GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         time64_t now = ktime_get_boottime_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = now;
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and initialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w initialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int err = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 err = ipw2100_power_cycle_adapter(priv);
1761                 if (err) {
1762                         printk(KERN_WARNING DRV_NAME
1763                                ": %s: Could not cycle adapter.\n",
1764                                priv->net_dev->name);
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         err = ipw2100_start_adapter(priv);
1772         if (err) {
1773                 printk(KERN_ERR DRV_NAME
1774                        ": %s: Failed to start the firmware.\n",
1775                        priv->net_dev->name);
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         err = ipw2100_get_hw_features(priv);
1783         if (err) {
1784                 printk(KERN_ERR DRV_NAME
1785                        ": %s: Failed to determine HW features.\n",
1786                        priv->net_dev->name);
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796         if (err) {
1797                 printk(KERN_ERR DRV_NAME
1798                        ": %s: Failed to clear ordinal lock.\n",
1799                        priv->net_dev->name);
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         err = ipw2100_adapter_setup(priv);
1824         if (err) {
1825                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826                        priv->net_dev->name);
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 err = ipw2100_enable_adapter(priv);
1833                 if (err) {
1834                         printk(KERN_ERR DRV_NAME ": "
1835                                "%s: failed in call to enable adapter.\n",
1836                                priv->net_dev->name);
1837                         ipw2100_hw_stop_adapter(priv);
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return err;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = NL80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = ktime_get_boottime_seconds();
2083
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149
2150         eth_zero_addr(priv->bssid);
2151         eth_zero_addr(priv->ieee->bssid);
2152
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312                                           sizeof(struct ipw2100_rx),
2313                                           PCI_DMA_FROMDEVICE);
2314         if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315                 dev_kfree_skb(packet->skb);
2316                 return -ENOMEM;
2317         }
2318
2319         return 0;
2320 }
2321
2322 #define SEARCH_ERROR   0xffffffff
2323 #define SEARCH_FAIL    0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331         int i;
2332         if (!priv->snapshot[0])
2333                 return;
2334         for (i = 0; i < 0x30; i++)
2335                 kfree(priv->snapshot[i]);
2336         priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342         int i;
2343         if (priv->snapshot[0])
2344                 return 1;
2345         for (i = 0; i < 0x30; i++) {
2346                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347                 if (!priv->snapshot[i]) {
2348                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349                                        "buffer %d\n", priv->net_dev->name, i);
2350                         while (i > 0)
2351                                 kfree(priv->snapshot[--i]);
2352                         priv->snapshot[0] = NULL;
2353                         return 0;
2354                 }
2355         }
2356
2357         return 1;
2358 }
2359
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361                                     size_t len, int mode)
2362 {
2363         u32 i, j;
2364         u32 tmp;
2365         u8 *s, *d;
2366         u32 ret;
2367
2368         s = in_buf;
2369         if (mode == SEARCH_SNAPSHOT) {
2370                 if (!ipw2100_snapshot_alloc(priv))
2371                         mode = SEARCH_DISCARD;
2372         }
2373
2374         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375                 read_nic_dword(priv->net_dev, i, &tmp);
2376                 if (mode == SEARCH_SNAPSHOT)
2377                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378                 if (ret == SEARCH_FAIL) {
2379                         d = (u8 *) & tmp;
2380                         for (j = 0; j < 4; j++) {
2381                                 if (*s != *d) {
2382                                         s = in_buf;
2383                                         continue;
2384                                 }
2385
2386                                 s++;
2387                                 d++;
2388
2389                                 if ((s - in_buf) == len)
2390                                         ret = (i + j) - len + 1;
2391                         }
2392                 } else if (mode == SEARCH_DISCARD)
2393                         return ret;
2394         }
2395
2396         return ret;
2397 }
2398 #endif
2399
2400 /*
2401  *
2402  * 0) Disconnect the SKB from the firmware (just unmap)
2403  * 1) Pack the ETH header into the SKB
2404  * 2) Pass the SKB to the network stack
2405  *
2406  * When packet is provided by the firmware, it contains the following:
2407  *
2408  * .  libipw_hdr
2409  * .  libipw_snap_hdr
2410  *
2411  * The size of the constructed ethernet
2412  *
2413  */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421         struct ipw2100_status *status = &priv->status_queue.drv[i];
2422         u32 match, reg;
2423         int j;
2424 #endif
2425
2426         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427                        i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430         /* Halt the firmware so we can get a good image */
2431         write_register(priv->net_dev, IPW_REG_RESET_REG,
2432                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433         j = 5;
2434         do {
2435                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437
2438                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439                         break;
2440         } while (j--);
2441
2442         match = ipw2100_match_buf(priv, (u8 *) status,
2443                                   sizeof(struct ipw2100_status),
2444                                   SEARCH_SNAPSHOT);
2445         if (match < SEARCH_SUCCESS)
2446                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447                                "offset 0x%06X, length %d:\n",
2448                                priv->net_dev->name, match,
2449                                sizeof(struct ipw2100_status));
2450         else
2451                 IPW_DEBUG_INFO("%s: No DMA status match in "
2452                                "Firmware.\n", priv->net_dev->name);
2453
2454         printk_buf((u8 *) priv->status_queue.drv,
2455                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459         priv->net_dev->stats.rx_errors++;
2460         schedule_reset(priv);
2461 }
2462
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464                           struct libipw_rx_stats *stats)
2465 {
2466         struct net_device *dev = priv->net_dev;
2467         struct ipw2100_status *status = &priv->status_queue.drv[i];
2468         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470         IPW_DEBUG_RX("Handler...\n");
2471
2472         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474                                "  Dropping.\n",
2475                                dev->name,
2476                                status->frame_size, skb_tailroom(packet->skb));
2477                 dev->stats.rx_errors++;
2478                 return;
2479         }
2480
2481         if (unlikely(!netif_running(dev))) {
2482                 dev->stats.rx_errors++;
2483                 priv->wstats.discard.misc++;
2484                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485                 return;
2486         }
2487
2488         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489                      !(priv->status & STATUS_ASSOCIATED))) {
2490                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491                 priv->wstats.discard.misc++;
2492                 return;
2493         }
2494
2495         pci_unmap_single(priv->pci_dev,
2496                          packet->dma_addr,
2497                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499         skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502         /* Make a copy of the frame so we can dump it to the logs if
2503          * libipw_rx fails */
2504         skb_copy_from_linear_data(packet->skb, packet_data,
2505                                   min_t(u32, status->frame_size,
2506                                              IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512                                dev->name);
2513                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515                 dev->stats.rx_errors++;
2516
2517                 /* libipw_rx failed, so it didn't free the SKB */
2518                 dev_kfree_skb_any(packet->skb);
2519                 packet->skb = NULL;
2520         }
2521
2522         /* We need to allocate a new SKB and attach it to the RDB. */
2523         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524                 printk(KERN_WARNING DRV_NAME ": "
2525                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2526                        "adapter.\n", dev->name);
2527                 /* TODO: schedule adapter shutdown */
2528                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529         }
2530
2531         /* Update the RDB entry */
2532         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538                    struct libipw_rx_stats *stats)
2539 {
2540         struct net_device *dev = priv->net_dev;
2541         struct ipw2100_status *status = &priv->status_queue.drv[i];
2542         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544         /* Magic struct that slots into the radiotap header -- no reason
2545          * to build this manually element by element, we can write it much
2546          * more efficiently than we can parse it. ORDER MATTERS HERE */
2547         struct ipw_rt_hdr {
2548                 struct ieee80211_radiotap_header rt_hdr;
2549                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550         } *ipw_rt;
2551
2552         IPW_DEBUG_RX("Handler...\n");
2553
2554         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555                                 sizeof(struct ipw_rt_hdr))) {
2556                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557                                "  Dropping.\n",
2558                                dev->name,
2559                                status->frame_size,
2560                                skb_tailroom(packet->skb));
2561                 dev->stats.rx_errors++;
2562                 return;
2563         }
2564
2565         if (unlikely(!netif_running(dev))) {
2566                 dev->stats.rx_errors++;
2567                 priv->wstats.discard.misc++;
2568                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569                 return;
2570         }
2571
2572         if (unlikely(priv->config & CFG_CRC_CHECK &&
2573                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575                 dev->stats.rx_errors++;
2576                 return;
2577         }
2578
2579         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582                 packet->skb->data, status->frame_size);
2583
2584         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597                 dev->stats.rx_errors++;
2598
2599                 /* libipw_rx failed, so it didn't free the SKB */
2600                 dev_kfree_skb_any(packet->skb);
2601                 packet->skb = NULL;
2602         }
2603
2604         /* We need to allocate a new SKB and attach it to the RDB. */
2605         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606                 IPW_DEBUG_WARNING(
2607                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2608                         "adapter.\n", dev->name);
2609                 /* TODO: schedule adapter shutdown */
2610                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611         }
2612
2613         /* Update the RDB entry */
2614         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621         struct ipw2100_status *status = &priv->status_queue.drv[i];
2622         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625         switch (frame_type) {
2626         case COMMAND_STATUS_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.command));
2628         case STATUS_CHANGE_VAL:
2629                 return (status->frame_size != sizeof(u->rx_data.status));
2630         case HOST_NOTIFICATION_VAL:
2631                 return (status->frame_size < sizeof(u->rx_data.notification));
2632         case P80211_DATA_VAL:
2633         case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635                 return 0;
2636 #else
2637                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638                 case IEEE80211_FTYPE_MGMT:
2639                 case IEEE80211_FTYPE_CTL:
2640                         return 0;
2641                 case IEEE80211_FTYPE_DATA:
2642                         return (status->frame_size >
2643                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644                 }
2645 #endif
2646         }
2647
2648         return 1;
2649 }
2650
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678         struct ipw2100_status_queue *sq = &priv->status_queue;
2679         struct ipw2100_rx_packet *packet;
2680         u16 frame_type;
2681         u32 r, w, i, s;
2682         struct ipw2100_rx *u;
2683         struct libipw_rx_stats stats = {
2684                 .mac_time = jiffies,
2685         };
2686
2687         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690         if (r >= rxq->entries) {
2691                 IPW_DEBUG_RX("exit - bad read index\n");
2692                 return;
2693         }
2694
2695         i = (rxq->next + 1) % rxq->entries;
2696         s = i;
2697         while (i != r) {
2698                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699                    r, rxq->next, i); */
2700
2701                 packet = &priv->rx_buffers[i];
2702
2703                 /* Sync the DMA for the RX buffer so CPU is sure to get
2704                  * the correct values */
2705                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706                                             sizeof(struct ipw2100_rx),
2707                                             PCI_DMA_FROMDEVICE);
2708
2709                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710                         ipw2100_corruption_detected(priv, i);
2711                         goto increment;
2712                 }
2713
2714                 u = packet->rxp;
2715                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717                 stats.len = sq->drv[i].frame_size;
2718
2719                 stats.mask = 0;
2720                 if (stats.rssi != 0)
2721                         stats.mask |= LIBIPW_STATMASK_RSSI;
2722                 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725                              priv->net_dev->name, frame_types[frame_type],
2726                              stats.len);
2727
2728                 switch (frame_type) {
2729                 case COMMAND_STATUS_VAL:
2730                         /* Reset Rx watchdog */
2731                         isr_rx_complete_command(priv, &u->rx_data.command);
2732                         break;
2733
2734                 case STATUS_CHANGE_VAL:
2735                         isr_status_change(priv, u->rx_data.status);
2736                         break;
2737
2738                 case P80211_DATA_VAL:
2739                 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742                                 isr_rx_monitor(priv, i, &stats);
2743                                 break;
2744                         }
2745 #endif
2746                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2747                                 break;
2748                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749                         case IEEE80211_FTYPE_MGMT:
2750                                 libipw_rx_mgt(priv->ieee,
2751                                                  &u->rx_data.header, &stats);
2752                                 break;
2753
2754                         case IEEE80211_FTYPE_CTL:
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_DATA:
2758                                 isr_rx(priv, i, &stats);
2759                                 break;
2760
2761                         }
2762                         break;
2763                 }
2764
2765               increment:
2766                 /* clear status field associated with this RBD */
2767                 rxq->drv[i].status.info.field = 0;
2768
2769                 i = (i + 1) % rxq->entries;
2770         }
2771
2772         if (i != s) {
2773                 /* backtrack one entry, wrapping to end if at 0 */
2774                 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776                 write_register(priv->net_dev,
2777                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778         }
2779 }
2780
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823         struct ipw2100_bd *tbd;
2824         struct list_head *element;
2825         struct ipw2100_tx_packet *packet;
2826         int descriptors_used;
2827         int e, i;
2828         u32 r, w, frag_num = 0;
2829
2830         if (list_empty(&priv->fw_pend_list))
2831                 return 0;
2832
2833         element = priv->fw_pend_list.next;
2834
2835         packet = list_entry(element, struct ipw2100_tx_packet, list);
2836         tbd = &txq->drv[packet->index];
2837
2838         /* Determine how many TBD entries must be finished... */
2839         switch (packet->type) {
2840         case COMMAND:
2841                 /* COMMAND uses only one slot; don't advance */
2842                 descriptors_used = 1;
2843                 e = txq->oldest;
2844                 break;
2845
2846         case DATA:
2847                 /* DATA uses two slots; advance and loop position. */
2848                 descriptors_used = tbd->num_fragments;
2849                 frag_num = tbd->num_fragments - 1;
2850                 e = txq->oldest + frag_num;
2851                 e %= txq->entries;
2852                 break;
2853
2854         default:
2855                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856                        priv->net_dev->name);
2857                 return 0;
2858         }
2859
2860         /* if the last TBD is not done by NIC yet, then packet is
2861          * not ready to be released.
2862          *
2863          */
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865                       &r);
2866         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867                       &w);
2868         if (w != txq->next)
2869                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870                        priv->net_dev->name);
2871
2872         /*
2873          * txq->next is the index of the last packet written txq->oldest is
2874          * the index of the r is the index of the next packet to be read by
2875          * firmware
2876          */
2877
2878         /*
2879          * Quick graphic to help you visualize the following
2880          * if / else statement
2881          *
2882          * ===>|                     s---->|===============
2883          *                               e>|
2884          * | a | b | c | d | e | f | g | h | i | j | k | l
2885          *       r---->|
2886          *               w
2887          *
2888          * w - updated by driver
2889          * r - updated by firmware
2890          * s - start of oldest BD entry (txq->oldest)
2891          * e - end of oldest BD entry
2892          *
2893          */
2894         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896                 return 0;
2897         }
2898
2899         list_del(element);
2900         DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903         {
2904                 i = txq->oldest;
2905                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906                              &txq->drv[i],
2907                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910                 if (packet->type == DATA) {
2911                         i = (i + 1) % txq->entries;
2912
2913                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914                                      &txq->drv[i],
2915                                      (u32) (txq->nic + i *
2916                                             sizeof(struct ipw2100_bd)),
2917                                      (u32) txq->drv[i].host_addr,
2918                                      txq->drv[i].buf_length);
2919                 }
2920         }
2921 #endif
2922
2923         switch (packet->type) {
2924         case DATA:
2925                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927                                "Expecting DATA TBD but pulled "
2928                                "something else: ids %d=%d.\n",
2929                                priv->net_dev->name, txq->oldest, packet->index);
2930
2931                 /* DATA packet; we have to unmap and free the SKB */
2932                 for (i = 0; i < frag_num; i++) {
2933                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936                                      (packet->index + 1 + i) % txq->entries,
2937                                      tbd->host_addr, tbd->buf_length);
2938
2939                         pci_unmap_single(priv->pci_dev,
2940                                          tbd->host_addr,
2941                                          tbd->buf_length, PCI_DMA_TODEVICE);
2942                 }
2943
2944                 libipw_txb_free(packet->info.d_struct.txb);
2945                 packet->info.d_struct.txb = NULL;
2946
2947                 list_add_tail(element, &priv->tx_free_list);
2948                 INC_STAT(&priv->tx_free_stat);
2949
2950                 /* We have a free slot in the Tx queue, so wake up the
2951                  * transmit layer if it is stopped. */
2952                 if (priv->status & STATUS_ASSOCIATED)
2953                         netif_wake_queue(priv->net_dev);
2954
2955                 /* A packet was processed by the hardware, so update the
2956                  * watchdog */
2957                 netif_trans_update(priv->net_dev);
2958
2959                 break;
2960
2961         case COMMAND:
2962                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2964                                "Expecting COMMAND TBD but pulled "
2965                                "something else: ids %d=%d.\n",
2966                                priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969                 if (packet->info.c_struct.cmd->host_command_reg <
2970                     ARRAY_SIZE(command_types))
2971                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972                                      command_types[packet->info.c_struct.cmd->
2973                                                    host_command_reg],
2974                                      packet->info.c_struct.cmd->
2975                                      host_command_reg,
2976                                      packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979                 list_add_tail(element, &priv->msg_free_list);
2980                 INC_STAT(&priv->msg_free_stat);
2981                 break;
2982         }
2983
2984         /* advance oldest used TBD pointer to start of next entry */
2985         txq->oldest = (e + 1) % txq->entries;
2986         /* increase available TBDs number */
2987         txq->available += descriptors_used;
2988         SET_STAT(&priv->txq_stat, txq->available);
2989
2990         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2991                      jiffies - packet->jiffy_start);
2992
2993         return (!list_empty(&priv->fw_pend_list));
2994 }
2995
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998         int i = 0;
2999
3000         while (__ipw2100_tx_process(priv) && i < 200)
3001                 i++;
3002
3003         if (i == 200) {
3004                 printk(KERN_WARNING DRV_NAME ": "
3005                        "%s: Driver is running slow (%d iters).\n",
3006                        priv->net_dev->name, i);
3007         }
3008 }
3009
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012         struct list_head *element;
3013         struct ipw2100_tx_packet *packet;
3014         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015         struct ipw2100_bd *tbd;
3016         int next = txq->next;
3017
3018         while (!list_empty(&priv->msg_pend_list)) {
3019                 /* if there isn't enough space in TBD queue, then
3020                  * don't stuff a new one in.
3021                  * NOTE: 3 are needed as a command will take one,
3022                  *       and there is a minimum of 2 that must be
3023                  *       maintained between the r and w indexes
3024                  */
3025                 if (txq->available <= 3) {
3026                         IPW_DEBUG_TX("no room in tx_queue\n");
3027                         break;
3028                 }
3029
3030                 element = priv->msg_pend_list.next;
3031                 list_del(element);
3032                 DEC_STAT(&priv->msg_pend_stat);
3033
3034                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037                              &txq->drv[txq->next],
3038                              (u32) (txq->nic + txq->next *
3039                                       sizeof(struct ipw2100_bd)));
3040
3041                 packet->index = txq->next;
3042
3043                 tbd = &txq->drv[txq->next];
3044
3045                 /* initialize TBD */
3046                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048                 /* not marking number of fragments causes problems
3049                  * with f/w debug version */
3050                 tbd->num_fragments = 1;
3051                 tbd->status.info.field =
3052                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3053                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055                 /* update TBD queue counters */
3056                 txq->next++;
3057                 txq->next %= txq->entries;
3058                 txq->available--;
3059                 DEC_STAT(&priv->txq_stat);
3060
3061                 list_add_tail(element, &priv->fw_pend_list);
3062                 INC_STAT(&priv->fw_pend_stat);
3063         }
3064
3065         if (txq->next != next) {
3066                 /* kick off the DMA by notifying firmware the
3067                  * write index has moved; make sure TBD stores are sync'd */
3068                 wmb();
3069                 write_register(priv->net_dev,
3070                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071                                txq->next);
3072         }
3073 }
3074
3075 /*
3076  * ipw2100_tx_send_data
3077  *
3078  */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081         struct list_head *element;
3082         struct ipw2100_tx_packet *packet;
3083         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084         struct ipw2100_bd *tbd;
3085         int next = txq->next;
3086         int i = 0;
3087         struct ipw2100_data_header *ipw_hdr;
3088         struct libipw_hdr_3addr *hdr;
3089
3090         while (!list_empty(&priv->tx_pend_list)) {
3091                 /* if there isn't enough space in TBD queue, then
3092                  * don't stuff a new one in.
3093                  * NOTE: 4 are needed as a data will take two,
3094                  *       and there is a minimum of 2 that must be
3095                  *       maintained between the r and w indexes
3096                  */
3097                 element = priv->tx_pend_list.next;
3098                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101                              IPW_MAX_BDS)) {
3102                         /* TODO: Support merging buffers if more than
3103                          * IPW_MAX_BDS are used */
3104                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3105                                        "Increase fragmentation level.\n",
3106                                        priv->net_dev->name);
3107                 }
3108
3109                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110                         IPW_DEBUG_TX("no room in tx_queue\n");
3111                         break;
3112                 }
3113
3114                 list_del(element);
3115                 DEC_STAT(&priv->tx_pend_stat);
3116
3117                 tbd = &txq->drv[txq->next];
3118
3119                 packet->index = txq->next;
3120
3121                 ipw_hdr = packet->info.d_struct.data;
3122                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123                     fragments[0]->data;
3124
3125                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3127                            Addr3 = DA */
3128                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132                            Addr3 = BSSID */
3133                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135                 }
3136
3137                 ipw_hdr->host_command_reg = SEND;
3138                 ipw_hdr->host_command_reg1 = 0;
3139
3140                 /* For now we only support host based encryption */
3141                 ipw_hdr->needs_encryption = 0;
3142                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143                 if (packet->info.d_struct.txb->nr_frags > 1)
3144                         ipw_hdr->fragment_size =
3145                             packet->info.d_struct.txb->frag_size -
3146                             LIBIPW_3ADDR_LEN;
3147                 else
3148                         ipw_hdr->fragment_size = 0;
3149
3150                 tbd->host_addr = packet->info.d_struct.data_phys;
3151                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153                 tbd->status.info.field =
3154                     IPW_BD_STATUS_TX_FRAME_802_3 |
3155                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156                 txq->next++;
3157                 txq->next %= txq->entries;
3158
3159                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160                              packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162                 if (packet->info.d_struct.txb->nr_frags > 1)
3163                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164                                        packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168                         tbd = &txq->drv[txq->next];
3169                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3170                                 tbd->status.info.field =
3171                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3172                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173                         else
3174                                 tbd->status.info.field =
3175                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3176                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178                         tbd->buf_length = packet->info.d_struct.txb->
3179                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181                         tbd->host_addr = pci_map_single(priv->pci_dev,
3182                                                         packet->info.d_struct.
