GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18 #include <linux/ath9k_platform.h>
19
20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 {
22         REG_WRITE(ah, reg, val);
23
24         if (ah->config.analog_shiftreg)
25                 udelay(100);
26 }
27
28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29                                u32 shift, u32 val)
30 {
31         REG_RMW(ah, reg, ((val << shift) & mask), mask);
32
33         if (ah->config.analog_shiftreg)
34                 udelay(100);
35 }
36
37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38                              int16_t targetLeft, int16_t targetRight)
39 {
40         int16_t rv;
41
42         if (srcRight == srcLeft) {
43                 rv = targetLeft;
44         } else {
45                 rv = (int16_t) (((target - srcLeft) * targetRight +
46                                  (srcRight - target) * targetLeft) /
47                                 (srcRight - srcLeft));
48         }
49         return rv;
50 }
51
52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53                                     u16 *indexL, u16 *indexR)
54 {
55         u16 i;
56
57         if (target <= pList[0]) {
58                 *indexL = *indexR = 0;
59                 return true;
60         }
61         if (target >= pList[listSize - 1]) {
62                 *indexL = *indexR = (u16) (listSize - 1);
63                 return true;
64         }
65
66         for (i = 0; i < listSize - 1; i++) {
67                 if (pList[i] == target) {
68                         *indexL = *indexR = i;
69                         return true;
70                 }
71                 if (target < pList[i + 1]) {
72                         *indexL = i;
73                         *indexR = (u16) (i + 1);
74                         return false;
75                 }
76         }
77         return false;
78 }
79
80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81                                   int eep_start_loc, int size)
82 {
83         int i = 0, j, addr;
84         u32 addrdata[8];
85         u32 data[8];
86
87         for (addr = 0; addr < size; addr++) {
88                 addrdata[i] = AR5416_EEPROM_OFFSET +
89                         ((addr + eep_start_loc) << AR5416_EEPROM_S);
90                 i++;
91                 if (i == 8) {
92                         REG_READ_MULTI(ah, addrdata, data, i);
93
94                         for (j = 0; j < i; j++) {
95                                 *eep_data = data[j];
96                                 eep_data++;
97                         }
98                         i = 0;
99                 }
100         }
101
102         if (i != 0) {
103                 REG_READ_MULTI(ah, addrdata, data, i);
104
105                 for (j = 0; j < i; j++) {
106                         *eep_data = data[j];
107                         eep_data++;
108                 }
109         }
110 }
111
112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113                                       off_t offset, u16 *data)
114 {
115         if (offset > blob_size)
116                 return false;
117
118         *data =  blob[offset];
119         return true;
120 }
121
122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123                                       off_t offset, u16 *data)
124 {
125         return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126                                          ARRAY_SIZE(pdata->eeprom_data),
127                                          offset, data);
128 }
129
130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131                                          off_t offset, u16 *data)
132 {
133         return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134                                          eeprom_blob->size / sizeof(u16),
135                                          offset, data);
136 }
137
138 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
139 {
140         struct ath_common *common = ath9k_hw_common(ah);
141         struct ath9k_platform_data *pdata = ah->dev->platform_data;
142         bool ret;
143
144         if (ah->eeprom_blob)
145                 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146         else if (pdata && !pdata->use_eeprom && pdata->eeprom_data)
147                 ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
148         else
149                 ret = common->bus_ops->eeprom_read(common, off, data);
150
151         if (!ret)
152                 ath_dbg(common, EEPROM,
153                         "unable to read eeprom region at offset %u\n", off);
154
155         return ret;
156 }
157
158 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
159 {
160         u16 magic;
161         u16 *eepdata;
162         int i;
163         struct ath_common *common = ath9k_hw_common(ah);
164
165         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
166                 ath_err(common, "Reading Magic # failed\n");
167                 return -EIO;
168         }
169
170         *swap_needed = false;
171         if (swab16(magic) == AR5416_EEPROM_MAGIC) {
172                 if (ah->ah_flags & AH_NO_EEP_SWAP) {
173                         ath_info(common,
174                                  "Ignoring endianness difference in EEPROM magic bytes.\n");
175                 } else {
176                         *swap_needed = true;
177                 }
178         } else if (magic != AR5416_EEPROM_MAGIC) {
179                 if (ath9k_hw_use_flash(ah))
180                         return 0;
181
182                 ath_err(common,
183                         "Invalid EEPROM Magic (0x%04x).\n", magic);
184                 return -EINVAL;
185         }
186
187         eepdata = (u16 *)(&ah->eeprom);
188
189         if (*swap_needed) {
190                 ath_dbg(common, EEPROM,
191                         "EEPROM Endianness is not native.. Changing.\n");
192
193                 for (i = 0; i < size; i++)
194                         eepdata[i] = swab16(eepdata[i]);
195         }
196
197         return 0;
198 }
199
200 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
201 {
202         u32 i, sum = 0;
203         u16 *eepdata = (u16 *)(&ah->eeprom);
204         struct ath_common *common = ath9k_hw_common(ah);
205
206         for (i = 0; i < size; i++)
207                 sum ^= eepdata[i];
208
209         if (sum != 0xffff) {
210                 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
211                 return false;
212         }
213
214         return true;
215 }
216
217 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
218 {
219         struct ath_common *common = ath9k_hw_common(ah);
220
221         if (ah->eep_ops->get_eeprom_ver(ah) != version ||
222             ah->eep_ops->get_eeprom_rev(ah) < minrev) {
223                 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
224                         ah->eep_ops->get_eeprom_ver(ah),
225                         ah->eep_ops->get_eeprom_rev(ah));
226                 return false;
227         }
228
229         return true;
230 }
231
232 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
233                              u8 *pVpdList, u16 numIntercepts,
234                              u8 *pRetVpdList)
235 {
236         u16 i, k;
237         u8 currPwr = pwrMin;
238         u16 idxL = 0, idxR = 0;
239
240         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
241                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
