GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         time64_t now = ktime_get_boottime_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = now;
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and initialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w initialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int err = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 err = ipw2100_power_cycle_adapter(priv);
1761                 if (err) {
1762                         printk(KERN_WARNING DRV_NAME
1763                                ": %s: Could not cycle adapter.\n",
1764                                priv->net_dev->name);
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         err = ipw2100_start_adapter(priv);
1772         if (err) {
1773                 printk(KERN_ERR DRV_NAME
1774                        ": %s: Failed to start the firmware.\n",
1775                        priv->net_dev->name);
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         err = ipw2100_get_hw_features(priv);
1783         if (err) {
1784                 printk(KERN_ERR DRV_NAME
1785                        ": %s: Failed to determine HW features.\n",
1786                        priv->net_dev->name);
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796         if (err) {
1797                 printk(KERN_ERR DRV_NAME
1798                        ": %s: Failed to clear ordinal lock.\n",
1799                        priv->net_dev->name);
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         err = ipw2100_adapter_setup(priv);
1824         if (err) {
1825                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826                        priv->net_dev->name);
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 err = ipw2100_enable_adapter(priv);
1833                 if (err) {
1834                         printk(KERN_ERR DRV_NAME ": "
1835                                "%s: failed in call to enable adapter.\n",
1836                                priv->net_dev->name);
1837                         ipw2100_hw_stop_adapter(priv);
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return err;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = NL80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = ktime_get_boottime_seconds();
2083
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149
2150         eth_zero_addr(priv->bssid);
2151         eth_zero_addr(priv->ieee->bssid);
2152
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = dma_map_single(&priv->pci_dev->dev,
2312                                           packet->skb->data,
2313                                           sizeof(struct ipw2100_rx),
2314                                           DMA_FROM_DEVICE);
2315         if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) {
2316                 dev_kfree_skb(packet->skb);
2317                 return -ENOMEM;
2318         }
2319
2320         return 0;
2321 }
2322
2323 #define SEARCH_ERROR   0xffffffff
2324 #define SEARCH_FAIL    0xfffffffe
2325 #define SEARCH_SUCCESS 0xfffffff0
2326 #define SEARCH_DISCARD 0
2327 #define SEARCH_SNAPSHOT 1
2328
2329 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2330 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2331 {
2332         int i;
2333         if (!priv->snapshot[0])
2334                 return;
2335         for (i = 0; i < 0x30; i++)
2336                 kfree(priv->snapshot[i]);
2337         priv->snapshot[0] = NULL;
2338 }
2339
2340 #ifdef IPW2100_DEBUG_C3
2341 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2342 {
2343         int i;
2344         if (priv->snapshot[0])
2345                 return 1;
2346         for (i = 0; i < 0x30; i++) {
2347                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2348                 if (!priv->snapshot[i]) {
2349                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2350                                        "buffer %d\n", priv->net_dev->name, i);
2351                         while (i > 0)
2352                                 kfree(priv->snapshot[--i]);
2353                         priv->snapshot[0] = NULL;
2354                         return 0;
2355                 }
2356         }
2357
2358         return 1;
2359 }
2360
2361 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2362                                     size_t len, int mode)
2363 {
2364         u32 i, j;
2365         u32 tmp;
2366         u8 *s, *d;
2367         u32 ret;
2368
2369         s = in_buf;
2370         if (mode == SEARCH_SNAPSHOT) {
2371                 if (!ipw2100_snapshot_alloc(priv))
2372                         mode = SEARCH_DISCARD;
2373         }
2374
2375         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2376                 read_nic_dword(priv->net_dev, i, &tmp);
2377                 if (mode == SEARCH_SNAPSHOT)
2378                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2379                 if (ret == SEARCH_FAIL) {
2380                         d = (u8 *) & tmp;
2381                         for (j = 0; j < 4; j++) {
2382                                 if (*s != *d) {
2383                                         s = in_buf;
2384                                         continue;
2385                                 }
2386
2387                                 s++;
2388                                 d++;
2389
2390                                 if ((s - in_buf) == len)
2391                                         ret = (i + j) - len + 1;
2392                         }
2393                 } else if (mode == SEARCH_DISCARD)
2394                         return ret;
2395         }
2396
2397         return ret;
2398 }
2399 #endif
2400
2401 /*
2402  *
2403  * 0) Disconnect the SKB from the firmware (just unmap)
2404  * 1) Pack the ETH header into the SKB
2405  * 2) Pass the SKB to the network stack
2406  *
2407  * When packet is provided by the firmware, it contains the following:
2408  *
2409  * .  libipw_hdr
2410  * .  libipw_snap_hdr
2411  *
2412  * The size of the constructed ethernet
2413  *
2414  */
2415 #ifdef IPW2100_RX_DEBUG
2416 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2417 #endif
2418
2419 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2420 {
2421 #ifdef IPW2100_DEBUG_C3
2422         struct ipw2100_status *status = &priv->status_queue.drv[i];
2423         u32 match, reg;
2424         int j;
2425 #endif
2426
2427         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2428                        i * sizeof(struct ipw2100_status));
2429
2430 #ifdef IPW2100_DEBUG_C3
2431         /* Halt the firmware so we can get a good image */
2432         write_register(priv->net_dev, IPW_REG_RESET_REG,
2433                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2434         j = 5;
2435         do {
2436                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2437                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2438
2439                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2440                         break;
2441         } while (j--);
2442
2443         match = ipw2100_match_buf(priv, (u8 *) status,
2444                                   sizeof(struct ipw2100_status),
2445                                   SEARCH_SNAPSHOT);
2446         if (match < SEARCH_SUCCESS)
2447                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2448                                "offset 0x%06X, length %d:\n",
2449                                priv->net_dev->name, match,
2450                                sizeof(struct ipw2100_status));
2451         else
2452                 IPW_DEBUG_INFO("%s: No DMA status match in "
2453                                "Firmware.\n", priv->net_dev->name);
2454
2455         printk_buf((u8 *) priv->status_queue.drv,
2456                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2457 #endif
2458
2459         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2460         priv->net_dev->stats.rx_errors++;
2461         schedule_reset(priv);
2462 }
2463
2464 static void isr_rx(struct ipw2100_priv *priv, int i,
2465                           struct libipw_rx_stats *stats)
2466 {
2467         struct net_device *dev = priv->net_dev;
2468         struct ipw2100_status *status = &priv->status_queue.drv[i];
2469         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2470
2471         IPW_DEBUG_RX("Handler...\n");
2472
2473         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2474                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2475                                "  Dropping.\n",
2476                                dev->name,
2477                                status->frame_size, skb_tailroom(packet->skb));
2478                 dev->stats.rx_errors++;
2479                 return;
2480         }
2481
2482         if (unlikely(!netif_running(dev))) {
2483                 dev->stats.rx_errors++;
2484                 priv->wstats.discard.misc++;
2485                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2486                 return;
2487         }
2488
2489         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2490                      !(priv->status & STATUS_ASSOCIATED))) {
2491                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2492                 priv->wstats.discard.misc++;
2493                 return;
2494         }
2495
2496         dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2497                          sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2498
2499         skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502         /* Make a copy of the frame so we can dump it to the logs if
2503          * libipw_rx fails */
2504         skb_copy_from_linear_data(packet->skb, packet_data,
2505                                   min_t(u32, status->frame_size,
2506                                              IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512                                dev->name);
2513                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515                 dev->stats.rx_errors++;
2516
2517                 /* libipw_rx failed, so it didn't free the SKB */
2518                 dev_kfree_skb_any(packet->skb);
2519                 packet->skb = NULL;
2520         }
2521
2522         /* We need to allocate a new SKB and attach it to the RDB. */
2523         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524                 printk(KERN_WARNING DRV_NAME ": "
2525                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2526                        "adapter.\n", dev->name);
2527                 /* TODO: schedule adapter shutdown */
2528                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529         }
2530
2531         /* Update the RDB entry */
2532         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538                    struct libipw_rx_stats *stats)
2539 {
2540         struct net_device *dev = priv->net_dev;
2541         struct ipw2100_status *status = &priv->status_queue.drv[i];
2542         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544         /* Magic struct that slots into the radiotap header -- no reason
2545          * to build this manually element by element, we can write it much
2546          * more efficiently than we can parse it. ORDER MATTERS HERE */
2547         struct ipw_rt_hdr {
2548                 struct ieee80211_radiotap_header rt_hdr;
2549                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550         } *ipw_rt;
2551
2552         IPW_DEBUG_RX("Handler...\n");
2553
2554         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555                                 sizeof(struct ipw_rt_hdr))) {
2556                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557                                "  Dropping.\n",
2558                                dev->name,
2559                                status->frame_size,
2560                                skb_tailroom(packet->skb));
2561                 dev->stats.rx_errors++;
2562                 return;
2563         }
2564
2565         if (unlikely(!netif_running(dev))) {
2566                 dev->stats.rx_errors++;
2567                 priv->wstats.discard.misc++;
2568                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569                 return;
2570         }
2571
2572         if (unlikely(priv->config & CFG_CRC_CHECK &&
2573                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575                 dev->stats.rx_errors++;
2576                 return;
2577         }
2578
2579         dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2580                          sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2581         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582                 packet->skb->data, status->frame_size);
2583
2584         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597                 dev->stats.rx_errors++;
2598
2599                 /* libipw_rx failed, so it didn't free the SKB */
2600                 dev_kfree_skb_any(packet->skb);
2601                 packet->skb = NULL;
2602         }
2603
2604         /* We need to allocate a new SKB and attach it to the RDB. */
2605         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606                 IPW_DEBUG_WARNING(
2607                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2608                         "adapter.\n", dev->name);
2609                 /* TODO: schedule adapter shutdown */
2610                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611         }
2612
2613         /* Update the RDB entry */
2614         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621         struct ipw2100_status *status = &priv->status_queue.drv[i];
2622         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625         switch (frame_type) {
2626         case COMMAND_STATUS_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.command));
2628         case STATUS_CHANGE_VAL:
2629                 return (status->frame_size != sizeof(u->rx_data.status));
2630         case HOST_NOTIFICATION_VAL:
2631                 return (status->frame_size < sizeof(u->rx_data.notification));
2632         case P80211_DATA_VAL:
2633         case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635                 return 0;
2636 #else
2637                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638                 case IEEE80211_FTYPE_MGMT:
2639                 case IEEE80211_FTYPE_CTL:
2640                         return 0;
2641                 case IEEE80211_FTYPE_DATA:
2642                         return (status->frame_size >
2643                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644                 }
2645 #endif
2646         }
2647
2648         return 1;
2649 }
2650
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678         struct ipw2100_status_queue *sq = &priv->status_queue;
2679         struct ipw2100_rx_packet *packet;
2680         u16 frame_type;
2681         u32 r, w, i, s;
2682         struct ipw2100_rx *u;
2683         struct libipw_rx_stats stats = {
2684                 .mac_time = jiffies,
2685         };
2686
2687         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690         if (r >= rxq->entries) {
2691                 IPW_DEBUG_RX("exit - bad read index\n");
2692                 return;
2693         }
2694
2695         i = (rxq->next + 1) % rxq->entries;
2696         s = i;
2697         while (i != r) {
2698                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699                    r, rxq->next, i); */
2700
2701                 packet = &priv->rx_buffers[i];
2702
2703                 /* Sync the DMA for the RX buffer so CPU is sure to get
2704                  * the correct values */
2705                 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr,
2706                                         sizeof(struct ipw2100_rx),
2707                                         DMA_FROM_DEVICE);
2708
2709                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710                         ipw2100_corruption_detected(priv, i);
2711                         goto increment;
2712                 }
2713
2714                 u = packet->rxp;
2715                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717                 stats.len = sq->drv[i].frame_size;
2718
2719                 stats.mask = 0;
2720                 if (stats.rssi != 0)
2721                         stats.mask |= LIBIPW_STATMASK_RSSI;
2722                 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725                              priv->net_dev->name, frame_types[frame_type],
2726                              stats.len);
2727
2728                 switch (frame_type) {
2729                 case COMMAND_STATUS_VAL:
2730                         /* Reset Rx watchdog */
2731                         isr_rx_complete_command(priv, &u->rx_data.command);
2732                         break;
2733
2734                 case STATUS_CHANGE_VAL:
2735                         isr_status_change(priv, u->rx_data.status);
2736                         break;
2737
2738                 case P80211_DATA_VAL:
2739                 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742                                 isr_rx_monitor(priv, i, &stats);
2743                                 break;
2744                         }
2745 #endif
2746                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2747                                 break;
2748                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749                         case IEEE80211_FTYPE_MGMT:
2750                                 libipw_rx_mgt(priv->ieee,
2751                                                  &u->rx_data.header, &stats);
2752                                 break;
2753
2754                         case IEEE80211_FTYPE_CTL:
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_DATA:
2758                                 isr_rx(priv, i, &stats);
2759                                 break;
2760
2761                         }
2762                         break;
2763                 }
2764
2765               increment:
2766                 /* clear status field associated with this RBD */
2767                 rxq->drv[i].status.info.field = 0;
2768
2769                 i = (i + 1) % rxq->entries;
2770         }
2771
2772         if (i != s) {
2773                 /* backtrack one entry, wrapping to end if at 0 */
2774                 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776                 write_register(priv->net_dev,
2777                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778         }
2779 }
2780
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823         struct ipw2100_bd *tbd;
2824         struct list_head *element;
2825         struct ipw2100_tx_packet *packet;
2826         int descriptors_used;
2827         int e, i;
2828         u32 r, w, frag_num = 0;
2829
2830         if (list_empty(&priv->fw_pend_list))
2831                 return 0;
2832
2833         element = priv->fw_pend_list.next;
2834
2835         packet = list_entry(element, struct ipw2100_tx_packet, list);
2836         tbd = &txq->drv[packet->index];
2837
2838         /* Determine how many TBD entries must be finished... */
2839         switch (packet->type) {
2840         case COMMAND:
2841                 /* COMMAND uses only one slot; don't advance */
2842                 descriptors_used = 1;
2843                 e = txq->oldest;
2844                 break;
2845
2846         case DATA:
2847                 /* DATA uses two slots; advance and loop position. */
2848                 descriptors_used = tbd->num_fragments;
2849                 frag_num = tbd->num_fragments - 1;
2850                 e = txq->oldest + frag_num;
2851                 e %= txq->entries;
2852                 break;
2853
2854         default:
2855                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856                        priv->net_dev->name);
2857                 return 0;
2858         }
2859
2860         /* if the last TBD is not done by NIC yet, then packet is
2861          * not ready to be released.
2862          *
2863          */
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865                       &r);
2866         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867                       &w);
2868         if (w != txq->next)
2869                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870                        priv->net_dev->name);
2871
2872         /*
2873          * txq->next is the index of the last packet written txq->oldest is
2874          * the index of the r is the index of the next packet to be read by
2875          * firmware
2876          */
2877
2878         /*
2879          * Quick graphic to help you visualize the following
2880          * if / else statement
2881          *
2882          * ===>|                     s---->|===============
2883          *                               e>|
2884          * | a | b | c | d | e | f | g | h | i | j | k | l
2885          *       r---->|
2886          *               w
2887          *
2888          * w - updated by driver
2889          * r - updated by firmware
2890          * s - start of oldest BD entry (txq->oldest)
2891          * e - end of oldest BD entry
2892          *
2893          */
2894         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896                 return 0;
2897         }
2898
2899         list_del(element);
2900         DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903         {
2904                 i = txq->oldest;
2905                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906                              &txq->drv[i],
2907                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910                 if (packet->type == DATA) {
2911                         i = (i + 1) % txq->entries;
2912
2913                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914                                      &txq->drv[i],
2915                                      (u32) (txq->nic + i *
2916                                             sizeof(struct ipw2100_bd)),
2917                                      (u32) txq->drv[i].host_addr,
2918                                      txq->drv[i].buf_length);
2919                 }
2920         }
2921 #endif
2922
2923         switch (packet->type) {
2924         case DATA:
2925                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927                                "Expecting DATA TBD but pulled "
2928                                "something else: ids %d=%d.\n",
2929                                priv->net_dev->name, txq->oldest, packet->index);
2930
2931                 /* DATA packet; we have to unmap and free the SKB */
2932                 for (i = 0; i < frag_num; i++) {
2933                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936                                      (packet->index + 1 + i) % txq->entries,
2937                                      tbd->host_addr, tbd->buf_length);
2938
2939                         dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr,
2940                                          tbd->buf_length, DMA_TO_DEVICE);
2941                 }
2942
2943                 libipw_txb_free(packet->info.d_struct.txb);
2944                 packet->info.d_struct.txb = NULL;
2945
2946                 list_add_tail(element, &priv->tx_free_list);
2947                 INC_STAT(&priv->tx_free_stat);
2948
2949                 /* We have a free slot in the Tx queue, so wake up the
2950                  * transmit layer if it is stopped. */
2951                 if (priv->status & STATUS_ASSOCIATED)
2952                         netif_wake_queue(priv->net_dev);
2953
2954                 /* A packet was processed by the hardware, so update the
2955                  * watchdog */
2956                 netif_trans_update(priv->net_dev);
2957
2958                 break;
2959
2960         case COMMAND:
2961                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2962                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2963                                "Expecting COMMAND TBD but pulled "
2964                                "something else: ids %d=%d.\n",
2965                                priv->net_dev->name, txq->oldest, packet->index);
2966
2967 #ifdef CONFIG_IPW2100_DEBUG
2968                 if (packet->info.c_struct.cmd->host_command_reg <
2969                     ARRAY_SIZE(command_types))
2970                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2971                                      command_types[packet->info.c_struct.cmd->
2972                                                    host_command_reg],
2973                                      packet->info.c_struct.cmd->
2974                                      host_command_reg,
2975                                      packet->info.c_struct.cmd->cmd_status_reg);
2976 #endif
2977
2978                 list_add_tail(element, &priv->msg_free_list);
2979                 INC_STAT(&priv->msg_free_stat);
2980                 break;
2981         }
2982
2983         /* advance oldest used TBD pointer to start of next entry */
2984         txq->oldest = (e + 1) % txq->entries;
2985         /* increase available TBDs number */
2986         txq->available += descriptors_used;
2987         SET_STAT(&priv->txq_stat, txq->available);
2988
2989         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2990                      jiffies - packet->jiffy_start);
2991
2992         return (!list_empty(&priv->fw_pend_list));
2993 }
2994
2995 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2996 {
2997         int i = 0;
2998
2999         while (__ipw2100_tx_process(priv) && i < 200)
3000                 i++;
3001
3002         if (i == 200) {
3003                 printk(KERN_WARNING DRV_NAME ": "
3004                        "%s: Driver is running slow (%d iters).\n",
3005                        priv->net_dev->name, i);
3006         }
3007 }
3008
3009 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3010 {
3011         struct list_head *element;
3012         struct ipw2100_tx_packet *packet;
3013         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3014         struct ipw2100_bd *tbd;
3015         int next = txq->next;
3016
3017         while (!list_empty(&priv->msg_pend_list)) {
3018                 /* if there isn't enough space in TBD queue, then
3019                  * don't stuff a new one in.
3020                  * NOTE: 3 are needed as a command will take one,
3021                  *       and there is a minimum of 2 that must be
3022                  *       maintained between the r and w indexes
3023                  */
3024                 if (txq->available <= 3) {
3025                         IPW_DEBUG_TX("no room in tx_queue\n");
3026                         break;
3027                 }
3028
3029                 element = priv->msg_pend_list.next;
3030                 list_del(element);
3031                 DEC_STAT(&priv->msg_pend_stat);
3032
3033                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3034
3035                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3036                              &txq->drv[txq->next],
3037                              (u32) (txq->nic + txq->next *
3038                                       sizeof(struct ipw2100_bd)));
3039
3040                 packet->index = txq->next;
3041
3042                 tbd = &txq->drv[txq->next];
3043
3044                 /* initialize TBD */
3045                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3046                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3047                 /* not marking number of fragments causes problems
3048                  * with f/w debug version */
3049                 tbd->num_fragments = 1;
3050                 tbd->status.info.field =
3051                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3052                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3053
3054                 /* update TBD queue counters */
3055                 txq->next++;
3056                 txq->next %= txq->entries;
3057                 txq->available--;
3058                 DEC_STAT(&priv->txq_stat);
3059
3060                 list_add_tail(element, &priv->fw_pend_list);
3061                 INC_STAT(&priv->fw_pend_stat);
3062         }
3063
3064         if (txq->next != next) {
3065                 /* kick off the DMA by notifying firmware the
3066                  * write index has moved; make sure TBD stores are sync'd */
3067                 wmb();
3068                 write_register(priv->net_dev,
3069                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3070                                txq->next);
3071         }
3072 }
3073
3074 /*
3075  * ipw2100_tx_send_data
3076  *
3077  */
3078 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3079 {
3080         struct list_head *element;
3081         struct ipw2100_tx_packet *packet;
3082         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3083         struct ipw2100_bd *tbd;
3084         int next = txq->next;
3085         int i = 0;
3086         struct ipw2100_data_header *ipw_hdr;
3087         struct libipw_hdr_3addr *hdr;
3088
3089         while (!list_empty(&priv->tx_pend_list)) {
3090                 /* if there isn't enough space in TBD queue, then
3091                  * don't stuff a new one in.