3183                                                         txb->fragments[i]->
3184                                                         data +
3185                                                         LIBIPW_3ADDR_LEN,
3186                                                         tbd->buf_length,
3187                                                         PCI_DMA_TODEVICE);
3188                         if (pci_dma_mapping_error(priv->pci_dev,
3189                                                   tbd->host_addr)) {
3190                                 IPW_DEBUG_TX("dma mapping error\n");
3191                                 break;
3192                         }
3193
3194                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195                                      txq->next, tbd->host_addr,
3196                                      tbd->buf_length);
3197
3198                         pci_dma_sync_single_for_device(priv->pci_dev,
3199                                                        tbd->host_addr,
3200                                                        tbd->buf_length,
3201                                                        PCI_DMA_TODEVICE);
3202
3203                         txq->next++;
3204                         txq->next %= txq->entries;
3205                 }
3206
3207                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208                 SET_STAT(&priv->txq_stat, txq->available);
3209
3210                 list_add_tail(element, &priv->fw_pend_list);
3211                 INC_STAT(&priv->fw_pend_stat);
3212         }
3213
3214         if (txq->next != next) {
3215                 /* kick off the DMA by notifying firmware the
3216                  * write index has moved; make sure TBD stores are sync'd */
3217                 write_register(priv->net_dev,
3218                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219                                txq->next);
3220         }
3221 }
3222
3223 static void ipw2100_irq_tasklet(unsigned long data)
3224 {
3225         struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3226         struct net_device *dev = priv->net_dev;
3227         unsigned long flags;
3228         u32 inta, tmp;
3229
3230         spin_lock_irqsave(&priv->low_lock, flags);
3231         ipw2100_disable_interrupts(priv);
3232
3233         read_register(dev, IPW_REG_INTA, &inta);
3234
3235         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3236                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3237
3238         priv->in_isr++;
3239         priv->interrupts++;
3240
3241         /* We do not loop and keep polling for more interrupts as this
3242          * is frowned upon and doesn't play nicely with other potentially
3243          * chained IRQs */
3244         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3245                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3246
3247         if (inta & IPW2100_INTA_FATAL_ERROR) {
3248                 printk(KERN_WARNING DRV_NAME
3249                        ": Fatal interrupt. Scheduling firmware restart.\n");
3250                 priv->inta_other++;
3251                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3252
3253                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3254                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3255                                priv->net_dev->name, priv->fatal_error);
3256
3257                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3258                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3259                                priv->net_dev->name, tmp);
3260
3261                 /* Wake up any sleeping jobs */
3262                 schedule_reset(priv);
3263         }
3264
3265         if (inta & IPW2100_INTA_PARITY_ERROR) {
3266                 printk(KERN_ERR DRV_NAME
3267                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3268                 priv->inta_other++;
3269                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3270         }
3271
3272         if (inta & IPW2100_INTA_RX_TRANSFER) {
3273                 IPW_DEBUG_ISR("RX interrupt\n");
3274
3275                 priv->rx_interrupts++;
3276
3277                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3278
3279                 __ipw2100_rx_process(priv);
3280                 __ipw2100_tx_complete(priv);
3281         }
3282
3283         if (inta & IPW2100_INTA_TX_TRANSFER) {
3284                 IPW_DEBUG_ISR("TX interrupt\n");
3285
3286                 priv->tx_interrupts++;
3287
3288                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3289
3290                 __ipw2100_tx_complete(priv);
3291                 ipw2100_tx_send_commands(priv);
3292                 ipw2100_tx_send_data(priv);
3293         }
3294
3295         if (inta & IPW2100_INTA_TX_COMPLETE) {
3296                 IPW_DEBUG_ISR("TX complete\n");
3297                 priv->inta_other++;
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3299
3300                 __ipw2100_tx_complete(priv);
3301         }
3302
3303         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3304                 /* ipw2100_handle_event(dev); */
3305                 priv->inta_other++;
3306                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3307         }
3308
3309         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3310                 IPW_DEBUG_ISR("FW init done interrupt\n");
3311                 priv->inta_other++;
3312
3313                 read_register(dev, IPW_REG_INTA, &tmp);
3314                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3315                            IPW2100_INTA_PARITY_ERROR)) {
3316                         write_register(dev, IPW_REG_INTA,
3317                                        IPW2100_INTA_FATAL_ERROR |
3318                                        IPW2100_INTA_PARITY_ERROR);
3319                 }
3320
3321                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3322         }
3323
3324         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3325                 IPW_DEBUG_ISR("Status change interrupt\n");
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3328         }
3329
3330         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3331                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3332                 priv->inta_other++;
3333                 write_register(dev, IPW_REG_INTA,
3334                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3335         }
3336
3337         priv->in_isr--;
3338         ipw2100_enable_interrupts(priv);
3339
3340         spin_unlock_irqrestore(&priv->low_lock, flags);
3341
3342         IPW_DEBUG_ISR("exit\n");
3343 }
3344
3345 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3346 {
3347         struct ipw2100_priv *priv = data;
3348         u32 inta, inta_mask;
3349
3350         if (!data)
3351                 return IRQ_NONE;
3352
3353         spin_lock(&priv->low_lock);
3354
3355         /* We check to see if we should be ignoring interrupts before
3356          * we touch the hardware.  During ucode load if we try and handle
3357          * an interrupt we can cause keyboard problems as well as cause
3358          * the ucode to fail to initialize */
3359         if (!(priv->status & STATUS_INT_ENABLED)) {
3360                 /* Shared IRQ */
3361                 goto none;
3362         }
3363
3364         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3365         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3366
3367         if (inta == 0xFFFFFFFF) {
3368                 /* Hardware disappeared */
3369                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3370                 goto none;
3371         }
3372
3373         inta &= IPW_INTERRUPT_MASK;
3374
3375         if (!(inta & inta_mask)) {
3376                 /* Shared interrupt */
3377                 goto none;
3378         }
3379
3380         /* We disable the hardware interrupt here just to prevent unneeded
3381          * calls to be made.  We disable this again within the actual
3382          * work tasklet, so if another part of the code re-enables the
3383          * interrupt, that is fine */
3384         ipw2100_disable_interrupts(priv);
3385
3386         tasklet_schedule(&priv->irq_tasklet);
3387         spin_unlock(&priv->low_lock);
3388
3389         return IRQ_HANDLED;
3390       none:
3391         spin_unlock(&priv->low_lock);
3392         return IRQ_NONE;
3393 }
3394
3395 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3396                               struct net_device *dev, int pri)
3397 {
3398         struct ipw2100_priv *priv = libipw_priv(dev);
3399         struct list_head *element;
3400         struct ipw2100_tx_packet *packet;
3401         unsigned long flags;
3402
3403         spin_lock_irqsave(&priv->low_lock, flags);
3404
3405         if (!(priv->status & STATUS_ASSOCIATED)) {
3406                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3407                 priv->net_dev->stats.tx_carrier_errors++;
3408                 netif_stop_queue(dev);
3409                 goto fail_unlock;
3410         }
3411
3412         if (list_empty(&priv->tx_free_list))
3413                 goto fail_unlock;
3414
3415         element = priv->tx_free_list.next;
3416         packet = list_entry(element, struct ipw2100_tx_packet, list);
3417
3418         packet->info.d_struct.txb = txb;
3419
3420         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3421         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3422
3423         packet->jiffy_start = jiffies;
3424
3425         list_del(element);
3426         DEC_STAT(&priv->tx_free_stat);
3427
3428         list_add_tail(element, &priv->tx_pend_list);
3429         INC_STAT(&priv->tx_pend_stat);
3430
3431         ipw2100_tx_send_data(priv);
3432
3433         spin_unlock_irqrestore(&priv->low_lock, flags);
3434         return NETDEV_TX_OK;
3435
3436 fail_unlock:
3437         netif_stop_queue(dev);
3438         spin_unlock_irqrestore(&priv->low_lock, flags);
3439         return NETDEV_TX_BUSY;
3440 }
3441
3442 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3443 {
3444         int i, j, err = -EINVAL;
3445         void *v;
3446         dma_addr_t p;
3447
3448         priv->msg_buffers =
3449             kmalloc_array(IPW_COMMAND_POOL_SIZE,
3450                           sizeof(struct ipw2100_tx_packet),
3451                           GFP_KERNEL);
3452         if (!priv->msg_buffers)
3453                 return -ENOMEM;
3454
3455         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3456                 v = pci_zalloc_consistent(priv->pci_dev,
3457                                           sizeof(struct ipw2100_cmd_header),
3458                                           &p);
3459                 if (!v) {
3460                         printk(KERN_ERR DRV_NAME ": "
3461                                "%s: PCI alloc failed for msg "
3462                                "buffers.\n", priv->net_dev->name);
3463                         err = -ENOMEM;
3464                         break;
3465                 }
3466
3467                 priv->msg_buffers[i].type = COMMAND;
3468                 priv->msg_buffers[i].info.c_struct.cmd =
3469                     (struct ipw2100_cmd_header *)v;
3470                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3471         }
3472
3473         if (i == IPW_COMMAND_POOL_SIZE)
3474                 return 0;
3475
3476         for (j = 0; j < i; j++) {
3477                 pci_free_consistent(priv->pci_dev,
3478                                     sizeof(struct ipw2100_cmd_header),
3479                                     priv->msg_buffers[j].info.c_struct.cmd,
3480                                     priv->msg_buffers[j].info.c_struct.
3481                                     cmd_phys);
3482         }
3483
3484         kfree(priv->msg_buffers);
3485         priv->msg_buffers = NULL;
3486
3487         return err;
3488 }
3489
3490 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3491 {
3492         int i;
3493
3494         INIT_LIST_HEAD(&priv->msg_free_list);
3495         INIT_LIST_HEAD(&priv->msg_pend_list);
3496
3497         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3498                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3499         SET_STAT(&priv->msg_free_stat, i);
3500
3501         return 0;
3502 }
3503
3504 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3505 {
3506         int i;
3507
3508         if (!priv->msg_buffers)
3509                 return;
3510
3511         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3512                 pci_free_consistent(priv->pci_dev,
3513                                     sizeof(struct ipw2100_cmd_header),
3514                                     priv->msg_buffers[i].info.c_struct.cmd,
3515                                     priv->msg_buffers[i].info.c_struct.
3516                                     cmd_phys);
3517         }
3518
3519         kfree(priv->msg_buffers);
3520         priv->msg_buffers = NULL;
3521 }
3522
3523 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3524                         char *buf)
3525 {
3526         struct pci_dev *pci_dev = to_pci_dev(d);
3527         char *out = buf;
3528         int i, j;
3529         u32 val;
3530
3531         for (i = 0; i < 16; i++) {
3532                 out += sprintf(out, "[%08X] ", i * 16);
3533                 for (j = 0; j < 16; j += 4) {
3534                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3535                         out += sprintf(out, "%08X ", val);
3536                 }
3537                 out += sprintf(out, "\n");
3538         }
3539
3540         return out - buf;
3541 }
3542
3543 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3544
3545 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3546                         char *buf)
3547 {
3548         struct ipw2100_priv *p = dev_get_drvdata(d);
3549         return sprintf(buf, "0x%08x\n", (int)p->config);
3550 }
3551
3552 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3553
3554 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3555                            char *buf)
3556 {
3557         struct ipw2100_priv *p = dev_get_drvdata(d);
3558         return sprintf(buf, "0x%08x\n", (int)p->status);
3559 }
3560
3561 static DEVICE_ATTR(status, 0444, show_status, NULL);
3562
3563 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3564                                char *buf)
3565 {
3566         struct ipw2100_priv *p = dev_get_drvdata(d);
3567         return sprintf(buf, "0x%08x\n", (int)p->capability);
3568 }
3569
3570 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3571
3572 #define IPW2100_REG(x) { IPW_ ##x, #x }
3573 static const struct {
3574         u32 addr;
3575         const char *name;
3576 } hw_data[] = {
3577 IPW2100_REG(REG_GP_CNTRL),
3578             IPW2100_REG(REG_GPIO),
3579             IPW2100_REG(REG_INTA),
3580             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3581 #define IPW2100_NIC(x, s) { x, #x, s }
3582 static const struct {
3583         u32 addr;
3584         const char *name;
3585         size_t size;
3586 } nic_data[] = {
3587 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3588             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3589 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3590 static const struct {
3591         u8 index;
3592         const char *name;
3593         const char *desc;
3594 } ord_data[] = {
3595 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3596             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3597                                 "successful Host Tx's (MSDU)"),
3598             IPW2100_ORD(STAT_TX_DIR_DATA,
3599                                 "successful Directed Tx's (MSDU)"),
3600             IPW2100_ORD(STAT_TX_DIR_DATA1,
3601                                 "successful Directed Tx's (MSDU) @ 1MB"),
3602             IPW2100_ORD(STAT_TX_DIR_DATA2,
3603                                 "successful Directed Tx's (MSDU) @ 2MB"),
3604             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3605                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3606             IPW2100_ORD(STAT_TX_DIR_DATA11,
3607                                 "successful Directed Tx's (MSDU) @ 11MB"),
3608             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3609                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3610             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3611                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3612             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3613                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3614             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3615                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3616             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3617             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3618             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3619             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3620             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3621             IPW2100_ORD(STAT_TX_ASSN_RESP,
3622                                 "successful Association response Tx's"),
3623             IPW2100_ORD(STAT_TX_REASSN,
3624                                 "successful Reassociation Tx's"),
3625             IPW2100_ORD(STAT_TX_REASSN_RESP,
3626                                 "successful Reassociation response Tx's"),
3627             IPW2100_ORD(STAT_TX_PROBE,
3628                                 "probes successfully transmitted"),
3629             IPW2100_ORD(STAT_TX_PROBE_RESP,
3630                                 "probe responses successfully transmitted"),
3631             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3632             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3633             IPW2100_ORD(STAT_TX_DISASSN,
3634                                 "successful Disassociation TX"),
3635             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3636             IPW2100_ORD(STAT_TX_DEAUTH,
3637                                 "successful Deauthentication TX"),
3638             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3639                                 "Total successful Tx data bytes"),
3640             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3641             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3642             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3643             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3644             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3645             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3646             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3647                                 "times max tries in a hop failed"),
3648             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3649                                 "times disassociation failed"),
3650             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3651             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3652             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3654             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3655             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3656             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3657                                 "directed packets at 5.5MB"),
3658             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3660             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3661                                 "nondirected packets at 1MB"),
3662             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3663                                 "nondirected packets at 2MB"),
3664             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3665                                 "nondirected packets at 5.5MB"),
3666             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3667                                 "nondirected packets at 11MB"),
3668             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3669             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3670                                                                     "Rx CTS"),
3671             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3672             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3673             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3674             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3675             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3676             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3677             IPW2100_ORD(STAT_RX_REASSN_RESP,
3678                                 "Reassociation response Rx's"),
3679             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3680             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3681             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3682             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3683             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3684             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3685             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3686             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3687                                 "Total rx data bytes received"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3690             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3691             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3692             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3693             IPW2100_ORD(STAT_RX_DUPLICATE1,
3694                                 "duplicate rx packets at 1MB"),
3695             IPW2100_ORD(STAT_RX_DUPLICATE2,
3696                                 "duplicate rx packets at 2MB"),
3697             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3698                                 "duplicate rx packets at 5.5MB"),
3699             IPW2100_ORD(STAT_RX_DUPLICATE11,
3700                                 "duplicate rx packets at 11MB"),
3701             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3702             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3703             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3704             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3705             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3706                                 "rx frames with invalid protocol"),
3707             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3708             IPW2100_ORD(STAT_RX_NO_BUFFER,
3709                                 "rx frames rejected due to no buffer"),
3710             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3711                                 "rx frames dropped due to missing fragment"),
3712             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3713                                 "rx frames dropped due to non-sequential fragment"),
3714             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3715                                 "rx frames dropped due to unmatched 1st frame"),
3716             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3717                                 "rx frames dropped due to uncompleted frame"),
3718             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3719                                 "ICV errors during decryption"),
3720             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3721             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3722             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3723                                 "poll response timeouts"),
3724             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3725                                 "timeouts waiting for last {broad,multi}cast pkt"),
3726             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3727             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3728             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3729             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3730             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3731                                 "current calculation of % missed beacons"),
3732             IPW2100_ORD(STAT_PERCENT_RETRIES,
3733                                 "current calculation of % missed tx retries"),
3734             IPW2100_ORD(ASSOCIATED_AP_PTR,
3735                                 "0 if not associated, else pointer to AP table entry"),
3736             IPW2100_ORD(AVAILABLE_AP_CNT,
3737                                 "AP's described in the AP table"),
3738             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3739             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3740             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3741             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3742                                 "failures due to response fail"),
3743             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3744             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3745             IPW2100_ORD(STAT_ROAM_INHIBIT,
3746                                 "times roaming was inhibited due to activity"),
3747             IPW2100_ORD(RSSI_AT_ASSN,
3748                                 "RSSI of associated AP at time of association"),
3749             IPW2100_ORD(STAT_ASSN_CAUSE1,
3750                                 "reassociation: no probe response or TX on hop"),
3751             IPW2100_ORD(STAT_ASSN_CAUSE2,
3752                                 "reassociation: poor tx/rx quality"),
3753             IPW2100_ORD(STAT_ASSN_CAUSE3,
3754                                 "reassociation: tx/rx quality (excessive AP load"),
3755             IPW2100_ORD(STAT_ASSN_CAUSE4,
3756                                 "reassociation: AP RSSI level"),
3757             IPW2100_ORD(STAT_ASSN_CAUSE5,
3758                                 "reassociations due to load leveling"),
3759             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3760             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3761                                 "times authentication response failed"),
3762             IPW2100_ORD(STATION_TABLE_CNT,
3763                                 "entries in association table"),
3764             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3765             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3766             IPW2100_ORD(COUNTRY_CODE,
3767                                 "IEEE country code as recv'd from beacon"),
3768             IPW2100_ORD(COUNTRY_CHANNELS,
3769                                 "channels supported by country"),
3770             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3771             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3772             IPW2100_ORD(ANTENNA_DIVERSITY,
3773                                 "TRUE if antenna diversity is disabled"),
3774             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3775             IPW2100_ORD(OUR_FREQ,
3776                                 "current radio freq lower digits - channel ID"),
3777             IPW2100_ORD(RTC_TIME, "current RTC time"),
3778             IPW2100_ORD(PORT_TYPE, "operating mode"),
3779             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3780             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3781             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3782             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3783             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3784             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3785             IPW2100_ORD(CAPABILITIES,
3786                                 "Management frame capability field"),
3787             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3788             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3789             IPW2100_ORD(RTS_THRESHOLD,
3790                                 "Min packet length for RTS handshaking"),
3791             IPW2100_ORD(INT_MODE, "International mode"),
3792             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3793                                 "protocol frag threshold"),
3794             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3795                                 "EEPROM offset in SRAM"),
