo->pddac[pdg][point - 1];
1259
1260                         }
1261
1262                         /* Highest gain curve -> min power */
1263                         if (pdg == 0)
1264                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1265
1266                         /* Lowest gain curve -> max power */
1267                         if (pdg == ee->ee_pd_gains[mode] - 1)
1268                                 chinfo[pier].max_pwr =
1269                                         pd->pd_pwr[pd->pd_points - 1];
1270                 }
1271         }
1272
1273         return 0;
1274
1275 err_out:
1276         ath5k_eeprom_free_pcal_info(ah, mode);
1277         return -ENOMEM;
1278 }
1279
1280 /* Parse EEPROM data */
1281 static int
1282 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1283 {
1284         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1285         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1286         struct ath5k_chan_pcal_info *chinfo;
1287         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1288         u32 offset;
1289         int idx, i;
1290         u16 val;
1291         u8 pd_gains = 0;
1292
1293         /* Count how many curves we have and
1294          * identify them (which one of the 4
1295          * available curves we have on each count).
1296          * Curves are stored from higher to
1297          * lower gain so we go backwards */
1298         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1299                 /* ee_x_gain[mode] is x gain mask */
1300                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1301                         pdgain_idx[pd_gains++] = idx;
1302
1303         }
1304         ee->ee_pd_gains[mode] = pd_gains;
1305
1306         if (pd_gains == 0)
1307                 return -EINVAL;
1308
1309         offset = ath5k_cal_data_offset_2413(ee, mode);
1310         switch (mode) {
1311         case AR5K_EEPROM_MODE_11A:
1312                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1313                         return 0;
1314
1315                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1316                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1317                 chinfo = ee->ee_pwr_cal_a;
1318                 break;
1319         case AR5K_EEPROM_MODE_11B:
1320                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1321                         return 0;
1322
1323                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1324                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1325                 chinfo = ee->ee_pwr_cal_b;
1326                 break;
1327         case AR5K_EEPROM_MODE_11G:
1328                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1329                         return 0;
1330
1331                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1332                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1333                 chinfo = ee->ee_pwr_cal_g;
1334                 break;
1335         default:
1336                 return -EINVAL;
1337         }
1338
1339         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1340                 pcinfo = &chinfo[i].rf2413_info;
1341
1342                 /*
1343                  * Read pwr_i, pddac_i and the first
1344                  * 2 pd points (pwr, pddac)
1345                  */
1346                 AR5K_EEPROM_READ(offset++, val);
1347                 pcinfo->pwr_i[0] = val & 0x1f;
1348                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1349                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1350
1351                 AR5K_EEPROM_READ(offset++, val);
1352                 pcinfo->pddac[0][0] = val & 0x3f;
1353                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1354                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1355
1356                 AR5K_EEPROM_READ(offset++, val);
1357                 pcinfo->pwr[0][2] = val & 0xf;
1358                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1359
1360                 pcinfo->pwr[0][3] = 0;
1361                 pcinfo->pddac[0][3] = 0;
1362
1363                 if (pd_gains > 1) {
1364                         /*
1365                          * Pd gain 0 is not the last pd gain
1366                          * so it only has 2 pd points.
1367                          * Continue with pd gain 1.
1368                          */
1369                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1370
1371                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1372                         AR5K_EEPROM_READ(offset++, val);
1373                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1374
1375                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1376                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1377
1378                         AR5K_EEPROM_READ(offset++, val);
1379                         pcinfo->pwr[1][1] = val & 0xf;
1380                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1381                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1382
1383                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1384                         AR5K_EEPROM_READ(offset++, val);
1385                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1386
1387                         pcinfo->pwr[1][3] = 0;
1388                         pcinfo->pddac[1][3] = 0;
1389                 } else if (pd_gains == 1) {
1390                         /*
1391                          * Pd gain 0 is the last one so
1392                          * read the extra point.
1393                          */
1394                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1395
1396                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1397                         AR5K_EEPROM_READ(offset++, val);
1398                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1399                 }
1400
1401                 /*
1402                  * Proceed with the other pd_gains
1403                  * as above.
1404                  */
1405                 if (pd_gains > 2) {
1406                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1407                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1408
1409                         AR5K_EEPROM_READ(offset++, val);
1410                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1411                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1412                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1413
1414                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1415                         AR5K_EEPROM_READ(offset++, val);
1416                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1417
1418                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1419                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1420
1421                         pcinfo->pwr[2][3] = 0;
1422                         pcinfo->pddac[2][3] = 0;
1423                 } else if (pd_gains == 2) {
1424                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1425                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1426                 }
1427
1428                 if (pd_gains > 3) {
1429                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1430                         AR5K_EEPROM_READ(offset++, val);
1431                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1432
1433                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1434                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1435                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1436
1437                         AR5K_EEPROM_READ(offset++, val);
1438                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1439                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1440                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1441
1442                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1443                         AR5K_EEPROM_READ(offset++, val);
1444                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1445
1446                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1447                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1448
1449                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1450                         AR5K_EEPROM_READ(offset++, val);
1451                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1452                 } else if (pd_gains == 3) {
1453                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1454                         AR5K_EEPROM_READ(offset++, val);
1455                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1456
1457                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1458                 }
1459         }
1460
1461         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1462 }
1463
1464
1465 /*
1466  * Read per rate target power (this is the maximum tx power
1467  * supported by the card). This info is used when setting
1468  * tx power, no matter the channel.