3092                  * NOTE: 4 are needed as a data will take two,
3093                  *       and there is a minimum of 2 that must be
3094                  *       maintained between the r and w indexes
3095                  */
3096                 element = priv->tx_pend_list.next;
3097                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3098
3099                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3100                              IPW_MAX_BDS)) {
3101                         /* TODO: Support merging buffers if more than
3102                          * IPW_MAX_BDS are used */
3103                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3104                                        "Increase fragmentation level.\n",
3105                                        priv->net_dev->name);
3106                 }
3107
3108                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3109                         IPW_DEBUG_TX("no room in tx_queue\n");
3110                         break;
3111                 }
3112
3113                 list_del(element);
3114                 DEC_STAT(&priv->tx_pend_stat);
3115
3116                 tbd = &txq->drv[txq->next];
3117
3118                 packet->index = txq->next;
3119
3120                 ipw_hdr = packet->info.d_struct.data;
3121                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3122                     fragments[0]->data;
3123
3124                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3125                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3126                            Addr3 = DA */
3127                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3128                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3129                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3130                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3131                            Addr3 = BSSID */
3132                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3133                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3134                 }
3135
3136                 ipw_hdr->host_command_reg = SEND;
3137                 ipw_hdr->host_command_reg1 = 0;
3138
3139                 /* For now we only support host based encryption */
3140                 ipw_hdr->needs_encryption = 0;
3141                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3142                 if (packet->info.d_struct.txb->nr_frags > 1)
3143                         ipw_hdr->fragment_size =
3144                             packet->info.d_struct.txb->frag_size -
3145                             LIBIPW_3ADDR_LEN;
3146                 else
3147                         ipw_hdr->fragment_size = 0;
3148
3149                 tbd->host_addr = packet->info.d_struct.data_phys;
3150                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3151                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3152                 tbd->status.info.field =
3153                     IPW_BD_STATUS_TX_FRAME_802_3 |
3154                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3155                 txq->next++;
3156                 txq->next %= txq->entries;
3157
3158                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3159                              packet->index, tbd->host_addr, tbd->buf_length);
3160 #ifdef CONFIG_IPW2100_DEBUG
3161                 if (packet->info.d_struct.txb->nr_frags > 1)
3162                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3163                                        packet->info.d_struct.txb->nr_frags);
3164 #endif
3165
3166                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3167                         tbd = &txq->drv[txq->next];
3168                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3169                                 tbd->status.info.field =
3170                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3171                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3172                         else
3173                                 tbd->status.info.field =
3174                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3176
3177                         tbd->buf_length = packet->info.d_struct.txb->
3178                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3179
3180                         tbd->host_addr = dma_map_single(&priv->pci_dev->dev,
3181                                                         packet->info.d_struct.
3182                                                         txb->fragments[i]->data +
3183                                                         LIBIPW_3ADDR_LEN,
3184                                                         tbd->buf_length,
3185                                                         DMA_TO_DEVICE);
3186                         if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) {
3187                                 IPW_DEBUG_TX("dma mapping error\n");
3188                                 break;
3189                         }
3190
3191                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3192                                      txq->next, tbd->host_addr,
3193                                      tbd->buf_length);
3194
3195                         dma_sync_single_for_device(&priv->pci_dev->dev,
3196                                                    tbd->host_addr,
3197                                                    tbd->buf_length,
3198                                                    DMA_TO_DEVICE);
3199
3200                         txq->next++;
3201                         txq->next %= txq->entries;
3202                 }
3203
3204                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3205                 SET_STAT(&priv->txq_stat, txq->available);
3206
3207                 list_add_tail(element, &priv->fw_pend_list);
3208                 INC_STAT(&priv->fw_pend_stat);
3209         }
3210
3211         if (txq->next != next) {
3212                 /* kick off the DMA by notifying firmware the
3213                  * write index has moved; make sure TBD stores are sync'd */
3214                 write_register(priv->net_dev,
3215                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3216                                txq->next);
3217         }
3218 }
3219
3220 static void ipw2100_irq_tasklet(unsigned long data)
3221 {
3222         struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3223         struct net_device *dev = priv->net_dev;
3224         unsigned long flags;
3225         u32 inta, tmp;
3226
3227         spin_lock_irqsave(&priv->low_lock, flags);
3228         ipw2100_disable_interrupts(priv);
3229
3230         read_register(dev, IPW_REG_INTA, &inta);
3231
3232         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235         priv->in_isr++;
3236         priv->interrupts++;
3237
3238         /* We do not loop and keep polling for more interrupts as this
3239          * is frowned upon and doesn't play nicely with other potentially
3240          * chained IRQs */
3241         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244         if (inta & IPW2100_INTA_FATAL_ERROR) {
3245                 printk(KERN_WARNING DRV_NAME
3246                        ": Fatal interrupt. Scheduling firmware restart.\n");
3247                 priv->inta_other++;
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252                                priv->net_dev->name, priv->fatal_error);
3253
3254                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256                                priv->net_dev->name, tmp);
3257
3258                 /* Wake up any sleeping jobs */
3259                 schedule_reset(priv);
3260         }
3261
3262         if (inta & IPW2100_INTA_PARITY_ERROR) {
3263                 printk(KERN_ERR DRV_NAME
3264                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265                 priv->inta_other++;
3266                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267         }
3268
3269         if (inta & IPW2100_INTA_RX_TRANSFER) {
3270                 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272                 priv->rx_interrupts++;
3273
3274                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276                 __ipw2100_rx_process(priv);
3277                 __ipw2100_tx_complete(priv);
3278         }
3279
3280         if (inta & IPW2100_INTA_TX_TRANSFER) {
3281                 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283                 priv->tx_interrupts++;
3284
3285                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287                 __ipw2100_tx_complete(priv);
3288                 ipw2100_tx_send_commands(priv);
3289                 ipw2100_tx_send_data(priv);
3290         }
3291
3292         if (inta & IPW2100_INTA_TX_COMPLETE) {
3293                 IPW_DEBUG_ISR("TX complete\n");
3294                 priv->inta_other++;
3295                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297                 __ipw2100_tx_complete(priv);
3298         }
3299
3300         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301                 /* ipw2100_handle_event(dev); */
3302                 priv->inta_other++;
3303                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304         }
3305
3306         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307                 IPW_DEBUG_ISR("FW init done interrupt\n");
3308                 priv->inta_other++;
3309
3310                 read_register(dev, IPW_REG_INTA, &tmp);
3311                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312                            IPW2100_INTA_PARITY_ERROR)) {
3313                         write_register(dev, IPW_REG_INTA,
3314                                        IPW2100_INTA_FATAL_ERROR |
3315                                        IPW2100_INTA_PARITY_ERROR);
3316                 }
3317
3318                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319         }
3320
3321         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322                 IPW_DEBUG_ISR("Status change interrupt\n");
3323                 priv->inta_other++;
3324                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325         }
3326
3327         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329                 priv->inta_other++;
3330                 write_register(dev, IPW_REG_INTA,
3331                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332         }
3333
3334         priv->in_isr--;
3335         ipw2100_enable_interrupts(priv);
3336
3337         spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339         IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344         struct ipw2100_priv *priv = data;
3345         u32 inta, inta_mask;
3346
3347         if (!data)
3348                 return IRQ_NONE;
3349
3350         spin_lock(&priv->low_lock);
3351
3352         /* We check to see if we should be ignoring interrupts before
3353          * we touch the hardware.  During ucode load if we try and handle
3354          * an interrupt we can cause keyboard problems as well as cause
3355          * the ucode to fail to initialize */
3356         if (!(priv->status & STATUS_INT_ENABLED)) {
3357                 /* Shared IRQ */
3358                 goto none;
3359         }
3360
3361         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364         if (inta == 0xFFFFFFFF) {
3365                 /* Hardware disappeared */
3366                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367                 goto none;
3368         }
3369
3370         inta &= IPW_INTERRUPT_MASK;
3371
3372         if (!(inta & inta_mask)) {
3373                 /* Shared interrupt */
3374                 goto none;
3375         }
3376
3377         /* We disable the hardware interrupt here just to prevent unneeded
3378          * calls to be made.  We disable this again within the actual
3379          * work tasklet, so if another part of the code re-enables the
3380          * interrupt, that is fine */
3381         ipw2100_disable_interrupts(priv);
3382
3383         tasklet_schedule(&priv->irq_tasklet);
3384         spin_unlock(&priv->low_lock);
3385
3386         return IRQ_HANDLED;
3387       none:
3388         spin_unlock(&priv->low_lock);
3389         return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393                               struct net_device *dev, int pri)
3394 {
3395         struct ipw2100_priv *priv = libipw_priv(dev);
3396         struct list_head *element;
3397         struct ipw2100_tx_packet *packet;
3398         unsigned long flags;
3399
3400         spin_lock_irqsave(&priv->low_lock, flags);
3401
3402         if (!(priv->status & STATUS_ASSOCIATED)) {
3403                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404                 priv->net_dev->stats.tx_carrier_errors++;
3405                 netif_stop_queue(dev);
3406                 goto fail_unlock;
3407         }
3408
3409         if (list_empty(&priv->tx_free_list))
3410                 goto fail_unlock;
3411
3412         element = priv->tx_free_list.next;
3413         packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415         packet->info.d_struct.txb = txb;
3416
3417         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420         packet->jiffy_start = jiffies;
3421
3422         list_del(element);
3423         DEC_STAT(&priv->tx_free_stat);
3424
3425         list_add_tail(element, &priv->tx_pend_list);
3426         INC_STAT(&priv->tx_pend_stat);
3427
3428         ipw2100_tx_send_data(priv);
3429
3430         spin_unlock_irqrestore(&priv->low_lock, flags);
3431         return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434         netif_stop_queue(dev);
3435         spin_unlock_irqrestore(&priv->low_lock, flags);
3436         return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441         int i, j, err = -EINVAL;
3442         void *v;
3443         dma_addr_t p;
3444
3445         priv->msg_buffers =
3446             kmalloc_array(IPW_COMMAND_POOL_SIZE,
3447                           sizeof(struct ipw2100_tx_packet),
3448                           GFP_KERNEL);
3449         if (!priv->msg_buffers)
3450                 return -ENOMEM;
3451
3452         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3453                 v = dma_alloc_coherent(&priv->pci_dev->dev,
3454                                        sizeof(struct ipw2100_cmd_header), &p,
3455                                        GFP_KERNEL);
3456                 if (!v) {
3457                         printk(KERN_ERR DRV_NAME ": "
3458                                "%s: PCI alloc failed for msg "
3459                                "buffers.\n", priv->net_dev->name);
3460                         err = -ENOMEM;
3461                         break;
3462                 }
3463
3464                 priv->msg_buffers[i].type = COMMAND;
3465                 priv->msg_buffers[i].info.c_struct.cmd =
3466                     (struct ipw2100_cmd_header *)v;
3467                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3468         }
3469
3470         if (i == IPW_COMMAND_POOL_SIZE)
3471                 return 0;
3472
3473         for (j = 0; j < i; j++) {
3474                 dma_free_coherent(&priv->pci_dev->dev,
3475                                   sizeof(struct ipw2100_cmd_header),
3476                                   priv->msg_buffers[j].info.c_struct.cmd,
3477                                   priv->msg_buffers[j].info.c_struct.cmd_phys);
3478         }
3479
3480         kfree(priv->msg_buffers);
3481         priv->msg_buffers = NULL;
3482
3483         return err;
3484 }
3485
3486 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3487 {
3488         int i;
3489
3490         INIT_LIST_HEAD(&priv->msg_free_list);
3491         INIT_LIST_HEAD(&priv->msg_pend_list);
3492
3493         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3494                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3495         SET_STAT(&priv->msg_free_stat, i);
3496
3497         return 0;
3498 }
3499
3500 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3501 {
3502         int i;
3503
3504         if (!priv->msg_buffers)
3505                 return;
3506
3507         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3508                 dma_free_coherent(&priv->pci_dev->dev,
3509                                   sizeof(struct ipw2100_cmd_header),
3510                                   priv->msg_buffers[i].info.c_struct.cmd,
3511                                   priv->msg_buffers[i].info.c_struct.cmd_phys);
3512         }
3513
3514         kfree(priv->msg_buffers);
3515         priv->msg_buffers = NULL;
3516 }
3517
3518 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3519                         char *buf)
3520 {
3521         struct pci_dev *pci_dev = to_pci_dev(d);
3522         char *out = buf;
3523         int i, j;
3524         u32 val;
3525
3526         for (i = 0; i < 16; i++) {
3527                 out += sprintf(out, "[%08X] ", i * 16);
3528                 for (j = 0; j < 16; j += 4) {
3529                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3530                         out += sprintf(out, "%08X ", val);
3531                 }
3532                 out += sprintf(out, "\n");
3533         }
3534
3535         return out - buf;
3536 }
3537
3538 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3539
3540 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3541                         char *buf)
3542 {
3543         struct ipw2100_priv *p = dev_get_drvdata(d);
3544         return sprintf(buf, "0x%08x\n", (int)p->config);
3545 }
3546
3547 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3548
3549 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3550                            char *buf)
3551 {
3552         struct ipw2100_priv *p = dev_get_drvdata(d);
3553         return sprintf(buf, "0x%08x\n", (int)p->status);
3554 }
3555
3556 static DEVICE_ATTR(status, 0444, show_status, NULL);
3557
3558 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3559                                char *buf)
3560 {
3561         struct ipw2100_priv *p = dev_get_drvdata(d);
3562         return sprintf(buf, "0x%08x\n", (int)p->capability);
3563 }
3564
3565 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3566
3567 #define IPW2100_REG(x) { IPW_ ##x, #x }
3568 static const struct {
3569         u32 addr;
3570         const char *name;
3571 } hw_data[] = {
3572 IPW2100_REG(REG_GP_CNTRL),
3573             IPW2100_REG(REG_GPIO),
3574             IPW2100_REG(REG_INTA),
3575             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3576 #define IPW2100_NIC(x, s) { x, #x, s }
3577 static const struct {
3578         u32 addr;
3579         const char *name;
3580         size_t size;
3581 } nic_data[] = {
3582 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3583             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3584 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3585 static const struct {
3586         u8 index;
3587         const char *name;
3588         const char *desc;
3589 } ord_data[] = {
3590 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3591             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3592                                 "successful Host Tx's (MSDU)"),
3593             IPW2100_ORD(STAT_TX_DIR_DATA,
3594                                 "successful Directed Tx's (MSDU)"),
3595             IPW2100_ORD(STAT_TX_DIR_DATA1,
3596                                 "successful Directed Tx's (MSDU) @ 1MB"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA2,
3598                                 "successful Directed Tx's (MSDU) @ 2MB"),
3599             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3600                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3601             IPW2100_ORD(STAT_TX_DIR_DATA11,
3602                                 "successful Directed Tx's (MSDU) @ 11MB"),
3603             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3604                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3605             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3606                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3607             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3608                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3609             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3610                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3611             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3612             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3613             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3614             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3615             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3616             IPW2100_ORD(STAT_TX_ASSN_RESP,
3617                                 "successful Association response Tx's"),
3618             IPW2100_ORD(STAT_TX_REASSN,
3619                                 "successful Reassociation Tx's"),
3620             IPW2100_ORD(STAT_TX_REASSN_RESP,
3621                                 "successful Reassociation response Tx's"),
3622             IPW2100_ORD(STAT_TX_PROBE,
3623                                 "probes successfully transmitted"),
3624             IPW2100_ORD(STAT_TX_PROBE_RESP,
3625                                 "probe responses successfully transmitted"),
3626             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3627             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3628             IPW2100_ORD(STAT_TX_DISASSN,
3629                                 "successful Disassociation TX"),
3630             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3631             IPW2100_ORD(STAT_TX_DEAUTH,
3632                                 "successful Deauthentication TX"),
3633             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3634                                 "Total successful Tx data bytes"),
3635             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3636             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3637             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3638             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3639             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3640             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3641             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3642                                 "times max tries in a hop failed"),
3643             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3644                                 "times disassociation failed"),
3645             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3646             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3647             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3648             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3649             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3650             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3651             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3652                                 "directed packets at 5.5MB"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3654             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3655             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3656                                 "nondirected packets at 1MB"),
3657             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3658                                 "nondirected packets at 2MB"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3660                                 "nondirected packets at 5.5MB"),
3661             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3662                                 "nondirected packets at 11MB"),
3663             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3664             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3665                                                                     "Rx CTS"),
3666             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3667             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3668             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3669             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3670             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3671             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3672             IPW2100_ORD(STAT_RX_REASSN_RESP,
3673                                 "Reassociation response Rx's"),
3674             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3675             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3676             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3677             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3678             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3679             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3680             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3681             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3682                                 "Total rx data bytes received"),
3683             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3684             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3685             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3686             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3688             IPW2100_ORD(STAT_RX_DUPLICATE1,
3689                                 "duplicate rx packets at 1MB"),
3690             IPW2100_ORD(STAT_RX_DUPLICATE2,
3691                                 "duplicate rx packets at 2MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3693                                 "duplicate rx packets at 5.5MB"),
3694             IPW2100_ORD(STAT_RX_DUPLICATE11,
3695                                 "duplicate rx packets at 11MB"),
3696             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3697             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3698             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3699             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3700             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3701                                 "rx frames with invalid protocol"),
3702             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3703             IPW2100_ORD(STAT_RX_NO_BUFFER,
3704                                 "rx frames rejected due to no buffer"),
3705             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3706                                 "rx frames dropped due to missing fragment"),
3707             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3708                                 "rx frames dropped due to non-sequential fragment"),
3709             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3710                                 "rx frames dropped due to unmatched 1st frame"),
3711             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3712                                 "rx frames dropped due to uncompleted frame"),
3713             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3714                                 "ICV errors during decryption"),