3796             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3797                                 "EEPROM size in SRAM"),
3798             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3799             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3800                                 "EEPROM IBSS 11b channel set"),
3801             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3802             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3803             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3804             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3805             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3806
3807 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3808                               char *buf)
3809 {
3810         int i;
3811         struct ipw2100_priv *priv = dev_get_drvdata(d);
3812         struct net_device *dev = priv->net_dev;
3813         char *out = buf;
3814         u32 val = 0;
3815
3816         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3817
3818         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3819                 read_register(dev, hw_data[i].addr, &val);
3820                 out += sprintf(out, "%30s [%08X] : %08X\n",
3821                                hw_data[i].name, hw_data[i].addr, val);
3822         }
3823
3824         return out - buf;
3825 }
3826
3827 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3828
3829 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3830                              char *buf)
3831 {
3832         struct ipw2100_priv *priv = dev_get_drvdata(d);
3833         struct net_device *dev = priv->net_dev;
3834         char *out = buf;
3835         int i;
3836
3837         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3838
3839         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3840                 u8 tmp8;
3841                 u16 tmp16;
3842                 u32 tmp32;
3843
3844                 switch (nic_data[i].size) {
3845                 case 1:
3846                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3847                         out += sprintf(out, "%30s [%08X] : %02X\n",
3848                                        nic_data[i].name, nic_data[i].addr,
3849                                        tmp8);
3850                         break;
3851                 case 2:
3852                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3853                         out += sprintf(out, "%30s [%08X] : %04X\n",
3854                                        nic_data[i].name, nic_data[i].addr,
3855                                        tmp16);
3856                         break;
3857                 case 4:
3858                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3859                         out += sprintf(out, "%30s [%08X] : %08X\n",
3860                                        nic_data[i].name, nic_data[i].addr,
3861                                        tmp32);
3862                         break;
3863                 }
3864         }
3865         return out - buf;
3866 }
3867
3868 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3869
3870 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3871                            char *buf)
3872 {
3873         struct ipw2100_priv *priv = dev_get_drvdata(d);
3874         struct net_device *dev = priv->net_dev;
3875         static unsigned long loop = 0;
3876         int len = 0;
3877         u32 buffer[4];
3878         int i;
3879         char line[81];
3880
3881         if (loop >= 0x30000)
3882                 loop = 0;
3883
3884         /* sysfs provides us PAGE_SIZE buffer */
3885         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3886
3887                 if (priv->snapshot[0])
3888                         for (i = 0; i < 4; i++)
3889                                 buffer[i] =
3890                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3891                 else
3892                         for (i = 0; i < 4; i++)
3893                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3894
3895                 if (priv->dump_raw)
3896                         len += sprintf(buf + len,
3897                                        "%c%c%c%c"
3898                                        "%c%c%c%c"
3899                                        "%c%c%c%c"
3900                                        "%c%c%c%c",
3901                                        ((u8 *) buffer)[0x0],
3902                                        ((u8 *) buffer)[0x1],
3903                                        ((u8 *) buffer)[0x2],
3904                                        ((u8 *) buffer)[0x3],
3905                                        ((u8 *) buffer)[0x4],
3906                                        ((u8 *) buffer)[0x5],
3907                                        ((u8 *) buffer)[0x6],
3908                                        ((u8 *) buffer)[0x7],
3909                                        ((u8 *) buffer)[0x8],
3910                                        ((u8 *) buffer)[0x9],
3911                                        ((u8 *) buffer)[0xa],
3912                                        ((u8 *) buffer)[0xb],
3913                                        ((u8 *) buffer)[0xc],
3914                                        ((u8 *) buffer)[0xd],
3915                                        ((u8 *) buffer)[0xe],
3916                                        ((u8 *) buffer)[0xf]);
3917                 else
3918                         len += sprintf(buf + len, "%s\n",
3919                                        snprint_line(line, sizeof(line),
3920                                                     (u8 *) buffer, 16, loop));
3921                 loop += 16;
3922         }
3923
3924         return len;
3925 }
3926
3927 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3928                             const char *buf, size_t count)
3929 {
3930         struct ipw2100_priv *priv = dev_get_drvdata(d);
3931         struct net_device *dev = priv->net_dev;
3932         const char *p = buf;
3933
3934         (void)dev;              /* kill unused-var warning for debug-only code */
3935
3936         if (count < 1)
3937                 return count;
3938
3939         if (p[0] == '1' ||
3940             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3941                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3942                                dev->name);
3943                 priv->dump_raw = 1;
3944
3945         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3946                                    tolower(p[1]) == 'f')) {
3947                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3948                                dev->name);
3949                 priv->dump_raw = 0;
3950
3951         } else if (tolower(p[0]) == 'r') {
3952                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3953                 ipw2100_snapshot_free(priv);
3954
3955         } else
3956                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3957                                "reset = clear memory snapshot\n", dev->name);
3958
3959         return count;
3960 }
3961
3962 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3963
3964 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3965                              char *buf)
3966 {
3967         struct ipw2100_priv *priv = dev_get_drvdata(d);
3968         u32 val = 0;
3969         int len = 0;
3970         u32 val_len;
3971         static int loop = 0;
3972
3973         if (priv->status & STATUS_RF_KILL_MASK)
3974                 return 0;
3975
3976         if (loop >= ARRAY_SIZE(ord_data))
3977                 loop = 0;
3978
3979         /* sysfs provides us PAGE_SIZE buffer */
3980         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3981                 val_len = sizeof(u32);
3982
3983                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3984                                         &val_len))
3985                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3986                                        ord_data[loop].index,
3987                                        ord_data[loop].desc);
3988                 else
3989                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3990                                        ord_data[loop].index, val,
3991                                        ord_data[loop].desc);
3992                 loop++;
3993         }
3994
3995         return len;
3996 }
3997
3998 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3999
4000 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4001                           char *buf)
4002 {
4003         struct ipw2100_priv *priv = dev_get_drvdata(d);
4004         char *out = buf;
4005
4006         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4007                        priv->interrupts, priv->tx_interrupts,
4008                        priv->rx_interrupts, priv->inta_other);
4009         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4010         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4011 #ifdef CONFIG_IPW2100_DEBUG
4012         out += sprintf(out, "packet mismatch image: %s\n",
4013                        priv->snapshot[0] ? "YES" : "NO");
4014 #endif
4015
4016         return out - buf;
4017 }
4018
4019 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4020
4021 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4022 {
4023         int err;
4024
4025         if (mode == priv->ieee->iw_mode)
4026                 return 0;
4027
4028         err = ipw2100_disable_adapter(priv);
4029         if (err) {
4030                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4031                        priv->net_dev->name, err);
4032                 return err;
4033         }
4034
4035         switch (mode) {
4036         case IW_MODE_INFRA:
4037                 priv->net_dev->type = ARPHRD_ETHER;
4038                 break;
4039         case IW_MODE_ADHOC:
4040                 priv->net_dev->type = ARPHRD_ETHER;
4041                 break;
4042 #ifdef CONFIG_IPW2100_MONITOR
4043         case IW_MODE_MONITOR:
4044                 priv->last_mode = priv->ieee->iw_mode;
4045                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4046                 break;
4047 #endif                          /* CONFIG_IPW2100_MONITOR */
4048         }
4049
4050         priv->ieee->iw_mode = mode;
4051
4052 #ifdef CONFIG_PM
4053         /* Indicate ipw2100_download_firmware download firmware
4054          * from disk instead of memory. */
4055         ipw2100_firmware.version = 0;
4056 #endif
4057
4058         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4059         priv->reset_backoff = 0;
4060         schedule_reset(priv);
4061
4062         return 0;
4063 }
4064
4065 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4066                               char *buf)
4067 {
4068         struct ipw2100_priv *priv = dev_get_drvdata(d);
4069         int len = 0;
4070
4071 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4072
4073         if (priv->status & STATUS_ASSOCIATED)
4074                 len += sprintf(buf + len, "connected: %llu\n",
4075                                ktime_get_boottime_seconds() - priv->connect_start);
4076         else
4077                 len += sprintf(buf + len, "not connected\n");
4078
4079         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4080         DUMP_VAR(status, "08lx");
4081         DUMP_VAR(config, "08lx");
4082         DUMP_VAR(capability, "08lx");
4083
4084         len +=
4085             sprintf(buf + len, "last_rtc: %lu\n",
4086                     (unsigned long)priv->last_rtc);
4087
4088         DUMP_VAR(fatal_error, "d");
4089         DUMP_VAR(stop_hang_check, "d");
4090         DUMP_VAR(stop_rf_kill, "d");
4091         DUMP_VAR(messages_sent, "d");
4092
4093         DUMP_VAR(tx_pend_stat.value, "d");
4094         DUMP_VAR(tx_pend_stat.hi, "d");
4095
4096         DUMP_VAR(tx_free_stat.value, "d");
4097         DUMP_VAR(tx_free_stat.lo, "d");
4098
4099         DUMP_VAR(msg_free_stat.value, "d");
4100         DUMP_VAR(msg_free_stat.lo, "d");
4101
4102         DUMP_VAR(msg_pend_stat.value, "d");
4103         DUMP_VAR(msg_pend_stat.hi, "d");
4104
4105         DUMP_VAR(fw_pend_stat.value, "d");
4106         DUMP_VAR(fw_pend_stat.hi, "d");
4107
4108         DUMP_VAR(txq_stat.value, "d");
4109         DUMP_VAR(txq_stat.lo, "d");
4110
4111         DUMP_VAR(ieee->scans, "d");
4112         DUMP_VAR(reset_backoff, "lld");
4113
4114         return len;
4115 }
4116
4117 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4118
4119 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4120                             char *buf)
4121 {
4122         struct ipw2100_priv *priv = dev_get_drvdata(d);
4123         char essid[IW_ESSID_MAX_SIZE + 1];
4124         u8 bssid[ETH_ALEN];
4125         u32 chan = 0;
4126         char *out = buf;
4127         unsigned int length;
4128         int ret;
4129
4130         if (priv->status & STATUS_RF_KILL_MASK)
4131                 return 0;
4132
4133         memset(essid, 0, sizeof(essid));
4134         memset(bssid, 0, sizeof(bssid));
4135
4136         length = IW_ESSID_MAX_SIZE;
4137         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4138         if (ret)
4139                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4140                                __LINE__);
4141
4142         length = sizeof(bssid);
4143         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4144                                   bssid, &length);
4145         if (ret)
4146                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4147                                __LINE__);
4148
4149         length = sizeof(u32);
4150         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4151         if (ret)
4152                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4153                                __LINE__);
4154
4155         out += sprintf(out, "ESSID: %s\n", essid);
4156         out += sprintf(out, "BSSID:   %pM\n", bssid);
4157         out += sprintf(out, "Channel: %d\n", chan);
4158
4159         return out - buf;
4160 }
4161
4162 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4163
4164 #ifdef CONFIG_IPW2100_DEBUG
4165 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4166 {
4167         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4168 }
4169
4170 static ssize_t debug_level_store(struct device_driver *d,
4171                                  const char *buf, size_t count)
4172 {
4173         u32 val;
4174         int ret;
4175
4176         ret = kstrtou32(buf, 0, &val);
4177         if (ret)
4178                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4179         else
4180                 ipw2100_debug_level = val;
4181
4182         return strnlen(buf, count);
4183 }
4184 static DRIVER_ATTR_RW(debug_level);
4185 #endif                          /* CONFIG_IPW2100_DEBUG */
4186
4187 static ssize_t show_fatal_error(struct device *d,
4188                                 struct device_attribute *attr, char *buf)
4189 {
4190         struct ipw2100_priv *priv = dev_get_drvdata(d);
4191         char *out = buf;
4192         int i;
4193
4194         if (priv->fatal_error)
4195                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4196         else
4197                 out += sprintf(out, "0\n");
4198
4199         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4200                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4201                                         IPW2100_ERROR_QUEUE])
4202                         continue;
4203
4204                 out += sprintf(out, "%d. 0x%08X\n", i,
4205                                priv->fatal_errors[(priv->fatal_index - i) %
4206                                                   IPW2100_ERROR_QUEUE]);
4207         }
4208
4209         return out - buf;
4210 }
4211
4212 static ssize_t store_fatal_error(struct device *d,
4213                                  struct device_attribute *attr, const char *buf,
4214                                  size_t count)
4215 {
4216         struct ipw2100_priv *priv = dev_get_drvdata(d);
4217         schedule_reset(priv);
4218         return count;
4219 }
4220
4221 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4222
4223 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4224                              char *buf)
4225 {
4226         struct ipw2100_priv *priv = dev_get_drvdata(d);
4227         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4228 }
4229
4230 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4231                               const char *buf, size_t count)
4232 {
4233         struct ipw2100_priv *priv = dev_get_drvdata(d);
4234         struct net_device *dev = priv->net_dev;
4235         unsigned long val;
4236         int ret;
4237
4238         (void)dev;              /* kill unused-var warning for debug-only code */
4239
4240         IPW_DEBUG_INFO("enter\n");
4241
4242         ret = kstrtoul(buf, 0, &val);
4243         if (ret) {
4244                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4245         } else {
4246                 priv->ieee->scan_age = val;
4247                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4248         }
4249
4250         IPW_DEBUG_INFO("exit\n");
4251         return strnlen(buf, count);
4252 }
4253
4254 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4255
4256 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4257                             char *buf)
4258 {
4259         /* 0 - RF kill not enabled
4260            1 - SW based RF kill active (sysfs)
4261            2 - HW based RF kill active
4262            3 - Both HW and SW baed RF kill active */
4263         struct ipw2100_priv *priv = dev_get_drvdata(d);
4264         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4265             (rf_kill_active(priv) ? 0x2 : 0x0);
4266         return sprintf(buf, "%i\n", val);
4267 }
4268
4269 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4270 {
4271         if ((disable_radio ? 1 : 0) ==
4272             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4273                 return 0;
4274
4275         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4276                           disable_radio ? "OFF" : "ON");
4277
4278         mutex_lock(&priv->action_mutex);
4279
4280         if (disable_radio) {
4281                 priv->status |= STATUS_RF_KILL_SW;
4282                 ipw2100_down(priv);
4283         } else {
4284                 priv->status &= ~STATUS_RF_KILL_SW;
4285                 if (rf_kill_active(priv)) {
4286                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4287                                           "disabled by HW switch\n");
4288                         /* Make sure the RF_KILL check timer is running */
4289                         priv->stop_rf_kill = 0;
4290                         mod_delayed_work(system_wq, &priv->rf_kill,
4291                                          round_jiffies_relative(HZ));
4292                 } else
4293                         schedule_reset(priv);
4294         }
4295
4296         mutex_unlock(&priv->action_mutex);
4297         return 1;
4298 }
4299
4300 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4301                              const char *buf, size_t count)
4302 {
4303         struct ipw2100_priv *priv = dev_get_drvdata(d);
4304         ipw_radio_kill_sw(priv, buf[0] == '1');
4305         return count;
4306 }
4307
4308 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4309
4310 static struct attribute *ipw2100_sysfs_entries[] = {
4311         &dev_attr_hardware.attr,
4312         &dev_attr_registers.attr,
4313         &dev_attr_ordinals.attr,
4314         &dev_attr_pci.attr,
4315         &dev_attr_stats.attr,
4316         &dev_attr_internals.attr,
4317         &dev_attr_bssinfo.attr,
4318         &dev_attr_memory.attr,
4319         &dev_attr_scan_age.attr,
4320         &dev_attr_fatal_error.attr,
4321         &dev_attr_rf_kill.attr,
4322         &dev_attr_cfg.attr,
4323         &dev_attr_status.attr,
4324         &dev_attr_capability.attr,
4325         NULL,
4326 };
4327
4328 static const struct attribute_group ipw2100_attribute_group = {
4329         .attrs = ipw2100_sysfs_entries,
4330 };
4331
4332 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4333 {
4334         struct ipw2100_status_queue *q = &priv->status_queue;
4335
4336         IPW_DEBUG_INFO("enter\n");
4337
4338         q->size = entries * sizeof(struct ipw2100_status);
4339         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4340         if (!q->drv) {
4341                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4342                 return -ENOMEM;
4343         }
4344
4345         IPW_DEBUG_INFO("exit\n");
4346
4347         return 0;
4348 }
4349
4350 static void status_queue_free(struct ipw2100_priv *priv)
4351 {
4352         IPW_DEBUG_INFO("enter\n");
4353
4354         if (priv->status_queue.drv) {
4355                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4356                                     priv->status_queue.drv,
4357                                     priv->status_queue.nic);
4358                 priv->status_queue.drv = NULL;
4359         }
4360
4361         IPW_DEBUG_INFO("exit\n");
4362 }
4363
4364 static int bd_queue_allocate(struct ipw2100_priv *priv,
4365                              struct ipw2100_bd_queue *q, int entries)
4366 {
4367         IPW_DEBUG_INFO("enter\n");
4368
4369         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4370
4371         q->entries = entries;
4372         q->size = entries * sizeof(struct ipw2100_bd);
4373         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4374         if (!q->drv) {
4375                 IPW_DEBUG_INFO
4376                     ("can't allocate shared memory for buffer descriptors\n");
4377                 return -ENOMEM;
4378         }
4379
4380         IPW_DEBUG_INFO("exit\n");
4381
4382         return 0;
4383 }
4384
4385 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4386 {
4387         IPW_DEBUG_INFO("enter\n");
4388
4389         if (!q)
4390                 return;
4391
4392         if (q->drv) {
4393                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4394                 q->drv = NULL;
4395         }
4396
4397         IPW_DEBUG_INFO("exit\n");
4398 }
4399
4400 static void bd_queue_initialize(struct ipw2100_priv *priv,
4401                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4402                                 u32 r, u32 w)
4403 {
4404         IPW_DEBUG_INFO("enter\n");
4405
4406         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4407                        (u32) q->nic);
4408
4409         write_register(priv->net_dev, base, q->nic);
4410         write_register(priv->net_dev, size, q->entries);
4411         write_register(priv->net_dev, r, q->oldest);
4412         write_register(priv->net_dev, w, q->next);
4413
4414         IPW_DEBUG_INFO("exit\n");
4415 }
4416
4417 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4418 {
4419         priv->stop_rf_kill = 1;
4420         priv->stop_hang_check = 1;
4421         cancel_delayed_work_sync(&priv->reset_work);
4422         cancel_delayed_work_sync(&priv->security_work);
4423         cancel_delayed_work_sync(&priv->wx_event_work);
4424         cancel_delayed_work_sync(&priv->hang_check);
4425         cancel_delayed_work_sync(&priv->rf_kill);
4426         cancel_delayed_work_sync(&priv->scan_event);
4427 }
4428
4429 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4430 {
4431         int i, j, err = -EINVAL;
4432         void *v;
4433         dma_addr_t p;
4434
4435         IPW_DEBUG_INFO("enter\n");
4436
4437         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4438         if (err) {
4439                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4440                                 priv->net_dev->name);
4441                 return err;
4442         }
4443
4444         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4445                                          sizeof(struct ipw2100_tx_packet),
4446                                          GFP_ATOMIC);
4447         if (!priv->tx_buffers) {
4448                 bd_queue_free(priv, &priv->tx_queue);
4449                 return -ENOMEM;
4450         }
4451
4452         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4453                 v = pci_alloc_consistent(priv->pci_dev,
4454                                          sizeof(struct ipw2100_data_header),
4455                                          &p);
4456                 if (!v) {
4457                         printk(KERN_ERR DRV_NAME
4458                                ": %s: PCI alloc failed for tx " "buffers.\n",
4459                                priv->net_dev->name);
4460                         err = -ENOMEM;
4461                         break;
4462                 }
4463
4464                 priv->tx_buffers[i].type = DATA;
4465                 priv->tx_buffers[i].info.d_struct.data =
4466                     (struct ipw2100_data_header *)v;
4467                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4468                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4469         }
4470
4471         if (i == TX_PENDED_QUEUE_LENGTH)
4472                 return 0;
4473
4474         for (j = 0; j < i; j++) {
4475                 pci_free_consistent(priv->pci_dev,
4476                                     sizeof(struct ipw2100_data_header),
4477                                     priv->tx_buffers[j].info.d_struct.data,
4478                                     priv->tx_buffers[j].info.d_struct.
4479                                     data_phys);
4480         }
4481
4482         kfree(priv->tx_buffers);
4483         priv->tx_buffers = NULL;
4484
4485         return err;
4486 }
4487
4488 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4489 {
4490         int i;
4491
4492         IPW_DEBUG_INFO("enter\n");
4493
4494         /*
4495          * reinitialize packet info lists
4496          */
4497         INIT_LIST_HEAD(&priv->fw_pend_list);
4498         INIT_STAT(&priv->fw_pend_stat);
4499
4500         /*
4501          * reinitialize lists
4502          */
4503         INIT_LIST_HEAD(&priv->tx_pend_list);
4504         INIT_LIST_HEAD(&priv->tx_free_list);
4505         INIT_STAT(&priv->tx_pend_stat);
4506         INIT_STAT(&priv->tx_free_stat);
4507
4508         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4509                 /* We simply drop any SKBs that have been queued for
4510                  * transmit */
4511                 if (priv->tx_buffers[i].info.d_struct.txb) {
4512                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4513                                            txb);
4514                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4515                 }
4516
4517                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4518         }
4519
4520         SET_STAT(&priv->tx_free_stat, i);
4521
4522         priv->tx_queue.oldest = 0;
4523         priv->tx_queue.available = priv->tx_queue.entries;
4524         priv->tx_queue.next = 0;
4525         INIT_STAT(&priv->txq_stat);
4526         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4527
4528         bd_queue_initialize(priv, &priv->tx_queue,
4529                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4530                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4531                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4532                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4533
4534         IPW_DEBUG_INFO("exit\n");
4535
4536 }
4537
4538 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4539 {
4540         int i;
4541
4542         IPW_DEBUG_INFO("enter\n");
4543
4544         bd_queue_free(priv, &priv->tx_queue);
4545
4546         if (!priv->tx_buffers)
4547                 return;
4548
4549         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4550                 if (priv->tx_buffers[i].info.d_struct.txb) {
4551                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4552                                            txb);
4553                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4554                 }
4555                 if (priv->tx_buffers[i].info.d_struct.data)
4556                         pci_free_consistent(priv->pci_dev,
4557                                             sizeof(struct ipw2100_data_header),
4558                                             priv->tx_buffers[i].info.d_struct.
4559                                             data,
4560                                             priv->tx_buffers[i].info.d_struct.