1469  *
1470  * This also works for v5 EEPROMs.
1471  */
1472 static int
1473 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1474 {
1475         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1476         struct ath5k_rate_pcal_info *rate_pcal_info;
1477         u8 *rate_target_pwr_num;
1478         u32 offset;
1479         u16 val;
1480         int i;
1481
1482         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1483         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1484         switch (mode) {
1485         case AR5K_EEPROM_MODE_11A:
1486                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1487                 rate_pcal_info = ee->ee_rate_tpwr_a;
1488                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1489                 break;
1490         case AR5K_EEPROM_MODE_11B:
1491                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1492                 rate_pcal_info = ee->ee_rate_tpwr_b;
1493                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1494                 break;
1495         case AR5K_EEPROM_MODE_11G:
1496                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1497                 rate_pcal_info = ee->ee_rate_tpwr_g;
1498                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1499                 break;
1500         default:
1501                 return -EINVAL;
1502         }
1503
1504         /* Different freq mask for older eeproms (<= v3.2) */
1505         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1506                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1507                         AR5K_EEPROM_READ(offset++, val);
1508                         rate_pcal_info[i].freq =
1509                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1510
1511                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1512                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1513
1514                         AR5K_EEPROM_READ(offset++, val);
1515
1516                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1517                             val == 0) {
1518                                 (*rate_target_pwr_num) = i;
1519                                 break;
1520                         }
1521
1522                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1523                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1524                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1525                 }
1526         } else {
1527                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1528                         AR5K_EEPROM_READ(offset++, val);
1529                         rate_pcal_info[i].freq =
1530                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1531
1532                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1533                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1534
1535                         AR5K_EEPROM_READ(offset++, val);
1536
1537                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1538                             val == 0) {
1539                                 (*rate_target_pwr_num) = i;
1540                                 break;
1541                         }
1542
1543                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1544                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1545                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1546                 }
1547         }
1548
1549         return 0;
1550 }
1551
1552
1553 /*
1554  * Read per channel calibration info from EEPROM
1555  *
1556  * This info is used to calibrate the baseband power table. Imagine
1557  * that for each channel there is a power curve that's hw specific
1558  * (depends on amplifier etc) and we try to "correct" this curve using
1559  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1560  * it can use accurate power values when setting tx power (takes amplifier's
1561  * performance on each channel into account).
1562  *
1563  * EEPROM provides us with the offsets for some pre-calibrated channels
1564  * and we have to interpolate to create the full table for these channels and
1565  * also the table for any channel.
1566  */
1567 static int
1568 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1569 {
1570         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1571         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1572         int mode;
1573         int err;
1574
1575         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1576                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1577                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1578         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1579                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1580                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1581         else
1582                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1583
1584
1585         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1586         mode++) {
1587                 err = read_pcal(ah, mode);
1588                 if (err)
1589                         return err;
1590
1591                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1592                 if (err < 0)
1593                         return err;
1594         }
1595
1596         return 0;
1597 }
1598
1599 /* Read conformance test limits used for regulatory control */
1600 static int
1601 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1602 {
1603         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1604         struct ath5k_edge_power *rep;
1605         unsigned int fmask, pmask;
1606         unsigned int ctl_mode;
1607         int i, j;
1608         u32 offset;
1609         u16 val;
1610
1611         pmask = AR5K_EEPROM_POWER_M;
1612         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1613         offset = AR5K_EEPROM_CTL(ee->ee_version);
1614         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1615         for (i = 0; i < ee->ee_ctls; i += 2) {
1616                 AR5K_EEPROM_READ(offset++, val);
1617                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1618                 ee->ee_ctl[i + 1] = val & 0xff;
1619         }
1620
1621         offset = AR5K_EEPROM_GROUP8_OFFSET;
1622         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1623                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1624                         AR5K_EEPROM_GROUP5_OFFSET;
1625         else
1626                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1627
1628         rep = ee->ee_ctl_pwr;
1629         for (i = 0; i < ee->ee_ctls; i++) {