3715             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3716             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3717             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3718                                 "poll response timeouts"),
3719             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3720                                 "timeouts waiting for last {broad,multi}cast pkt"),
3721             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3722             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3723             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3724             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3725             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3726                                 "current calculation of % missed beacons"),
3727             IPW2100_ORD(STAT_PERCENT_RETRIES,
3728                                 "current calculation of % missed tx retries"),
3729             IPW2100_ORD(ASSOCIATED_AP_PTR,
3730                                 "0 if not associated, else pointer to AP table entry"),
3731             IPW2100_ORD(AVAILABLE_AP_CNT,
3732                                 "AP's described in the AP table"),
3733             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3734             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3735             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3736             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3737                                 "failures due to response fail"),
3738             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3739             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3740             IPW2100_ORD(STAT_ROAM_INHIBIT,
3741                                 "times roaming was inhibited due to activity"),
3742             IPW2100_ORD(RSSI_AT_ASSN,
3743                                 "RSSI of associated AP at time of association"),
3744             IPW2100_ORD(STAT_ASSN_CAUSE1,
3745                                 "reassociation: no probe response or TX on hop"),
3746             IPW2100_ORD(STAT_ASSN_CAUSE2,
3747                                 "reassociation: poor tx/rx quality"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE3,
3749                                 "reassociation: tx/rx quality (excessive AP load"),
3750             IPW2100_ORD(STAT_ASSN_CAUSE4,
3751                                 "reassociation: AP RSSI level"),
3752             IPW2100_ORD(STAT_ASSN_CAUSE5,
3753                                 "reassociations due to load leveling"),
3754             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3755             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3756                                 "times authentication response failed"),
3757             IPW2100_ORD(STATION_TABLE_CNT,
3758                                 "entries in association table"),
3759             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3760             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3761             IPW2100_ORD(COUNTRY_CODE,
3762                                 "IEEE country code as recv'd from beacon"),
3763             IPW2100_ORD(COUNTRY_CHANNELS,
3764                                 "channels supported by country"),
3765             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3766             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3767             IPW2100_ORD(ANTENNA_DIVERSITY,
3768                                 "TRUE if antenna diversity is disabled"),
3769             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3770             IPW2100_ORD(OUR_FREQ,
3771                                 "current radio freq lower digits - channel ID"),
3772             IPW2100_ORD(RTC_TIME, "current RTC time"),
3773             IPW2100_ORD(PORT_TYPE, "operating mode"),
3774             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3775             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3776             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3777             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3778             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3779             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3780             IPW2100_ORD(CAPABILITIES,
3781                                 "Management frame capability field"),
3782             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3783             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3784             IPW2100_ORD(RTS_THRESHOLD,
3785                                 "Min packet length for RTS handshaking"),
3786             IPW2100_ORD(INT_MODE, "International mode"),
3787             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3788                                 "protocol frag threshold"),
3789             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3790                                 "EEPROM offset in SRAM"),
3791             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3792                                 "EEPROM size in SRAM"),
3793             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3794             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3795                                 "EEPROM IBSS 11b channel set"),
3796             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3797             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3798             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3799             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3800             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3801
3802 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3803                               char *buf)
3804 {
3805         int i;
3806         struct ipw2100_priv *priv = dev_get_drvdata(d);
3807         struct net_device *dev = priv->net_dev;
3808         char *out = buf;
3809         u32 val = 0;
3810
3811         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3812
3813         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3814                 read_register(dev, hw_data[i].addr, &val);
3815                 out += sprintf(out, "%30s [%08X] : %08X\n",
3816                                hw_data[i].name, hw_data[i].addr, val);
3817         }
3818
3819         return out - buf;
3820 }
3821
3822 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3823
3824 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3825                              char *buf)
3826 {
3827         struct ipw2100_priv *priv = dev_get_drvdata(d);
3828         struct net_device *dev = priv->net_dev;
3829         char *out = buf;
3830         int i;
3831
3832         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3833
3834         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3835                 u8 tmp8;
3836                 u16 tmp16;
3837                 u32 tmp32;
3838
3839                 switch (nic_data[i].size) {
3840                 case 1:
3841                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3842                         out += sprintf(out, "%30s [%08X] : %02X\n",
3843                                        nic_data[i].name, nic_data[i].addr,
3844                                        tmp8);
3845                         break;
3846                 case 2:
3847                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3848                         out += sprintf(out, "%30s [%08X] : %04X\n",
3849                                        nic_data[i].name, nic_data[i].addr,
3850                                        tmp16);
3851                         break;
3852                 case 4:
3853                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3854                         out += sprintf(out, "%30s [%08X] : %08X\n",
3855                                        nic_data[i].name, nic_data[i].addr,
3856                                        tmp32);
3857                         break;
3858                 }
3859         }
3860         return out - buf;
3861 }
3862
3863 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3864
3865 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3866                            char *buf)
3867 {
3868         struct ipw2100_priv *priv = dev_get_drvdata(d);
3869         struct net_device *dev = priv->net_dev;
3870         static unsigned long loop = 0;
3871         int len = 0;
3872         u32 buffer[4];
3873         int i;
3874         char line[81];
3875
3876         if (loop >= 0x30000)
3877                 loop = 0;
3878
3879         /* sysfs provides us PAGE_SIZE buffer */
3880         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3881
3882                 if (priv->snapshot[0])
3883                         for (i = 0; i < 4; i++)
3884                                 buffer[i] =
3885                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3886                 else
3887                         for (i = 0; i < 4; i++)
3888                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3889
3890                 if (priv->dump_raw)
3891                         len += sprintf(buf + len,
3892                                        "%c%c%c%c"
3893                                        "%c%c%c%c"
3894                                        "%c%c%c%c"
3895                                        "%c%c%c%c",
3896                                        ((u8 *) buffer)[0x0],
3897                                        ((u8 *) buffer)[0x1],
3898                                        ((u8 *) buffer)[0x2],
3899                                        ((u8 *) buffer)[0x3],
3900                                        ((u8 *) buffer)[0x4],
3901                                        ((u8 *) buffer)[0x5],
3902                                        ((u8 *) buffer)[0x6],
3903                                        ((u8 *) buffer)[0x7],
3904                                        ((u8 *) buffer)[0x8],
3905                                        ((u8 *) buffer)[0x9],
3906                                        ((u8 *) buffer)[0xa],
3907                                        ((u8 *) buffer)[0xb],
3908                                        ((u8 *) buffer)[0xc],
3909                                        ((u8 *) buffer)[0xd],
3910                                        ((u8 *) buffer)[0xe],
3911                                        ((u8 *) buffer)[0xf]);
3912                 else
3913                         len += sprintf(buf + len, "%s\n",
3914                                        snprint_line(line, sizeof(line),
3915                                                     (u8 *) buffer, 16, loop));
3916                 loop += 16;
3917         }
3918
3919         return len;
3920 }
3921
3922 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3923                             const char *buf, size_t count)
3924 {
3925         struct ipw2100_priv *priv = dev_get_drvdata(d);
3926         struct net_device *dev = priv->net_dev;
3927         const char *p = buf;
3928
3929         (void)dev;              /* kill unused-var warning for debug-only code */
3930
3931         if (count < 1)
3932                 return count;
3933
3934         if (p[0] == '1' ||
3935             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3936                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3937                                dev->name);
3938                 priv->dump_raw = 1;
3939
3940         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3941                                    tolower(p[1]) == 'f')) {
3942                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3943                                dev->name);
3944                 priv->dump_raw = 0;
3945
3946         } else if (tolower(p[0]) == 'r') {
3947                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3948                 ipw2100_snapshot_free(priv);
3949
3950         } else
3951                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3952                                "reset = clear memory snapshot\n", dev->name);
3953
3954         return count;
3955 }
3956
3957 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3958
3959 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3960                              char *buf)
3961 {
3962         struct ipw2100_priv *priv = dev_get_drvdata(d);
3963         u32 val = 0;
3964         int len = 0;
3965         u32 val_len;
3966         static int loop = 0;
3967
3968         if (priv->status & STATUS_RF_KILL_MASK)
3969                 return 0;
3970
3971         if (loop >= ARRAY_SIZE(ord_data))
3972                 loop = 0;
3973
3974         /* sysfs provides us PAGE_SIZE buffer */
3975         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3976                 val_len = sizeof(u32);
3977
3978                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3979                                         &val_len))
3980                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3981                                        ord_data[loop].index,
3982                                        ord_data[loop].desc);
3983                 else
3984                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3985                                        ord_data[loop].index, val,
3986                                        ord_data[loop].desc);
3987                 loop++;
3988         }
3989
3990         return len;
3991 }
3992
3993 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3994
3995 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3996                           char *buf)
3997 {
3998         struct ipw2100_priv *priv = dev_get_drvdata(d);
3999         char *out = buf;
4000
4001         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4002                        priv->interrupts, priv->tx_interrupts,
4003                        priv->rx_interrupts, priv->inta_other);
4004         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4005         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4006 #ifdef CONFIG_IPW2100_DEBUG
4007         out += sprintf(out, "packet mismatch image: %s\n",
4008                        priv->snapshot[0] ? "YES" : "NO");
4009 #endif
4010
4011         return out - buf;
4012 }
4013
4014 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4015
4016 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4017 {
4018         int err;
4019
4020         if (mode == priv->ieee->iw_mode)
4021                 return 0;
4022
4023         err = ipw2100_disable_adapter(priv);
4024         if (err) {
4025                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4026                        priv->net_dev->name, err);
4027                 return err;
4028         }
4029
4030         switch (mode) {
4031         case IW_MODE_INFRA:
4032                 priv->net_dev->type = ARPHRD_ETHER;
4033                 break;
4034         case IW_MODE_ADHOC:
4035                 priv->net_dev->type = ARPHRD_ETHER;
4036                 break;
4037 #ifdef CONFIG_IPW2100_MONITOR
4038         case IW_MODE_MONITOR:
4039                 priv->last_mode = priv->ieee->iw_mode;
4040                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4041                 break;
4042 #endif                          /* CONFIG_IPW2100_MONITOR */
4043         }
4044
4045         priv->ieee->iw_mode = mode;
4046
4047 #ifdef CONFIG_PM
4048         /* Indicate ipw2100_download_firmware download firmware
4049          * from disk instead of memory. */
4050         ipw2100_firmware.version = 0;
4051 #endif
4052
4053         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4054         priv->reset_backoff = 0;
4055         schedule_reset(priv);
4056
4057         return 0;
4058 }
4059
4060 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4061                               char *buf)
4062 {
4063         struct ipw2100_priv *priv = dev_get_drvdata(d);
4064         int len = 0;
4065
4066 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4067
4068         if (priv->status & STATUS_ASSOCIATED)
4069                 len += sprintf(buf + len, "connected: %llu\n",
4070                                ktime_get_boottime_seconds() - priv->connect_start);
4071         else
4072                 len += sprintf(buf + len, "not connected\n");
4073
4074         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4075         DUMP_VAR(status, "08lx");
4076         DUMP_VAR(config, "08lx");
4077         DUMP_VAR(capability, "08lx");
4078
4079         len +=
4080             sprintf(buf + len, "last_rtc: %lu\n",
4081                     (unsigned long)priv->last_rtc);
4082
4083         DUMP_VAR(fatal_error, "d");
4084         DUMP_VAR(stop_hang_check, "d");
4085         DUMP_VAR(stop_rf_kill, "d");
4086         DUMP_VAR(messages_sent, "d");
4087
4088         DUMP_VAR(tx_pend_stat.value, "d");
4089         DUMP_VAR(tx_pend_stat.hi, "d");
4090
4091         DUMP_VAR(tx_free_stat.value, "d");
4092         DUMP_VAR(tx_free_stat.lo, "d");
4093
4094         DUMP_VAR(msg_free_stat.value, "d");
4095         DUMP_VAR(msg_free_stat.lo, "d");
4096
4097         DUMP_VAR(msg_pend_stat.value, "d");
4098         DUMP_VAR(msg_pend_stat.hi, "d");
4099
4100         DUMP_VAR(fw_pend_stat.value, "d");
4101         DUMP_VAR(fw_pend_stat.hi, "d");
4102
4103         DUMP_VAR(txq_stat.value, "d");
4104         DUMP_VAR(txq_stat.lo, "d");
4105
4106         DUMP_VAR(ieee->scans, "d");
4107         DUMP_VAR(reset_backoff, "lld");
4108
4109         return len;
4110 }
4111
4112 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4113
4114 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4115                             char *buf)
4116 {
4117         struct ipw2100_priv *priv = dev_get_drvdata(d);
4118         char essid[IW_ESSID_MAX_SIZE + 1];
4119         u8 bssid[ETH_ALEN];
4120         u32 chan = 0;
4121         char *out = buf;
4122         unsigned int length;
4123         int ret;
4124
4125         if (priv->status & STATUS_RF_KILL_MASK)
4126                 return 0;
4127
4128         memset(essid, 0, sizeof(essid));
4129         memset(bssid, 0, sizeof(bssid));
4130
4131         length = IW_ESSID_MAX_SIZE;
4132         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4133         if (ret)
4134                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4135                                __LINE__);
4136
4137         length = sizeof(bssid);
4138         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4139                                   bssid, &length);
4140         if (ret)
4141                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4142                                __LINE__);
4143
4144         length = sizeof(u32);
4145         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4146         if (ret)
4147                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4148                                __LINE__);
4149
4150         out += sprintf(out, "ESSID: %s\n", essid);
4151         out += sprintf(out, "BSSID:   %pM\n", bssid);
4152         out += sprintf(out, "Channel: %d\n", chan);
4153
4154         return out - buf;
4155 }
4156
4157 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4158
4159 #ifdef CONFIG_IPW2100_DEBUG
4160 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4161 {
4162         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4163 }
4164
4165 static ssize_t debug_level_store(struct device_driver *d,
4166                                  const char *buf, size_t count)
4167 {
4168         u32 val;
4169         int ret;
4170
4171         ret = kstrtou32(buf, 0, &val);
4172         if (ret)
4173                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4174         else
4175                 ipw2100_debug_level = val;
4176
4177         return strnlen(buf, count);
4178 }
4179 static DRIVER_ATTR_RW(debug_level);
4180 #endif                          /* CONFIG_IPW2100_DEBUG */
4181
4182 static ssize_t show_fatal_error(struct device *d,
4183                                 struct device_attribute *attr, char *buf)
4184 {
4185         struct ipw2100_priv *priv = dev_get_drvdata(d);
4186         char *out = buf;
4187         int i;
4188
4189         if (priv->fatal_error)
4190                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4191         else
4192                 out += sprintf(out, "0\n");
4193
4194         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4195                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4196                                         IPW2100_ERROR_QUEUE])
4197                         continue;
4198
4199                 out += sprintf(out, "%d. 0x%08X\n", i,
4200                                priv->fatal_errors[(priv->fatal_index - i) %
4201                                                   IPW2100_ERROR_QUEUE]);
4202         }
4203
4204         return out - buf;
4205 }
4206
4207 static ssize_t store_fatal_error(struct device *d,
4208                                  struct device_attribute *attr, const char *buf,
4209                                  size_t count)
4210 {
4211         struct ipw2100_priv *priv = dev_get_drvdata(d);
4212         schedule_reset(priv);
4213         return count;
4214 }
4215
4216 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4217
4218 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4219                              char *buf)
4220 {
4221         struct ipw2100_priv *priv = dev_get_drvdata(d);
4222         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4223 }
4224
4225 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4226                               const char *buf, size_t count)
4227 {
4228         struct ipw2100_priv *priv = dev_get_drvdata(d);
4229         struct net_device *dev = priv->net_dev;
4230         unsigned long val;
4231         int ret;
4232
4233         (void)dev;              /* kill unused-var warning for debug-only code */
4234
4235         IPW_DEBUG_INFO("enter\n");
4236
4237         ret = kstrtoul(buf, 0, &val);
4238         if (ret) {
4239                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4240         } else {
4241                 priv->ieee->scan_age = val;
4242                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4243         }
4244
4245         IPW_DEBUG_INFO("exit\n");
4246         return strnlen(buf, count);
4247 }
4248
4249 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4250
4251 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4252                             char *buf)
4253 {
4254         /* 0 - RF kill not enabled
4255            1 - SW based RF kill active (sysfs)
4256            2 - HW based RF kill active
4257            3 - Both HW and SW baed RF kill active */
4258         struct ipw2100_priv *priv = dev_get_drvdata(d);
4259         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4260             (rf_kill_active(priv) ? 0x2 : 0x0);
4261         return sprintf(buf, "%i\n", val);
4262 }
4263
4264 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4265 {
4266         if ((disable_radio ? 1 : 0) ==
4267             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4268                 return 0;
4269
4270         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4271                           disable_radio ? "OFF" : "ON");
4272
4273         mutex_lock(&priv->action_mutex);
4274
4275         if (disable_radio) {
4276                 priv->status |= STATUS_RF_KILL_SW;
4277                 ipw2100_down(priv);
4278         } else {
4279                 priv->status &= ~STATUS_RF_KILL_SW;
4280                 if (rf_kill_active(priv)) {
4281                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4282                                           "disabled by HW switch\n");
4283                         /* Make sure the RF_KILL check timer is running */
4284                         priv->stop_rf_kill = 0;
4285                         mod_delayed_work(system_wq, &priv->rf_kill,
4286                                          round_jiffies_relative(HZ));
4287                 } else
4288                         schedule_reset(priv);
4289         }
4290
4291         mutex_unlock(&priv->action_mutex);
4292         return 1;
4293 }
4294
4295 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4296                              const char *buf, size_t count)
4297 {
4298         struct ipw2100_priv *priv = dev_get_drvdata(d);
4299         ipw_radio_kill_sw(priv, buf[0] == '1');
4300         return count;
4301 }
4302
4303 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4304
4305 static struct attribute *ipw2100_sysfs_entries[] = {
4306         &dev_attr_hardware.attr,
4307         &dev_attr_registers.attr,
4308         &dev_attr_ordinals.attr,
4309         &dev_attr_pci.attr,
4310         &dev_attr_stats.attr,
4311         &dev_attr_internals.attr,
4312         &dev_attr_bssinfo.attr,
4313         &dev_attr_memory.attr,
4314         &dev_attr_scan_age.attr,
4315         &dev_attr_fatal_error.attr,
4316         &dev_attr_rf_kill.attr,
4317         &dev_attr_cfg.attr,
4318         &dev_attr_status.attr,
4319         &dev_attr_capability.attr,
4320         NULL,
4321 };
4322
4323 static const struct attribute_group ipw2100_attribute_group = {
4324         .attrs = ipw2100_sysfs_entries,
4325 };
4326
4327 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4328 {
4329         struct ipw2100_status_queue *q = &priv->status_queue;
4330
4331         IPW_DEBUG_INFO("enter\n");
4332
4333         q->size = entries * sizeof(struct ipw2100_status);
4334         q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4335                                     GFP_KERNEL);
4336         if (!q->drv) {
4337                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4338                 return -ENOMEM;
4339         }
4340
4341         IPW_DEBUG_INFO("exit\n");
4342
4343         return 0;
4344 }
4345
4346 static void status_queue_free(struct ipw2100_priv *priv)
4347 {
4348         IPW_DEBUG_INFO("enter\n");
4349
4350         if (priv->status_queue.drv) {
4351                 dma_free_coherent(&priv->pci_dev->dev,
4352                                   priv->status_queue.size,
4353                                   priv->status_queue.drv,
4354                                   priv->status_queue.nic);
4355                 priv->status_queue.drv = NULL;
4356         }
4357
4358         IPW_DEBUG_INFO("exit\n");
4359 }
4360
4361 static int bd_queue_allocate(struct ipw2100_priv *priv,
4362                              struct ipw2100_bd_queue *q, int entries)
4363 {
4364         IPW_DEBUG_INFO("enter\n");
4365
4366         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4367
4368         q->entries = entries;
4369         q->size = entries * sizeof(struct ipw2100_bd);
4370         q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4371                                     GFP_KERNEL);
4372         if (!q->drv) {
4373                 IPW_DEBUG_INFO
4374                     ("can't allocate shared memory for buffer descriptors\n");
4375                 return -ENOMEM;
4376         }
4377
4378         IPW_DEBUG_INFO("exit\n");
4379
4380         return 0;
4381 }
4382
4383 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4384 {
4385         IPW_DEBUG_INFO("enter\n");
4386
4387         if (!q)
4388                 return;
4389
4390         if (q->drv) {
4391                 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv,
4392                                   q->nic);