4561                                             data_phys);
4562         }
4563
4564         kfree(priv->tx_buffers);
4565         priv->tx_buffers = NULL;
4566
4567         IPW_DEBUG_INFO("exit\n");
4568 }
4569
4570 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4571 {
4572         int i, j, err = -EINVAL;
4573
4574         IPW_DEBUG_INFO("enter\n");
4575
4576         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4577         if (err) {
4578                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4579                 return err;
4580         }
4581
4582         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4583         if (err) {
4584                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4585                 bd_queue_free(priv, &priv->rx_queue);
4586                 return err;
4587         }
4588
4589         /*
4590          * allocate packets
4591          */
4592         priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4593                                          sizeof(struct ipw2100_rx_packet),
4594                                          GFP_KERNEL);
4595         if (!priv->rx_buffers) {
4596                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4597
4598                 bd_queue_free(priv, &priv->rx_queue);
4599
4600                 status_queue_free(priv);
4601
4602                 return -ENOMEM;
4603         }
4604
4605         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4606                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4607
4608                 err = ipw2100_alloc_skb(priv, packet);
4609                 if (unlikely(err)) {
4610                         err = -ENOMEM;
4611                         break;
4612                 }
4613
4614                 /* The BD holds the cache aligned address */
4615                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4616                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4617                 priv->status_queue.drv[i].status_fields = 0;
4618         }
4619
4620         if (i == RX_QUEUE_LENGTH)
4621                 return 0;
4622
4623         for (j = 0; j < i; j++) {
4624                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4625                                  sizeof(struct ipw2100_rx_packet),
4626                                  PCI_DMA_FROMDEVICE);
4627                 dev_kfree_skb(priv->rx_buffers[j].skb);
4628         }
4629
4630         kfree(priv->rx_buffers);
4631         priv->rx_buffers = NULL;
4632
4633         bd_queue_free(priv, &priv->rx_queue);
4634
4635         status_queue_free(priv);
4636
4637         return err;
4638 }
4639
4640 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4641 {
4642         IPW_DEBUG_INFO("enter\n");
4643
4644         priv->rx_queue.oldest = 0;
4645         priv->rx_queue.available = priv->rx_queue.entries - 1;
4646         priv->rx_queue.next = priv->rx_queue.entries - 1;
4647
4648         INIT_STAT(&priv->rxq_stat);
4649         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4650
4651         bd_queue_initialize(priv, &priv->rx_queue,
4652                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4653                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4654                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4655                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4656
4657         /* set up the status queue */
4658         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4659                        priv->status_queue.nic);
4660
4661         IPW_DEBUG_INFO("exit\n");
4662 }
4663
4664 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4665 {
4666         int i;
4667
4668         IPW_DEBUG_INFO("enter\n");
4669
4670         bd_queue_free(priv, &priv->rx_queue);
4671         status_queue_free(priv);
4672
4673         if (!priv->rx_buffers)
4674                 return;
4675
4676         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4677                 if (priv->rx_buffers[i].rxp) {
4678                         pci_unmap_single(priv->pci_dev,
4679                                          priv->rx_buffers[i].dma_addr,
4680                                          sizeof(struct ipw2100_rx),
4681                                          PCI_DMA_FROMDEVICE);
4682                         dev_kfree_skb(priv->rx_buffers[i].skb);
4683                 }
4684         }
4685
4686         kfree(priv->rx_buffers);
4687         priv->rx_buffers = NULL;
4688
4689         IPW_DEBUG_INFO("exit\n");
4690 }
4691
4692 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4693 {
4694         u32 length = ETH_ALEN;
4695         u8 addr[ETH_ALEN];
4696
4697         int err;
4698
4699         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4700         if (err) {
4701                 IPW_DEBUG_INFO("MAC address read failed\n");
4702                 return -EIO;
4703         }
4704
4705         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4706         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4707
4708         return 0;
4709 }
4710
4711 /********************************************************************
4712  *
4713  * Firmware Commands
4714  *
4715  ********************************************************************/
4716
4717 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4718 {
4719         struct host_command cmd = {
4720                 .host_command = ADAPTER_ADDRESS,
4721                 .host_command_sequence = 0,
4722                 .host_command_length = ETH_ALEN
4723         };
4724         int err;
4725
4726         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4727
4728         IPW_DEBUG_INFO("enter\n");
4729
4730         if (priv->config & CFG_CUSTOM_MAC) {
4731                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4732                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4733         } else
4734                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4735                        ETH_ALEN);
4736
4737         err = ipw2100_hw_send_command(priv, &cmd);
4738
4739         IPW_DEBUG_INFO("exit\n");
4740         return err;
4741 }
4742
4743 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4744                                  int batch_mode)
4745 {
4746         struct host_command cmd = {
4747                 .host_command = PORT_TYPE,
4748                 .host_command_sequence = 0,
4749                 .host_command_length = sizeof(u32)
4750         };
4751         int err;
4752
4753         switch (port_type) {
4754         case IW_MODE_INFRA:
4755                 cmd.host_command_parameters[0] = IPW_BSS;
4756                 break;
4757         case IW_MODE_ADHOC:
4758                 cmd.host_command_parameters[0] = IPW_IBSS;
4759                 break;
4760         }
4761
4762         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4763                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4764
4765         if (!batch_mode) {
4766                 err = ipw2100_disable_adapter(priv);
4767                 if (err) {
4768                         printk(KERN_ERR DRV_NAME
4769                                ": %s: Could not disable adapter %d\n",
4770                                priv->net_dev->name, err);
4771                         return err;
4772                 }
4773         }
4774
4775         /* send cmd to firmware */
4776         err = ipw2100_hw_send_command(priv, &cmd);
4777
4778         if (!batch_mode)
4779                 ipw2100_enable_adapter(priv);
4780
4781         return err;
4782 }
4783
4784 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4785                                int batch_mode)
4786 {
4787         struct host_command cmd = {
4788                 .host_command = CHANNEL,
4789                 .host_command_sequence = 0,
4790                 .host_command_length = sizeof(u32)
4791         };
4792         int err;
4793
4794         cmd.host_command_parameters[0] = channel;
4795
4796         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4797
4798         /* If BSS then we don't support channel selection */
4799         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4800                 return 0;
4801
4802         if ((channel != 0) &&
4803             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4804                 return -EINVAL;
4805
4806         if (!batch_mode) {
4807                 err = ipw2100_disable_adapter(priv);
4808                 if (err)
4809                         return err;
4810         }
4811
4812         err = ipw2100_hw_send_command(priv, &cmd);
4813         if (err) {
4814                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4815                 return err;
4816         }
4817
4818         if (channel)
4819                 priv->config |= CFG_STATIC_CHANNEL;
4820         else
4821                 priv->config &= ~CFG_STATIC_CHANNEL;
4822
4823         priv->channel = channel;
4824
4825         if (!batch_mode) {
4826                 err = ipw2100_enable_adapter(priv);
4827                 if (err)
4828                         return err;
4829         }
4830
4831         return 0;
4832 }
4833
4834 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4835 {
4836         struct host_command cmd = {
4837                 .host_command = SYSTEM_CONFIG,
4838                 .host_command_sequence = 0,
4839                 .host_command_length = 12,
4840         };
4841         u32 ibss_mask, len = sizeof(u32);
4842         int err;
4843
4844         /* Set system configuration */
4845
4846         if (!batch_mode) {
4847                 err = ipw2100_disable_adapter(priv);
4848                 if (err)
4849                         return err;
4850         }
4851
4852         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4853                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4854
4855         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4856             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4857
4858         if (!(priv->config & CFG_LONG_PREAMBLE))
4859                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4860
4861         err = ipw2100_get_ordinal(priv,
4862                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4863                                   &ibss_mask, &len);
4864         if (err)
4865                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4866
4867         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4868         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4869
4870         /* 11b only */
4871         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4872
4873         err = ipw2100_hw_send_command(priv, &cmd);
4874         if (err)
4875                 return err;
4876
4877 /* If IPv6 is configured in the kernel then we don't want to filter out all
4878  * of the multicast packets as IPv6 needs some. */
4879 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4880         cmd.host_command = ADD_MULTICAST;
4881         cmd.host_command_sequence = 0;
4882         cmd.host_command_length = 0;
4883
4884         ipw2100_hw_send_command(priv, &cmd);
4885 #endif
4886         if (!batch_mode) {
4887                 err = ipw2100_enable_adapter(priv);
4888                 if (err)
4889                         return err;
4890         }
4891
4892         return 0;
4893 }
4894
4895 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4896                                 int batch_mode)
4897 {
4898         struct host_command cmd = {
4899                 .host_command = BASIC_TX_RATES,
4900                 .host_command_sequence = 0,
4901                 .host_command_length = 4
4902         };
4903         int err;
4904
4905         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4906
4907         if (!batch_mode) {
4908                 err = ipw2100_disable_adapter(priv);
4909                 if (err)
4910                         return err;
4911         }
4912
4913         /* Set BASIC TX Rate first */
4914         ipw2100_hw_send_command(priv, &cmd);
4915
4916         /* Set TX Rate */
4917         cmd.host_command = TX_RATES;
4918         ipw2100_hw_send_command(priv, &cmd);
4919
4920         /* Set MSDU TX Rate */
4921         cmd.host_command = MSDU_TX_RATES;
4922         ipw2100_hw_send_command(priv, &cmd);
4923
4924         if (!batch_mode) {
4925                 err = ipw2100_enable_adapter(priv);
4926                 if (err)
4927                         return err;
4928         }
4929
4930         priv->tx_rates = rate;
4931
4932         return 0;
4933 }
4934
4935 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4936 {
4937         struct host_command cmd = {
4938                 .host_command = POWER_MODE,
4939                 .host_command_sequence = 0,
4940                 .host_command_length = 4
4941         };
4942         int err;
4943
4944         cmd.host_command_parameters[0] = power_level;
4945
4946         err = ipw2100_hw_send_command(priv, &cmd);
4947         if (err)
4948                 return err;
4949
4950         if (power_level == IPW_POWER_MODE_CAM)
4951                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4952         else
4953                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4954
4955 #ifdef IPW2100_TX_POWER
4956         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4957                 /* Set beacon interval */
4958                 cmd.host_command = TX_POWER_INDEX;
4959                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4960
4961                 err = ipw2100_hw_send_command(priv, &cmd);
4962                 if (err)
4963                         return err;
4964         }
4965 #endif
4966
4967         return 0;
4968 }
4969
4970 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4971 {
4972         struct host_command cmd = {
4973                 .host_command = RTS_THRESHOLD,
4974                 .host_command_sequence = 0,
4975                 .host_command_length = 4
4976         };
4977         int err;
4978
4979         if (threshold & RTS_DISABLED)
4980                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4981         else
4982                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4983
4984         err = ipw2100_hw_send_command(priv, &cmd);
4985         if (err)
4986                 return err;
4987
4988         priv->rts_threshold = threshold;
4989
4990         return 0;
4991 }
4992
4993 #if 0
4994 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4995                                         u32 threshold, int batch_mode)
4996 {
4997         struct host_command cmd = {
4998                 .host_command = FRAG_THRESHOLD,
4999                 .host_command_sequence = 0,
5000                 .host_command_length = 4,
5001                 .host_command_parameters[0] = 0,
5002         };
5003         int err;
5004
5005         if (!batch_mode) {
5006                 err = ipw2100_disable_adapter(priv);
5007                 if (err)
5008                         return err;
5009         }
5010
5011         if (threshold == 0)
5012                 threshold = DEFAULT_FRAG_THRESHOLD;
5013         else {
5014                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5015                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5016         }
5017
5018         cmd.host_command_parameters[0] = threshold;
5019
5020         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5021
5022         err = ipw2100_hw_send_command(priv, &cmd);
5023
5024         if (!batch_mode)
5025                 ipw2100_enable_adapter(priv);
5026
5027         if (!err)
5028                 priv->frag_threshold = threshold;
5029
5030         return err;
5031 }
5032 #endif
5033
5034 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5035 {
5036         struct host_command cmd = {
5037                 .host_command = SHORT_RETRY_LIMIT,
5038                 .host_command_sequence = 0,
5039                 .host_command_length = 4
5040         };
5041         int err;
5042
5043         cmd.host_command_parameters[0] = retry;
5044
5045         err = ipw2100_hw_send_command(priv, &cmd);
5046         if (err)
5047                 return err;
5048
5049         priv->short_retry_limit = retry;
5050
5051         return 0;
5052 }
5053
5054 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5055 {
5056         struct host_command cmd = {
5057                 .host_command = LONG_RETRY_LIMIT,
5058                 .host_command_sequence = 0,
5059                 .host_command_length = 4
5060         };
5061         int err;
5062
5063         cmd.host_command_parameters[0] = retry;
5064
5065         err = ipw2100_hw_send_command(priv, &cmd);
5066         if (err)
5067                 return err;
5068
5069         priv->long_retry_limit = retry;
5070
5071         return 0;
5072 }
5073
5074 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5075                                        int batch_mode)
5076 {
5077         struct host_command cmd = {
5078                 .host_command = MANDATORY_BSSID,
5079                 .host_command_sequence = 0,
5080                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5081         };
5082         int err;
5083
5084 #ifdef CONFIG_IPW2100_DEBUG
5085         if (bssid != NULL)
5086                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5087         else
5088                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5089 #endif
5090         /* if BSSID is empty then we disable mandatory bssid mode */
5091         if (bssid != NULL)
5092                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5093
5094         if (!batch_mode) {
5095                 err = ipw2100_disable_adapter(priv);
5096                 if (err)
5097                         return err;
5098         }
5099
5100         err = ipw2100_hw_send_command(priv, &cmd);
5101
5102         if (!batch_mode)
5103                 ipw2100_enable_adapter(priv);
5104
5105         return err;
5106 }
5107
5108 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5109 {
5110         struct host_command cmd = {
5111                 .host_command = DISASSOCIATION_BSSID,
5112                 .host_command_sequence = 0,
5113                 .host_command_length = ETH_ALEN
5114         };
5115         int err;
5116
5117         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5118
5119         /* The Firmware currently ignores the BSSID and just disassociates from
5120          * the currently associated AP -- but in the off chance that a future
5121          * firmware does use the BSSID provided here, we go ahead and try and
5122          * set it to the currently associated AP's BSSID */
5123         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5124
5125         err = ipw2100_hw_send_command(priv, &cmd);
5126
5127         return err;
5128 }
5129
5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5131                               struct ipw2100_wpa_assoc_frame *, int)
5132     __attribute__ ((unused));
5133
5134 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5135                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5136                               int batch_mode)
5137 {
5138         struct host_command cmd = {
5139                 .host_command = SET_WPA_IE,
5140                 .host_command_sequence = 0,
5141                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5142         };
5143         int err;
5144
5145         IPW_DEBUG_HC("SET_WPA_IE\n");
5146
5147         if (!batch_mode) {
5148                 err = ipw2100_disable_adapter(priv);
5149                 if (err)
5150                         return err;
5151         }
5152
5153         memcpy(cmd.host_command_parameters, wpa_frame,
5154                sizeof(struct ipw2100_wpa_assoc_frame));
5155
5156         err = ipw2100_hw_send_command(priv, &cmd);
5157
5158         if (!batch_mode) {
5159                 if (ipw2100_enable_adapter(priv))
5160                         err = -EIO;
5161         }
5162
5163         return err;
5164 }
5165
5166 struct security_info_params {
5167         u32 allowed_ciphers;
5168         u16 version;
5169         u8 auth_mode;
5170         u8 replay_counters_number;
5171         u8 unicast_using_group;
5172 } __packed;
5173
5174 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5175                                             int auth_mode,
5176                                             int security_level,
5177                                             int unicast_using_group,
5178                                             int batch_mode)
5179 {
5180         struct host_command cmd = {
5181                 .host_command = SET_SECURITY_INFORMATION,
5182                 .host_command_sequence = 0,
5183                 .host_command_length = sizeof(struct security_info_params)
5184         };
5185         struct security_info_params *security =
5186             (struct security_info_params *)&cmd.host_command_parameters;
5187         int err;
5188         memset(security, 0, sizeof(*security));
5189
5190         /* If shared key AP authentication is turned on, then we need to
5191          * configure the firmware to try and use it.
5192          *
5193          * Actual data encryption/decryption is handled by the host. */
5194         security->auth_mode = auth_mode;
5195         security->unicast_using_group = unicast_using_group;
5196
5197         switch (security_level) {
5198         default:
5199         case SEC_LEVEL_0:
5200                 security->allowed_ciphers = IPW_NONE_CIPHER;
5201                 break;
5202         case SEC_LEVEL_1:
5203                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5204                     IPW_WEP104_CIPHER;
5205                 break;
5206         case SEC_LEVEL_2:
5207                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5208                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5209                 break;
5210         case SEC_LEVEL_2_CKIP:
5211                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5212                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5213                 break;
5214         case SEC_LEVEL_3:
5215                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5216                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5217                 break;
5218         }
5219
5220         IPW_DEBUG_HC
5221             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5222              security->auth_mode, security->allowed_ciphers, security_level);
5223
5224         security->replay_counters_number = 0;
5225
5226         if (!batch_mode) {
5227                 err = ipw2100_disable_adapter(priv);
5228                 if (err)
5229                         return err;
5230         }
5231
5232         err = ipw2100_hw_send_command(priv, &cmd);
5233
5234         if (!batch_mode)
5235                 ipw2100_enable_adapter(priv);
5236
5237         return err;
5238 }
5239
5240 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5241 {
5242         struct host_command cmd = {
5243                 .host_command = TX_POWER_INDEX,
5244                 .host_command_sequence = 0,
5245                 .host_command_length = 4
5246         };
5247         int err = 0;
5248         u32 tmp = tx_power;
5249
5250         if (tx_power != IPW_TX_POWER_DEFAULT)
5251                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5252                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5253
5254         cmd.host_command_parameters[0] = tmp;
5255
5256         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5257                 err = ipw2100_hw_send_command(priv, &cmd);
5258         if (!err)
5259                 priv->tx_power = tx_power;
5260
5261         return 0;
5262 }
5263
5264 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5265                                             u32 interval, int batch_mode)
5266 {
5267         struct host_command cmd = {
5268                 .host_command = BEACON_INTERVAL,
5269                 .host_command_sequence = 0,
5270                 .host_command_length = 4
5271         };
5272         int err;
5273
5274         cmd.host_command_parameters[0] = interval;
5275
5276         IPW_DEBUG_INFO("enter\n");
5277
5278         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5279                 if (!batch_mode) {
5280                         err = ipw2100_disable_adapter(priv);
5281                         if (err)
5282                                 return err;
5283                 }
5284
5285                 ipw2100_hw_send_command(priv, &cmd);
5286
5287                 if (!batch_mode) {
5288                         err = ipw2100_enable_adapter(priv);
5289                         if (err)
5290                                 return err;
5291                 }
5292         }
5293
5294         IPW_DEBUG_INFO("exit\n");
5295
5296         return 0;
5297 }
5298
5299 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5300 {
5301         ipw2100_tx_initialize(priv);
5302         ipw2100_rx_initialize(priv);
5303         ipw2100_msg_initialize(priv);
5304 }
5305
5306 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5307 {
5308         ipw2100_tx_free(priv);
5309         ipw2100_rx_free(priv);
5310         ipw2100_msg_free(priv);
5311 }
5312
5313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5314 {
5315         if (ipw2100_tx_allocate(priv) ||
5316             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5317                 goto fail;
5318
5319         return 0;
5320
5321       fail:
5322         ipw2100_tx_free(priv);
5323         ipw2100_rx_free(priv);
5324         ipw2100_msg_free(priv);
5325         return -ENOMEM;
5326 }
5327
5328 #define IPW_PRIVACY_CAPABLE 0x0008
5329
5330 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5331                                  int batch_mode)
5332 {
5333         struct host_command cmd = {
5334                 .host_command = WEP_FLAGS,
5335                 .host_command_sequence = 0,
5336                 .host_command_length = 4
5337         };
5338         int err;
5339
5340         cmd.host_command_parameters[0] = flags;
5341
5342         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5343
5344         if (!batch_mode) {
5345                 err = ipw2100_disable_adapter(priv);
5346                 if (err) {
5347                         printk(KERN_ERR DRV_NAME
5348                                ": %s: Could not disable adapter %d\n",
5349                                priv->net_dev->name, err);
5350                         return err;
5351                 }
5352         }
5353
5354         /* send cmd to firmware */
5355         err = ipw2100_hw_send_command(priv, &cmd);
5356
5357         if (!batch_mode)
5358                 ipw2100_enable_adapter(priv);
5359
5360         return err;
5361 }
5362
5363 struct ipw2100_wep_key {
5364         u8 idx;
5365         u8 len;
5366         u8 key[13];
5367 };
5368
5369 /* Macros to ease up priting WEP keys */
5370 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5371 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5372 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5373 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5374
5375 /**
5376  * Set a the wep key
5377  *
5378  * @priv: struct to work on
5379  * @idx: index of the key we want to set
5380  * @key: ptr to the key data to set
5381  * @len: length of the buffer at @key
5382  * @batch_mode: FIXME perform the operation in batch mode, not
5383  *              disabling the device.
5384  *
5385  * @returns 0 if OK, < 0 errno code on error.
5386  *
5387  * Fill out a command structure with the new wep key, length an
5388  * index and send it down the wire.
5389  */
5390 static int ipw2100_set_key(struct ipw2100_priv *priv,
5391                            int idx, char *key, int len, int batch_mode)
5392 {
5393         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5394         struct host_command cmd = {
5395                 .host_command = WEP_KEY_INFO,
5396                 .host_command_sequence = 0,
5397                 .host_command_length = sizeof(struct ipw2100_wep_key),
5398         };
5399         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5400         int err;
5401
5402         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5403                      idx, keylen, len);
5404
5405         /* NOTE: We don't check cached values in case the firmware was reset
5406          * or some other problem is occurring.  If the user is setting the key,
5407          * then we push the change */
5408
5409         wep_key->idx = idx;
5410         wep_key->len = keylen;
5411
5412         if (keylen) {
5413                 memcpy(wep_key->key, key, len);
5414                 memset(wep_key->key + len, 0, keylen - len);
5415         }
5416
5417         /* Will be optimized out on debug not being configured in */
5418         if (keylen == 0)
5419                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5420                               priv->net_dev->name, wep_key->idx);
5421         else if (keylen == 5)
5422                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5423                               priv->net_dev->name, wep_key->idx, wep_key->len,
5424                               WEP_STR_64(wep_key->key));
5425         else
5426                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5427                               "\n",
5428                               priv->net_dev->name, wep_key->idx, wep_key->len,
5429                               WEP_STR_128(wep_key->key));
5430
5431         if (!batch_mode) {
5432                 err = ipw2100_disable_adapter(priv);
5433                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5434                 if (err) {
5435                         printk(KERN_ERR DRV_NAME
5436                                ": %s: Could not disable adapter %d\n",
5437                                priv->net_dev->name, err);
5438                         return err;
5439                 }
5440         }
5441
5442         /* send cmd to firmware */
5443         err = ipw2100_hw_send_command(priv, &cmd);
5444
5445         if (!batch_mode) {
5446                 int err2 = ipw2100_enable_adapter(priv);
5447                 if (err == 0)
5448                         err = err2;
5449         }
5450         return err;
5451 }
5452
5453 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5454                                  int idx, int batch_mode)
5455 {
5456         struct host_command cmd = {
5457                 .host_command = WEP_KEY_INDEX,
5458                 .host_command_sequence = 0,
5459                 .host_command_length = 4,
5460                 .host_command_parameters = {idx},
5461         };
5462         int err;
5463
5464         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5465
5466         if (idx < 0 || idx > 3)
5467                 return -EINVAL;
5468
5469         if (!batch_mode) {
5470                 err = ipw2100_disable_adapter(priv);
5471                 if (err) {
5472                         printk(KERN_ERR DRV_NAME
5473                                ": %s: Could not disable adapter %d\n",
5474                                priv->net_dev->name, err);
5475                         return err;
5476                 }
5477         }
5478
5479         /* send cmd to firmware */
5480         err = ipw2100_hw_send_command(priv, &cmd);
5481
5482         if (!batch_mode)
5483                 ipw2100_enable_adapter(priv);
5484
5485         return err;
5486 }
5487
5488 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5489 {
5490         int i, err, auth_mode, sec_level, use_group;
5491
5492         if (!(priv->status & STATUS_RUNNING))
5493                 return 0;
5494
5495         if (!batch_mode) {
5496                 err = ipw2100_disable_adapter(priv);
5497                 if (err)
5498                         return err;
5499         }
5500
5501         if (!priv->ieee->sec.enabled) {
5502                 err =
5503                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5504                                                      SEC_LEVEL_0, 0, 1);
5505         } else {
5506                 auth_mode = IPW_AUTH_OPEN;
5507                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5508                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5509                                 auth_mode = IPW_AUTH_SHARED;
5510                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5511                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5512                 }
5513
5514                 sec_level = SEC_LEVEL_0;
5515                 if (priv->ieee->sec.flags & SEC_LEVEL)
5516                         sec_level = priv->ieee->sec.level;
5517
5518                 use_group = 0;
5519                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5520                         use_group = priv->ieee->sec.unicast_uses_group;
5521
5522                 err =
5523                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5524                                                      use_group, 1);
5525         }
5526
5527         if (err)
5528                 goto exit;
5529
5530         if (priv->ieee->sec.enabled) {
5531                 for (i = 0; i < 4; i++) {
5532                         if (!(priv->ieee->sec.flags & (1 << i))) {
5533                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5534                                 priv->ieee->sec.key_sizes[i] = 0;
5535                         } else {
5536                                 err = ipw2100_set_key(priv, i,
5537                                                       priv->ieee->sec.keys[i],
5538                                                       priv->ieee->sec.
5539                                                       key_sizes[i], 1);
5540                                 if (err)
5541                                         goto exit;
5542                         }
5543                 }
5544
5545                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5546         }
5547
5548         /* Always enable privacy so the Host can filter WEP packets if
5549          * encrypted data is sent up */
5550         err =
5551             ipw2100_set_wep_flags(priv,
5552                                   priv->ieee->sec.