242                                                numIntercepts, &(idxL),
243                                                &(idxR));
244                 if (idxR < 1)
245                         idxR = 1;
246                 if (idxL == numIntercepts - 1)
247                         idxL = (u16) (numIntercepts - 2);
248                 if (pPwrList[idxL] == pPwrList[idxR])
249                         k = pVpdList[idxL];
250                 else
251                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
252                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
253                                   (pPwrList[idxR] - pPwrList[idxL]));
254                 pRetVpdList[i] = (u8) k;
255                 currPwr += 2;
256         }
257 }
258
259 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
260                                        struct ath9k_channel *chan,
261                                        struct cal_target_power_leg *powInfo,
262                                        u16 numChannels,
263                                        struct cal_target_power_leg *pNewPower,
264                                        u16 numRates, bool isExtTarget)
265 {
266         struct chan_centers centers;
267         u16 clo, chi;
268         int i;
269         int matchIndex = -1, lowIndex = -1;
270         u16 freq;
271
272         ath9k_hw_get_channel_centers(ah, chan, &centers);
273         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
274
275         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
276                                        IS_CHAN_2GHZ(chan))) {
277                 matchIndex = 0;
278         } else {
279                 for (i = 0; (i < numChannels) &&
280                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
281                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
282                                                        IS_CHAN_2GHZ(chan))) {
283                                 matchIndex = i;
284                                 break;
285                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
286                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
287                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
288                                                 IS_CHAN_2GHZ(chan))) {
289                                 lowIndex = i - 1;
290                                 break;
291                         }
292                 }
293                 if ((matchIndex == -1) && (lowIndex == -1))
294                         matchIndex = i - 1;
295         }
296
297         if (matchIndex != -1) {
298                 *pNewPower = powInfo[matchIndex];
299         } else {
300                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
301                                          IS_CHAN_2GHZ(chan));
302                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
303                                          IS_CHAN_2GHZ(chan));
304
305                 for (i = 0; i < numRates; i++) {
306                         pNewPower->tPow2x[i] =
307                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
308                                                 powInfo[lowIndex].tPow2x[i],
309                                                 powInfo[lowIndex + 1].tPow2x[i]);
310                 }
311         }
312 }
313
314 void ath9k_hw_get_target_powers(struct ath_hw *ah,
315                                 struct ath9k_channel *chan,
316                                 struct cal_target_power_ht *powInfo,
317                                 u16 numChannels,
318                                 struct cal_target_power_ht *pNewPower,
319                                 u16 numRates, bool isHt40Target)
320 {
321         struct chan_centers centers;
322         u16 clo, chi;
323         int i;
324         int matchIndex = -1, lowIndex = -1;
325         u16 freq;
326
327         ath9k_hw_get_channel_centers(ah, chan, &centers);
328         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
329
330         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
331                 matchIndex = 0;
332         } else {
333                 for (i = 0; (i < numChannels) &&
334                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
335                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
336                                                        IS_CHAN_2GHZ(chan))) {
337                                 matchIndex = i;
338                                 break;
339                         } else
340                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
341                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
342                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
343                                                 IS_CHAN_2GHZ(chan))) {
344                                         lowIndex = i - 1;
345                                         break;
346                                 }
347                 }
348                 if ((matchIndex == -1) && (lowIndex == -1))
349                         matchIndex = i - 1;
350         }
351
352         if (matchIndex != -1) {
353                 *pNewPower = powInfo[matchIndex];
354         } else {
355                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
356                                          IS_CHAN_2GHZ(chan));
357                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
358                                          IS_CHAN_2GHZ(chan));
359
360                 for (i = 0; i < numRates; i++) {
361                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
362                                                 clo, chi,
363                                                 powInfo[lowIndex].tPow2x[i],
364                                                 powInfo[lowIndex + 1].tPow2x[i]);
365                 }
366         }
367 }
368
369 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
370                                 bool is2GHz, int num_band_edges)
371 {
372         u16 twiceMaxEdgePower = MAX_RATE_POWER;
373         int i;
374
375         for (i = 0; (i < num_band_edges) &&
376                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
377                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
378                         twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
379                         break;
380                 } else if ((i > 0) &&
381                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
382                                                       is2GHz))) {
383                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
384                                                is2GHz) < freq &&
385                             CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
386                                 twiceMaxEdgePower =
387                                         CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
388                         }
389                         break;
390                 }
391         }
392
393         return twiceMaxEdgePower;
394 }
395
396 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
397                               u8 antenna_reduction)
398 {
399         u16 reduction = antenna_reduction;
400
401         /*
402          * Reduce scaled Power by number of chains active
403          * to get the per chain tx power level.