4393                 q->drv = NULL;
4394         }
4395
4396         IPW_DEBUG_INFO("exit\n");
4397 }
4398
4399 static void bd_queue_initialize(struct ipw2100_priv *priv,
4400                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4401                                 u32 r, u32 w)
4402 {
4403         IPW_DEBUG_INFO("enter\n");
4404
4405         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4406                        (u32) q->nic);
4407
4408         write_register(priv->net_dev, base, q->nic);
4409         write_register(priv->net_dev, size, q->entries);
4410         write_register(priv->net_dev, r, q->oldest);
4411         write_register(priv->net_dev, w, q->next);
4412
4413         IPW_DEBUG_INFO("exit\n");
4414 }
4415
4416 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4417 {
4418         priv->stop_rf_kill = 1;
4419         priv->stop_hang_check = 1;
4420         cancel_delayed_work_sync(&priv->reset_work);
4421         cancel_delayed_work_sync(&priv->security_work);
4422         cancel_delayed_work_sync(&priv->wx_event_work);
4423         cancel_delayed_work_sync(&priv->hang_check);
4424         cancel_delayed_work_sync(&priv->rf_kill);
4425         cancel_delayed_work_sync(&priv->scan_event);
4426 }
4427
4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4429 {
4430         int i, j, err = -EINVAL;
4431         void *v;
4432         dma_addr_t p;
4433
4434         IPW_DEBUG_INFO("enter\n");
4435
4436         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4437         if (err) {
4438                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4439                                 priv->net_dev->name);
4440                 return err;
4441         }
4442
4443         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4444                                          sizeof(struct ipw2100_tx_packet),
4445                                          GFP_ATOMIC);
4446         if (!priv->tx_buffers) {
4447                 bd_queue_free(priv, &priv->tx_queue);
4448                 return -ENOMEM;
4449         }
4450
4451         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4452                 v = dma_alloc_coherent(&priv->pci_dev->dev,
4453                                        sizeof(struct ipw2100_data_header), &p,
4454                                        GFP_KERNEL);
4455                 if (!v) {
4456                         printk(KERN_ERR DRV_NAME
4457                                ": %s: PCI alloc failed for tx " "buffers.\n",
4458                                priv->net_dev->name);
4459                         err = -ENOMEM;
4460                         break;
4461                 }
4462
4463                 priv->tx_buffers[i].type = DATA;
4464                 priv->tx_buffers[i].info.d_struct.data =
4465                     (struct ipw2100_data_header *)v;
4466                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4467                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4468         }
4469
4470         if (i == TX_PENDED_QUEUE_LENGTH)
4471                 return 0;
4472
4473         for (j = 0; j < i; j++) {
4474                 dma_free_coherent(&priv->pci_dev->dev,
4475                                   sizeof(struct ipw2100_data_header),
4476                                   priv->tx_buffers[j].info.d_struct.data,
4477                                   priv->tx_buffers[j].info.d_struct.data_phys);
4478         }
4479
4480         kfree(priv->tx_buffers);
4481         priv->tx_buffers = NULL;
4482
4483         return err;
4484 }
4485
4486 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4487 {
4488         int i;
4489
4490         IPW_DEBUG_INFO("enter\n");
4491
4492         /*
4493          * reinitialize packet info lists
4494          */
4495         INIT_LIST_HEAD(&priv->fw_pend_list);
4496         INIT_STAT(&priv->fw_pend_stat);
4497
4498         /*
4499          * reinitialize lists
4500          */
4501         INIT_LIST_HEAD(&priv->tx_pend_list);
4502         INIT_LIST_HEAD(&priv->tx_free_list);
4503         INIT_STAT(&priv->tx_pend_stat);
4504         INIT_STAT(&priv->tx_free_stat);
4505
4506         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507                 /* We simply drop any SKBs that have been queued for
4508                  * transmit */
4509                 if (priv->tx_buffers[i].info.d_struct.txb) {
4510                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4511                                            txb);
4512                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4513                 }
4514
4515                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4516         }
4517
4518         SET_STAT(&priv->tx_free_stat, i);
4519
4520         priv->tx_queue.oldest = 0;
4521         priv->tx_queue.available = priv->tx_queue.entries;
4522         priv->tx_queue.next = 0;
4523         INIT_STAT(&priv->txq_stat);
4524         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4525
4526         bd_queue_initialize(priv, &priv->tx_queue,
4527                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4528                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4529                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4530                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4531
4532         IPW_DEBUG_INFO("exit\n");
4533
4534 }
4535
4536 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4537 {
4538         int i;
4539
4540         IPW_DEBUG_INFO("enter\n");
4541
4542         bd_queue_free(priv, &priv->tx_queue);
4543
4544         if (!priv->tx_buffers)
4545                 return;
4546
4547         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4548                 if (priv->tx_buffers[i].info.d_struct.txb) {
4549                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4550                                            txb);
4551                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4552                 }
4553                 if (priv->tx_buffers[i].info.d_struct.data)
4554                         dma_free_coherent(&priv->pci_dev->dev,
4555                                           sizeof(struct ipw2100_data_header),
4556                                           priv->tx_buffers[i].info.d_struct.data,
4557                                           priv->tx_buffers[i].info.d_struct.data_phys);
4558         }
4559
4560         kfree(priv->tx_buffers);
4561         priv->tx_buffers = NULL;
4562
4563         IPW_DEBUG_INFO("exit\n");
4564 }
4565
4566 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4567 {
4568         int i, j, err = -EINVAL;
4569
4570         IPW_DEBUG_INFO("enter\n");
4571
4572         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4573         if (err) {
4574                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4575                 return err;
4576         }
4577
4578         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4579         if (err) {
4580                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4581                 bd_queue_free(priv, &priv->rx_queue);
4582                 return err;
4583         }
4584
4585         /*
4586          * allocate packets
4587          */
4588         priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4589                                          sizeof(struct ipw2100_rx_packet),
4590                                          GFP_KERNEL);
4591         if (!priv->rx_buffers) {
4592                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4593
4594                 bd_queue_free(priv, &priv->rx_queue);
4595
4596                 status_queue_free(priv);
4597
4598                 return -ENOMEM;
4599         }
4600
4601         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4602                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4603
4604                 err = ipw2100_alloc_skb(priv, packet);
4605                 if (unlikely(err)) {
4606                         err = -ENOMEM;
4607                         break;
4608                 }
4609
4610                 /* The BD holds the cache aligned address */
4611                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4612                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4613                 priv->status_queue.drv[i].status_fields = 0;
4614         }
4615
4616         if (i == RX_QUEUE_LENGTH)
4617                 return 0;
4618
4619         for (j = 0; j < i; j++) {
4620                 dma_unmap_single(&priv->pci_dev->dev,
4621                                  priv->rx_buffers[j].dma_addr,
4622                                  sizeof(struct ipw2100_rx_packet),
4623                                  DMA_FROM_DEVICE);
4624                 dev_kfree_skb(priv->rx_buffers[j].skb);
4625         }
4626
4627         kfree(priv->rx_buffers);
4628         priv->rx_buffers = NULL;
4629
4630         bd_queue_free(priv, &priv->rx_queue);
4631
4632         status_queue_free(priv);
4633
4634         return err;
4635 }
4636
4637 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4638 {
4639         IPW_DEBUG_INFO("enter\n");
4640
4641         priv->rx_queue.oldest = 0;
4642         priv->rx_queue.available = priv->rx_queue.entries - 1;
4643         priv->rx_queue.next = priv->rx_queue.entries - 1;
4644
4645         INIT_STAT(&priv->rxq_stat);
4646         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4647
4648         bd_queue_initialize(priv, &priv->rx_queue,
4649                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4650                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4651                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4652                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4653
4654         /* set up the status queue */
4655         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4656                        priv->status_queue.nic);
4657
4658         IPW_DEBUG_INFO("exit\n");
4659 }
4660
4661 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4662 {
4663         int i;
4664
4665         IPW_DEBUG_INFO("enter\n");
4666
4667         bd_queue_free(priv, &priv->rx_queue);
4668         status_queue_free(priv);
4669
4670         if (!priv->rx_buffers)
4671                 return;
4672
4673         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4674                 if (priv->rx_buffers[i].rxp) {
4675                         dma_unmap_single(&priv->pci_dev->dev,
4676                                          priv->rx_buffers[i].dma_addr,
4677                                          sizeof(struct ipw2100_rx),
4678                                          DMA_FROM_DEVICE);
4679                         dev_kfree_skb(priv->rx_buffers[i].skb);
4680                 }
4681         }
4682
4683         kfree(priv->rx_buffers);
4684         priv->rx_buffers = NULL;
4685
4686         IPW_DEBUG_INFO("exit\n");
4687 }
4688
4689 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4690 {
4691         u32 length = ETH_ALEN;
4692         u8 addr[ETH_ALEN];
4693
4694         int err;
4695
4696         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4697         if (err) {
4698                 IPW_DEBUG_INFO("MAC address read failed\n");
4699                 return -EIO;
4700         }
4701
4702         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4703         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4704
4705         return 0;
4706 }
4707
4708 /********************************************************************
4709  *
4710  * Firmware Commands
4711  *
4712  ********************************************************************/
4713
4714 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4715 {
4716         struct host_command cmd = {
4717                 .host_command = ADAPTER_ADDRESS,
4718                 .host_command_sequence = 0,
4719                 .host_command_length = ETH_ALEN
4720         };
4721         int err;
4722
4723         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4724
4725         IPW_DEBUG_INFO("enter\n");
4726
4727         if (priv->config & CFG_CUSTOM_MAC) {
4728                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4729                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4730         } else
4731                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4732                        ETH_ALEN);
4733
4734         err = ipw2100_hw_send_command(priv, &cmd);
4735
4736         IPW_DEBUG_INFO("exit\n");
4737         return err;
4738 }
4739
4740 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4741                                  int batch_mode)
4742 {
4743         struct host_command cmd = {
4744                 .host_command = PORT_TYPE,
4745                 .host_command_sequence = 0,
4746                 .host_command_length = sizeof(u32)
4747         };
4748         int err;
4749
4750         switch (port_type) {
4751         case IW_MODE_INFRA:
4752                 cmd.host_command_parameters[0] = IPW_BSS;
4753                 break;
4754         case IW_MODE_ADHOC:
4755                 cmd.host_command_parameters[0] = IPW_IBSS;
4756                 break;
4757         }
4758
4759         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4760                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4761
4762         if (!batch_mode) {
4763                 err = ipw2100_disable_adapter(priv);
4764                 if (err) {
4765                         printk(KERN_ERR DRV_NAME
4766                                ": %s: Could not disable adapter %d\n",
4767                                priv->net_dev->name, err);
4768                         return err;
4769                 }
4770         }
4771
4772         /* send cmd to firmware */
4773         err = ipw2100_hw_send_command(priv, &cmd);
4774
4775         if (!batch_mode)
4776                 ipw2100_enable_adapter(priv);
4777
4778         return err;
4779 }
4780
4781 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4782                                int batch_mode)
4783 {
4784         struct host_command cmd = {
4785                 .host_command = CHANNEL,
4786                 .host_command_sequence = 0,
4787                 .host_command_length = sizeof(u32)
4788         };
4789         int err;
4790
4791         cmd.host_command_parameters[0] = channel;
4792
4793         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4794
4795         /* If BSS then we don't support channel selection */
4796         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4797                 return 0;
4798
4799         if ((channel != 0) &&
4800             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4801                 return -EINVAL;
4802
4803         if (!batch_mode) {
4804                 err = ipw2100_disable_adapter(priv);
4805                 if (err)
4806                         return err;
4807         }
4808
4809         err = ipw2100_hw_send_command(priv, &cmd);
4810         if (err) {
4811                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4812                 return err;
4813         }
4814
4815         if (channel)
4816                 priv->config |= CFG_STATIC_CHANNEL;
4817         else
4818                 priv->config &= ~CFG_STATIC_CHANNEL;
4819
4820         priv->channel = channel;
4821
4822         if (!batch_mode) {
4823                 err = ipw2100_enable_adapter(priv);
4824                 if (err)
4825                         return err;
4826         }
4827
4828         return 0;
4829 }
4830
4831 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4832 {
4833         struct host_command cmd = {
4834                 .host_command = SYSTEM_CONFIG,
4835                 .host_command_sequence = 0,
4836                 .host_command_length = 12,
4837         };
4838         u32 ibss_mask, len = sizeof(u32);
4839         int err;
4840
4841         /* Set system configuration */
4842
4843         if (!batch_mode) {
4844                 err = ipw2100_disable_adapter(priv);
4845                 if (err)
4846                         return err;
4847         }
4848
4849         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4850                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4851
4852         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4853             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4854
4855         if (!(priv->config & CFG_LONG_PREAMBLE))
4856                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4857
4858         err = ipw2100_get_ordinal(priv,
4859                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4860                                   &ibss_mask, &len);
4861         if (err)
4862                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4863
4864         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4865         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4866
4867         /* 11b only */
4868         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4869
4870         err = ipw2100_hw_send_command(priv, &cmd);
4871         if (err)
4872                 return err;
4873
4874 /* If IPv6 is configured in the kernel then we don't want to filter out all
4875  * of the multicast packets as IPv6 needs some. */
4876 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4877         cmd.host_command = ADD_MULTICAST;
4878         cmd.host_command_sequence = 0;
4879         cmd.host_command_length = 0;
4880
4881         ipw2100_hw_send_command(priv, &cmd);
4882 #endif
4883         if (!batch_mode) {
4884                 err = ipw2100_enable_adapter(priv);
4885                 if (err)
4886                         return err;
4887         }
4888
4889         return 0;
4890 }
4891
4892 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4893                                 int batch_mode)
4894 {
4895         struct host_command cmd = {
4896                 .host_command = BASIC_TX_RATES,
4897                 .host_command_sequence = 0,
4898                 .host_command_length = 4
4899         };
4900         int err;
4901
4902         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4903
4904         if (!batch_mode) {
4905                 err = ipw2100_disable_adapter(priv);
4906                 if (err)
4907                         return err;
4908         }
4909
4910         /* Set BASIC TX Rate first */
4911         ipw2100_hw_send_command(priv, &cmd);
4912
4913         /* Set TX Rate */
4914         cmd.host_command = TX_RATES;
4915         ipw2100_hw_send_command(priv, &cmd);
4916
4917         /* Set MSDU TX Rate */
4918         cmd.host_command = MSDU_TX_RATES;
4919         ipw2100_hw_send_command(priv, &cmd);
4920
4921         if (!batch_mode) {
4922                 err = ipw2100_enable_adapter(priv);
4923                 if (err)
4924                         return err;
4925         }
4926
4927         priv->tx_rates = rate;
4928
4929         return 0;
4930 }
4931
4932 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4933 {
4934         struct host_command cmd = {
4935                 .host_command = POWER_MODE,
4936                 .host_command_sequence = 0,
4937                 .host_command_length = 4
4938         };
4939         int err;
4940
4941         cmd.host_command_parameters[0] = power_level;
4942
4943         err = ipw2100_hw_send_command(priv, &cmd);
4944         if (err)
4945                 return err;
4946
4947         if (power_level == IPW_POWER_MODE_CAM)
4948                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4949         else
4950                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4951
4952 #ifdef IPW2100_TX_POWER
4953         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4954                 /* Set beacon interval */
4955                 cmd.host_command = TX_POWER_INDEX;
4956                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4957
4958                 err = ipw2100_hw_send_command(priv, &cmd);
4959                 if (err)
4960                         return err;
4961         }
4962 #endif
4963
4964         return 0;
4965 }
4966
4967 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4968 {
4969         struct host_command cmd = {
4970                 .host_command = RTS_THRESHOLD,
4971                 .host_command_sequence = 0,
4972                 .host_command_length = 4
4973         };
4974         int err;
4975
4976         if (threshold & RTS_DISABLED)
4977                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4978         else
4979                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4980
4981         err = ipw2100_hw_send_command(priv, &cmd);
4982         if (err)
4983                 return err;
4984
4985         priv->rts_threshold = threshold;
4986
4987         return 0;
4988 }
4989
4990 #if 0
4991 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4992                                         u32 threshold, int batch_mode)
4993 {
4994         struct host_command cmd = {
4995                 .host_command = FRAG_THRESHOLD,
4996                 .host_command_sequence = 0,
4997                 .host_command_length = 4,
4998                 .host_command_parameters[0] = 0,
4999         };
5000         int err;
5001
5002         if (!batch_mode) {
5003                 err = ipw2100_disable_adapter(priv);
5004                 if (err)
5005                         return err;
5006         }
5007
5008         if (threshold == 0)
5009                 threshold = DEFAULT_FRAG_THRESHOLD;
5010         else {
5011                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5012                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5013         }
5014
5015         cmd.host_command_parameters[0] = threshold;
5016
5017         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5018
5019         err = ipw2100_hw_send_command(priv, &cmd);
5020
5021         if (!batch_mode)
5022                 ipw2100_enable_adapter(priv);
5023
5024         if (!err)
5025                 priv->frag_threshold = threshold;
5026
5027         return err;
5028 }
5029 #endif
5030
5031 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5032 {
5033         struct host_command cmd = {
5034                 .host_command = SHORT_RETRY_LIMIT,
5035                 .host_command_sequence = 0,
5036                 .host_command_length = 4
5037         };
5038         int err;
5039
5040         cmd.host_command_parameters[0] = retry;
5041
5042         err = ipw2100_hw_send_command(priv, &cmd);
5043         if (err)
5044                 return err;
5045
5046         priv->short_retry_limit = retry;
5047
5048         return 0;
5049 }
5050
5051 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5052 {
5053         struct host_command cmd = {
5054                 .host_command = LONG_RETRY_LIMIT,
5055                 .host_command_sequence = 0,
5056                 .host_command_length = 4
5057         };
5058         int err;
5059
5060         cmd.host_command_parameters[0] = retry;
5061
5062         err = ipw2100_hw_send_command(priv, &cmd);
5063         if (err)
5064                 return err;
5065
5066         priv->long_retry_limit = retry;
5067
5068         return 0;
5069 }
5070
5071 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5072                                        int batch_mode)
5073 {
5074         struct host_command cmd = {
5075                 .host_command = MANDATORY_BSSID,
5076                 .host_command_sequence = 0,
5077                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5078         };
5079         int err;
5080
5081 #ifdef CONFIG_IPW2100_DEBUG
5082         if (bssid != NULL)
5083                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5084         else
5085                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5086 #endif
5087         /* if BSSID is empty then we disable mandatory bssid mode */
5088         if (bssid != NULL)
5089                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5090
5091         if (!batch_mode) {
5092                 err = ipw2100_disable_adapter(priv);
5093                 if (err)
5094                         return err;
5095         }
5096
5097         err = ipw2100_hw_send_command(priv, &cmd);
5098
5099         if (!batch_mode)
5100                 ipw2100_enable_adapter(priv);
5101
5102         return err;
5103 }
5104
5105 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5106 {
5107         struct host_command cmd = {
5108                 .host_command = DISASSOCIATION_BSSID,
5109                 .host_command_sequence = 0,
5110                 .host_command_length = ETH_ALEN
5111         };
5112         int err;
5113
5114         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5115
5116         /* The Firmware currently ignores the BSSID and just disassociates from
5117          * the currently associated AP -- but in the off chance that a future
5118          * firmware does use the BSSID provided here, we go ahead and try and
5119          * set it to the currently associated AP's BSSID */
5120         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5121
5122         err = ipw2100_hw_send_command(priv, &cmd);
5123
5124         return err;
5125 }
5126
5127 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5128                               struct ipw2100_wpa_assoc_frame *, int)
5129     __attribute__ ((unused));
5130
5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5132                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5133                               int batch_mode)
5134 {
5135         struct host_command cmd = {
5136                 .host_command = SET_WPA_IE,
5137                 .host_command_sequence = 0,
5138                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5139         };
5140         int err;
5141
5142         IPW_DEBUG_HC("SET_WPA_IE\n");
5143
5144         if (!batch_mode) {
5145                 err = ipw2100_disable_adapter(priv);
5146                 if (err)
5147                         return err;
5148         }
5149
5150         memcpy(cmd.host_command_parameters, wpa_frame,
5151                sizeof(struct ipw2100_wpa_assoc_frame));
5152
5153         err = ipw2100_hw_send_command(priv, &cmd);
5154
5155         if (!batch_mode) {
5156                 if (ipw2100_enable_adapter(priv))
5157                         err = -EIO;
5158         }
5159
5160         return err;
5161 }
5162
5163 struct security_info_params {
5164         u32 allowed_ciphers;
5165         u16 version;
5166         u8 auth_mode;
5167         u8 replay_counters_number;
5168         u8 unicast_using_group;
5169 } __packed;
5170
5171 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5172                                             int auth_mode,
5173                                             int security_level,
5174                                             int unicast_using_group,
5175                                             int batch_mode)
5176 {
5177         struct host_command cmd = {
5178                 .host_command = SET_SECURITY_INFORMATION,
5179                 .host_command_sequence = 0,
5180                 .host_command_length = sizeof(struct security_info_params)
5181         };
5182         struct security_info_params *security =
5183             (struct security_info_params *)&cmd.host_command_parameters;
5184         int err;
5185         memset(security, 0, sizeof(*security));
5186
5187         /* If shared key AP authentication is turned on, then we need to
5188          * configure the firmware to try and use it.