5553                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5554         if (err)
5555                 goto exit;
5556
5557         priv->status &= ~STATUS_SECURITY_UPDATED;
5558
5559       exit:
5560         if (!batch_mode)
5561                 ipw2100_enable_adapter(priv);
5562
5563         return err;
5564 }
5565
5566 static void ipw2100_security_work(struct work_struct *work)
5567 {
5568         struct ipw2100_priv *priv =
5569                 container_of(work, struct ipw2100_priv, security_work.work);
5570
5571         /* If we happen to have reconnected before we get a chance to
5572          * process this, then update the security settings--which causes
5573          * a disassociation to occur */
5574         if (!(priv->status & STATUS_ASSOCIATED) &&
5575             priv->status & STATUS_SECURITY_UPDATED)
5576                 ipw2100_configure_security(priv, 0);
5577 }
5578
5579 static void shim__set_security(struct net_device *dev,
5580                                struct libipw_security *sec)
5581 {
5582         struct ipw2100_priv *priv = libipw_priv(dev);
5583         int i, force_update = 0;
5584
5585         mutex_lock(&priv->action_mutex);
5586         if (!(priv->status & STATUS_INITIALIZED))
5587                 goto done;
5588
5589         for (i = 0; i < 4; i++) {
5590                 if (sec->flags & (1 << i)) {
5591                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5592                         if (sec->key_sizes[i] == 0)
5593                                 priv->ieee->sec.flags &= ~(1 << i);
5594                         else
5595                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5596                                        sec->key_sizes[i]);
5597                         if (sec->level == SEC_LEVEL_1) {
5598                                 priv->ieee->sec.flags |= (1 << i);
5599                                 priv->status |= STATUS_SECURITY_UPDATED;
5600                         } else
5601                                 priv->ieee->sec.flags &= ~(1 << i);
5602                 }
5603         }
5604
5605         if ((sec->flags & SEC_ACTIVE_KEY) &&
5606             priv->ieee->sec.active_key != sec->active_key) {
5607                 if (sec->active_key <= 3) {
5608                         priv->ieee->sec.active_key = sec->active_key;
5609                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5610                 } else
5611                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5612
5613                 priv->status |= STATUS_SECURITY_UPDATED;
5614         }
5615
5616         if ((sec->flags & SEC_AUTH_MODE) &&
5617             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5618                 priv->ieee->sec.auth_mode = sec->auth_mode;
5619                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5620                 priv->status |= STATUS_SECURITY_UPDATED;
5621         }
5622
5623         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5624                 priv->ieee->sec.flags |= SEC_ENABLED;
5625                 priv->ieee->sec.enabled = sec->enabled;
5626                 priv->status |= STATUS_SECURITY_UPDATED;
5627                 force_update = 1;
5628         }
5629
5630         if (sec->flags & SEC_ENCRYPT)
5631                 priv->ieee->sec.encrypt = sec->encrypt;
5632
5633         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5634                 priv->ieee->sec.level = sec->level;
5635                 priv->ieee->sec.flags |= SEC_LEVEL;
5636                 priv->status |= STATUS_SECURITY_UPDATED;
5637         }
5638
5639         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5640                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5641                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5642                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5643                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5646                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5647                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5649
5650 /* As a temporary work around to enable WPA until we figure out why
5651  * wpa_supplicant toggles the security capability of the driver, which
5652  * forces a disassociation with force_update...
5653  *
5654  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5655         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5656                 ipw2100_configure_security(priv, 0);
5657       done:
5658         mutex_unlock(&priv->action_mutex);
5659 }
5660
5661 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5662 {
5663         int err;
5664         int batch_mode = 1;
5665         u8 *bssid;
5666
5667         IPW_DEBUG_INFO("enter\n");
5668
5669         err = ipw2100_disable_adapter(priv);
5670         if (err)
5671                 return err;
5672 #ifdef CONFIG_IPW2100_MONITOR
5673         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5674                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5675                 if (err)
5676                         return err;
5677
5678                 IPW_DEBUG_INFO("exit\n");
5679
5680                 return 0;
5681         }
5682 #endif                          /* CONFIG_IPW2100_MONITOR */
5683
5684         err = ipw2100_read_mac_address(priv);
5685         if (err)
5686                 return -EIO;
5687
5688         err = ipw2100_set_mac_address(priv, batch_mode);
5689         if (err)
5690                 return err;
5691
5692         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5693         if (err)
5694                 return err;
5695
5696         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5697                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5698                 if (err)
5699                         return err;
5700         }
5701
5702         err = ipw2100_system_config(priv, batch_mode);
5703         if (err)
5704                 return err;
5705
5706         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5707         if (err)
5708                 return err;
5709
5710         /* Default to power mode OFF */
5711         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5712         if (err)
5713                 return err;
5714
5715         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5716         if (err)
5717                 return err;
5718
5719         if (priv->config & CFG_STATIC_BSSID)
5720                 bssid = priv->bssid;
5721         else
5722                 bssid = NULL;
5723         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5724         if (err)
5725                 return err;
5726
5727         if (priv->config & CFG_STATIC_ESSID)
5728                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5729                                         batch_mode);
5730         else
5731                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5732         if (err)
5733                 return err;
5734
5735         err = ipw2100_configure_security(priv, batch_mode);
5736         if (err)
5737                 return err;
5738
5739         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5740                 err =
5741                     ipw2100_set_ibss_beacon_interval(priv,
5742                                                      priv->beacon_interval,
5743                                                      batch_mode);
5744                 if (err)
5745                         return err;
5746
5747                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5748                 if (err)
5749                         return err;
5750         }
5751
5752         /*
5753            err = ipw2100_set_fragmentation_threshold(
5754            priv, priv->frag_threshold, batch_mode);
5755            if (err)
5756            return err;
5757          */
5758
5759         IPW_DEBUG_INFO("exit\n");
5760
5761         return 0;
5762 }
5763
5764 /*************************************************************************
5765  *
5766  * EXTERNALLY CALLED METHODS
5767  *
5768  *************************************************************************/
5769
5770 /* This method is called by the network layer -- not to be confused with
5771  * ipw2100_set_mac_address() declared above called by this driver (and this
5772  * method as well) to talk to the firmware */
5773 static int ipw2100_set_address(struct net_device *dev, void *p)
5774 {
5775         struct ipw2100_priv *priv = libipw_priv(dev);
5776         struct sockaddr *addr = p;
5777         int err = 0;
5778
5779         if (!is_valid_ether_addr(addr->sa_data))
5780                 return -EADDRNOTAVAIL;
5781
5782         mutex_lock(&priv->action_mutex);
5783
5784         priv->config |= CFG_CUSTOM_MAC;
5785         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5786
5787         err = ipw2100_set_mac_address(priv, 0);
5788         if (err)
5789                 goto done;
5790
5791         priv->reset_backoff = 0;
5792         mutex_unlock(&priv->action_mutex);
5793         ipw2100_reset_adapter(&priv->reset_work.work);
5794         return 0;
5795
5796       done:
5797         mutex_unlock(&priv->action_mutex);
5798         return err;
5799 }
5800
5801 static int ipw2100_open(struct net_device *dev)
5802 {
5803         struct ipw2100_priv *priv = libipw_priv(dev);
5804         unsigned long flags;
5805         IPW_DEBUG_INFO("dev->open\n");
5806
5807         spin_lock_irqsave(&priv->low_lock, flags);
5808         if (priv->status & STATUS_ASSOCIATED) {
5809                 netif_carrier_on(dev);
5810                 netif_start_queue(dev);
5811         }
5812         spin_unlock_irqrestore(&priv->low_lock, flags);
5813
5814         return 0;
5815 }
5816
5817 static int ipw2100_close(struct net_device *dev)
5818 {
5819         struct ipw2100_priv *priv = libipw_priv(dev);
5820         unsigned long flags;
5821         struct list_head *element;
5822         struct ipw2100_tx_packet *packet;
5823
5824         IPW_DEBUG_INFO("enter\n");
5825
5826         spin_lock_irqsave(&priv->low_lock, flags);
5827
5828         if (priv->status & STATUS_ASSOCIATED)
5829                 netif_carrier_off(dev);
5830         netif_stop_queue(dev);
5831
5832         /* Flush the TX queue ... */
5833         while (!list_empty(&priv->tx_pend_list)) {
5834                 element = priv->tx_pend_list.next;
5835                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5836
5837                 list_del(element);
5838                 DEC_STAT(&priv->tx_pend_stat);
5839
5840                 libipw_txb_free(packet->info.d_struct.txb);
5841                 packet->info.d_struct.txb = NULL;
5842
5843                 list_add_tail(element, &priv->tx_free_list);
5844                 INC_STAT(&priv->tx_free_stat);
5845         }
5846         spin_unlock_irqrestore(&priv->low_lock, flags);
5847
5848         IPW_DEBUG_INFO("exit\n");
5849
5850         return 0;
5851 }
5852
5853 /*
5854  * TODO:  Fix this function... its just wrong
5855  */
5856 static void ipw2100_tx_timeout(struct net_device *dev)
5857 {
5858         struct ipw2100_priv *priv = libipw_priv(dev);
5859
5860         dev->stats.tx_errors++;
5861
5862 #ifdef CONFIG_IPW2100_MONITOR
5863         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5864                 return;
5865 #endif
5866
5867         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5868                        dev->name);
5869         schedule_reset(priv);
5870 }
5871
5872 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5873 {
5874         /* This is called when wpa_supplicant loads and closes the driver
5875          * interface. */
5876         priv->ieee->wpa_enabled = value;
5877         return 0;
5878 }
5879
5880 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5881 {
5882
5883         struct libipw_device *ieee = priv->ieee;
5884         struct libipw_security sec = {
5885                 .flags = SEC_AUTH_MODE,
5886         };
5887         int ret = 0;
5888
5889         if (value & IW_AUTH_ALG_SHARED_KEY) {
5890                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5891                 ieee->open_wep = 0;
5892         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5893                 sec.auth_mode = WLAN_AUTH_OPEN;
5894                 ieee->open_wep = 1;
5895         } else if (value & IW_AUTH_ALG_LEAP) {
5896                 sec.auth_mode = WLAN_AUTH_LEAP;
5897                 ieee->open_wep = 1;
5898         } else
5899                 return -EINVAL;
5900
5901         if (ieee->set_security)
5902                 ieee->set_security(ieee->dev, &sec);
5903         else
5904                 ret = -EOPNOTSUPP;
5905
5906         return ret;
5907 }
5908
5909 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5910                                     char *wpa_ie, int wpa_ie_len)
5911 {
5912
5913         struct ipw2100_wpa_assoc_frame frame;
5914
5915         frame.fixed_ie_mask = 0;
5916
5917         /* copy WPA IE */
5918         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5919         frame.var_ie_len = wpa_ie_len;
5920
5921         /* make sure WPA is enabled */
5922         ipw2100_wpa_enable(priv, 1);
5923         ipw2100_set_wpa_ie(priv, &frame, 0);
5924 }
5925
5926 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5927                                     struct ethtool_drvinfo *info)
5928 {
5929         struct ipw2100_priv *priv = libipw_priv(dev);
5930         char fw_ver[64], ucode_ver[64];
5931
5932         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5933         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5934
5935         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5936         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5937
5938         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5939                  fw_ver, priv->eeprom_version, ucode_ver);
5940
5941         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5942                 sizeof(info->bus_info));
5943 }
5944
5945 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5946 {
5947         struct ipw2100_priv *priv = libipw_priv(dev);
5948         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5949 }
5950
5951 static const struct ethtool_ops ipw2100_ethtool_ops = {
5952         .get_link = ipw2100_ethtool_get_link,
5953         .get_drvinfo = ipw_ethtool_get_drvinfo,
5954 };
5955
5956 static void ipw2100_hang_check(struct work_struct *work)
5957 {
5958         struct ipw2100_priv *priv =
5959                 container_of(work, struct ipw2100_priv, hang_check.work);
5960         unsigned long flags;
5961         u32 rtc = 0xa5a5a5a5;
5962         u32 len = sizeof(rtc);
5963         int restart = 0;
5964
5965         spin_lock_irqsave(&priv->low_lock, flags);
5966
5967         if (priv->fatal_error != 0) {
5968                 /* If fatal_error is set then we need to restart */
5969                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5970                                priv->net_dev->name);
5971
5972                 restart = 1;
5973         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5974                    (rtc == priv->last_rtc)) {
5975                 /* Check if firmware is hung */
5976                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5977                                priv->net_dev->name);
5978
5979                 restart = 1;
5980         }
5981
5982         if (restart) {
5983                 /* Kill timer */
5984                 priv->stop_hang_check = 1;
5985                 priv->hangs++;
5986
5987                 /* Restart the NIC */
5988                 schedule_reset(priv);
5989         }
5990
5991         priv->last_rtc = rtc;
5992
5993         if (!priv->stop_hang_check)
5994                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5995
5996         spin_unlock_irqrestore(&priv->low_lock, flags);
5997 }
5998
5999 static void ipw2100_rf_kill(struct work_struct *work)
6000 {
6001         struct ipw2100_priv *priv =
6002                 container_of(work, struct ipw2100_priv, rf_kill.work);
6003         unsigned long flags;
6004
6005         spin_lock_irqsave(&priv->low_lock, flags);
6006
6007         if (rf_kill_active(priv)) {
6008                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6009                 if (!priv->stop_rf_kill)
6010                         schedule_delayed_work(&priv->rf_kill,
6011                                               round_jiffies_relative(HZ));
6012                 goto exit_unlock;
6013         }
6014
6015         /* RF Kill is now disabled, so bring the device back up */
6016
6017         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6018                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6019                                   "device\n");
6020                 schedule_reset(priv);
6021         } else
6022                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6023                                   "enabled\n");
6024
6025       exit_unlock:
6026         spin_unlock_irqrestore(&priv->low_lock, flags);
6027 }
6028
6029 static void ipw2100_irq_tasklet(unsigned long data);
6030
6031 static const struct net_device_ops ipw2100_netdev_ops = {
6032         .ndo_open               = ipw2100_open,
6033         .ndo_stop               = ipw2100_close,
6034         .ndo_start_xmit         = libipw_xmit,
6035         .ndo_tx_timeout         = ipw2100_tx_timeout,
6036         .ndo_set_mac_address    = ipw2100_set_address,
6037         .ndo_validate_addr      = eth_validate_addr,
6038 };
6039
6040 /* Look into using netdev destructor to shutdown libipw? */
6041
6042 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6043                                                void __iomem * ioaddr)
6044 {
6045         struct ipw2100_priv *priv;
6046         struct net_device *dev;
6047
6048         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6049         if (!dev)
6050                 return NULL;
6051         priv = libipw_priv(dev);
6052         priv->ieee = netdev_priv(dev);
6053         priv->pci_dev = pci_dev;
6054         priv->net_dev = dev;
6055         priv->ioaddr = ioaddr;
6056
6057         priv->ieee->hard_start_xmit = ipw2100_tx;
6058         priv->ieee->set_security = shim__set_security;
6059
6060         priv->ieee->perfect_rssi = -20;
6061         priv->ieee->worst_rssi = -85;
6062
6063         dev->netdev_ops = &ipw2100_netdev_ops;
6064         dev->ethtool_ops = &ipw2100_ethtool_ops;
6065         dev->wireless_handlers = &ipw2100_wx_handler_def;
6066         priv->wireless_data.libipw = priv->ieee;
6067         dev->wireless_data = &priv->wireless_data;
6068         dev->watchdog_timeo = 3 * HZ;
6069         dev->irq = 0;
6070         dev->min_mtu = 68;
6071         dev->max_mtu = LIBIPW_DATA_LEN;
6072
6073         /* NOTE: We don't use the wireless_handlers hook
6074          * in dev as the system will start throwing WX requests
6075          * to us before we're actually initialized and it just
6076          * ends up causing problems.  So, we just handle
6077          * the WX extensions through the ipw2100_ioctl interface */
6078
6079         /* memset() puts everything to 0, so we only have explicitly set
6080          * those values that need to be something else */
6081
6082         /* If power management is turned on, default to AUTO mode */
6083         priv->power_mode = IPW_POWER_AUTO;
6084
6085 #ifdef CONFIG_IPW2100_MONITOR
6086         priv->config |= CFG_CRC_CHECK;
6087 #endif
6088         priv->ieee->wpa_enabled = 0;
6089         priv->ieee->drop_unencrypted = 0;
6090         priv->ieee->privacy_invoked = 0;
6091         priv->ieee->ieee802_1x = 1;
6092
6093         /* Set module parameters */
6094         switch (network_mode) {
6095         case 1:
6096                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6097                 break;
6098 #ifdef CONFIG_IPW2100_MONITOR
6099         case 2:
6100                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6101                 break;
6102 #endif
6103         default:
6104         case 0:
6105                 priv->ieee->iw_mode = IW_MODE_INFRA;
6106                 break;
6107         }
6108
6109         if (disable == 1)
6110                 priv->status |= STATUS_RF_KILL_SW;
6111
6112         if (channel != 0 &&
6113             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6114                 priv->config |= CFG_STATIC_CHANNEL;
6115                 priv->channel = channel;
6116         }
6117
6118         if (associate)
6119                 priv->config |= CFG_ASSOCIATE;
6120
6121         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6122         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6123         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6124         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6125         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6126         priv->tx_power = IPW_TX_POWER_DEFAULT;
6127         priv->tx_rates = DEFAULT_TX_RATES;
6128
6129         strcpy(priv->nick, "ipw2100");
6130
6131         spin_lock_init(&priv->low_lock);
6132         mutex_init(&priv->action_mutex);
6133         mutex_init(&priv->adapter_mutex);
6134
6135         init_waitqueue_head(&priv->wait_command_queue);
6136
6137         netif_carrier_off(dev);
6138
6139         INIT_LIST_HEAD(&priv->msg_free_list);
6140         INIT_LIST_HEAD(&priv->msg_pend_list);
6141         INIT_STAT(&priv->msg_free_stat);
6142         INIT_STAT(&priv->msg_pend_stat);
6143
6144         INIT_LIST_HEAD(&priv->tx_free_list);
6145         INIT_LIST_HEAD(&priv->tx_pend_list);
6146         INIT_STAT(&priv->tx_free_stat);
6147         INIT_STAT(&priv->tx_pend_stat);
6148
6149         INIT_LIST_HEAD(&priv->fw_pend_list);
6150         INIT_STAT(&priv->fw_pend_stat);
6151
6152         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6153         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6154         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6155         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6156         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6157         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6158
6159         tasklet_init(&priv->irq_tasklet,
6160                      ipw2100_irq_tasklet, (unsigned long)priv);
6161
6162         /* NOTE:  We do not start the deferred work for status checks yet */
6163         priv->stop_rf_kill = 1;
6164         priv->stop_hang_check = 1;
6165
6166         return dev;
6167 }
6168
6169 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6170                                 const struct pci_device_id *ent)
6171 {
6172         void __iomem *ioaddr;
6173         struct net_device *dev = NULL;
6174         struct ipw2100_priv *priv = NULL;
6175         int err = 0;
6176         int registered = 0;
6177         u32 val;
6178
6179         IPW_DEBUG_INFO("enter\n");
6180
6181         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6182                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6183                 err = -ENODEV;
6184                 goto out;
6185         }
6186
6187         ioaddr = pci_iomap(pci_dev, 0, 0);
6188         if (!ioaddr) {
6189                 printk(KERN_WARNING DRV_NAME
6190                        "Error calling ioremap_nocache.\n");
6191                 err = -EIO;
6192                 goto fail;
6193         }
6194
6195         /* allocate and initialize our net_device */
6196         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6197         if (!dev) {
6198                 printk(KERN_WARNING DRV_NAME
6199                        "Error calling ipw2100_alloc_device.\n");
6200                 err = -ENOMEM;
6201                 goto fail;
6202         }
6203
6204         /* set up PCI mappings for device */
6205         err = pci_enable_device(pci_dev);
6206         if (err) {
6207                 printk(KERN_WARNING DRV_NAME
6208                        "Error calling pci_enable_device.\n");
6209                 return err;
6210         }
6211
6212         priv = libipw_priv(dev);
6213
6214         pci_set_master(pci_dev);
6215         pci_set_drvdata(pci_dev, priv);
6216
6217         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6218         if (err) {
6219                 printk(KERN_WARNING DRV_NAME
6220                        "Error calling pci_set_dma_mask.\n");
6221                 pci_disable_device(pci_dev);
6222                 return err;
6223         }
6224
6225         err = pci_request_regions(pci_dev, DRV_NAME);
6226         if (err) {
6227                 printk(KERN_WARNING DRV_NAME
6228                        "Error calling pci_request_regions.\n");
6229                 pci_disable_device(pci_dev);
6230                 return err;
6231         }
6232
6233         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6234          * PCI Tx retries from interfering with C3 CPU state */
6235         pci_read_config_dword(pci_dev, 0x40, &val);
6236         if ((val & 0x0000ff00) != 0)
6237                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6238
6239         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6240                 printk(KERN_WARNING DRV_NAME
6241                        "Device not found via register read.\n");
6242                 err = -ENODEV;
6243                 goto fail;
6244         }
6245
6246         SET_NETDEV_DEV(dev, &pci_dev->dev);
6247
6248         /* Force interrupts to be shut off on the device */
6249         priv->status |= STATUS_INT_ENABLED;
6250         ipw2100_disable_interrupts(priv);
6251
6252         /* Allocate and initialize the Tx/Rx queues and lists */
6253         if (ipw2100_queues_allocate(priv)) {
6254                 printk(KERN_WARNING DRV_NAME
6255                        "Error calling ipw2100_queues_allocate.\n");
6256                 err = -ENOMEM;
6257                 goto fail;
6258         }
6259         ipw2100_queues_initialize(priv);
6260
6261         err = request_irq(pci_dev->irq,
6262                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6263         if (err) {
6264                 printk(KERN_WARNING DRV_NAME
6265                        "Error calling request_irq: %d.\n", pci_dev->irq);
6266                 goto fail;
6267         }
6268         dev->irq = pci_dev->irq;
6269
6270         IPW_DEBUG_INFO("Attempting to register device...\n");
6271
6272         printk(KERN_INFO DRV_NAME
6273                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6274
6275         err = ipw2100_up(priv, 1);
6276         if (err)
6277                 goto fail;
6278
6279         err = ipw2100_wdev_init(dev);
6280         if (err)
6281                 goto fail;
6282         registered = 1;
6283
6284         /* Bring up the interface.  Pre 0.46, after we registered the
6285          * network device we would call ipw2100_up.  This introduced a race
6286          * condition with newer hotplug configurations (network was coming
6287          * up and making calls before the device was initialized).