404          */
405         switch (ar5416_get_ntxchains(ah->txchainmask)) {
406         case 1:
407                 break;
408         case 2:
409                 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
410                 break;
411         case 3:
412                 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
413                 break;
414         }
415
416         if (power_limit > reduction)
417                 power_limit -= reduction;
418         else
419                 power_limit = 0;
420
421         return power_limit;
422 }
423
424 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
425 {
426         struct ath_common *common = ath9k_hw_common(ah);
427         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
428
429         switch (ar5416_get_ntxchains(ah->txchainmask)) {
430         case 1:
431                 break;
432         case 2:
433                 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
434                 break;
435         case 3:
436                 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
437                 break;
438         default:
439                 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
440                 break;
441         }
442 }
443
444 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
445                                 struct ath9k_channel *chan,
446                                 void *pRawDataSet,
447                                 u8 *bChans, u16 availPiers,
448                                 u16 tPdGainOverlap,
449                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
450                                 u16 numXpdGains)
451 {
452         int i, j, k;
453         int16_t ss;
454         u16 idxL = 0, idxR = 0, numPiers;
455         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
456                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
457         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
458                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
459         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
460                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
461
462         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
463         u8 minPwrT4[AR5416_NUM_PD_GAINS];
464         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
465         int16_t vpdStep;
466         int16_t tmpVal;
467         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
468         bool match;
469         int16_t minDelta = 0;
470         struct chan_centers centers;
471         int pdgain_boundary_default;
472         struct cal_data_per_freq *data_def = pRawDataSet;
473         struct cal_data_per_freq_4k *data_4k = pRawDataSet;
474         struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
475         bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
476         int intercepts;
477
478         if (AR_SREV_9287(ah))
479                 intercepts = AR9287_PD_GAIN_ICEPTS;
480         else
481                 intercepts = AR5416_PD_GAIN_ICEPTS;
482
483         memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
484         ath9k_hw_get_channel_centers(ah, chan, &centers);
485
486         for (numPiers = 0; numPiers < availPiers; numPiers++) {
487                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
488                         break;
489         }
490
491         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
492                                                              IS_CHAN_2GHZ(chan)),
493                                                bChans, numPiers, &idxL, &idxR);
494
495         if (match) {
496                 if (AR_SREV_9287(ah)) {
497                         for (i = 0; i < numXpdGains; i++) {
498                                 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
499                                 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
500                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
501                                                 data_9287[idxL].pwrPdg[i],
502                                                 data_9287[idxL].vpdPdg[i],
503                                                 intercepts,
504                                                 vpdTableI[i]);
505                         }
506                 } else if (eeprom_4k) {
507                         for (i = 0; i < numXpdGains; i++) {
508                                 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
509                                 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
510                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
511                                                 data_4k[idxL].pwrPdg[i],
512                                                 data_4k[idxL].vpdPdg[i],
513                                                 intercepts,
514                                                 vpdTableI[i]);
515                         }
516                 } else {
517                         for (i = 0; i < numXpdGains; i++) {
518                                 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
519                                 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
520                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521                                                 data_def[idxL].pwrPdg[i],
522                                                 data_def[idxL].vpdPdg[i],
523                                                 intercepts,
524                                                 vpdTableI[i]);
525                         }
526                 }
527         } else {
528                 for (i = 0; i < numXpdGains; i++) {
529                         if (AR_SREV_9287(ah)) {
530                                 pVpdL = data_9287[idxL].vpdPdg[i];
531                                 pPwrL = data_9287[idxL].pwrPdg[i];
532                                 pVpdR = data_9287[idxR].vpdPdg[i];
533                                 pPwrR = data_9287[idxR].pwrPdg[i];