5189          *
5190          * Actual data encryption/decryption is handled by the host. */
5191         security->auth_mode = auth_mode;
5192         security->unicast_using_group = unicast_using_group;
5193
5194         switch (security_level) {
5195         default:
5196         case SEC_LEVEL_0:
5197                 security->allowed_ciphers = IPW_NONE_CIPHER;
5198                 break;
5199         case SEC_LEVEL_1:
5200                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5201                     IPW_WEP104_CIPHER;
5202                 break;
5203         case SEC_LEVEL_2:
5204                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5205                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5206                 break;
5207         case SEC_LEVEL_2_CKIP:
5208                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5209                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5210                 break;
5211         case SEC_LEVEL_3:
5212                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5213                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5214                 break;
5215         }
5216
5217         IPW_DEBUG_HC
5218             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5219              security->auth_mode, security->allowed_ciphers, security_level);
5220
5221         security->replay_counters_number = 0;
5222
5223         if (!batch_mode) {
5224                 err = ipw2100_disable_adapter(priv);
5225                 if (err)
5226                         return err;
5227         }
5228
5229         err = ipw2100_hw_send_command(priv, &cmd);
5230
5231         if (!batch_mode)
5232                 ipw2100_enable_adapter(priv);
5233
5234         return err;
5235 }
5236
5237 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5238 {
5239         struct host_command cmd = {
5240                 .host_command = TX_POWER_INDEX,
5241                 .host_command_sequence = 0,
5242                 .host_command_length = 4
5243         };
5244         int err = 0;
5245         u32 tmp = tx_power;
5246
5247         if (tx_power != IPW_TX_POWER_DEFAULT)
5248                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5249                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5250
5251         cmd.host_command_parameters[0] = tmp;
5252
5253         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5254                 err = ipw2100_hw_send_command(priv, &cmd);
5255         if (!err)
5256                 priv->tx_power = tx_power;
5257
5258         return 0;
5259 }
5260
5261 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5262                                             u32 interval, int batch_mode)
5263 {
5264         struct host_command cmd = {
5265                 .host_command = BEACON_INTERVAL,
5266                 .host_command_sequence = 0,
5267                 .host_command_length = 4
5268         };
5269         int err;
5270
5271         cmd.host_command_parameters[0] = interval;
5272
5273         IPW_DEBUG_INFO("enter\n");
5274
5275         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5276                 if (!batch_mode) {
5277                         err = ipw2100_disable_adapter(priv);
5278                         if (err)
5279                                 return err;
5280                 }
5281
5282                 ipw2100_hw_send_command(priv, &cmd);
5283
5284                 if (!batch_mode) {
5285                         err = ipw2100_enable_adapter(priv);
5286                         if (err)
5287                                 return err;
5288                 }
5289         }
5290
5291         IPW_DEBUG_INFO("exit\n");
5292
5293         return 0;
5294 }
5295
5296 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5297 {
5298         ipw2100_tx_initialize(priv);
5299         ipw2100_rx_initialize(priv);
5300         ipw2100_msg_initialize(priv);
5301 }
5302
5303 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5304 {
5305         ipw2100_tx_free(priv);
5306         ipw2100_rx_free(priv);
5307         ipw2100_msg_free(priv);
5308 }
5309
5310 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5311 {
5312         if (ipw2100_tx_allocate(priv) ||
5313             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5314                 goto fail;
5315
5316         return 0;
5317
5318       fail:
5319         ipw2100_tx_free(priv);
5320         ipw2100_rx_free(priv);
5321         ipw2100_msg_free(priv);
5322         return -ENOMEM;
5323 }
5324
5325 #define IPW_PRIVACY_CAPABLE 0x0008
5326
5327 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5328                                  int batch_mode)
5329 {
5330         struct host_command cmd = {
5331                 .host_command = WEP_FLAGS,
5332                 .host_command_sequence = 0,
5333                 .host_command_length = 4
5334         };
5335         int err;
5336
5337         cmd.host_command_parameters[0] = flags;
5338
5339         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5340
5341         if (!batch_mode) {
5342                 err = ipw2100_disable_adapter(priv);
5343                 if (err) {
5344                         printk(KERN_ERR DRV_NAME
5345                                ": %s: Could not disable adapter %d\n",
5346                                priv->net_dev->name, err);
5347                         return err;
5348                 }
5349         }
5350
5351         /* send cmd to firmware */
5352         err = ipw2100_hw_send_command(priv, &cmd);
5353
5354         if (!batch_mode)
5355                 ipw2100_enable_adapter(priv);
5356
5357         return err;
5358 }
5359
5360 struct ipw2100_wep_key {
5361         u8 idx;
5362         u8 len;
5363         u8 key[13];
5364 };
5365
5366 /* Macros to ease up priting WEP keys */
5367 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5368 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5369 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5370 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5371
5372 /**
5373  * Set a the wep key
5374  *
5375  * @priv: struct to work on
5376  * @idx: index of the key we want to set
5377  * @key: ptr to the key data to set
5378  * @len: length of the buffer at @key
5379  * @batch_mode: FIXME perform the operation in batch mode, not
5380  *              disabling the device.
5381  *
5382  * @returns 0 if OK, < 0 errno code on error.
5383  *
5384  * Fill out a command structure with the new wep key, length an
5385  * index and send it down the wire.
5386  */
5387 static int ipw2100_set_key(struct ipw2100_priv *priv,
5388                            int idx, char *key, int len, int batch_mode)
5389 {
5390         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5391         struct host_command cmd = {
5392                 .host_command = WEP_KEY_INFO,
5393                 .host_command_sequence = 0,
5394                 .host_command_length = sizeof(struct ipw2100_wep_key),
5395         };
5396         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5397         int err;
5398
5399         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5400                      idx, keylen, len);
5401
5402         /* NOTE: We don't check cached values in case the firmware was reset
5403          * or some other problem is occurring.  If the user is setting the key,
5404          * then we push the change */
5405
5406         wep_key->idx = idx;
5407         wep_key->len = keylen;
5408
5409         if (keylen) {
5410                 memcpy(wep_key->key, key, len);
5411                 memset(wep_key->key + len, 0, keylen - len);
5412         }
5413
5414         /* Will be optimized out on debug not being configured in */
5415         if (keylen == 0)
5416                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5417                               priv->net_dev->name, wep_key->idx);
5418         else if (keylen == 5)
5419                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5420                               priv->net_dev->name, wep_key->idx, wep_key->len,
5421                               WEP_STR_64(wep_key->key));
5422         else
5423                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5424                               "\n",
5425                               priv->net_dev->name, wep_key->idx, wep_key->len,
5426                               WEP_STR_128(wep_key->key));
5427
5428         if (!batch_mode) {
5429                 err = ipw2100_disable_adapter(priv);
5430                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5431                 if (err) {
5432                         printk(KERN_ERR DRV_NAME
5433                                ": %s: Could not disable adapter %d\n",
5434                                priv->net_dev->name, err);
5435                         return err;
5436                 }
5437         }
5438
5439         /* send cmd to firmware */
5440         err = ipw2100_hw_send_command(priv, &cmd);
5441
5442         if (!batch_mode) {
5443                 int err2 = ipw2100_enable_adapter(priv);
5444                 if (err == 0)
5445                         err = err2;
5446         }
5447         return err;
5448 }
5449
5450 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5451                                  int idx, int batch_mode)
5452 {
5453         struct host_command cmd = {
5454                 .host_command = WEP_KEY_INDEX,
5455                 .host_command_sequence = 0,
5456                 .host_command_length = 4,
5457                 .host_command_parameters = {idx},
5458         };
5459         int err;
5460
5461         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5462
5463         if (idx < 0 || idx > 3)
5464                 return -EINVAL;
5465
5466         if (!batch_mode) {
5467                 err = ipw2100_disable_adapter(priv);
5468                 if (err) {
5469                         printk(KERN_ERR DRV_NAME
5470                                ": %s: Could not disable adapter %d\n",
5471                                priv->net_dev->name, err);
5472                         return err;
5473                 }
5474         }
5475
5476         /* send cmd to firmware */
5477         err = ipw2100_hw_send_command(priv, &cmd);
5478
5479         if (!batch_mode)
5480                 ipw2100_enable_adapter(priv);
5481
5482         return err;
5483 }
5484
5485 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5486 {
5487         int i, err, auth_mode, sec_level, use_group;
5488
5489         if (!(priv->status & STATUS_RUNNING))
5490                 return 0;
5491
5492         if (!batch_mode) {
5493                 err = ipw2100_disable_adapter(priv);
5494                 if (err)
5495                         return err;
5496         }
5497
5498         if (!priv->ieee->sec.enabled) {
5499                 err =
5500                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5501                                                      SEC_LEVEL_0, 0, 1);
5502         } else {
5503                 auth_mode = IPW_AUTH_OPEN;
5504                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5505                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5506                                 auth_mode = IPW_AUTH_SHARED;
5507                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5508                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5509                 }
5510
5511                 sec_level = SEC_LEVEL_0;
5512                 if (priv->ieee->sec.flags & SEC_LEVEL)
5513                         sec_level = priv->ieee->sec.level;
5514
5515                 use_group = 0;
5516                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5517                         use_group = priv->ieee->sec.unicast_uses_group;
5518
5519                 err =
5520                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5521                                                      use_group, 1);
5522         }
5523
5524         if (err)
5525                 goto exit;
5526
5527         if (priv->ieee->sec.enabled) {
5528                 for (i = 0; i < 4; i++) {
5529                         if (!(priv->ieee->sec.flags & (1 << i))) {
5530                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5531                                 priv->ieee->sec.key_sizes[i] = 0;
5532                         } else {
5533                                 err = ipw2100_set_key(priv, i,
5534                                                       priv->ieee->sec.keys[i],
5535                                                       priv->ieee->sec.
5536                                                       key_sizes[i], 1);
5537                                 if (err)
5538                                         goto exit;
5539                         }
5540                 }
5541
5542                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5543         }
5544
5545         /* Always enable privacy so the Host can filter WEP packets if
5546          * encrypted data is sent up */
5547         err =
5548             ipw2100_set_wep_flags(priv,
5549                                   priv->ieee->sec.
5550                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5551         if (err)
5552                 goto exit;
5553
5554         priv->status &= ~STATUS_SECURITY_UPDATED;
5555
5556       exit:
5557         if (!batch_mode)
5558                 ipw2100_enable_adapter(priv);
5559
5560         return err;
5561 }
5562
5563 static void ipw2100_security_work(struct work_struct *work)
5564 {
5565         struct ipw2100_priv *priv =
5566                 container_of(work, struct ipw2100_priv, security_work.work);
5567
5568         /* If we happen to have reconnected before we get a chance to
5569          * process this, then update the security settings--which causes
5570          * a disassociation to occur */
5571         if (!(priv->status & STATUS_ASSOCIATED) &&
5572             priv->status & STATUS_SECURITY_UPDATED)
5573                 ipw2100_configure_security(priv, 0);
5574 }
5575
5576 static void shim__set_security(struct net_device *dev,
5577                                struct libipw_security *sec)
5578 {
5579         struct ipw2100_priv *priv = libipw_priv(dev);
5580         int i, force_update = 0;
5581
5582         mutex_lock(&priv->action_mutex);
5583         if (!(priv->status & STATUS_INITIALIZED))
5584                 goto done;
5585
5586         for (i = 0; i < 4; i++) {
5587                 if (sec->flags & (1 << i)) {
5588                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5589                         if (sec->key_sizes[i] == 0)
5590                                 priv->ieee->sec.flags &= ~(1 << i);
5591                         else
5592                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5593                                        sec->key_sizes[i]);
5594                         if (sec->level == SEC_LEVEL_1) {
5595                                 priv->ieee->sec.flags |= (1 << i);
5596                                 priv->status |= STATUS_SECURITY_UPDATED;
5597                         } else
5598                                 priv->ieee->sec.flags &= ~(1 << i);
5599                 }
5600         }
5601
5602         if ((sec->flags & SEC_ACTIVE_KEY) &&
5603             priv->ieee->sec.active_key != sec->active_key) {
5604                 if (sec->active_key <= 3) {
5605                         priv->ieee->sec.active_key = sec->active_key;
5606                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5607                 } else
5608                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5609
5610                 priv->status |= STATUS_SECURITY_UPDATED;
5611         }
5612
5613         if ((sec->flags & SEC_AUTH_MODE) &&
5614             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5615                 priv->ieee->sec.auth_mode = sec->auth_mode;
5616                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5617                 priv->status |= STATUS_SECURITY_UPDATED;
5618         }
5619
5620         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5621                 priv->ieee->sec.flags |= SEC_ENABLED;
5622                 priv->ieee->sec.enabled = sec->enabled;
5623                 priv->status |= STATUS_SECURITY_UPDATED;
5624                 force_update = 1;
5625         }
5626
5627         if (sec->flags & SEC_ENCRYPT)
5628                 priv->ieee->sec.encrypt = sec->encrypt;
5629
5630         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5631                 priv->ieee->sec.level = sec->level;
5632                 priv->ieee->sec.flags |= SEC_LEVEL;
5633                 priv->status |= STATUS_SECURITY_UPDATED;
5634         }
5635
5636         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5637                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5638                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5639                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5640                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5641                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5642                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5643                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5646
5647 /* As a temporary work around to enable WPA until we figure out why
5648  * wpa_supplicant toggles the security capability of the driver, which
5649  * forces a disassociation with force_update...
5650  *
5651  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5652         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5653                 ipw2100_configure_security(priv, 0);
5654       done:
5655         mutex_unlock(&priv->action_mutex);
5656 }
5657
5658 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5659 {
5660         int err;
5661         int batch_mode = 1;
5662         u8 *bssid;
5663
5664         IPW_DEBUG_INFO("enter\n");
5665
5666         err = ipw2100_disable_adapter(priv);
5667         if (err)
5668                 return err;
5669 #ifdef CONFIG_IPW2100_MONITOR
5670         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5671                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5672                 if (err)
5673                         return err;
5674
5675                 IPW_DEBUG_INFO("exit\n");
5676
5677                 return 0;
5678         }
5679 #endif                          /* CONFIG_IPW2100_MONITOR */
5680
5681         err = ipw2100_read_mac_address(priv);
5682         if (err)
5683                 return -EIO;
5684
5685         err = ipw2100_set_mac_address(priv, batch_mode);
5686         if (err)
5687                 return err;
5688
5689         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5690         if (err)
5691                 return err;
5692
5693         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5694                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5695                 if (err)
5696                         return err;
5697         }
5698
5699         err = ipw2100_system_config(priv, batch_mode);
5700         if (err)
5701                 return err;
5702
5703         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5704         if (err)
5705                 return err;
5706
5707         /* Default to power mode OFF */
5708         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5709         if (err)
5710                 return err;
5711
5712         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5713         if (err)
5714                 return err;
5715
5716         if (priv->config & CFG_STATIC_BSSID)
5717                 bssid = priv->bssid;
5718         else
5719                 bssid = NULL;
5720         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5721         if (err)
5722                 return err;
5723
5724         if (priv->config & CFG_STATIC_ESSID)
5725                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5726                                         batch_mode);
5727         else
5728                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5729         if (err)
5730                 return err;
5731
5732         err = ipw2100_configure_security(priv, batch_mode);
5733         if (err)
5734                 return err;
5735
5736         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5737                 err =
5738                     ipw2100_set_ibss_beacon_interval(priv,
5739                                                      priv->beacon_interval,
5740                                                      batch_mode);
5741                 if (err)
5742                         return err;
5743
5744                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5745                 if (err)
5746                         return err;
5747         }
5748
5749         /*
5750            err = ipw2100_set_fragmentation_threshold(
5751            priv, priv->frag_threshold, batch_mode);
5752            if (err)
5753            return err;
5754          */
5755
5756         IPW_DEBUG_INFO("exit\n");
5757
5758         return 0;
5759 }
5760
5761 /*************************************************************************
5762  *
5763  * EXTERNALLY CALLED METHODS
5764  *
5765  *************************************************************************/
5766
5767 /* This method is called by the network layer -- not to be confused with
5768  * ipw2100_set_mac_address() declared above called by this driver (and this
5769  * method as well) to talk to the firmware */
5770 static int ipw2100_set_address(struct net_device *dev, void *p)
5771 {
5772         struct ipw2100_priv *priv = libipw_priv(dev);
5773         struct sockaddr *addr = p;
5774         int err = 0;
5775
5776         if (!is_valid_ether_addr(addr->sa_data))
5777                 return -EADDRNOTAVAIL;
5778
5779         mutex_lock(&priv->action_mutex);
5780
5781         priv->config |= CFG_CUSTOM_MAC;
5782         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5783
5784         err = ipw2100_set_mac_address(priv, 0);
5785         if (err)
5786                 goto done;
5787
5788         priv->reset_backoff = 0;
5789         mutex_unlock(&priv->action_mutex);
5790         ipw2100_reset_adapter(&priv->reset_work.work);
5791         return 0;
5792
5793       done:
5794         mutex_unlock(&priv->action_mutex);
5795         return err;
5796 }
5797
5798 static int ipw2100_open(struct net_device *dev)
5799 {
5800         struct ipw2100_priv *priv = libipw_priv(dev);
5801         unsigned long flags;
5802         IPW_DEBUG_INFO("dev->open\n");
5803
5804         spin_lock_irqsave(&priv->low_lock, flags);
5805         if (priv->status & STATUS_ASSOCIATED) {
5806                 netif_carrier_on(dev);
5807                 netif_start_queue(dev);
5808         }
5809         spin_unlock_irqrestore(&priv->low_lock, flags);
5810
5811         return 0;
5812 }
5813
5814 static int ipw2100_close(struct net_device *dev)
5815 {
5816         struct ipw2100_priv *priv = libipw_priv(dev);
5817         unsigned long flags;
5818         struct list_head *element;
5819         struct ipw2100_tx_packet *packet;
5820
5821         IPW_DEBUG_INFO("enter\n");
5822
5823         spin_lock_irqsave(&priv->low_lock, flags);
5824
5825         if (priv->status & STATUS_ASSOCIATED)
5826                 netif_carrier_off(dev);
5827         netif_stop_queue(dev);
5828
5829         /* Flush the TX queue ... */
5830         while (!list_empty(&priv->tx_pend_list)) {
5831                 element = priv->tx_pend_list.next;
5832                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5833
5834                 list_del(element);
5835                 DEC_STAT(&priv->tx_pend_stat);
5836
5837                 libipw_txb_free(packet->info.d_struct.txb);
5838                 packet->info.d_struct.txb = NULL;
5839
5840                 list_add_tail(element, &priv->tx_free_list);
5841                 INC_STAT(&priv->tx_free_stat);
5842         }
5843         spin_unlock_irqrestore(&priv->low_lock, flags);
5844
5845         IPW_DEBUG_INFO("exit\n");
5846
5847         return 0;
5848 }
5849
5850 /*
5851  * TODO:  Fix this function... its just wrong
5852  */
5853 static void ipw2100_tx_timeout(struct net_device *dev)
5854 {
5855         struct ipw2100_priv *priv = libipw_priv(dev);
5856
5857         dev->stats.tx_errors++;
5858
5859 #ifdef CONFIG_IPW2100_MONITOR
5860         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5861                 return;
5862 #endif
5863
5864         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5865                        dev->name);
5866         schedule_reset(priv);
5867 }
5868
5869 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5870 {
5871         /* This is called when wpa_supplicant loads and closes the driver
5872          * interface. */
5873         priv->ieee->wpa_enabled = value;
5874         return 0;
5875 }
5876
5877 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5878 {
5879
5880         struct libipw_device *ieee = priv->ieee;
5881         struct libipw_security sec = {
5882                 .flags = SEC_AUTH_MODE,
5883         };
5884         int ret = 0;
5885
5886         if (value & IW_AUTH_ALG_SHARED_KEY) {
5887                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5888                 ieee->open_wep = 0;
5889         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5890                 sec.auth_mode = WLAN_AUTH_OPEN;
5891                 ieee->open_wep = 1;