6288          */
6289         err = register_netdev(dev);
6290         if (err) {
6291                 printk(KERN_WARNING DRV_NAME
6292                        "Error calling register_netdev.\n");
6293                 goto fail;
6294         }
6295         registered = 2;
6296
6297         mutex_lock(&priv->action_mutex);
6298
6299         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6300
6301         /* perform this after register_netdev so that dev->name is set */
6302         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6303         if (err)
6304                 goto fail_unlock;
6305
6306         /* If the RF Kill switch is disabled, go ahead and complete the
6307          * startup sequence */
6308         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6309                 /* Enable the adapter - sends HOST_COMPLETE */
6310                 if (ipw2100_enable_adapter(priv)) {
6311                         printk(KERN_WARNING DRV_NAME
6312                                ": %s: failed in call to enable adapter.\n",
6313                                priv->net_dev->name);
6314                         ipw2100_hw_stop_adapter(priv);
6315                         err = -EIO;
6316                         goto fail_unlock;
6317                 }
6318
6319                 /* Start a scan . . . */
6320                 ipw2100_set_scan_options(priv);
6321                 ipw2100_start_scan(priv);
6322         }
6323
6324         IPW_DEBUG_INFO("exit\n");
6325
6326         priv->status |= STATUS_INITIALIZED;
6327
6328         mutex_unlock(&priv->action_mutex);
6329 out:
6330         return err;
6331
6332       fail_unlock:
6333         mutex_unlock(&priv->action_mutex);
6334       fail:
6335         if (dev) {
6336                 if (registered >= 2)
6337                         unregister_netdev(dev);
6338
6339                 if (registered) {
6340                         wiphy_unregister(priv->ieee->wdev.wiphy);
6341                         kfree(priv->ieee->bg_band.channels);
6342                 }
6343
6344                 ipw2100_hw_stop_adapter(priv);
6345
6346                 ipw2100_disable_interrupts(priv);
6347
6348                 if (dev->irq)
6349                         free_irq(dev->irq, priv);
6350
6351                 ipw2100_kill_works(priv);
6352
6353                 /* These are safe to call even if they weren't allocated */
6354                 ipw2100_queues_free(priv);
6355                 sysfs_remove_group(&pci_dev->dev.kobj,
6356                                    &ipw2100_attribute_group);
6357
6358                 free_libipw(dev, 0);
6359         }
6360
6361         pci_iounmap(pci_dev, ioaddr);
6362
6363         pci_release_regions(pci_dev);
6364         pci_disable_device(pci_dev);
6365         goto out;
6366 }
6367
6368 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6369 {
6370         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6371         struct net_device *dev = priv->net_dev;
6372
6373         mutex_lock(&priv->action_mutex);
6374
6375         priv->status &= ~STATUS_INITIALIZED;
6376
6377         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6378
6379 #ifdef CONFIG_PM
6380         if (ipw2100_firmware.version)
6381                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6382 #endif
6383         /* Take down the hardware */
6384         ipw2100_down(priv);
6385
6386         /* Release the mutex so that the network subsystem can
6387          * complete any needed calls into the driver... */
6388         mutex_unlock(&priv->action_mutex);
6389
6390         /* Unregister the device first - this results in close()
6391          * being called if the device is open.  If we free storage
6392          * first, then close() will crash.
6393          * FIXME: remove the comment above. */
6394         unregister_netdev(dev);
6395
6396         ipw2100_kill_works(priv);
6397
6398         ipw2100_queues_free(priv);
6399
6400         /* Free potential debugging firmware snapshot */
6401         ipw2100_snapshot_free(priv);
6402
6403         free_irq(dev->irq, priv);
6404
6405         pci_iounmap(pci_dev, priv->ioaddr);
6406
6407         /* wiphy_unregister needs to be here, before free_libipw */
6408         wiphy_unregister(priv->ieee->wdev.wiphy);
6409         kfree(priv->ieee->bg_band.channels);
6410         free_libipw(dev, 0);
6411
6412         pci_release_regions(pci_dev);
6413         pci_disable_device(pci_dev);
6414
6415         IPW_DEBUG_INFO("exit\n");
6416 }
6417
6418 #ifdef CONFIG_PM
6419 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6420 {
6421         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6422         struct net_device *dev = priv->net_dev;
6423
6424         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6425
6426         mutex_lock(&priv->action_mutex);
6427         if (priv->status & STATUS_INITIALIZED) {
6428                 /* Take down the device; powers it off, etc. */
6429                 ipw2100_down(priv);
6430         }
6431
6432         /* Remove the PRESENT state of the device */
6433         netif_device_detach(dev);
6434
6435         pci_save_state(pci_dev);
6436         pci_disable_device(pci_dev);
6437         pci_set_power_state(pci_dev, PCI_D3hot);
6438
6439         priv->suspend_at = ktime_get_boottime_seconds();
6440
6441         mutex_unlock(&priv->action_mutex);
6442
6443         return 0;
6444 }
6445
6446 static int ipw2100_resume(struct pci_dev *pci_dev)
6447 {
6448         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449         struct net_device *dev = priv->net_dev;
6450         int err;
6451         u32 val;
6452
6453         if (IPW2100_PM_DISABLED)
6454                 return 0;
6455
6456         mutex_lock(&priv->action_mutex);
6457
6458         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6459
6460         pci_set_power_state(pci_dev, PCI_D0);
6461         err = pci_enable_device(pci_dev);
6462         if (err) {
6463                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6464                        dev->name);
6465                 mutex_unlock(&priv->action_mutex);
6466                 return err;
6467         }
6468         pci_restore_state(pci_dev);
6469
6470         /*
6471          * Suspend/Resume resets the PCI configuration space, so we have to
6472          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6473          * from interfering with C3 CPU state. pci_restore_state won't help
6474          * here since it only restores the first 64 bytes pci config header.
6475          */
6476         pci_read_config_dword(pci_dev, 0x40, &val);
6477         if ((val & 0x0000ff00) != 0)
6478                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6479
6480         /* Set the device back into the PRESENT state; this will also wake
6481          * the queue of needed */
6482         netif_device_attach(dev);
6483
6484         priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6485
6486         /* Bring the device back up */
6487         if (!(priv->status & STATUS_RF_KILL_SW))
6488                 ipw2100_up(priv, 0);
6489
6490         mutex_unlock(&priv->action_mutex);
6491
6492         return 0;
6493 }
6494 #endif
6495
6496 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6497 {
6498         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499
6500         /* Take down the device; powers it off, etc. */
6501         ipw2100_down(priv);
6502
6503         pci_disable_device(pci_dev);
6504 }
6505
6506 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6507
6508 static const struct pci_device_id ipw2100_pci_id_table[] = {
6509         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6510         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6511         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6512         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6514         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6516         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6518         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6519         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6520         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6521         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6522
6523         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6524         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6525         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6526         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6527         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6528
6529         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6530         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6531         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6532         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6533         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6534         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6535         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6536
6537         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6538
6539         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6540         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6541         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6542         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6543         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6544         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6546
6547         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6548         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6549         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6550         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6551         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6552         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6553
6554         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6555         {0,},
6556 };
6557
6558 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6559
6560 static struct pci_driver ipw2100_pci_driver = {
6561         .name = DRV_NAME,
6562         .id_table = ipw2100_pci_id_table,
6563         .probe = ipw2100_pci_init_one,
6564         .remove = ipw2100_pci_remove_one,
6565 #ifdef CONFIG_PM
6566         .suspend = ipw2100_suspend,
6567         .resume = ipw2100_resume,
6568 #endif
6569         .shutdown = ipw2100_shutdown,
6570 };
6571
6572 /**
6573  * Initialize the ipw2100 driver/module
6574  *
6575  * @returns 0 if ok, < 0 errno node con error.
6576  *
6577  * Note: we cannot init the /proc stuff until the PCI driver is there,
6578  * or we risk an unlikely race condition on someone accessing
6579  * uninitialized data in the PCI dev struct through /proc.
6580  */
6581 static int __init ipw2100_init(void)
6582 {
6583         int ret;
6584
6585         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6586         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6587
6588         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6589                            PM_QOS_DEFAULT_VALUE);
6590
6591         ret = pci_register_driver(&ipw2100_pci_driver);
6592         if (ret)
6593                 goto out;
6594
6595 #ifdef CONFIG_IPW2100_DEBUG
6596         ipw2100_debug_level = debug;
6597         ret = driver_create_file(&ipw2100_pci_driver.driver,
6598                                  &driver_attr_debug_level);
6599 #endif
6600
6601 out:
6602         return ret;
6603 }
6604
6605 /**
6606  * Cleanup ipw2100 driver registration
6607  */
6608 static void __exit ipw2100_exit(void)
6609 {
6610         /* FIXME: IPG: check that we have no instances of the devices open */
6611 #ifdef CONFIG_IPW2100_DEBUG
6612         driver_remove_file(&ipw2100_pci_driver.driver,
6613                            &driver_attr_debug_level);
6614 #endif
6615         pci_unregister_driver(&ipw2100_pci_driver);
6616         pm_qos_remove_request(&ipw2100_pm_qos_req);
6617 }
6618
6619 module_init(ipw2100_init);
6620 module_exit(ipw2100_exit);
6621
6622 static int ipw2100_wx_get_name(struct net_device *dev,
6623                                struct iw_request_info *info,
6624                                union iwreq_data *wrqu, char *extra)
6625 {
6626         /*
6627          * This can be called at any time.  No action lock required
6628          */
6629
6630         struct ipw2100_priv *priv = libipw_priv(dev);
6631         if (!(priv->status & STATUS_ASSOCIATED))
6632                 strcpy(wrqu->name, "unassociated");
6633         else
6634                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6635
6636         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6637         return 0;
6638 }
6639
6640 static int ipw2100_wx_set_freq(struct net_device *dev,
6641                                struct iw_request_info *info,
6642                                union iwreq_data *wrqu, char *extra)
6643 {
6644         struct ipw2100_priv *priv = libipw_priv(dev);
6645         struct iw_freq *fwrq = &wrqu->freq;
6646         int err = 0;
6647
6648         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6649                 return -EOPNOTSUPP;
6650
6651         mutex_lock(&priv->action_mutex);
6652         if (!(priv->status & STATUS_INITIALIZED)) {
6653                 err = -EIO;
6654                 goto done;
6655         }
6656
6657         /* if setting by freq convert to channel */
6658         if (fwrq->e == 1) {
6659                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6660                         int f = fwrq->m / 100000;
6661                         int c = 0;
6662
6663                         while ((c < REG_MAX_CHANNEL) &&
6664                                (f != ipw2100_frequencies[c]))
6665                                 c++;
6666
6667                         /* hack to fall through */
6668                         fwrq->e = 0;
6669                         fwrq->m = c + 1;
6670                 }
6671         }
6672
6673         if (fwrq->e > 0 || fwrq->m > 1000) {
6674                 err = -EOPNOTSUPP;
6675                 goto done;
6676         } else {                /* Set the channel */
6677                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6678                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6679         }
6680
6681       done:
6682         mutex_unlock(&priv->action_mutex);
6683         return err;
6684 }
6685
6686 static int ipw2100_wx_get_freq(struct net_device *dev,
6687                                struct iw_request_info *info,
6688                                union iwreq_data *wrqu, char *extra)
6689 {
6690         /*
6691          * This can be called at any time.  No action lock required
6692          */
6693
6694         struct ipw2100_priv *priv = libipw_priv(dev);
6695
6696         wrqu->freq.e = 0;
6697
6698         /* If we are associated, trying to associate, or have a statically
6699          * configured CHANNEL then return that; otherwise return ANY */
6700         if (priv->config & CFG_STATIC_CHANNEL ||
6701             priv->status & STATUS_ASSOCIATED)
6702                 wrqu->freq.m = priv->channel;
6703         else
6704                 wrqu->freq.m = 0;
6705
6706         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6707         return 0;
6708
6709 }
6710
6711 static int ipw2100_wx_set_mode(struct net_device *dev,
6712                                struct iw_request_info *info,
6713                                union iwreq_data *wrqu, char *extra)
6714 {
6715         struct ipw2100_priv *priv = libipw_priv(dev);
6716         int err = 0;
6717
6718         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6719
6720         if (wrqu->mode == priv->ieee->iw_mode)
6721                 return 0;
6722
6723         mutex_lock(&priv->action_mutex);
6724         if (!(priv->status & STATUS_INITIALIZED)) {
6725                 err = -EIO;
6726                 goto done;
6727         }
6728
6729         switch (wrqu->mode) {
6730 #ifdef CONFIG_IPW2100_MONITOR
6731         case IW_MODE_MONITOR:
6732                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6733                 break;
6734 #endif                          /* CONFIG_IPW2100_MONITOR */
6735         case IW_MODE_ADHOC:
6736                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6737                 break;
6738         case IW_MODE_INFRA:
6739         case IW_MODE_AUTO:
6740         default:
6741                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6742                 break;
6743         }
6744
6745       done:
6746         mutex_unlock(&priv->action_mutex);
6747         return err;
6748 }
6749
6750 static int ipw2100_wx_get_mode(struct net_device *dev,
6751                                struct iw_request_info *info,
6752                                union iwreq_data *wrqu, char *extra)
6753 {
6754         /*
6755          * This can be called at any time.  No action lock required
6756          */
6757
6758         struct ipw2100_priv *priv = libipw_priv(dev);
6759
6760         wrqu->mode = priv->ieee->iw_mode;
6761         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6762
6763         return 0;
6764 }
6765
6766 #define POWER_MODES 5
6767
6768 /* Values are in microsecond */
6769 static const s32 timeout_duration[POWER_MODES] = {
6770         350000,
6771         250000,
6772         75000,
6773         37000,
6774         25000,
6775 };
6776
6777 static const s32 period_duration[POWER_MODES] = {
6778         400000,
6779         700000,
6780         1000000,
6781         1000000,
6782         1000000
6783 };
6784
6785 static int ipw2100_wx_get_range(struct net_device *dev,
6786                                 struct iw_request_info *info,
6787                                 union iwreq_data *wrqu, char *extra)
6788 {
6789         /*
6790          * This can be called at any time.  No action lock required
6791          */
6792
6793         struct ipw2100_priv *priv = libipw_priv(dev);
6794         struct iw_range *range = (struct iw_range *)extra;
6795         u16 val;
6796         int i, level;
6797
6798         wrqu->data.length = sizeof(*range);
6799         memset(range, 0, sizeof(*range));
6800
6801         /* Let's try to keep this struct in the same order as in
6802          * linux/include/wireless.h
6803          */
6804
6805         /* TODO: See what values we can set, and remove the ones we can't
6806          * set, or fill them with some default data.
6807          */
6808
6809         /* ~5 Mb/s real (802.11b) */
6810         range->throughput = 5 * 1000 * 1000;
6811
6812 //      range->sensitivity;     /* signal level threshold range */
6813
6814         range->max_qual.qual = 100;
6815         /* TODO: Find real max RSSI and stick here */
6816         range->max_qual.level = 0;
6817         range->max_qual.noise = 0;
6818         range->max_qual.updated = 7;    /* Updated all three */
6819
6820         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6821         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6822         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6823         range->avg_qual.noise = 0;
6824         range->avg_qual.updated = 7;    /* Updated all three */
6825
6826         range->num_bitrates = RATE_COUNT;
6827
6828         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6829                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6830         }
6831
6832         range->min_rts = MIN_RTS_THRESHOLD;
6833         range->max_rts = MAX_RTS_THRESHOLD;
6834         range->min_frag = MIN_FRAG_THRESHOLD;
6835         range->max_frag = MAX_FRAG_THRESHOLD;
6836
6837         range->min_pmp = period_duration[0];    /* Minimal PM period */
6838         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6839         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6840         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6841
6842         /* How to decode max/min PM period */
6843         range->pmp_flags = IW_POWER_PERIOD;
6844         /* How to decode max/min PM period */
6845         range->pmt_flags = IW_POWER_TIMEOUT;
6846         /* What PM options are supported */
6847         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6848
6849         range->encoding_size[0] = 5;
6850         range->encoding_size[1] = 13;   /* Different token sizes */
6851         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6852         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6853 //      range->encoding_login_index;            /* token index for login token */
6854
6855         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6856                 range->txpower_capa = IW_TXPOW_DBM;
6857                 range->num_txpower = IW_MAX_TXPOWER;
6858                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6859                      i < IW_MAX_TXPOWER;
6860                      i++, level -=
6861                      ((IPW_TX_POWER_MAX_DBM -
6862                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6863                         range->txpower[i] = level / 16;
6864         } else {
6865                 range->txpower_capa = 0;
6866                 range->num_txpower = 0;
6867         }
6868
6869         /* Set the Wireless Extension versions */
6870         range->we_version_compiled = WIRELESS_EXT;
6871         range->we_version_source = 18;
6872
6873 //      range->retry_capa;      /* What retry options are supported */
6874 //      range->retry_flags;     /* How to decode max/min retry limit */
6875 //      range->r_time_flags;    /* How to decode max/min retry life */
6876 //      range->min_retry;       /* Minimal number of retries */
6877 //      range->max_retry;       /* Maximal number of retries */
6878 //      range->min_r_time;      /* Minimal retry lifetime */
6879 //      range->max_r_time;      /* Maximal retry lifetime */
6880
6881         range->num_channels = FREQ_COUNT;
6882
6883         val = 0;
6884         for (i = 0; i < FREQ_COUNT; i++) {
6885                 // TODO: Include only legal frequencies for some countries
6886 //              if (local->channel_mask & (1 << i)) {
6887                 range->freq[val].i = i + 1;
6888                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6889                 range->freq[val].e = 1;
6890                 val++;
6891 //              }
6892                 if (val == IW_MAX_FREQUENCIES)
6893                         break;
6894         }
6895         range->num_frequency = val;
6896
6897         /* Event capability (kernel + driver) */
6898         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6899                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6900         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6901
6902         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6903                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6904
6905         IPW_DEBUG_WX("GET Range\n");
6906
6907         return 0;
6908 }
6909
6910 static int ipw2100_wx_set_wap(struct net_device *dev,
6911                               struct iw_request_info *info,
6912                               union iwreq_data *wrqu, char *extra)
6913 {
6914         struct ipw2100_priv *priv = libipw_priv(dev);
6915         int err = 0;
6916
6917         // sanity checks
6918         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6919                 return -EINVAL;
6920
6921         mutex_lock(&priv->action_mutex);
6922         if (!(priv->status & STATUS_INITIALIZED)) {
6923                 err = -EIO;
6924                 goto done;
6925         }
6926
6927         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6928             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6929                 /* we disable mandatory BSSID association */
6930                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6931                 priv->config &= ~CFG_STATIC_BSSID;
6932                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6933                 goto done;
6934         }
6935
6936         priv->config |= CFG_STATIC_BSSID;
6937         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6938
6939         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6940
6941         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6942
6943       done:
6944         mutex_unlock(&priv->action_mutex);
6945         return err;
6946 }
6947
6948 static int ipw2100_wx_get_wap(struct net_device *dev,
6949                               struct iw_request_info *info,
6950                               union iwreq_data *wrqu, char *extra)
6951 {
6952         /*
6953          * This can be called at any time.  No action lock required
6954          */
6955
6956         struct ipw2100_priv *priv = libipw_priv(dev);
6957
6958         /* If we are associated, trying to associate, or have a statically
6959          * configured BSSID then return that; otherwise return ANY */
6960         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6961                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6962                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6963         } else
6964                 eth_zero_addr(wrqu->ap_addr.sa_data);
6965
6966         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6967         return 0;
6968 }
6969
6970 static int ipw2100_wx_set_essid(struct net_device *dev,
6971                                 struct iw_request_info *info,
6972                                 union iwreq_data *wrqu, char *extra)
6973 {
6974         struct ipw2100_priv *priv = libipw_priv(dev);
6975         char *essid = "";       /* ANY */