534                         } else if (eeprom_4k) {
535                                 pVpdL = data_4k[idxL].vpdPdg[i];
536                                 pPwrL = data_4k[idxL].pwrPdg[i];
537                                 pVpdR = data_4k[idxR].vpdPdg[i];
538                                 pPwrR = data_4k[idxR].pwrPdg[i];
539                         } else {
540                                 pVpdL = data_def[idxL].vpdPdg[i];
541                                 pPwrL = data_def[idxL].pwrPdg[i];
542                                 pVpdR = data_def[idxR].vpdPdg[i];
543                                 pPwrR = data_def[idxR].pwrPdg[i];
544                         }
545
546                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
547
548                         maxPwrT4[i] =
549                                 min(pPwrL[intercepts - 1],
550                                     pPwrR[intercepts - 1]);
551
552
553                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
554                                                 pPwrL, pVpdL,
555                                                 intercepts,
556                                                 vpdTableL[i]);
557                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
558                                                 pPwrR, pVpdR,
559                                                 intercepts,
560                                                 vpdTableR[i]);
561
562                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
563                                 vpdTableI[i][j] =
564                                         (u8)(ath9k_hw_interpolate((u16)
565                                              FREQ2FBIN(centers.
566                                                        synth_center,
567                                                        IS_CHAN_2GHZ
568                                                        (chan)),
569                                              bChans[idxL], bChans[idxR],
570                                              vpdTableL[i][j], vpdTableR[i][j]));
571                         }
572                 }
573         }
574
575         k = 0;
576
577         for (i = 0; i < numXpdGains; i++) {
578                 if (i == (numXpdGains - 1))
579                         pPdGainBoundaries[i] =
580                                 (u16)(maxPwrT4[i] / 2);
581                 else
582                         pPdGainBoundaries[i] =
583                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
584
585                 pPdGainBoundaries[i] =
586                         min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
587
588                 minDelta = 0;
589
590                 if (i == 0) {
591                         if (AR_SREV_9280_20_OR_LATER(ah))
592                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
593                         else
594                                 ss = 0;
595                 } else {
596                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
597                                         (minPwrT4[i] / 2)) -
598                                        tPdGainOverlap + 1 + minDelta);
599                 }
600                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
601                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
602
603                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
604                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
605                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
606                         ss++;
607                 }
608
609                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
610                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
611                                 (minPwrT4[i] / 2));
612                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
613                         tgtIndex : sizeCurrVpdTable;
614
615                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
616                         pPDADCValues[k++] = vpdTableI[i][ss++];
617                 }
618
619                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
620                                     vpdTableI[i][sizeCurrVpdTable - 2]);
621                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622
623                 if (tgtIndex >= maxIndex) {
624                         while ((ss <= tgtIndex) &&
625                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
626                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
627                                                     (ss - maxIndex + 1) * vpdStep));
628                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
629                                                          255 : tmpVal);
630                                 ss++;
631                         }
632                 }
633         }
634
635         if (eeprom_4k)
636                 pdgain_boundary_default = 58;
637         else
638                 pdgain_boundary_default = pPdGainBoundaries[i - 1];
639
640         while (i < AR5416_PD_GAINS_IN_MASK) {
641                 pPdGainBoundaries[i] = pdgain_boundary_default;
642                 i++;
643         }
644
645         while (k < AR5416_NUM_PDADC_VALUES) {
646                 pPDADCValues[k] = pPDADCValues[k - 1];
647                 k++;
648         }
649 }
650
651 int ath9k_hw_eeprom_init(struct ath_hw *ah)
652 {
653         int status;
654
655         if (AR_SREV_9300_20_OR_LATER(ah))
656                 ah->eep_ops = &eep_ar9300_ops;
657         else if (AR_SREV_9287(ah)) {
658                 ah->eep_ops = &eep_ar9287_ops;
659         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
660                 ah->eep_ops = &eep_4k_ops;
661         } else {
662                 ah->eep_ops = &eep_def_ops;
663         }
664
665         if (!ah->eep_ops->fill_eeprom(ah))
666                 return -EIO;
667
668         status = ah->eep_ops->check_eeprom(ah);
669
670         return status;
671 }