5892         } else if (value & IW_AUTH_ALG_LEAP) {
5893                 sec.auth_mode = WLAN_AUTH_LEAP;
5894                 ieee->open_wep = 1;
5895         } else
5896                 return -EINVAL;
5897
5898         if (ieee->set_security)
5899                 ieee->set_security(ieee->dev, &sec);
5900         else
5901                 ret = -EOPNOTSUPP;
5902
5903         return ret;
5904 }
5905
5906 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5907                                     char *wpa_ie, int wpa_ie_len)
5908 {
5909
5910         struct ipw2100_wpa_assoc_frame frame;
5911
5912         frame.fixed_ie_mask = 0;
5913
5914         /* copy WPA IE */
5915         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5916         frame.var_ie_len = wpa_ie_len;
5917
5918         /* make sure WPA is enabled */
5919         ipw2100_wpa_enable(priv, 1);
5920         ipw2100_set_wpa_ie(priv, &frame, 0);
5921 }
5922
5923 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5924                                     struct ethtool_drvinfo *info)
5925 {
5926         struct ipw2100_priv *priv = libipw_priv(dev);
5927         char fw_ver[64], ucode_ver[64];
5928
5929         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5930         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5931
5932         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5933         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5934
5935         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5936                  fw_ver, priv->eeprom_version, ucode_ver);
5937
5938         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5939                 sizeof(info->bus_info));
5940 }
5941
5942 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5943 {
5944         struct ipw2100_priv *priv = libipw_priv(dev);
5945         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5946 }
5947
5948 static const struct ethtool_ops ipw2100_ethtool_ops = {
5949         .get_link = ipw2100_ethtool_get_link,
5950         .get_drvinfo = ipw_ethtool_get_drvinfo,
5951 };
5952
5953 static void ipw2100_hang_check(struct work_struct *work)
5954 {
5955         struct ipw2100_priv *priv =
5956                 container_of(work, struct ipw2100_priv, hang_check.work);
5957         unsigned long flags;
5958         u32 rtc = 0xa5a5a5a5;
5959         u32 len = sizeof(rtc);
5960         int restart = 0;
5961
5962         spin_lock_irqsave(&priv->low_lock, flags);
5963
5964         if (priv->fatal_error != 0) {
5965                 /* If fatal_error is set then we need to restart */
5966                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5967                                priv->net_dev->name);
5968
5969                 restart = 1;
5970         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5971                    (rtc == priv->last_rtc)) {
5972                 /* Check if firmware is hung */
5973                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5974                                priv->net_dev->name);
5975
5976                 restart = 1;
5977         }
5978
5979         if (restart) {
5980                 /* Kill timer */
5981                 priv->stop_hang_check = 1;
5982                 priv->hangs++;
5983
5984                 /* Restart the NIC */
5985                 schedule_reset(priv);
5986         }
5987
5988         priv->last_rtc = rtc;
5989
5990         if (!priv->stop_hang_check)
5991                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5992
5993         spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
5996 static void ipw2100_rf_kill(struct work_struct *work)
5997 {
5998         struct ipw2100_priv *priv =
5999                 container_of(work, struct ipw2100_priv, rf_kill.work);
6000         unsigned long flags;
6001
6002         spin_lock_irqsave(&priv->low_lock, flags);
6003
6004         if (rf_kill_active(priv)) {
6005                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6006                 if (!priv->stop_rf_kill)
6007                         schedule_delayed_work(&priv->rf_kill,
6008                                               round_jiffies_relative(HZ));
6009                 goto exit_unlock;
6010         }
6011
6012         /* RF Kill is now disabled, so bring the device back up */
6013
6014         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6015                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6016                                   "device\n");
6017                 schedule_reset(priv);
6018         } else
6019                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6020                                   "enabled\n");
6021
6022       exit_unlock:
6023         spin_unlock_irqrestore(&priv->low_lock, flags);
6024 }
6025
6026 static void ipw2100_irq_tasklet(unsigned long data);
6027
6028 static const struct net_device_ops ipw2100_netdev_ops = {
6029         .ndo_open               = ipw2100_open,
6030         .ndo_stop               = ipw2100_close,
6031         .ndo_start_xmit         = libipw_xmit,
6032         .ndo_tx_timeout         = ipw2100_tx_timeout,
6033         .ndo_set_mac_address    = ipw2100_set_address,
6034         .ndo_validate_addr      = eth_validate_addr,
6035 };
6036
6037 /* Look into using netdev destructor to shutdown libipw? */
6038
6039 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6040                                                void __iomem * ioaddr)
6041 {
6042         struct ipw2100_priv *priv;
6043         struct net_device *dev;
6044
6045         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6046         if (!dev)
6047                 return NULL;
6048         priv = libipw_priv(dev);
6049         priv->ieee = netdev_priv(dev);
6050         priv->pci_dev = pci_dev;
6051         priv->net_dev = dev;
6052         priv->ioaddr = ioaddr;
6053
6054         priv->ieee->hard_start_xmit = ipw2100_tx;
6055         priv->ieee->set_security = shim__set_security;
6056
6057         priv->ieee->perfect_rssi = -20;
6058         priv->ieee->worst_rssi = -85;
6059
6060         dev->netdev_ops = &ipw2100_netdev_ops;
6061         dev->ethtool_ops = &ipw2100_ethtool_ops;
6062         dev->wireless_handlers = &ipw2100_wx_handler_def;
6063         priv->wireless_data.libipw = priv->ieee;
6064         dev->wireless_data = &priv->wireless_data;
6065         dev->watchdog_timeo = 3 * HZ;
6066         dev->irq = 0;
6067         dev->min_mtu = 68;
6068         dev->max_mtu = LIBIPW_DATA_LEN;
6069
6070         /* NOTE: We don't use the wireless_handlers hook
6071          * in dev as the system will start throwing WX requests
6072          * to us before we're actually initialized and it just
6073          * ends up causing problems.  So, we just handle
6074          * the WX extensions through the ipw2100_ioctl interface */
6075
6076         /* memset() puts everything to 0, so we only have explicitly set
6077          * those values that need to be something else */
6078
6079         /* If power management is turned on, default to AUTO mode */
6080         priv->power_mode = IPW_POWER_AUTO;
6081
6082 #ifdef CONFIG_IPW2100_MONITOR
6083         priv->config |= CFG_CRC_CHECK;
6084 #endif
6085         priv->ieee->wpa_enabled = 0;
6086         priv->ieee->drop_unencrypted = 0;
6087         priv->ieee->privacy_invoked = 0;
6088         priv->ieee->ieee802_1x = 1;
6089
6090         /* Set module parameters */
6091         switch (network_mode) {
6092         case 1:
6093                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6094                 break;
6095 #ifdef CONFIG_IPW2100_MONITOR
6096         case 2:
6097                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6098                 break;
6099 #endif
6100         default:
6101         case 0:
6102                 priv->ieee->iw_mode = IW_MODE_INFRA;
6103                 break;
6104         }
6105
6106         if (disable == 1)
6107                 priv->status |= STATUS_RF_KILL_SW;
6108
6109         if (channel != 0 &&
6110             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6111                 priv->config |= CFG_STATIC_CHANNEL;
6112                 priv->channel = channel;
6113         }
6114
6115         if (associate)
6116                 priv->config |= CFG_ASSOCIATE;
6117
6118         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6119         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6120         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6121         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6122         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6123         priv->tx_power = IPW_TX_POWER_DEFAULT;
6124         priv->tx_rates = DEFAULT_TX_RATES;
6125
6126         strcpy(priv->nick, "ipw2100");
6127
6128         spin_lock_init(&priv->low_lock);
6129         mutex_init(&priv->action_mutex);
6130         mutex_init(&priv->adapter_mutex);
6131
6132         init_waitqueue_head(&priv->wait_command_queue);
6133
6134         netif_carrier_off(dev);
6135
6136         INIT_LIST_HEAD(&priv->msg_free_list);
6137         INIT_LIST_HEAD(&priv->msg_pend_list);
6138         INIT_STAT(&priv->msg_free_stat);
6139         INIT_STAT(&priv->msg_pend_stat);
6140
6141         INIT_LIST_HEAD(&priv->tx_free_list);
6142         INIT_LIST_HEAD(&priv->tx_pend_list);
6143         INIT_STAT(&priv->tx_free_stat);
6144         INIT_STAT(&priv->tx_pend_stat);
6145
6146         INIT_LIST_HEAD(&priv->fw_pend_list);
6147         INIT_STAT(&priv->fw_pend_stat);
6148
6149         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6150         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6151         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6152         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6153         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6154         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6155
6156         tasklet_init(&priv->irq_tasklet,
6157                      ipw2100_irq_tasklet, (unsigned long)priv);
6158
6159         /* NOTE:  We do not start the deferred work for status checks yet */
6160         priv->stop_rf_kill = 1;
6161         priv->stop_hang_check = 1;
6162
6163         return dev;
6164 }
6165
6166 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6167                                 const struct pci_device_id *ent)
6168 {
6169         void __iomem *ioaddr;
6170         struct net_device *dev = NULL;
6171         struct ipw2100_priv *priv = NULL;
6172         int err = 0;
6173         int registered = 0;
6174         u32 val;
6175
6176         IPW_DEBUG_INFO("enter\n");
6177
6178         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6179                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6180                 err = -ENODEV;
6181                 goto out;
6182         }
6183
6184         ioaddr = pci_iomap(pci_dev, 0, 0);
6185         if (!ioaddr) {
6186                 printk(KERN_WARNING DRV_NAME
6187                        "Error calling ioremap_nocache.\n");
6188                 err = -EIO;
6189                 goto fail;
6190         }
6191
6192         /* allocate and initialize our net_device */
6193         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6194         if (!dev) {
6195                 printk(KERN_WARNING DRV_NAME
6196                        "Error calling ipw2100_alloc_device.\n");
6197                 err = -ENOMEM;
6198                 goto fail;
6199         }
6200
6201         /* set up PCI mappings for device */
6202         err = pci_enable_device(pci_dev);
6203         if (err) {
6204                 printk(KERN_WARNING DRV_NAME
6205                        "Error calling pci_enable_device.\n");
6206                 return err;
6207         }
6208
6209         priv = libipw_priv(dev);
6210
6211         pci_set_master(pci_dev);
6212         pci_set_drvdata(pci_dev, priv);
6213
6214         err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
6215         if (err) {
6216                 printk(KERN_WARNING DRV_NAME
6217                        "Error calling pci_set_dma_mask.\n");
6218                 pci_disable_device(pci_dev);
6219                 return err;
6220         }
6221
6222         err = pci_request_regions(pci_dev, DRV_NAME);
6223         if (err) {
6224                 printk(KERN_WARNING DRV_NAME
6225                        "Error calling pci_request_regions.\n");
6226                 pci_disable_device(pci_dev);
6227                 return err;
6228         }
6229
6230         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6231          * PCI Tx retries from interfering with C3 CPU state */
6232         pci_read_config_dword(pci_dev, 0x40, &val);
6233         if ((val & 0x0000ff00) != 0)
6234                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6235
6236         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6237                 printk(KERN_WARNING DRV_NAME
6238                        "Device not found via register read.\n");
6239                 err = -ENODEV;
6240                 goto fail;
6241         }
6242
6243         SET_NETDEV_DEV(dev, &pci_dev->dev);
6244
6245         /* Force interrupts to be shut off on the device */
6246         priv->status |= STATUS_INT_ENABLED;
6247         ipw2100_disable_interrupts(priv);
6248
6249         /* Allocate and initialize the Tx/Rx queues and lists */
6250         if (ipw2100_queues_allocate(priv)) {
6251                 printk(KERN_WARNING DRV_NAME
6252                        "Error calling ipw2100_queues_allocate.\n");
6253                 err = -ENOMEM;
6254                 goto fail;
6255         }
6256         ipw2100_queues_initialize(priv);
6257
6258         err = request_irq(pci_dev->irq,
6259                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6260         if (err) {
6261                 printk(KERN_WARNING DRV_NAME
6262                        "Error calling request_irq: %d.\n", pci_dev->irq);
6263                 goto fail;
6264         }
6265         dev->irq = pci_dev->irq;
6266
6267         IPW_DEBUG_INFO("Attempting to register device...\n");
6268
6269         printk(KERN_INFO DRV_NAME
6270                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6271
6272         err = ipw2100_up(priv, 1);
6273         if (err)
6274                 goto fail;
6275
6276         err = ipw2100_wdev_init(dev);
6277         if (err)
6278                 goto fail;
6279         registered = 1;
6280
6281         /* Bring up the interface.  Pre 0.46, after we registered the
6282          * network device we would call ipw2100_up.  This introduced a race
6283          * condition with newer hotplug configurations (network was coming
6284          * up and making calls before the device was initialized).
6285          */
6286         err = register_netdev(dev);
6287         if (err) {
6288                 printk(KERN_WARNING DRV_NAME
6289                        "Error calling register_netdev.\n");
6290                 goto fail;
6291         }
6292         registered = 2;
6293
6294         mutex_lock(&priv->action_mutex);
6295
6296         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6297
6298         /* perform this after register_netdev so that dev->name is set */
6299         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6300         if (err)
6301                 goto fail_unlock;
6302
6303         /* If the RF Kill switch is disabled, go ahead and complete the
6304          * startup sequence */
6305         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6306                 /* Enable the adapter - sends HOST_COMPLETE */
6307                 if (ipw2100_enable_adapter(priv)) {
6308                         printk(KERN_WARNING DRV_NAME
6309                                ": %s: failed in call to enable adapter.\n",
6310                                priv->net_dev->name);
6311                         ipw2100_hw_stop_adapter(priv);
6312                         err = -EIO;
6313                         goto fail_unlock;
6314                 }
6315
6316                 /* Start a scan . . . */
6317                 ipw2100_set_scan_options(priv);
6318                 ipw2100_start_scan(priv);
6319         }
6320
6321         IPW_DEBUG_INFO("exit\n");
6322
6323         priv->status |= STATUS_INITIALIZED;
6324
6325         mutex_unlock(&priv->action_mutex);
6326 out:
6327         return err;
6328
6329       fail_unlock:
6330         mutex_unlock(&priv->action_mutex);
6331       fail:
6332         if (dev) {
6333                 if (registered >= 2)
6334                         unregister_netdev(dev);
6335
6336                 if (registered) {
6337                         wiphy_unregister(priv->ieee->wdev.wiphy);
6338                         kfree(priv->ieee->bg_band.channels);
6339                 }
6340
6341                 ipw2100_hw_stop_adapter(priv);
6342
6343                 ipw2100_disable_interrupts(priv);
6344
6345                 if (dev->irq)
6346                         free_irq(dev->irq, priv);
6347
6348                 ipw2100_kill_works(priv);
6349
6350                 /* These are safe to call even if they weren't allocated */
6351                 ipw2100_queues_free(priv);
6352                 sysfs_remove_group(&pci_dev->dev.kobj,
6353                                    &ipw2100_attribute_group);
6354
6355                 free_libipw(dev, 0);
6356         }
6357
6358         pci_iounmap(pci_dev, ioaddr);
6359
6360         pci_release_regions(pci_dev);
6361         pci_disable_device(pci_dev);
6362         goto out;
6363 }
6364
6365 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6366 {
6367         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6368         struct net_device *dev = priv->net_dev;
6369
6370         mutex_lock(&priv->action_mutex);
6371
6372         priv->status &= ~STATUS_INITIALIZED;
6373
6374         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6375
6376 #ifdef CONFIG_PM
6377         if (ipw2100_firmware.version)
6378                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6379 #endif
6380         /* Take down the hardware */
6381         ipw2100_down(priv);
6382
6383         /* Release the mutex so that the network subsystem can
6384          * complete any needed calls into the driver... */
6385         mutex_unlock(&priv->action_mutex);
6386
6387         /* Unregister the device first - this results in close()
6388          * being called if the device is open.  If we free storage
6389          * first, then close() will crash.
6390          * FIXME: remove the comment above. */
6391         unregister_netdev(dev);
6392
6393         ipw2100_kill_works(priv);
6394
6395         ipw2100_queues_free(priv);
6396
6397         /* Free potential debugging firmware snapshot */
6398         ipw2100_snapshot_free(priv);
6399
6400         free_irq(dev->irq, priv);
6401
6402         pci_iounmap(pci_dev, priv->ioaddr);
6403
6404         /* wiphy_unregister needs to be here, before free_libipw */
6405         wiphy_unregister(priv->ieee->wdev.wiphy);
6406         kfree(priv->ieee->bg_band.channels);
6407         free_libipw(dev, 0);
6408
6409         pci_release_regions(pci_dev);
6410         pci_disable_device(pci_dev);
6411
6412         IPW_DEBUG_INFO("exit\n");
6413 }
6414
6415 #ifdef CONFIG_PM
6416 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6417 {
6418         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419         struct net_device *dev = priv->net_dev;
6420
6421         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6422
6423         mutex_lock(&priv->action_mutex);
6424         if (priv->status & STATUS_INITIALIZED) {
6425                 /* Take down the device; powers it off, etc. */
6426                 ipw2100_down(priv);
6427         }
6428
6429         /* Remove the PRESENT state of the device */
6430         netif_device_detach(dev);
6431
6432         pci_save_state(pci_dev);
6433         pci_disable_device(pci_dev);
6434         pci_set_power_state(pci_dev, PCI_D3hot);
6435
6436         priv->suspend_at = ktime_get_boottime_seconds();
6437
6438         mutex_unlock(&priv->action_mutex);
6439
6440         return 0;
6441 }
6442
6443 static int ipw2100_resume(struct pci_dev *pci_dev)
6444 {
6445         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6446         struct net_device *dev = priv->net_dev;
6447         int err;
6448         u32 val;
6449
6450         if (IPW2100_PM_DISABLED)
6451                 return 0;
6452
6453         mutex_lock(&priv->action_mutex);
6454
6455         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6456
6457         pci_set_power_state(pci_dev, PCI_D0);
6458         err = pci_enable_device(pci_dev);
6459         if (err) {
6460                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6461                        dev->name);
6462                 mutex_unlock(&priv->action_mutex);
6463                 return err;
6464         }
6465         pci_restore_state(pci_dev);
6466
6467         /*
6468          * Suspend/Resume resets the PCI configuration space, so we have to
6469          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6470          * from interfering with C3 CPU state. pci_restore_state won't help
6471          * here since it only restores the first 64 bytes pci config header.
6472          */
6473         pci_read_config_dword(pci_dev, 0x40, &val);
6474         if ((val & 0x0000ff00) != 0)
6475                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6476
6477         /* Set the device back into the PRESENT state; this will also wake
6478          * the queue of needed */
6479         netif_device_attach(dev);
6480
6481         priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6482
6483         /* Bring the device back up */
6484         if (!(priv->status & STATUS_RF_KILL_SW))
6485                 ipw2100_up(priv, 0);
6486
6487         mutex_unlock(&priv->action_mutex);
6488
6489         return 0;
6490 }
6491 #endif
6492
6493 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6494 {
6495         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6496
6497         /* Take down the device; powers it off, etc. */
6498         ipw2100_down(priv);
6499
6500         pci_disable_device(pci_dev);
6501 }
6502
6503 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6504
6505 static const struct pci_device_id ipw2100_pci_id_table[] = {
6506         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6507         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6508         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6509         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6510         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6511         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6512         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6513         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6514         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6516         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6517         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6518         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6519
6520         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6521         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6522         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6523         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6524         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6525
6526         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6527         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6528         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6529         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6530         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6531         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6532         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6533
6534         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6535
6536         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6537         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6538         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6539         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6540         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6541         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6542         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6543
6544         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6545         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6546         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6548         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6549         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6550
6551         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6552         {0,},
6553 };
6554
6555 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6556
6557 static struct pci_driver ipw2100_pci_driver = {
6558         .name = DRV_NAME,
6559         .id_table = ipw2100_pci_id_table,
6560         .probe = ipw2100_pci_init_one,
6561         .remove = ipw2100_pci_remove_one,
6562 #ifdef CONFIG_PM
6563         .suspend = ipw2100_suspend,
6564         .resume = ipw2100_resume,
6565 #endif
6566         .shutdown = ipw2100_shutdown,
6567 };
6568
6569 /**
6570  * Initialize the ipw2100 driver/module
6571  *
6572  * @returns 0 if ok, < 0 errno node con error.
6573  *
6574  * Note: we cannot init the /proc stuff until the PCI driver is there,
6575  * or we risk an unlikely race condition on someone accessing
6576  * uninitialized data in the PCI dev struct through /proc.