6976         int length = 0;
6977         int err = 0;
6978
6979         mutex_lock(&priv->action_mutex);
6980         if (!(priv->status & STATUS_INITIALIZED)) {
6981                 err = -EIO;
6982                 goto done;
6983         }
6984
6985         if (wrqu->essid.flags && wrqu->essid.length) {
6986                 length = wrqu->essid.length;
6987                 essid = extra;
6988         }
6989
6990         if (length == 0) {
6991                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6992                 priv->config &= ~CFG_STATIC_ESSID;
6993                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6994                 goto done;
6995         }
6996
6997         length = min(length, IW_ESSID_MAX_SIZE);
6998
6999         priv->config |= CFG_STATIC_ESSID;
7000
7001         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7002                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7003                 err = 0;
7004                 goto done;
7005         }
7006
7007         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7008
7009         priv->essid_len = length;
7010         memcpy(priv->essid, essid, priv->essid_len);
7011
7012         err = ipw2100_set_essid(priv, essid, length, 0);
7013
7014       done:
7015         mutex_unlock(&priv->action_mutex);
7016         return err;
7017 }
7018
7019 static int ipw2100_wx_get_essid(struct net_device *dev,
7020                                 struct iw_request_info *info,
7021                                 union iwreq_data *wrqu, char *extra)
7022 {
7023         /*
7024          * This can be called at any time.  No action lock required
7025          */
7026
7027         struct ipw2100_priv *priv = libipw_priv(dev);
7028
7029         /* If we are associated, trying to associate, or have a statically
7030          * configured ESSID then return that; otherwise return ANY */
7031         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7032                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7033                              priv->essid_len, priv->essid);
7034                 memcpy(extra, priv->essid, priv->essid_len);
7035                 wrqu->essid.length = priv->essid_len;
7036                 wrqu->essid.flags = 1;  /* active */
7037         } else {
7038                 IPW_DEBUG_WX("Getting essid: ANY\n");
7039                 wrqu->essid.length = 0;
7040                 wrqu->essid.flags = 0;  /* active */
7041         }
7042
7043         return 0;
7044 }
7045
7046 static int ipw2100_wx_set_nick(struct net_device *dev,
7047                                struct iw_request_info *info,
7048                                union iwreq_data *wrqu, char *extra)
7049 {
7050         /*
7051          * This can be called at any time.  No action lock required
7052          */
7053
7054         struct ipw2100_priv *priv = libipw_priv(dev);
7055
7056         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7057                 return -E2BIG;
7058
7059         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7060         memset(priv->nick, 0, sizeof(priv->nick));
7061         memcpy(priv->nick, extra, wrqu->data.length);
7062
7063         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7064
7065         return 0;
7066 }
7067
7068 static int ipw2100_wx_get_nick(struct net_device *dev,
7069                                struct iw_request_info *info,
7070                                union iwreq_data *wrqu, char *extra)
7071 {
7072         /*
7073          * This can be called at any time.  No action lock required
7074          */
7075
7076         struct ipw2100_priv *priv = libipw_priv(dev);
7077
7078         wrqu->data.length = strlen(priv->nick);
7079         memcpy(extra, priv->nick, wrqu->data.length);
7080         wrqu->data.flags = 1;   /* active */
7081
7082         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7083
7084         return 0;
7085 }
7086
7087 static int ipw2100_wx_set_rate(struct net_device *dev,
7088                                struct iw_request_info *info,
7089                                union iwreq_data *wrqu, char *extra)
7090 {
7091         struct ipw2100_priv *priv = libipw_priv(dev);
7092         u32 target_rate = wrqu->bitrate.value;
7093         u32 rate;
7094         int err = 0;
7095
7096         mutex_lock(&priv->action_mutex);
7097         if (!(priv->status & STATUS_INITIALIZED)) {
7098                 err = -EIO;
7099                 goto done;
7100         }
7101
7102         rate = 0;
7103
7104         if (target_rate == 1000000 ||
7105             (!wrqu->bitrate.fixed && target_rate > 1000000))
7106                 rate |= TX_RATE_1_MBIT;
7107         if (target_rate == 2000000 ||
7108             (!wrqu->bitrate.fixed && target_rate > 2000000))
7109                 rate |= TX_RATE_2_MBIT;
7110         if (target_rate == 5500000 ||
7111             (!wrqu->bitrate.fixed && target_rate > 5500000))
7112                 rate |= TX_RATE_5_5_MBIT;
7113         if (target_rate == 11000000 ||
7114             (!wrqu->bitrate.fixed && target_rate > 11000000))
7115                 rate |= TX_RATE_11_MBIT;
7116         if (rate == 0)
7117                 rate = DEFAULT_TX_RATES;
7118
7119         err = ipw2100_set_tx_rates(priv, rate, 0);
7120
7121         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7122       done:
7123         mutex_unlock(&priv->action_mutex);
7124         return err;
7125 }
7126
7127 static int ipw2100_wx_get_rate(struct net_device *dev,
7128                                struct iw_request_info *info,
7129                                union iwreq_data *wrqu, char *extra)
7130 {
7131         struct ipw2100_priv *priv = libipw_priv(dev);
7132         int val;
7133         unsigned int len = sizeof(val);
7134         int err = 0;
7135
7136         if (!(priv->status & STATUS_ENABLED) ||
7137             priv->status & STATUS_RF_KILL_MASK ||
7138             !(priv->status & STATUS_ASSOCIATED)) {
7139                 wrqu->bitrate.value = 0;
7140                 return 0;
7141         }
7142
7143         mutex_lock(&priv->action_mutex);
7144         if (!(priv->status & STATUS_INITIALIZED)) {
7145                 err = -EIO;
7146                 goto done;
7147         }
7148
7149         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7150         if (err) {
7151                 IPW_DEBUG_WX("failed querying ordinals.\n");
7152                 goto done;
7153         }
7154
7155         switch (val & TX_RATE_MASK) {
7156         case TX_RATE_1_MBIT:
7157                 wrqu->bitrate.value = 1000000;
7158                 break;
7159         case TX_RATE_2_MBIT:
7160                 wrqu->bitrate.value = 2000000;
7161                 break;
7162         case TX_RATE_5_5_MBIT:
7163                 wrqu->bitrate.value = 5500000;
7164                 break;
7165         case TX_RATE_11_MBIT:
7166                 wrqu->bitrate.value = 11000000;
7167                 break;
7168         default:
7169                 wrqu->bitrate.value = 0;
7170         }
7171
7172         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7173
7174       done:
7175         mutex_unlock(&priv->action_mutex);
7176         return err;
7177 }
7178
7179 static int ipw2100_wx_set_rts(struct net_device *dev,
7180                               struct iw_request_info *info,
7181                               union iwreq_data *wrqu, char *extra)
7182 {
7183         struct ipw2100_priv *priv = libipw_priv(dev);
7184         int value, err;
7185
7186         /* Auto RTS not yet supported */
7187         if (wrqu->rts.fixed == 0)
7188                 return -EINVAL;
7189
7190         mutex_lock(&priv->action_mutex);
7191         if (!(priv->status & STATUS_INITIALIZED)) {
7192                 err = -EIO;
7193                 goto done;
7194         }
7195
7196         if (wrqu->rts.disabled)
7197                 value = priv->rts_threshold | RTS_DISABLED;
7198         else {
7199                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7200                         err = -EINVAL;
7201                         goto done;
7202                 }
7203                 value = wrqu->rts.value;
7204         }
7205
7206         err = ipw2100_set_rts_threshold(priv, value);
7207
7208         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7209       done:
7210         mutex_unlock(&priv->action_mutex);
7211         return err;
7212 }
7213
7214 static int ipw2100_wx_get_rts(struct net_device *dev,
7215                               struct iw_request_info *info,
7216                               union iwreq_data *wrqu, char *extra)
7217 {
7218         /*
7219          * This can be called at any time.  No action lock required
7220          */
7221
7222         struct ipw2100_priv *priv = libipw_priv(dev);
7223
7224         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7225         wrqu->rts.fixed = 1;    /* no auto select */
7226
7227         /* If RTS is set to the default value, then it is disabled */
7228         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7229
7230         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7231
7232         return 0;
7233 }
7234
7235 static int ipw2100_wx_set_txpow(struct net_device *dev,
7236                                 struct iw_request_info *info,
7237                                 union iwreq_data *wrqu, char *extra)
7238 {
7239         struct ipw2100_priv *priv = libipw_priv(dev);
7240         int err = 0, value;
7241         
7242         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7243                 return -EINPROGRESS;
7244
7245         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7246                 return 0;
7247
7248         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7249                 return -EINVAL;
7250
7251         if (wrqu->txpower.fixed == 0)
7252                 value = IPW_TX_POWER_DEFAULT;
7253         else {
7254                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7255                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7256                         return -EINVAL;
7257
7258                 value = wrqu->txpower.value;
7259         }
7260
7261         mutex_lock(&priv->action_mutex);
7262         if (!(priv->status & STATUS_INITIALIZED)) {
7263                 err = -EIO;
7264                 goto done;
7265         }
7266
7267         err = ipw2100_set_tx_power(priv, value);
7268
7269         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7270
7271       done:
7272         mutex_unlock(&priv->action_mutex);
7273         return err;
7274 }
7275
7276 static int ipw2100_wx_get_txpow(struct net_device *dev,
7277                                 struct iw_request_info *info,
7278                                 union iwreq_data *wrqu, char *extra)
7279 {
7280         /*
7281          * This can be called at any time.  No action lock required
7282          */
7283
7284         struct ipw2100_priv *priv = libipw_priv(dev);
7285
7286         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7287
7288         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7289                 wrqu->txpower.fixed = 0;
7290                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7291         } else {
7292                 wrqu->txpower.fixed = 1;
7293                 wrqu->txpower.value = priv->tx_power;
7294         }
7295
7296         wrqu->txpower.flags = IW_TXPOW_DBM;
7297
7298         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7299
7300         return 0;
7301 }
7302
7303 static int ipw2100_wx_set_frag(struct net_device *dev,
7304                                struct iw_request_info *info,
7305                                union iwreq_data *wrqu, char *extra)
7306 {
7307         /*
7308          * This can be called at any time.  No action lock required
7309          */
7310
7311         struct ipw2100_priv *priv = libipw_priv(dev);
7312
7313         if (!wrqu->frag.fixed)
7314                 return -EINVAL;
7315
7316         if (wrqu->frag.disabled) {
7317                 priv->frag_threshold |= FRAG_DISABLED;
7318                 priv->ieee->fts = DEFAULT_FTS;
7319         } else {
7320                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7321                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7322                         return -EINVAL;
7323
7324                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7325                 priv->frag_threshold = priv->ieee->fts;
7326         }
7327
7328         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7329
7330         return 0;
7331 }
7332
7333 static int ipw2100_wx_get_frag(struct net_device *dev,
7334                                struct iw_request_info *info,
7335                                union iwreq_data *wrqu, char *extra)
7336 {
7337         /*
7338          * This can be called at any time.  No action lock required
7339          */
7340
7341         struct ipw2100_priv *priv = libipw_priv(dev);
7342         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7343         wrqu->frag.fixed = 0;   /* no auto select */
7344         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7345
7346         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7347
7348         return 0;
7349 }
7350
7351 static int ipw2100_wx_set_retry(struct net_device *dev,
7352                                 struct iw_request_info *info,
7353                                 union iwreq_data *wrqu, char *extra)
7354 {
7355         struct ipw2100_priv *priv = libipw_priv(dev);
7356         int err = 0;
7357
7358         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7359                 return -EINVAL;
7360
7361         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7362                 return 0;
7363
7364         mutex_lock(&priv->action_mutex);
7365         if (!(priv->status & STATUS_INITIALIZED)) {
7366                 err = -EIO;
7367                 goto done;
7368         }
7369
7370         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7371                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7373                              wrqu->retry.value);
7374                 goto done;
7375         }
7376
7377         if (wrqu->retry.flags & IW_RETRY_LONG) {
7378                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7379                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7380                              wrqu->retry.value);
7381                 goto done;
7382         }
7383
7384         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7385         if (!err)
7386                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7387
7388         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7389
7390       done:
7391         mutex_unlock(&priv->action_mutex);
7392         return err;
7393 }
7394
7395 static int ipw2100_wx_get_retry(struct net_device *dev,
7396                                 struct iw_request_info *info,
7397                                 union iwreq_data *wrqu, char *extra)
7398 {
7399         /*
7400          * This can be called at any time.  No action lock required
7401          */
7402
7403         struct ipw2100_priv *priv = libipw_priv(dev);
7404
7405         wrqu->retry.disabled = 0;       /* can't be disabled */
7406
7407         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7408                 return -EINVAL;
7409
7410         if (wrqu->retry.flags & IW_RETRY_LONG) {
7411                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7412                 wrqu->retry.value = priv->long_retry_limit;
7413         } else {
7414                 wrqu->retry.flags =
7415                     (priv->short_retry_limit !=
7416                      priv->long_retry_limit) ?
7417                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7418
7419                 wrqu->retry.value = priv->short_retry_limit;
7420         }
7421
7422         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7423
7424         return 0;
7425 }
7426
7427 static int ipw2100_wx_set_scan(struct net_device *dev,
7428                                struct iw_request_info *info,
7429                                union iwreq_data *wrqu, char *extra)
7430 {
7431         struct ipw2100_priv *priv = libipw_priv(dev);
7432         int err = 0;
7433
7434         mutex_lock(&priv->action_mutex);
7435         if (!(priv->status & STATUS_INITIALIZED)) {
7436                 err = -EIO;
7437                 goto done;
7438         }
7439
7440         IPW_DEBUG_WX("Initiating scan...\n");
7441
7442         priv->user_requested_scan = 1;
7443         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7444                 IPW_DEBUG_WX("Start scan failed.\n");
7445
7446                 /* TODO: Mark a scan as pending so when hardware initialized
7447                  *       a scan starts */
7448         }
7449
7450       done:
7451         mutex_unlock(&priv->action_mutex);
7452         return err;
7453 }
7454
7455 static int ipw2100_wx_get_scan(struct net_device *dev,
7456                                struct iw_request_info *info,
7457                                union iwreq_data *wrqu, char *extra)
7458 {
7459         /*
7460          * This can be called at any time.  No action lock required
7461          */
7462
7463         struct ipw2100_priv *priv = libipw_priv(dev);
7464         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7465 }
7466
7467 /*
7468  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7469  */
7470 static int ipw2100_wx_set_encode(struct net_device *dev,
7471                                  struct iw_request_info *info,
7472                                  union iwreq_data *wrqu, char *key)
7473 {
7474         /*
7475          * No check of STATUS_INITIALIZED required
7476          */
7477
7478         struct ipw2100_priv *priv = libipw_priv(dev);
7479         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7480 }
7481
7482 static int ipw2100_wx_get_encode(struct net_device *dev,
7483                                  struct iw_request_info *info,
7484                                  union iwreq_data *wrqu, char *key)
7485 {
7486         /*
7487          * This can be called at any time.  No action lock required
7488          */
7489
7490         struct ipw2100_priv *priv = libipw_priv(dev);
7491         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7492 }
7493
7494 static int ipw2100_wx_set_power(struct net_device *dev,
7495                                 struct iw_request_info *info,
7496                                 union iwreq_data *wrqu, char *extra)
7497 {
7498         struct ipw2100_priv *priv = libipw_priv(dev);
7499         int err = 0;
7500
7501         mutex_lock(&priv->action_mutex);
7502         if (!(priv->status & STATUS_INITIALIZED)) {
7503                 err = -EIO;
7504                 goto done;
7505         }
7506
7507         if (wrqu->power.disabled) {
7508                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7509                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7510                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7511                 goto done;
7512         }
7513
7514         switch (wrqu->power.flags & IW_POWER_MODE) {
7515         case IW_POWER_ON:       /* If not specified */
7516         case IW_POWER_MODE:     /* If set all mask */
7517         case IW_POWER_ALL_R:    /* If explicitly state all */
7518                 break;
7519         default:                /* Otherwise we don't support it */
7520                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7521                              wrqu->power.flags);
7522                 err = -EOPNOTSUPP;
7523                 goto done;
7524         }
7525
7526         /* If the user hasn't specified a power management mode yet, default
7527          * to BATTERY */
7528         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7529         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7530
7531         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7532
7533       done:
7534         mutex_unlock(&priv->action_mutex);
7535         return err;
7536
7537 }
7538
7539 static int ipw2100_wx_get_power(struct net_device *dev,
7540                                 struct iw_request_info *info,
7541                                 union iwreq_data *wrqu, char *extra)
7542 {
7543         /*
7544          * This can be called at any time.  No action lock required
7545          */
7546
7547         struct ipw2100_priv *priv = libipw_priv(dev);
7548
7549         if (!(priv->power_mode & IPW_POWER_ENABLED))
7550                 wrqu->power.disabled = 1;
7551         else {
7552                 wrqu->power.disabled = 0;
7553                 wrqu->power.flags = 0;
7554         }
7555
7556         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7557
7558         return 0;
7559 }
7560
7561 /*
7562  * WE-18 WPA support
7563  */
7564
7565 /* SIOCSIWGENIE */
7566 static int ipw2100_wx_set_genie(struct net_device *dev,
7567                                 struct iw_request_info *info,
7568                                 union iwreq_data *wrqu, char *extra)
7569 {
7570
7571         struct ipw2100_priv *priv = libipw_priv(dev);
7572         struct libipw_device *ieee = priv->ieee;
7573         u8 *buf;
7574
7575         if (!ieee->wpa_enabled)
7576                 return -EOPNOTSUPP;
7577
7578         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7579             (wrqu->data.length && extra == NULL))
7580                 return -EINVAL;
7581
7582         if (wrqu->data.length) {
7583                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7584                 if (buf == NULL)
7585                         return -ENOMEM;
7586
7587                 kfree(ieee->wpa_ie);
7588                 ieee->wpa_ie = buf;
7589                 ieee->wpa_ie_len = wrqu->data.length;
7590         } else {
7591                 kfree(ieee->wpa_ie);
7592                 ieee->wpa_ie = NULL;
7593                 ieee->wpa_ie_len = 0;
7594         }
7595
7596         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7597
7598         return 0;
7599 }
7600
7601 /* SIOCGIWGENIE */
7602 static int ipw2100_wx_get_genie(struct net_device *dev,
7603                                 struct iw_request_info *info,
7604                                 union iwreq_data *wrqu, char *extra)
7605 {
7606         struct ipw2100_priv *priv = libipw_priv(dev);
7607         struct libipw_device *ieee = priv->ieee;
7608
7609         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7610                 wrqu->data.length = 0;
7611                 return 0;
7612         }
7613
7614         if (wrqu->data.length < ieee->wpa_ie_len)
7615                 return -E2BIG;
7616
7617         wrqu->data.length = ieee->wpa_ie_len;
7618         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7619
7620         return 0;
7621 }
7622
7623 /* SIOCSIWAUTH */
7624 static int ipw2100_wx_set_auth(struct net_device *dev,
7625                                struct iw_request_info *info,
7626                                union iwreq_data *wrqu, char *extra)
7627 {
7628         struct ipw2100_priv *priv = libipw_priv(dev);
7629         struct libipw_device *ieee = priv->ieee;
7630         struct iw_param *param = &wrqu->param;
7631         struct lib80211_crypt_data *crypt;
7632         unsigned long flags;
7633         int ret = 0;
7634
7635         switch (param->flags & IW_AUTH_INDEX) {
7636         case IW_AUTH_WPA_VERSION:
7637         case IW_AUTH_CIPHER_PAIRWISE:
7638         case IW_AUTH_CIPHER_GROUP:
7639         case IW_AUTH_KEY_MGMT:
7640                 /*
7641                  * ipw2200 does not use these parameters
7642                  */
7643                 break;
7644
7645         case IW_AUTH_TKIP_COUNTERMEASURES:
7646                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7647                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7648                         break;
7649
7650                 flags = crypt->ops->get_flags(crypt->priv);
7651
7652                 if (param->value)
7653                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7654                 else
7655                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7656
7657                 crypt->ops->set_flags(flags, crypt->priv);
7658
7659                 break;
7660
7661         case IW_AUTH_DROP_UNENCRYPTED:{
7662                         /* HACK:
7663                          *
7664                          * wpa_supplicant calls set_wpa_enabled when the driver
7665                          * is loaded and unloaded, regardless of if WPA is being
7666                          * used.  No other calls are made which can be used to
7667                          * determine if encryption will be used or not prior to
7668                          * association being expected.  If encryption is not being
7669                          * used, drop_unencrypted is set to false, else true -- we
7670                          * can use this to determine if the CAP_PRIVACY_ON bit should
7671                          * be set.
7672                          */
7673                         struct libipw_security sec = {
7674                                 .flags = SEC_ENABLED,
7675                                 .enabled = param->value,
7676                         };
7677                         priv->ieee->drop_unencrypted = param->value;
7678                         /* We only change SEC_LEVEL for open mode. Others
7679                          * are set by ipw_wpa_set_encryption.