1630                 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1631                 case AR5K_CTL_11A:
1632                 case AR5K_CTL_TURBO:
1633                         ctl_mode = AR5K_EEPROM_MODE_11A;
1634                         break;
1635                 default:
1636                         ctl_mode = AR5K_EEPROM_MODE_11G;
1637                         break;
1638                 }
1639                 if (ee->ee_ctl[i] == 0) {
1640                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1641                                 offset += 8;
1642                         else
1643                                 offset += 7;
1644                         rep += AR5K_EEPROM_N_EDGES;
1645                         continue;
1646                 }
1647                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1648                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1649                                 AR5K_EEPROM_READ(offset++, val);
1650                                 rep[j].freq = (val >> 8) & fmask;
1651                                 rep[j + 1].freq = val & fmask;
1652                         }
1653                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1654                                 AR5K_EEPROM_READ(offset++, val);
1655                                 rep[j].edge = (val >> 8) & pmask;
1656                                 rep[j].flag = (val >> 14) & 1;
1657                                 rep[j + 1].edge = val & pmask;
1658                                 rep[j + 1].flag = (val >> 6) & 1;
1659                         }
1660                 } else {
1661                         AR5K_EEPROM_READ(offset++, val);
1662                         rep[0].freq = (val >> 9) & fmask;
1663                         rep[1].freq = (val >> 2) & fmask;
1664                         rep[2].freq = (val << 5) & fmask;
1665
1666                         AR5K_EEPROM_READ(offset++, val);
1667                         rep[2].freq |= (val >> 11) & 0x1f;
1668                         rep[3].freq = (val >> 4) & fmask;
1669                         rep[4].freq = (val << 3) & fmask;
1670
1671                         AR5K_EEPROM_READ(offset++, val);
1672                         rep[4].freq |= (val >> 13) & 0x7;
1673                         rep[5].freq = (val >> 6) & fmask;
1674                         rep[6].freq = (val << 1) & fmask;
1675
1676                         AR5K_EEPROM_READ(offset++, val);
1677                         rep[6].freq |= (val >> 15) & 0x1;
1678                         rep[7].freq = (val >> 8) & fmask;
1679
1680                         rep[0].edge = (val >> 2) & pmask;
1681                         rep[1].edge = (val << 4) & pmask;
1682
1683                         AR5K_EEPROM_READ(offset++, val);
1684                         rep[1].edge |= (val >> 12) & 0xf;
1685                         rep[2].edge = (val >> 6) & pmask;
1686                         rep[3].edge = val & pmask;
1687
1688                         AR5K_EEPROM_READ(offset++, val);
1689                         rep[4].edge = (val >> 10) & pmask;
1690                         rep[5].edge = (val >> 4) & pmask;
1691                         rep[6].edge = (val << 2) & pmask;
1692
1693                         AR5K_EEPROM_READ(offset++, val);
1694                         rep[6].edge |= (val >> 14) & 0x3;
1695                         rep[7].edge = (val >> 8) & pmask;
1696                 }
1697                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1698                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1699                                 rep[j].freq, ctl_mode);
1700                 }
1701                 rep += AR5K_EEPROM_N_EDGES;
1702         }
1703
1704         return 0;
1705 }
1706
1707 static int
1708 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1709 {
1710         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1711         u32 offset;
1712         u16 val;
1713         int ret = 0, i;
1714
1715         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1716                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1717
1718         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1719                 /* No spur info for 5GHz */
1720                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1721                 /* 2 channels for 2GHz (2464/2420) */
1722                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1723                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1724                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1725         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1726                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1727                         AR5K_EEPROM_READ(offset, val);
1728                         ee->ee_spur_chans[i][0] = val;
1729                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1730                                                                         val);
1731                         ee->ee_spur_chans[i][1] = val;
1732                         offset++;
1733                 }
1734         }
1735
1736         return ret;
1737 }
1738
1739
1740 /***********************\
1741 * Init/Detach functions *
1742 \***********************/
1743
1744 /*
1745  * Initialize eeprom data structure
1746  */
1747 int
1748 ath5k_eeprom_init(struct ath5k_hw *ah)
1749 {
1750         int err;
1751
1752         err = ath5k_eeprom_init_header(ah);
1753         if (err < 0)
1754                 return err;
1755
1756         err = ath5k_eeprom_init_modes(ah);
1757         if (err < 0)
1758                 return err;
1759
1760         err = ath5k_eeprom_read_pcal_info(ah);
1761         if (err < 0)
1762                 return err;
1763
1764         err = ath5k_eeprom_read_ctl_info(ah);
1765         if (err < 0)
1766                 return err;
1767
1768         err = ath5k_eeprom_read_spur_chans(ah);
1769         if (err < 0)
1770                 return err;
1771
1772         return 0;
1773 }
1774
1775 void
1776 ath5k_eeprom_detach(struct ath5k_hw *ah)
1777 {
1778         u8 mode;
1779
1780         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1781                 ath5k_eeprom_free_pcal_info(ah, mode);
1782 }
1783
1784 int
1785 ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1786                 struct ieee80211_channel *channel)
1787 {
1788         switch (channel->hw_value) {
1789         case AR5K_MODE_11A:
1790                 return AR5K_EEPROM_MODE_11A;
1791         case AR5K_MODE_11G:
1792                 return AR5K_EEPROM_MODE_11G;
1793         case AR5K_MODE_11B:
1794                 return AR5K_EEPROM_MODE_11B;
1795         default:
1796                 ATH5K_WARN(ah, "channel is not A/B/G!");
1797                 return AR5K_EEPROM_MODE_11A;
1798         }
1799 }