6577  */
6578 static int __init ipw2100_init(void)
6579 {
6580         int ret;
6581
6582         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6583         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6584
6585         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6586                            PM_QOS_DEFAULT_VALUE);
6587
6588         ret = pci_register_driver(&ipw2100_pci_driver);
6589         if (ret)
6590                 goto out;
6591
6592 #ifdef CONFIG_IPW2100_DEBUG
6593         ipw2100_debug_level = debug;
6594         ret = driver_create_file(&ipw2100_pci_driver.driver,
6595                                  &driver_attr_debug_level);
6596 #endif
6597
6598 out:
6599         return ret;
6600 }
6601
6602 /**
6603  * Cleanup ipw2100 driver registration
6604  */
6605 static void __exit ipw2100_exit(void)
6606 {
6607         /* FIXME: IPG: check that we have no instances of the devices open */
6608 #ifdef CONFIG_IPW2100_DEBUG
6609         driver_remove_file(&ipw2100_pci_driver.driver,
6610                            &driver_attr_debug_level);
6611 #endif
6612         pci_unregister_driver(&ipw2100_pci_driver);
6613         pm_qos_remove_request(&ipw2100_pm_qos_req);
6614 }
6615
6616 module_init(ipw2100_init);
6617 module_exit(ipw2100_exit);
6618
6619 static int ipw2100_wx_get_name(struct net_device *dev,
6620                                struct iw_request_info *info,
6621                                union iwreq_data *wrqu, char *extra)
6622 {
6623         /*
6624          * This can be called at any time.  No action lock required
6625          */
6626
6627         struct ipw2100_priv *priv = libipw_priv(dev);
6628         if (!(priv->status & STATUS_ASSOCIATED))
6629                 strcpy(wrqu->name, "unassociated");
6630         else
6631                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6632
6633         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6634         return 0;
6635 }
6636
6637 static int ipw2100_wx_set_freq(struct net_device *dev,
6638                                struct iw_request_info *info,
6639                                union iwreq_data *wrqu, char *extra)
6640 {
6641         struct ipw2100_priv *priv = libipw_priv(dev);
6642         struct iw_freq *fwrq = &wrqu->freq;
6643         int err = 0;
6644
6645         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6646                 return -EOPNOTSUPP;
6647
6648         mutex_lock(&priv->action_mutex);
6649         if (!(priv->status & STATUS_INITIALIZED)) {
6650                 err = -EIO;
6651                 goto done;
6652         }
6653
6654         /* if setting by freq convert to channel */
6655         if (fwrq->e == 1) {
6656                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6657                         int f = fwrq->m / 100000;
6658                         int c = 0;
6659
6660                         while ((c < REG_MAX_CHANNEL) &&
6661                                (f != ipw2100_frequencies[c]))
6662                                 c++;
6663
6664                         /* hack to fall through */
6665                         fwrq->e = 0;
6666                         fwrq->m = c + 1;
6667                 }
6668         }
6669
6670         if (fwrq->e > 0 || fwrq->m > 1000) {
6671                 err = -EOPNOTSUPP;
6672                 goto done;
6673         } else {                /* Set the channel */
6674                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6675                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6676         }
6677
6678       done:
6679         mutex_unlock(&priv->action_mutex);
6680         return err;
6681 }
6682
6683 static int ipw2100_wx_get_freq(struct net_device *dev,
6684                                struct iw_request_info *info,
6685                                union iwreq_data *wrqu, char *extra)
6686 {
6687         /*
6688          * This can be called at any time.  No action lock required
6689          */
6690
6691         struct ipw2100_priv *priv = libipw_priv(dev);
6692
6693         wrqu->freq.e = 0;
6694
6695         /* If we are associated, trying to associate, or have a statically
6696          * configured CHANNEL then return that; otherwise return ANY */
6697         if (priv->config & CFG_STATIC_CHANNEL ||
6698             priv->status & STATUS_ASSOCIATED)
6699                 wrqu->freq.m = priv->channel;
6700         else
6701                 wrqu->freq.m = 0;
6702
6703         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6704         return 0;
6705
6706 }
6707
6708 static int ipw2100_wx_set_mode(struct net_device *dev,
6709                                struct iw_request_info *info,
6710                                union iwreq_data *wrqu, char *extra)
6711 {
6712         struct ipw2100_priv *priv = libipw_priv(dev);
6713         int err = 0;
6714
6715         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6716
6717         if (wrqu->mode == priv->ieee->iw_mode)
6718                 return 0;
6719
6720         mutex_lock(&priv->action_mutex);
6721         if (!(priv->status & STATUS_INITIALIZED)) {
6722                 err = -EIO;
6723                 goto done;
6724         }
6725
6726         switch (wrqu->mode) {
6727 #ifdef CONFIG_IPW2100_MONITOR
6728         case IW_MODE_MONITOR:
6729                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6730                 break;
6731 #endif                          /* CONFIG_IPW2100_MONITOR */
6732         case IW_MODE_ADHOC:
6733                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6734                 break;
6735         case IW_MODE_INFRA:
6736         case IW_MODE_AUTO:
6737         default:
6738                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6739                 break;
6740         }
6741
6742       done:
6743         mutex_unlock(&priv->action_mutex);
6744         return err;
6745 }
6746
6747 static int ipw2100_wx_get_mode(struct net_device *dev,
6748                                struct iw_request_info *info,
6749                                union iwreq_data *wrqu, char *extra)
6750 {
6751         /*
6752          * This can be called at any time.  No action lock required
6753          */
6754
6755         struct ipw2100_priv *priv = libipw_priv(dev);
6756
6757         wrqu->mode = priv->ieee->iw_mode;
6758         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6759
6760         return 0;
6761 }
6762
6763 #define POWER_MODES 5
6764
6765 /* Values are in microsecond */
6766 static const s32 timeout_duration[POWER_MODES] = {
6767         350000,
6768         250000,
6769         75000,
6770         37000,
6771         25000,
6772 };
6773
6774 static const s32 period_duration[POWER_MODES] = {
6775         400000,
6776         700000,
6777         1000000,
6778         1000000,
6779         1000000
6780 };
6781
6782 static int ipw2100_wx_get_range(struct net_device *dev,
6783                                 struct iw_request_info *info,
6784                                 union iwreq_data *wrqu, char *extra)
6785 {
6786         /*
6787          * This can be called at any time.  No action lock required
6788          */
6789
6790         struct ipw2100_priv *priv = libipw_priv(dev);
6791         struct iw_range *range = (struct iw_range *)extra;
6792         u16 val;
6793         int i, level;
6794
6795         wrqu->data.length = sizeof(*range);
6796         memset(range, 0, sizeof(*range));
6797
6798         /* Let's try to keep this struct in the same order as in
6799          * linux/include/wireless.h
6800          */
6801
6802         /* TODO: See what values we can set, and remove the ones we can't
6803          * set, or fill them with some default data.
6804          */
6805
6806         /* ~5 Mb/s real (802.11b) */
6807         range->throughput = 5 * 1000 * 1000;
6808
6809 //      range->sensitivity;     /* signal level threshold range */
6810
6811         range->max_qual.qual = 100;
6812         /* TODO: Find real max RSSI and stick here */
6813         range->max_qual.level = 0;
6814         range->max_qual.noise = 0;
6815         range->max_qual.updated = 7;    /* Updated all three */
6816
6817         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6818         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6819         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6820         range->avg_qual.noise = 0;
6821         range->avg_qual.updated = 7;    /* Updated all three */
6822
6823         range->num_bitrates = RATE_COUNT;
6824
6825         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6826                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6827         }
6828
6829         range->min_rts = MIN_RTS_THRESHOLD;
6830         range->max_rts = MAX_RTS_THRESHOLD;
6831         range->min_frag = MIN_FRAG_THRESHOLD;
6832         range->max_frag = MAX_FRAG_THRESHOLD;
6833
6834         range->min_pmp = period_duration[0];    /* Minimal PM period */
6835         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6836         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6837         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6838
6839         /* How to decode max/min PM period */
6840         range->pmp_flags = IW_POWER_PERIOD;
6841         /* How to decode max/min PM period */
6842         range->pmt_flags = IW_POWER_TIMEOUT;
6843         /* What PM options are supported */
6844         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6845
6846         range->encoding_size[0] = 5;
6847         range->encoding_size[1] = 13;   /* Different token sizes */
6848         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6849         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6850 //      range->encoding_login_index;            /* token index for login token */
6851
6852         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6853                 range->txpower_capa = IW_TXPOW_DBM;
6854                 range->num_txpower = IW_MAX_TXPOWER;
6855                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6856                      i < IW_MAX_TXPOWER;
6857                      i++, level -=
6858                      ((IPW_TX_POWER_MAX_DBM -
6859                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6860                         range->txpower[i] = level / 16;
6861         } else {
6862                 range->txpower_capa = 0;
6863                 range->num_txpower = 0;
6864         }
6865
6866         /* Set the Wireless Extension versions */
6867         range->we_version_compiled = WIRELESS_EXT;
6868         range->we_version_source = 18;
6869
6870 //      range->retry_capa;      /* What retry options are supported */
6871 //      range->retry_flags;     /* How to decode max/min retry limit */
6872 //      range->r_time_flags;    /* How to decode max/min retry life */
6873 //      range->min_retry;       /* Minimal number of retries */
6874 //      range->max_retry;       /* Maximal number of retries */
6875 //      range->min_r_time;      /* Minimal retry lifetime */
6876 //      range->max_r_time;      /* Maximal retry lifetime */
6877
6878         range->num_channels = FREQ_COUNT;
6879
6880         val = 0;
6881         for (i = 0; i < FREQ_COUNT; i++) {
6882                 // TODO: Include only legal frequencies for some countries
6883 //              if (local->channel_mask & (1 << i)) {
6884                 range->freq[val].i = i + 1;
6885                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6886                 range->freq[val].e = 1;
6887                 val++;
6888 //              }
6889                 if (val == IW_MAX_FREQUENCIES)
6890                         break;
6891         }
6892         range->num_frequency = val;
6893
6894         /* Event capability (kernel + driver) */
6895         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6896                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6897         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6898
6899         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6900                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6901
6902         IPW_DEBUG_WX("GET Range\n");
6903
6904         return 0;
6905 }
6906
6907 static int ipw2100_wx_set_wap(struct net_device *dev,
6908                               struct iw_request_info *info,
6909                               union iwreq_data *wrqu, char *extra)
6910 {
6911         struct ipw2100_priv *priv = libipw_priv(dev);
6912         int err = 0;
6913
6914         // sanity checks
6915         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6916                 return -EINVAL;
6917
6918         mutex_lock(&priv->action_mutex);
6919         if (!(priv->status & STATUS_INITIALIZED)) {
6920                 err = -EIO;
6921                 goto done;
6922         }
6923
6924         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6925             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6926                 /* we disable mandatory BSSID association */
6927                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6928                 priv->config &= ~CFG_STATIC_BSSID;
6929                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6930                 goto done;
6931         }
6932
6933         priv->config |= CFG_STATIC_BSSID;
6934         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6935
6936         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6937
6938         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6939
6940       done:
6941         mutex_unlock(&priv->action_mutex);
6942         return err;
6943 }
6944
6945 static int ipw2100_wx_get_wap(struct net_device *dev,
6946                               struct iw_request_info *info,
6947                               union iwreq_data *wrqu, char *extra)
6948 {
6949         /*
6950          * This can be called at any time.  No action lock required
6951          */
6952
6953         struct ipw2100_priv *priv = libipw_priv(dev);
6954
6955         /* If we are associated, trying to associate, or have a statically
6956          * configured BSSID then return that; otherwise return ANY */
6957         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6958                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6959                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6960         } else
6961                 eth_zero_addr(wrqu->ap_addr.sa_data);
6962
6963         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6964         return 0;
6965 }
6966
6967 static int ipw2100_wx_set_essid(struct net_device *dev,
6968                                 struct iw_request_info *info,
6969                                 union iwreq_data *wrqu, char *extra)
6970 {
6971         struct ipw2100_priv *priv = libipw_priv(dev);
6972         char *essid = "";       /* ANY */
6973         int length = 0;
6974         int err = 0;
6975
6976         mutex_lock(&priv->action_mutex);
6977         if (!(priv->status & STATUS_INITIALIZED)) {
6978                 err = -EIO;
6979                 goto done;
6980         }
6981
6982         if (wrqu->essid.flags && wrqu->essid.length) {
6983                 length = wrqu->essid.length;
6984                 essid = extra;
6985         }
6986
6987         if (length == 0) {
6988                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6989                 priv->config &= ~CFG_STATIC_ESSID;
6990                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6991                 goto done;
6992         }
6993
6994         length = min(length, IW_ESSID_MAX_SIZE);
6995
6996         priv->config |= CFG_STATIC_ESSID;
6997
6998         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6999                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7000                 err = 0;
7001                 goto done;
7002         }
7003
7004         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7005
7006         priv->essid_len = length;
7007         memcpy(priv->essid, essid, priv->essid_len);
7008
7009         err = ipw2100_set_essid(priv, essid, length, 0);
7010
7011       done:
7012         mutex_unlock(&priv->action_mutex);
7013         return err;
7014 }
7015
7016 static int ipw2100_wx_get_essid(struct net_device *dev,
7017                                 struct iw_request_info *info,
7018                                 union iwreq_data *wrqu, char *extra)
7019 {
7020         /*
7021          * This can be called at any time.  No action lock required
7022          */
7023
7024         struct ipw2100_priv *priv = libipw_priv(dev);
7025
7026         /* If we are associated, trying to associate, or have a statically
7027          * configured ESSID then return that; otherwise return ANY */
7028         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7029                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7030                              priv->essid_len, priv->essid);
7031                 memcpy(extra, priv->essid, priv->essid_len);
7032                 wrqu->essid.length = priv->essid_len;
7033                 wrqu->essid.flags = 1;  /* active */
7034         } else {
7035                 IPW_DEBUG_WX("Getting essid: ANY\n");
7036                 wrqu->essid.length = 0;
7037                 wrqu->essid.flags = 0;  /* active */
7038         }
7039
7040         return 0;
7041 }
7042
7043 static int ipw2100_wx_set_nick(struct net_device *dev,
7044                                struct iw_request_info *info,
7045                                union iwreq_data *wrqu, char *extra)
7046 {
7047         /*
7048          * This can be called at any time.  No action lock required
7049          */
7050
7051         struct ipw2100_priv *priv = libipw_priv(dev);
7052
7053         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7054                 return -E2BIG;
7055
7056         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7057         memset(priv->nick, 0, sizeof(priv->nick));
7058         memcpy(priv->nick, extra, wrqu->data.length);
7059
7060         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7061
7062         return 0;
7063 }
7064
7065 static int ipw2100_wx_get_nick(struct net_device *dev,
7066                                struct iw_request_info *info,
7067                                union iwreq_data *wrqu, char *extra)
7068 {
7069         /*
7070          * This can be called at any time.  No action lock required
7071          */
7072
7073         struct ipw2100_priv *priv = libipw_priv(dev);
7074
7075         wrqu->data.length = strlen(priv->nick);
7076         memcpy(extra, priv->nick, wrqu->data.length);
7077         wrqu->data.flags = 1;   /* active */
7078
7079         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7080
7081         return 0;
7082 }
7083
7084 static int ipw2100_wx_set_rate(struct net_device *dev,
7085                                struct iw_request_info *info,
7086                                union iwreq_data *wrqu, char *extra)
7087 {
7088         struct ipw2100_priv *priv = libipw_priv(dev);
7089         u32 target_rate = wrqu->bitrate.value;
7090         u32 rate;
7091         int err = 0;
7092
7093         mutex_lock(&priv->action_mutex);
7094         if (!(priv->status & STATUS_INITIALIZED)) {
7095                 err = -EIO;
7096                 goto done;
7097         }
7098
7099         rate = 0;
7100
7101         if (target_rate == 1000000 ||
7102             (!wrqu->bitrate.fixed && target_rate > 1000000))
7103                 rate |= TX_RATE_1_MBIT;
7104         if (target_rate == 2000000 ||
7105             (!wrqu->bitrate.fixed && target_rate > 2000000))
7106                 rate |= TX_RATE_2_MBIT;
7107         if (target_rate == 5500000 ||
7108             (!wrqu->bitrate.fixed && target_rate > 5500000))
7109                 rate |= TX_RATE_5_5_MBIT;
7110         if (target_rate == 11000000 ||
7111             (!wrqu->bitrate.fixed && target_rate > 11000000))
7112                 rate |= TX_RATE_11_MBIT;
7113         if (rate == 0)
7114                 rate = DEFAULT_TX_RATES;
7115
7116         err = ipw2100_set_tx_rates(priv, rate, 0);
7117
7118         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7119       done:
7120         mutex_unlock(&priv->action_mutex);
7121         return err;
7122 }
7123
7124 static int ipw2100_wx_get_rate(struct net_device *dev,
7125                                struct iw_request_info *info,
7126                                union iwreq_data *wrqu, char *extra)
7127 {
7128         struct ipw2100_priv *priv = libipw_priv(dev);
7129         int val;
7130         unsigned int len = sizeof(val);
7131         int err = 0;
7132
7133         if (!(priv->status & STATUS_ENABLED) ||
7134             priv->status & STATUS_RF_KILL_MASK ||
7135             !(priv->status & STATUS_ASSOCIATED)) {
7136                 wrqu->bitrate.value = 0;
7137                 return 0;
7138         }
7139
7140         mutex_lock(&priv->action_mutex);
7141         if (!(priv->status & STATUS_INITIALIZED)) {
7142                 err = -EIO;
7143                 goto done;
7144         }
7145
7146         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7147         if (err) {
7148                 IPW_DEBUG_WX("failed querying ordinals.\n");
7149                 goto done;
7150         }
7151
7152         switch (val & TX_RATE_MASK) {
7153         case TX_RATE_1_MBIT:
7154                 wrqu->bitrate.value = 1000000;
7155                 break;
7156         case TX_RATE_2_MBIT:
7157                 wrqu->bitrate.value = 2000000;
7158                 break;
7159         case TX_RATE_5_5_MBIT:
7160                 wrqu->bitrate.value = 5500000;
7161                 break;
7162         case TX_RATE_11_MBIT:
7163                 wrqu->bitrate.value = 11000000;
7164                 break;
7165         default:
7166                 wrqu->bitrate.value = 0;
7167         }
7168
7169         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7170
7171       done:
7172         mutex_unlock(&priv->action_mutex);
7173         return err;
7174 }
7175
7176 static int ipw2100_wx_set_rts(struct net_device *dev,
7177                               struct iw_request_info *info,
7178                               union iwreq_data *wrqu, char *extra)
7179 {
7180         struct ipw2100_priv *priv = libipw_priv(dev);
7181         int value, err;
7182
7183         /* Auto RTS not yet supported */
7184         if (wrqu->rts.fixed == 0)
7185                 return -EINVAL;
7186
7187         mutex_lock(&priv->action_mutex);
7188         if (!(priv->status & STATUS_INITIALIZED)) {
7189                 err = -EIO;
7190                 goto done;
7191         }
7192
7193         if (wrqu->rts.disabled)
7194                 value = priv->rts_threshold | RTS_DISABLED;
7195         else {
7196                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7197                         err = -EINVAL;
7198                         goto done;
7199                 }
7200                 value = wrqu->rts.value;
7201         }
7202
7203         err = ipw2100_set_rts_threshold(priv, value);
7204
7205         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7206       done:
7207         mutex_unlock(&priv->action_mutex);
7208         return err;
7209 }
7210
7211 static int ipw2100_wx_get_rts(struct net_device *dev,
7212                               struct iw_request_info *info,
7213                               union iwreq_data *wrqu, char *extra)
7214 {
7215         /*
7216          * This can be called at any time.  No action lock required
7217          */
7218
7219         struct ipw2100_priv *priv = libipw_priv(dev);
7220
7221         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7222         wrqu->rts.fixed = 1;    /* no auto select */
7223
7224         /* If RTS is set to the default value, then it is disabled */
7225         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7226
7227         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7228
7229         return 0;
7230 }
7231
7232 static int ipw2100_wx_set_txpow(struct net_device *dev,
7233                                 struct iw_request_info *info,
7234                                 union iwreq_data *wrqu, char *extra)
7235 {
7236         struct ipw2100_priv *priv = libipw_priv(dev);
7237         int err = 0, value;
7238         
7239         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7240                 return -EINPROGRESS;
7241
7242         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7243                 return 0;
7244
7245         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7246                 return -EINVAL;
7247
7248         if (wrqu->txpower.fixed == 0)
7249                 value = IPW_TX_POWER_DEFAULT;
7250         else {
7251                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7252                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7253                         return -EINVAL;
7254
7255                 value = wrqu->txpower.value;
7256         }
7257
7258         mutex_lock(&priv->action_mutex);
7259         if (!(priv->status & STATUS_INITIALIZED)) {
7260                 err = -EIO;
7261                 goto done;
7262         }
7263
7264         err = ipw2100_set_tx_power(priv, value);
7265
7266         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7267
7268       done:
7269         mutex_unlock(&priv->action_mutex);
7270         return err;
7271 }
7272
7273 static int ipw2100_wx_get_txpow(struct net_device *dev,
7274                                 struct iw_request_info *info,
7275                                 union iwreq_data *wrqu, char *extra)
7276 {
7277         /*
7278          * This can be called at any time.  No action lock required
7279          */
7280
7281         struct ipw2100_priv *priv = libipw_priv(dev);
7282
7283         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7284
7285         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7286                 wrqu->txpower.fixed = 0;
7287                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7288         } else {
7289                 wrqu->txpower.fixed = 1;
7290                 wrqu->txpower.value = priv->tx_power;
7291         }
7292
7293         wrqu->txpower.flags = IW_TXPOW_DBM;
7294
7295         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7296
7297         return 0;
7298 }
7299
7300 static int ipw2100_wx_set_frag(struct net_device *dev,
7301                                struct iw_request_info *info,
7302                                union iwreq_data *wrqu, char *extra)
7303 {
7304         /*
7305          * This can be called at any time.  No action lock required
7306          */
7307
7308         struct ipw2100_priv *priv = libipw_priv(dev);
7309
7310         if (!wrqu->frag.fixed)
7311                 return -EINVAL;
7312
7313         if (wrqu->frag.disabled) {
7314                 priv->frag_threshold |= FRAG_DISABLED;
7315                 priv->ieee->fts = DEFAULT_FTS;
7316         } else {
7317                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7318                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7319                         return -EINVAL;
7320
7321                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7322                 priv->frag_threshold = priv->ieee->fts;
7323         }
7324
7325         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7326
7327         return 0;
7328 }
7329
7330 static int ipw2100_wx_get_frag(struct net_device *dev,
7331                                struct iw_request_info *info,
7332                                union iwreq_data *wrqu, char *extra)
7333 {
7334         /*
7335          * This can be called at any time.  No action lock required
7336          */
7337
7338         struct ipw2100_priv *priv = libipw_priv(dev);
7339         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7340         wrqu->frag.fixed = 0;   /* no auto select */
7341         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7342
7343         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7344
7345         return 0;
7346 }
7347
7348 static int ipw2100_wx_set_retry(struct net_device *dev,
7349                                 struct iw_request_info *info,
7350                                 union iwreq_data *wrqu, char *extra)
7351 {
7352         struct ipw2100_priv *priv = libipw_priv(dev);
7353         int err = 0;
7354
7355         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7356                 return -EINVAL;
7357
7358         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7359                 return 0;
7360
7361         mutex_lock(&priv->action_mutex);
7362         if (!(priv->status & STATUS_INITIALIZED)) {
7363                 err = -EIO;
7364                 goto done;
7365         }
7366
7367         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7368                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7369                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7370                              wrqu->retry.value);
7371                 goto done;
7372         }
7373
7374         if (wrqu->retry.flags & IW_RETRY_LONG) {
7375                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7376                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7377                              wrqu->retry.value);
7378                 goto done;
7379         }
7380
7381         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7382         if (!err)
7383                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7384
7385         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7386
7387       done:
7388         mutex_unlock(&priv->action_mutex);
7389         return err;
7390 }
7391
7392 static int ipw2100_wx_get_retry(struct net_device *dev,
7393                                 struct iw_request_info *info,
7394                                 union iwreq_data *wrqu, char *extra)
7395 {
7396         /*
7397          * This can be called at any time.  No action lock required
7398          */
7399
7400         struct ipw2100_priv *priv = libipw_priv(dev);
7401
7402         wrqu->retry.disabled = 0;       /* can't be disabled */
7403
7404         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7405                 return -EINVAL;
7406
7407         if (wrqu->retry.flags & IW_RETRY_LONG) {
7408                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7409                 wrqu->retry.value = priv->long_retry_limit;
7410         } else {
7411                 wrqu->retry.flags =
7412                     (priv->short_retry_limit !=
7413                      priv->long_retry_limit) ?