7680                          */
7681                         if (!param->value) {
7682                                 sec.flags |= SEC_LEVEL;
7683                                 sec.level = SEC_LEVEL_0;
7684                         } else {
7685                                 sec.flags |= SEC_LEVEL;
7686                                 sec.level = SEC_LEVEL_1;
7687                         }
7688                         if (priv->ieee->set_security)
7689                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7690                         break;
7691                 }
7692
7693         case IW_AUTH_80211_AUTH_ALG:
7694                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7695                 break;
7696
7697         case IW_AUTH_WPA_ENABLED:
7698                 ret = ipw2100_wpa_enable(priv, param->value);
7699                 break;
7700
7701         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7702                 ieee->ieee802_1x = param->value;
7703                 break;
7704
7705                 //case IW_AUTH_ROAMING_CONTROL:
7706         case IW_AUTH_PRIVACY_INVOKED:
7707                 ieee->privacy_invoked = param->value;
7708                 break;
7709
7710         default:
7711                 return -EOPNOTSUPP;
7712         }
7713         return ret;
7714 }
7715
7716 /* SIOCGIWAUTH */
7717 static int ipw2100_wx_get_auth(struct net_device *dev,
7718                                struct iw_request_info *info,
7719                                union iwreq_data *wrqu, char *extra)
7720 {
7721         struct ipw2100_priv *priv = libipw_priv(dev);
7722         struct libipw_device *ieee = priv->ieee;
7723         struct lib80211_crypt_data *crypt;
7724         struct iw_param *param = &wrqu->param;
7725
7726         switch (param->flags & IW_AUTH_INDEX) {
7727         case IW_AUTH_WPA_VERSION:
7728         case IW_AUTH_CIPHER_PAIRWISE:
7729         case IW_AUTH_CIPHER_GROUP:
7730         case IW_AUTH_KEY_MGMT:
7731                 /*
7732                  * wpa_supplicant will control these internally
7733                  */
7734                 break;
7735
7736         case IW_AUTH_TKIP_COUNTERMEASURES:
7737                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7738                 if (!crypt || !crypt->ops->get_flags) {
7739                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7740                                           "crypt not set!\n");
7741                         break;
7742                 }
7743
7744                 param->value = (crypt->ops->get_flags(crypt->priv) &
7745                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7746
7747                 break;
7748
7749         case IW_AUTH_DROP_UNENCRYPTED:
7750                 param->value = ieee->drop_unencrypted;
7751                 break;
7752
7753         case IW_AUTH_80211_AUTH_ALG:
7754                 param->value = priv->ieee->sec.auth_mode;
7755                 break;
7756
7757         case IW_AUTH_WPA_ENABLED:
7758                 param->value = ieee->wpa_enabled;
7759                 break;
7760
7761         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7762                 param->value = ieee->ieee802_1x;
7763                 break;
7764
7765         case IW_AUTH_ROAMING_CONTROL:
7766         case IW_AUTH_PRIVACY_INVOKED:
7767                 param->value = ieee->privacy_invoked;
7768                 break;
7769
7770         default:
7771                 return -EOPNOTSUPP;
7772         }
7773         return 0;
7774 }
7775
7776 /* SIOCSIWENCODEEXT */
7777 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7778                                     struct iw_request_info *info,
7779                                     union iwreq_data *wrqu, char *extra)
7780 {
7781         struct ipw2100_priv *priv = libipw_priv(dev);
7782         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7783 }
7784
7785 /* SIOCGIWENCODEEXT */
7786 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7787                                     struct iw_request_info *info,
7788                                     union iwreq_data *wrqu, char *extra)
7789 {
7790         struct ipw2100_priv *priv = libipw_priv(dev);
7791         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7792 }
7793
7794 /* SIOCSIWMLME */
7795 static int ipw2100_wx_set_mlme(struct net_device *dev,
7796                                struct iw_request_info *info,
7797                                union iwreq_data *wrqu, char *extra)
7798 {
7799         struct ipw2100_priv *priv = libipw_priv(dev);
7800         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7801
7802         switch (mlme->cmd) {
7803         case IW_MLME_DEAUTH:
7804                 // silently ignore
7805                 break;
7806
7807         case IW_MLME_DISASSOC:
7808                 ipw2100_disassociate_bssid(priv);
7809                 break;
7810
7811         default:
7812                 return -EOPNOTSUPP;
7813         }
7814         return 0;
7815 }
7816
7817 /*
7818  *
7819  * IWPRIV handlers
7820  *
7821  */
7822 #ifdef CONFIG_IPW2100_MONITOR
7823 static int ipw2100_wx_set_promisc(struct net_device *dev,
7824                                   struct iw_request_info *info,
7825                                   union iwreq_data *wrqu, char *extra)
7826 {
7827         struct ipw2100_priv *priv = libipw_priv(dev);
7828         int *parms = (int *)extra;
7829         int enable = (parms[0] > 0);
7830         int err = 0;
7831
7832         mutex_lock(&priv->action_mutex);
7833         if (!(priv->status & STATUS_INITIALIZED)) {
7834                 err = -EIO;
7835                 goto done;
7836         }
7837
7838         if (enable) {
7839                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7840                         err = ipw2100_set_channel(priv, parms[1], 0);
7841                         goto done;
7842                 }
7843                 priv->channel = parms[1];
7844                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7845         } else {
7846                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7847                         err = ipw2100_switch_mode(priv, priv->last_mode);
7848         }
7849       done:
7850         mutex_unlock(&priv->action_mutex);
7851         return err;
7852 }
7853
7854 static int ipw2100_wx_reset(struct net_device *dev,
7855                             struct iw_request_info *info,
7856                             union iwreq_data *wrqu, char *extra)
7857 {
7858         struct ipw2100_priv *priv = libipw_priv(dev);
7859         if (priv->status & STATUS_INITIALIZED)
7860                 schedule_reset(priv);
7861         return 0;
7862 }
7863
7864 #endif
7865
7866 static int ipw2100_wx_set_powermode(struct net_device *dev,
7867                                     struct iw_request_info *info,
7868                                     union iwreq_data *wrqu, char *extra)
7869 {
7870         struct ipw2100_priv *priv = libipw_priv(dev);
7871         int err = 0, mode = *(int *)extra;
7872
7873         mutex_lock(&priv->action_mutex);
7874         if (!(priv->status & STATUS_INITIALIZED)) {
7875                 err = -EIO;
7876                 goto done;
7877         }
7878
7879         if ((mode < 0) || (mode > POWER_MODES))
7880                 mode = IPW_POWER_AUTO;
7881
7882         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7883                 err = ipw2100_set_power_mode(priv, mode);
7884       done:
7885         mutex_unlock(&priv->action_mutex);
7886         return err;
7887 }
7888
7889 #define MAX_POWER_STRING 80
7890 static int ipw2100_wx_get_powermode(struct net_device *dev,
7891                                     struct iw_request_info *info,
7892                                     union iwreq_data *wrqu, char *extra)
7893 {
7894         /*
7895          * This can be called at any time.  No action lock required
7896          */
7897
7898         struct ipw2100_priv *priv = libipw_priv(dev);
7899         int level = IPW_POWER_LEVEL(priv->power_mode);
7900         s32 timeout, period;
7901
7902         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7903                 snprintf(extra, MAX_POWER_STRING,
7904                          "Power save level: %d (Off)", level);
7905         } else {
7906                 switch (level) {
7907                 case IPW_POWER_MODE_CAM:
7908                         snprintf(extra, MAX_POWER_STRING,
7909                                  "Power save level: %d (None)", level);
7910                         break;
7911                 case IPW_POWER_AUTO:
7912                         snprintf(extra, MAX_POWER_STRING,
7913                                  "Power save level: %d (Auto)", level);
7914                         break;
7915                 default:
7916                         timeout = timeout_duration[level - 1] / 1000;
7917                         period = period_duration[level - 1] / 1000;
7918                         snprintf(extra, MAX_POWER_STRING,
7919                                  "Power save level: %d "
7920                                  "(Timeout %dms, Period %dms)",
7921                                  level, timeout, period);
7922                 }
7923         }
7924
7925         wrqu->data.length = strlen(extra) + 1;
7926
7927         return 0;
7928 }
7929
7930 static int ipw2100_wx_set_preamble(struct net_device *dev,
7931                                    struct iw_request_info *info,
7932                                    union iwreq_data *wrqu, char *extra)
7933 {
7934         struct ipw2100_priv *priv = libipw_priv(dev);
7935         int err, mode = *(int *)extra;
7936
7937         mutex_lock(&priv->action_mutex);
7938         if (!(priv->status & STATUS_INITIALIZED)) {
7939                 err = -EIO;
7940                 goto done;
7941         }
7942
7943         if (mode == 1)
7944                 priv->config |= CFG_LONG_PREAMBLE;
7945         else if (mode == 0)
7946                 priv->config &= ~CFG_LONG_PREAMBLE;
7947         else {
7948                 err = -EINVAL;
7949                 goto done;
7950         }
7951
7952         err = ipw2100_system_config(priv, 0);
7953
7954       done:
7955         mutex_unlock(&priv->action_mutex);
7956         return err;
7957 }
7958
7959 static int ipw2100_wx_get_preamble(struct net_device *dev,
7960                                    struct iw_request_info *info,
7961                                    union iwreq_data *wrqu, char *extra)
7962 {
7963         /*
7964          * This can be called at any time.  No action lock required
7965          */
7966
7967         struct ipw2100_priv *priv = libipw_priv(dev);
7968
7969         if (priv->config & CFG_LONG_PREAMBLE)
7970                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7971         else
7972                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7973
7974         return 0;
7975 }
7976
7977 #ifdef CONFIG_IPW2100_MONITOR
7978 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7979                                     struct iw_request_info *info,
7980                                     union iwreq_data *wrqu, char *extra)
7981 {
7982         struct ipw2100_priv *priv = libipw_priv(dev);
7983         int err, mode = *(int *)extra;
7984
7985         mutex_lock(&priv->action_mutex);
7986         if (!(priv->status & STATUS_INITIALIZED)) {
7987                 err = -EIO;
7988                 goto done;
7989         }
7990
7991         if (mode == 1)
7992                 priv->config |= CFG_CRC_CHECK;
7993         else if (mode == 0)
7994                 priv->config &= ~CFG_CRC_CHECK;
7995         else {
7996                 err = -EINVAL;
7997                 goto done;
7998         }
7999         err = 0;
8000
8001       done:
8002         mutex_unlock(&priv->action_mutex);
8003         return err;
8004 }
8005
8006 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8007                                     struct iw_request_info *info,
8008                                     union iwreq_data *wrqu, char *extra)
8009 {
8010         /*
8011          * This can be called at any time.  No action lock required
8012          */
8013
8014         struct ipw2100_priv *priv = libipw_priv(dev);
8015
8016         if (priv->config & CFG_CRC_CHECK)
8017                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8018         else
8019                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8020
8021         return 0;
8022 }
8023 #endif                          /* CONFIG_IPW2100_MONITOR */
8024
8025 static iw_handler ipw2100_wx_handlers[] = {
8026         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8027         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8028         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8029         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8030         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8031         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8032         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8033         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8034         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8035         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8036         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8037         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8038         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8039         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8040         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8041         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8042         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8043         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8044         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8045         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8046         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8047         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8048         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8049         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8050         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8051         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8052         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8053         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8054         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8055         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8056         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8057         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8058         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8059         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8060         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8061 };
8062
8063 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8071
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8073
8074 #ifdef CONFIG_IPW2100_MONITOR
8075         {
8076          IPW2100_PRIV_SET_MONITOR,
8077          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8078         {
8079          IPW2100_PRIV_RESET,
8080          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif                          /* CONFIG_IPW2100_MONITOR */
8082
8083         {
8084          IPW2100_PRIV_SET_POWER,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8086         {
8087          IPW2100_PRIV_GET_POWER,
8088          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089          "get_power"},
8090         {
8091          IPW2100_PRIV_SET_LONGPREAMBLE,
8092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8093         {
8094          IPW2100_PRIV_GET_LONGPREAMBLE,
8095          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8097         {
8098          IPW2100_PRIV_SET_CRC_CHECK,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8100         {
8101          IPW2100_PRIV_GET_CRC_CHECK,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif                          /* CONFIG_IPW2100_MONITOR */
8104 };
8105
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108         ipw2100_wx_set_promisc,
8109         ipw2100_wx_reset,
8110 #else                           /* CONFIG_IPW2100_MONITOR */
8111         NULL,
8112         NULL,
8113 #endif                          /* CONFIG_IPW2100_MONITOR */
8114         ipw2100_wx_set_powermode,
8115         ipw2100_wx_get_powermode,
8116         ipw2100_wx_set_preamble,
8117         ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119         ipw2100_wx_set_crc_check,
8120         ipw2100_wx_get_crc_check,
8121 #else                           /* CONFIG_IPW2100_MONITOR */
8122         NULL,
8123         NULL,
8124 #endif                          /* CONFIG_IPW2100_MONITOR */
8125 };
8126
8127 /*
8128  * Get wireless statistics.
8129  * Called by /proc/net/wireless
8130  * Also called by SIOCGIWSTATS
8131  */
8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8133 {
8134         enum {
8135                 POOR = 30,
8136                 FAIR = 60,
8137                 GOOD = 80,
8138                 VERY_GOOD = 90,
8139                 EXCELLENT = 95,
8140                 PERFECT = 100
8141         };
8142         int rssi_qual;
8143         int tx_qual;
8144         int beacon_qual;
8145         int quality;
8146
8147         struct ipw2100_priv *priv = libipw_priv(dev);
8148         struct iw_statistics *wstats;
8149         u32 rssi, tx_retries, missed_beacons, tx_failures;
8150         u32 ord_len = sizeof(u32);
8151
8152         if (!priv)
8153                 return (struct iw_statistics *)NULL;
8154
8155         wstats = &priv->wstats;
8156
8157         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8158          * ipw2100_wx_wireless_stats seems to be called before fw is
8159          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8160          * and associated; if not associcated, the values are all meaningless
8161          * anyway, so set them all to NULL and INVALID */
8162         if (!(priv->status & STATUS_ASSOCIATED)) {
8163                 wstats->miss.beacon = 0;
8164                 wstats->discard.retries = 0;
8165                 wstats->qual.qual = 0;
8166                 wstats->qual.level = 0;
8167                 wstats->qual.noise = 0;
8168                 wstats->qual.updated = 7;
8169                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8170                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8171                 return wstats;
8172         }
8173
8174         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8175                                 &missed_beacons, &ord_len))
8176                 goto fail_get_ordinal;
8177
8178         /* If we don't have a connection the quality and level is 0 */
8179         if (!(priv->status & STATUS_ASSOCIATED)) {
8180                 wstats->qual.qual = 0;
8181                 wstats->qual.level = 0;
8182         } else {
8183                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8184                                         &rssi, &ord_len))
8185                         goto fail_get_ordinal;
8186                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8187                 if (rssi < 10)
8188                         rssi_qual = rssi * POOR / 10;
8189                 else if (rssi < 15)
8190                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8191                 else if (rssi < 20)
8192                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8193                 else if (rssi < 30)
8194                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8195                             10 + GOOD;
8196                 else
8197                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8198                             10 + VERY_GOOD;
8199
8200                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8201                                         &tx_retries, &ord_len))
8202                         goto fail_get_ordinal;
8203
8204                 if (tx_retries > 75)
8205                         tx_qual = (90 - tx_retries) * POOR / 15;
8206                 else if (tx_retries > 70)
8207                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8208                 else if (tx_retries > 65)
8209                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8210                 else if (tx_retries > 50)
8211                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8212                             15 + GOOD;
8213                 else
8214                         tx_qual = (50 - tx_retries) *
8215                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8216
8217                 if (missed_beacons > 50)
8218                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8219                 else if (missed_beacons > 40)
8220                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8221                             10 + POOR;
8222                 else if (missed_beacons > 32)
8223                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8224                             18 + FAIR;
8225                 else if (missed_beacons > 20)
8226                         beacon_qual = (32 - missed_beacons) *
8227                             (VERY_GOOD - GOOD) / 20 + GOOD;
8228                 else
8229                         beacon_qual = (20 - missed_beacons) *
8230                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8231
8232                 quality = min(tx_qual, rssi_qual);
8233                 quality = min(beacon_qual, quality);
8234
8235 #ifdef CONFIG_IPW2100_DEBUG
8236                 if (beacon_qual == quality)
8237                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8238                 else if (tx_qual == quality)
8239                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8240                 else if (quality != 100)
8241                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8242                 else
8243                         IPW_DEBUG_WX("Quality not clamped.\n");
8244 #endif
8245
8246                 wstats->qual.qual = quality;
8247                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8248         }
8249
8250         wstats->qual.noise = 0;
8251         wstats->qual.updated = 7;
8252         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8253
8254         /* FIXME: this is percent and not a # */
8255         wstats->miss.beacon = missed_beacons;
8256
8257         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8258                                 &tx_failures, &ord_len))
8259                 goto fail_get_ordinal;
8260         wstats->discard.retries = tx_failures;
8261
8262         return wstats;
8263
8264       fail_get_ordinal:
8265         IPW_DEBUG_WX("failed querying ordinals.\n");
8266
8267         return (struct iw_statistics *)NULL;
8268 }
8269
8270 static const struct iw_handler_def ipw2100_wx_handler_def = {
8271         .standard = ipw2100_wx_handlers,
8272         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8273         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8274         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8275         .private = (iw_handler *) ipw2100_private_handler,
8276         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8277         .get_wireless_stats = ipw2100_wx_wireless_stats,
8278 };
8279
8280 static void ipw2100_wx_event_work(struct work_struct *work)
8281 {
8282         struct ipw2100_priv *priv =
8283                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8284         union iwreq_data wrqu;
8285         unsigned int len = ETH_ALEN;
8286
8287         if (priv->status & STATUS_STOPPING)
8288                 return;
8289
8290         mutex_lock(&priv->action_mutex);
8291
8292         IPW_DEBUG_WX("enter\n");
8293
8294         mutex_unlock(&priv->action_mutex);
8295
8296         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8297
8298         /* Fetch BSSID from the hardware */
8299         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8300             priv->status & STATUS_RF_KILL_MASK ||
8301             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8302                                 &priv->bssid, &len)) {
8303                 eth_zero_addr(wrqu.ap_addr.sa_data);
8304         } else {
8305                 /* We now have the BSSID, so can finish setting to the full
8306                  * associated state */
8307                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8308                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8309                 priv->status &= ~STATUS_ASSOCIATING;
8310                 priv->status |= STATUS_ASSOCIATED;
8311                 netif_carrier_on(priv->net_dev);
8312                 netif_wake_queue(priv->net_dev);
8313         }
8314
8315         if (!(priv->status & STATUS_ASSOCIATED)) {
8316                 IPW_DEBUG_WX("Configuring ESSID\n");
8317                 mutex_lock(&priv->action_mutex);
8318                 /* This is a disassociation event, so kick the firmware to
8319                  * look for another AP */
8320                 if (priv->config & CFG_STATIC_ESSID)
8321                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8322                                           0);
8323                 else
8324                         ipw2100_set_essid(priv, NULL, 0, 0);
8325                 mutex_unlock(&priv->action_mutex);
8326         }
8327
8328         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8329 }
8330
8331 /*(DEBLOBBED)*/
8332
8333 #define IPW2100_FW_PREFIX "/*(DEBLOBBED)*/" /*(DEBLOBBED)*/
8334
8335 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX /*(DEBLOBBED)*/
8336
8337 /*
8338
8339 BINARY FIRMWARE HEADER FORMAT
8340
8341 offset      length   desc
8342 0           2        version
8343 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8344 4           4        fw_len
8345 8           4        uc_len
8346 C           fw_len   firmware data
8347 12 + fw_len uc_len   microcode data
8348
8349 */
8350
8351 struct ipw2100_fw_header {
8352         short version;
8353         short mode;
8354         unsigned int fw_size;
8355         unsigned int uc_size;
8356 } __packed;
8357
8358 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8359 {
8360         struct ipw2100_fw_header *h =
8361             (struct ipw2100_fw_header *)fw->fw_entry->data;
8362
8363         /*(DEBLOBBED)*/
8364
8365         fw->version = h->version;
8366         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8367         fw->fw.size = h->fw_size;
8368         fw->uc.data = fw->fw.data + h->fw_size;
8369         fw->uc.size = h->uc_size;
8370
8371         return 0;
8372 }
8373
8374 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8375                                 struct ipw2100_fw *fw)
8376 {
8377         char *fw_name;
8378         int rc;
8379
8380         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8381                        priv->net_dev->name);
8382
8383         switch (priv->ieee->iw_mode) {
8384         case IW_MODE_ADHOC:
8385                 fw_name = IPW2100_FW_NAME("-i");
8386                 break;
8387 #ifdef CONFIG_IPW2100_MONITOR
8388         case IW_MODE_MONITOR:
8389                 fw_name = IPW2100_FW_NAME("-p");
8390                 break;
8391 #endif
8392         case IW_MODE_INFRA:
8393         default:
8394                 fw_name = IPW2100_FW_NAME("");
8395                 break;
8396         }
8397
8398         rc = reject_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8399
8400         if (rc < 0) {
8401                 printk(KERN_ERR DRV_NAME ": "
8402                        "%s: Firmware '%s' not available or load failed.\n",
8403                        priv->net_dev->name, fw_name);
8404                 return rc;
8405         }
8406         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8407                        fw->fw_entry->size);
8408
8409         ipw2100_mod_firmware_load(fw);
8410
8411         return 0;
8412 }
8413
8414 /*(DEBLOBBED)*/
8415 #ifdef CONFIG_IPW2100_MONITOR
8416 /*(DEBLOBBED)*/
8417 #endif
8418 /*(DEBLOBBED)*/
8419
8420 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8421                                      struct ipw2100_fw *fw)
8422 {
8423         fw->version = 0;
8424         release_firmware(fw->fw_entry);
8425         fw->fw_entry = NULL;
8426 }
8427
8428 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8429                                  size_t max)
8430 {
8431         char ver[MAX_FW_VERSION_LEN];
8432         u32 len = MAX_FW_VERSION_LEN;
8433         u32 tmp;
8434         int i;
8435         /* firmware version is an ascii string (max len of 14) */
8436         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8437                 return -EIO;
8438         tmp = max;
8439         if (len >= max)
8440                 len = max - 1;
8441         for (i = 0; i < len; i++)
8442                 buf[i] = ver[i];
8443         buf[i] = '\0';
8444         return tmp;
8445 }
8446
8447 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8448                                     size_t max)
8449 {
8450         u32 ver;
8451         u32 len = sizeof(ver);
8452         /* microcode version is a 32 bit integer */
8453         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8454                 return -EIO;
8455         return snprintf(buf, max, "%08X", ver);
8456 }
8457
8458 /*
8459  * On exit, the firmware will have been freed from the fw list
8460  */
8461 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8462 {
8463         /* firmware is constructed of N contiguous entries, each entry is
8464          * structured as:
8465          *
8466          * offset    sie         desc
8467          * 0         4           address to write to
8468          * 4         2           length of data run
8469          * 6         length      data
8470          */
8471         unsigned int addr;
8472         unsigned short len;
8473
8474         const unsigned char *firmware_data = fw->fw.data;
8475         unsigned int firmware_data_left = fw->fw.size;
8476
8477         while (firmware_data_left > 0) {
8478                 addr = *(u32 *) (firmware_data);
8479                 firmware_data += 4;
8480                 firmware_data_left -= 4;
8481
8482                 len = *(u16 *) (firmware_data);
8483                 firmware_data += 2;
8484                 firmware_data_left -= 2;
8485
8486                 if (len > 32) {
8487                         printk(KERN_ERR DRV_NAME ": "
8488                                "Invalid firmware run-length of %d bytes\n",
8489                                len);
8490                         return -EINVAL;
8491                 }
8492
8493                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8494                 firmware_data += len;
8495                 firmware_data_left -= len;
8496         }
8497
8498         return 0;
8499 }
8500
8501 struct symbol_alive_response {
8502         u8 cmd_id;
8503         u8 seq_num;
8504         u8 ucode_rev;
8505         u8 eeprom_valid;
8506         u16 valid_flags;
8507         u8 IEEE_addr[6];
8508         u16 flags;
8509         u16 pcb_rev;
8510         u16 clock_settle_time;  // 1us LSB
8511         u16 powerup_settle_time;        // 1us LSB
8512         u16 hop_settle_time;    // 1us LSB
8513         u8 date[3];             // month, day, year
8514         u8 time[2];             // hours, minutes
8515         u8 ucode_valid;
8516 };
8517
8518 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8519                                   struct ipw2100_fw *fw)
8520 {
8521         struct net_device *dev = priv->net_dev;
8522         const unsigned char *microcode_data = fw->uc.data;
8523         unsigned int microcode_data_left = fw->uc.size;
8524         void __iomem *reg = priv->ioaddr;
8525
8526         struct symbol_alive_response response;
8527         int i, j;
8528         u8 data;
8529
8530         /* Symbol control */
8531         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8532         readl(reg);
8533         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8534         readl(reg);
8535
8536         /* HW config */
8537         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8538         readl(reg);
8539         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8540         readl(reg);
8541
8542         /* EN_CS_ACCESS bit to reset control store pointer */
8543         write_nic_byte(dev, 0x210000, 0x40);
8544         readl(reg);
8545         write_nic_byte(dev, 0x210000, 0x0);
8546         readl(reg);
8547         write_nic_byte(dev, 0x210000, 0x40);
8548         readl(reg);
8549
8550         /* copy microcode from buffer into Symbol */
8551
8552         while (microcode_data_left > 0) {
8553                 write_nic_byte(dev, 0x210010, *microcode_data++);
8554                 write_nic_byte(dev, 0x210010, *microcode_data++);
8555                 microcode_data_left -= 2;
8556         }
8557
8558         /* EN_CS_ACCESS bit to reset the control store pointer */
8559         write_nic_byte(dev, 0x210000, 0x0);
8560         readl(reg);
8561
8562         /* Enable System (Reg 0)
8563          * first enable causes garbage in RX FIFO */
8564         write_nic_byte(dev, 0x210000, 0x0);
8565         readl(reg);
8566         write_nic_byte(dev, 0x210000, 0x80);
8567         readl(reg);
8568
8569         /* Reset External Baseband Reg */
8570         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8571         readl(reg);
8572         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8573         readl(reg);
8574
8575         /* HW Config (Reg 5) */
8576         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8577         readl(reg);
8578         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8579         readl(reg);
8580
8581         /* Enable System (Reg 0)
8582          * second enable should be OK */
8583         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8584         readl(reg);
8585         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8586
8587         /* check Symbol is enabled - upped this from 5 as it wasn't always
8588          * catching the update */
8589         for (i = 0; i < 10; i++) {
8590                 udelay(10);
8591
8592                 /* check Dino is enabled bit */
8593                 read_nic_byte(dev, 0x210000, &data);
8594                 if (data & 0x1)
8595                         break;
8596         }
8597
8598         if (i == 10) {
8599                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8600                        dev->name);
8601                 return -EIO;
8602         }
8603
8604         /* Get Symbol alive response */
8605         for (i = 0; i < 30; i++) {
8606                 /* Read alive response structure */
8607                 for (j = 0;
8608                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8609                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8610
8611                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8612                         break;
8613                 udelay(10);
8614         }
8615
8616         if (i == 30) {
8617                 printk(KERN_ERR DRV_NAME
8618                        ": %s: No response from Symbol - hw not alive\n",
8619                        dev->name);
8620                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8621                 return -EIO;
8622         }
8623
8624         return 0;
8625 }