7414                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7415
7416                 wrqu->retry.value = priv->short_retry_limit;
7417         }
7418
7419         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7420
7421         return 0;
7422 }
7423
7424 static int ipw2100_wx_set_scan(struct net_device *dev,
7425                                struct iw_request_info *info,
7426                                union iwreq_data *wrqu, char *extra)
7427 {
7428         struct ipw2100_priv *priv = libipw_priv(dev);
7429         int err = 0;
7430
7431         mutex_lock(&priv->action_mutex);
7432         if (!(priv->status & STATUS_INITIALIZED)) {
7433                 err = -EIO;
7434                 goto done;
7435         }
7436
7437         IPW_DEBUG_WX("Initiating scan...\n");
7438
7439         priv->user_requested_scan = 1;
7440         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7441                 IPW_DEBUG_WX("Start scan failed.\n");
7442
7443                 /* TODO: Mark a scan as pending so when hardware initialized
7444                  *       a scan starts */
7445         }
7446
7447       done:
7448         mutex_unlock(&priv->action_mutex);
7449         return err;
7450 }
7451
7452 static int ipw2100_wx_get_scan(struct net_device *dev,
7453                                struct iw_request_info *info,
7454                                union iwreq_data *wrqu, char *extra)
7455 {
7456         /*
7457          * This can be called at any time.  No action lock required
7458          */
7459
7460         struct ipw2100_priv *priv = libipw_priv(dev);
7461         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7462 }
7463
7464 /*
7465  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7466  */
7467 static int ipw2100_wx_set_encode(struct net_device *dev,
7468                                  struct iw_request_info *info,
7469                                  union iwreq_data *wrqu, char *key)
7470 {
7471         /*
7472          * No check of STATUS_INITIALIZED required
7473          */
7474
7475         struct ipw2100_priv *priv = libipw_priv(dev);
7476         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7477 }
7478
7479 static int ipw2100_wx_get_encode(struct net_device *dev,
7480                                  struct iw_request_info *info,
7481                                  union iwreq_data *wrqu, char *key)
7482 {
7483         /*
7484          * This can be called at any time.  No action lock required
7485          */
7486
7487         struct ipw2100_priv *priv = libipw_priv(dev);
7488         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7489 }
7490
7491 static int ipw2100_wx_set_power(struct net_device *dev,
7492                                 struct iw_request_info *info,
7493                                 union iwreq_data *wrqu, char *extra)
7494 {
7495         struct ipw2100_priv *priv = libipw_priv(dev);
7496         int err = 0;
7497
7498         mutex_lock(&priv->action_mutex);
7499         if (!(priv->status & STATUS_INITIALIZED)) {
7500                 err = -EIO;
7501                 goto done;
7502         }
7503
7504         if (wrqu->power.disabled) {
7505                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7506                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7507                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7508                 goto done;
7509         }
7510
7511         switch (wrqu->power.flags & IW_POWER_MODE) {
7512         case IW_POWER_ON:       /* If not specified */
7513         case IW_POWER_MODE:     /* If set all mask */
7514         case IW_POWER_ALL_R:    /* If explicitly state all */
7515                 break;
7516         default:                /* Otherwise we don't support it */
7517                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7518                              wrqu->power.flags);
7519                 err = -EOPNOTSUPP;
7520                 goto done;
7521         }
7522
7523         /* If the user hasn't specified a power management mode yet, default
7524          * to BATTERY */
7525         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7526         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7527
7528         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7529
7530       done:
7531         mutex_unlock(&priv->action_mutex);
7532         return err;
7533
7534 }
7535
7536 static int ipw2100_wx_get_power(struct net_device *dev,
7537                                 struct iw_request_info *info,
7538                                 union iwreq_data *wrqu, char *extra)
7539 {
7540         /*
7541          * This can be called at any time.  No action lock required
7542          */
7543
7544         struct ipw2100_priv *priv = libipw_priv(dev);
7545
7546         if (!(priv->power_mode & IPW_POWER_ENABLED))
7547                 wrqu->power.disabled = 1;
7548         else {
7549                 wrqu->power.disabled = 0;
7550                 wrqu->power.flags = 0;
7551         }
7552
7553         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7554
7555         return 0;
7556 }
7557
7558 /*
7559  * WE-18 WPA support
7560  */
7561
7562 /* SIOCSIWGENIE */
7563 static int ipw2100_wx_set_genie(struct net_device *dev,
7564                                 struct iw_request_info *info,
7565                                 union iwreq_data *wrqu, char *extra)
7566 {
7567
7568         struct ipw2100_priv *priv = libipw_priv(dev);
7569         struct libipw_device *ieee = priv->ieee;
7570         u8 *buf;
7571
7572         if (!ieee->wpa_enabled)
7573                 return -EOPNOTSUPP;
7574
7575         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7576             (wrqu->data.length && extra == NULL))
7577                 return -EINVAL;
7578
7579         if (wrqu->data.length) {
7580                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7581                 if (buf == NULL)
7582                         return -ENOMEM;
7583
7584                 kfree(ieee->wpa_ie);
7585                 ieee->wpa_ie = buf;
7586                 ieee->wpa_ie_len = wrqu->data.length;
7587         } else {
7588                 kfree(ieee->wpa_ie);
7589                 ieee->wpa_ie = NULL;
7590                 ieee->wpa_ie_len = 0;
7591         }
7592
7593         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7594
7595         return 0;
7596 }
7597
7598 /* SIOCGIWGENIE */
7599 static int ipw2100_wx_get_genie(struct net_device *dev,
7600                                 struct iw_request_info *info,
7601                                 union iwreq_data *wrqu, char *extra)
7602 {
7603         struct ipw2100_priv *priv = libipw_priv(dev);
7604         struct libipw_device *ieee = priv->ieee;
7605
7606         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7607                 wrqu->data.length = 0;
7608                 return 0;
7609         }
7610
7611         if (wrqu->data.length < ieee->wpa_ie_len)
7612                 return -E2BIG;
7613
7614         wrqu->data.length = ieee->wpa_ie_len;
7615         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7616
7617         return 0;
7618 }
7619
7620 /* SIOCSIWAUTH */
7621 static int ipw2100_wx_set_auth(struct net_device *dev,
7622                                struct iw_request_info *info,
7623                                union iwreq_data *wrqu, char *extra)
7624 {
7625         struct ipw2100_priv *priv = libipw_priv(dev);
7626         struct libipw_device *ieee = priv->ieee;
7627         struct iw_param *param = &wrqu->param;
7628         struct lib80211_crypt_data *crypt;
7629         unsigned long flags;
7630         int ret = 0;
7631
7632         switch (param->flags & IW_AUTH_INDEX) {
7633         case IW_AUTH_WPA_VERSION:
7634         case IW_AUTH_CIPHER_PAIRWISE:
7635         case IW_AUTH_CIPHER_GROUP:
7636         case IW_AUTH_KEY_MGMT:
7637                 /*
7638                  * ipw2200 does not use these parameters
7639                  */
7640                 break;
7641
7642         case IW_AUTH_TKIP_COUNTERMEASURES:
7643                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7644                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7645                         break;
7646
7647                 flags = crypt->ops->get_flags(crypt->priv);
7648
7649                 if (param->value)
7650                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7651                 else
7652                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7653
7654                 crypt->ops->set_flags(flags, crypt->priv);
7655
7656                 break;
7657
7658         case IW_AUTH_DROP_UNENCRYPTED:{
7659                         /* HACK:
7660                          *
7661                          * wpa_supplicant calls set_wpa_enabled when the driver
7662                          * is loaded and unloaded, regardless of if WPA is being
7663                          * used.  No other calls are made which can be used to
7664                          * determine if encryption will be used or not prior to
7665                          * association being expected.  If encryption is not being
7666                          * used, drop_unencrypted is set to false, else true -- we
7667                          * can use this to determine if the CAP_PRIVACY_ON bit should
7668                          * be set.
7669                          */
7670                         struct libipw_security sec = {
7671                                 .flags = SEC_ENABLED,
7672                                 .enabled = param->value,
7673                         };
7674                         priv->ieee->drop_unencrypted = param->value;
7675                         /* We only change SEC_LEVEL for open mode. Others
7676                          * are set by ipw_wpa_set_encryption.
7677                          */
7678                         if (!param->value) {
7679                                 sec.flags |= SEC_LEVEL;
7680                                 sec.level = SEC_LEVEL_0;
7681                         } else {
7682                                 sec.flags |= SEC_LEVEL;
7683                                 sec.level = SEC_LEVEL_1;
7684                         }
7685                         if (priv->ieee->set_security)
7686                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7687                         break;
7688                 }
7689
7690         case IW_AUTH_80211_AUTH_ALG:
7691                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7692                 break;
7693
7694         case IW_AUTH_WPA_ENABLED:
7695                 ret = ipw2100_wpa_enable(priv, param->value);
7696                 break;
7697
7698         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7699                 ieee->ieee802_1x = param->value;
7700                 break;
7701
7702                 //case IW_AUTH_ROAMING_CONTROL:
7703         case IW_AUTH_PRIVACY_INVOKED:
7704                 ieee->privacy_invoked = param->value;
7705                 break;
7706
7707         default:
7708                 return -EOPNOTSUPP;
7709         }
7710         return ret;
7711 }
7712
7713 /* SIOCGIWAUTH */
7714 static int ipw2100_wx_get_auth(struct net_device *dev,
7715                                struct iw_request_info *info,
7716                                union iwreq_data *wrqu, char *extra)
7717 {
7718         struct ipw2100_priv *priv = libipw_priv(dev);
7719         struct libipw_device *ieee = priv->ieee;
7720         struct lib80211_crypt_data *crypt;
7721         struct iw_param *param = &wrqu->param;
7722
7723         switch (param->flags & IW_AUTH_INDEX) {
7724         case IW_AUTH_WPA_VERSION:
7725         case IW_AUTH_CIPHER_PAIRWISE:
7726         case IW_AUTH_CIPHER_GROUP:
7727         case IW_AUTH_KEY_MGMT:
7728                 /*
7729                  * wpa_supplicant will control these internally
7730                  */
7731                 break;
7732
7733         case IW_AUTH_TKIP_COUNTERMEASURES:
7734                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7735                 if (!crypt || !crypt->ops->get_flags) {
7736                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7737                                           "crypt not set!\n");
7738                         break;
7739                 }
7740
7741                 param->value = (crypt->ops->get_flags(crypt->priv) &
7742                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7743
7744                 break;
7745
7746         case IW_AUTH_DROP_UNENCRYPTED:
7747                 param->value = ieee->drop_unencrypted;
7748                 break;
7749
7750         case IW_AUTH_80211_AUTH_ALG:
7751                 param->value = priv->ieee->sec.auth_mode;
7752                 break;
7753
7754         case IW_AUTH_WPA_ENABLED:
7755                 param->value = ieee->wpa_enabled;
7756                 break;
7757
7758         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7759                 param->value = ieee->ieee802_1x;
7760                 break;
7761
7762         case IW_AUTH_ROAMING_CONTROL:
7763         case IW_AUTH_PRIVACY_INVOKED:
7764                 param->value = ieee->privacy_invoked;
7765                 break;
7766
7767         default:
7768                 return -EOPNOTSUPP;
7769         }
7770         return 0;
7771 }
7772
7773 /* SIOCSIWENCODEEXT */
7774 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7775                                     struct iw_request_info *info,
7776                                     union iwreq_data *wrqu, char *extra)
7777 {
7778         struct ipw2100_priv *priv = libipw_priv(dev);
7779         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7780 }
7781
7782 /* SIOCGIWENCODEEXT */
7783 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7784                                     struct iw_request_info *info,
7785                                     union iwreq_data *wrqu, char *extra)
7786 {
7787         struct ipw2100_priv *priv = libipw_priv(dev);
7788         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7789 }
7790
7791 /* SIOCSIWMLME */
7792 static int ipw2100_wx_set_mlme(struct net_device *dev,
7793                                struct iw_request_info *info,
7794                                union iwreq_data *wrqu, char *extra)
7795 {
7796         struct ipw2100_priv *priv = libipw_priv(dev);
7797         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7798
7799         switch (mlme->cmd) {
7800         case IW_MLME_DEAUTH:
7801                 // silently ignore
7802                 break;
7803
7804         case IW_MLME_DISASSOC:
7805                 ipw2100_disassociate_bssid(priv);
7806                 break;
7807
7808         default:
7809                 return -EOPNOTSUPP;
7810         }
7811         return 0;
7812 }
7813
7814 /*
7815  *
7816  * IWPRIV handlers
7817  *
7818  */
7819 #ifdef CONFIG_IPW2100_MONITOR
7820 static int ipw2100_wx_set_promisc(struct net_device *dev,
7821                                   struct iw_request_info *info,
7822                                   union iwreq_data *wrqu, char *extra)
7823 {
7824         struct ipw2100_priv *priv = libipw_priv(dev);
7825         int *parms = (int *)extra;
7826         int enable = (parms[0] > 0);
7827         int err = 0;
7828
7829         mutex_lock(&priv->action_mutex);
7830         if (!(priv->status & STATUS_INITIALIZED)) {
7831                 err = -EIO;
7832                 goto done;
7833         }
7834
7835         if (enable) {
7836                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7837                         err = ipw2100_set_channel(priv, parms[1], 0);
7838                         goto done;
7839                 }
7840                 priv->channel = parms[1];
7841                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7842         } else {
7843                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7844                         err = ipw2100_switch_mode(priv, priv->last_mode);
7845         }
7846       done:
7847         mutex_unlock(&priv->action_mutex);
7848         return err;
7849 }
7850
7851 static int ipw2100_wx_reset(struct net_device *dev,
7852                             struct iw_request_info *info,
7853                             union iwreq_data *wrqu, char *extra)
7854 {
7855         struct ipw2100_priv *priv = libipw_priv(dev);
7856         if (priv->status & STATUS_INITIALIZED)
7857                 schedule_reset(priv);
7858         return 0;
7859 }
7860
7861 #endif
7862
7863 static int ipw2100_wx_set_powermode(struct net_device *dev,
7864                                     struct iw_request_info *info,
7865                                     union iwreq_data *wrqu, char *extra)
7866 {
7867         struct ipw2100_priv *priv = libipw_priv(dev);
7868         int err = 0, mode = *(int *)extra;
7869
7870         mutex_lock(&priv->action_mutex);
7871         if (!(priv->status & STATUS_INITIALIZED)) {
7872                 err = -EIO;
7873                 goto done;
7874         }
7875
7876         if ((mode < 0) || (mode > POWER_MODES))
7877                 mode = IPW_POWER_AUTO;
7878
7879         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7880                 err = ipw2100_set_power_mode(priv, mode);
7881       done:
7882         mutex_unlock(&priv->action_mutex);
7883         return err;
7884 }
7885
7886 #define MAX_POWER_STRING 80
7887 static int ipw2100_wx_get_powermode(struct net_device *dev,
7888                                     struct iw_request_info *info,
7889                                     union iwreq_data *wrqu, char *extra)
7890 {
7891         /*
7892          * This can be called at any time.  No action lock required
7893          */
7894
7895         struct ipw2100_priv *priv = libipw_priv(dev);
7896         int level = IPW_POWER_LEVEL(priv->power_mode);
7897         s32 timeout, period;
7898
7899         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7900                 snprintf(extra, MAX_POWER_STRING,
7901                          "Power save level: %d (Off)", level);
7902         } else {
7903                 switch (level) {
7904                 case IPW_POWER_MODE_CAM:
7905                         snprintf(extra, MAX_POWER_STRING,
7906                                  "Power save level: %d (None)", level);
7907                         break;
7908                 case IPW_POWER_AUTO:
7909                         snprintf(extra, MAX_POWER_STRING,
7910                                  "Power save level: %d (Auto)", level);
7911                         break;
7912                 default:
7913                         timeout = timeout_duration[level - 1] / 1000;
7914                         period = period_duration[level - 1] / 1000;
7915                         snprintf(extra, MAX_POWER_STRING,
7916                                  "Power save level: %d "
7917                                  "(Timeout %dms, Period %dms)",
7918                                  level, timeout, period);
7919                 }
7920         }
7921
7922         wrqu->data.length = strlen(extra) + 1;
7923
7924         return 0;
7925 }
7926
7927 static int ipw2100_wx_set_preamble(struct net_device *dev,
7928                                    struct iw_request_info *info,
7929                                    union iwreq_data *wrqu, char *extra)
7930 {
7931         struct ipw2100_priv *priv = libipw_priv(dev);
7932         int err, mode = *(int *)extra;
7933
7934         mutex_lock(&priv->action_mutex);
7935         if (!(priv->status & STATUS_INITIALIZED)) {
7936                 err = -EIO;
7937                 goto done;
7938         }
7939
7940         if (mode == 1)
7941                 priv->config |= CFG_LONG_PREAMBLE;
7942         else if (mode == 0)
7943                 priv->config &= ~CFG_LONG_PREAMBLE;
7944         else {
7945                 err = -EINVAL;
7946                 goto done;
7947         }
7948
7949         err = ipw2100_system_config(priv, 0);
7950
7951       done:
7952         mutex_unlock(&priv->action_mutex);
7953         return err;
7954 }
7955
7956 static int ipw2100_wx_get_preamble(struct net_device *dev,
7957                                    struct iw_request_info *info,
7958                                    union iwreq_data *wrqu, char *extra)
7959 {
7960         /*
7961          * This can be called at any time.  No action lock required
7962          */
7963
7964         struct ipw2100_priv *priv = libipw_priv(dev);
7965
7966         if (priv->config & CFG_LONG_PREAMBLE)
7967                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7968         else
7969                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7970
7971         return 0;
7972 }
7973
7974 #ifdef CONFIG_IPW2100_MONITOR
7975 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7976                                     struct iw_request_info *info,
7977                                     union iwreq_data *wrqu, char *extra)
7978 {
7979         struct ipw2100_priv *priv = libipw_priv(dev);
7980         int err, mode = *(int *)extra;
7981
7982         mutex_lock(&priv->action_mutex);
7983         if (!(priv->status & STATUS_INITIALIZED)) {
7984                 err = -EIO;
7985                 goto done;
7986         }
7987
7988         if (mode == 1)
7989                 priv->config |= CFG_CRC_CHECK;
7990         else if (mode == 0)
7991                 priv->config &= ~CFG_CRC_CHECK;
7992         else {
7993                 err = -EINVAL;
7994                 goto done;
7995         }
7996         err = 0;
7997
7998       done:
7999         mutex_unlock(&priv->action_mutex);
8000         return err;
8001 }
8002
8003 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8004                                     struct iw_request_info *info,
8005                                     union iwreq_data *wrqu, char *extra)
8006 {
8007         /*
8008          * This can be called at any time.  No action lock required
8009          */
8010
8011         struct ipw2100_priv *priv = libipw_priv(dev);
8012
8013         if (priv->config & CFG_CRC_CHECK)
8014                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8015         else
8016                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8017
8018         return 0;
8019 }
8020 #endif                          /* CONFIG_IPW2100_MONITOR */
8021
8022 static iw_handler ipw2100_wx_handlers[] = {
8023         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8024         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8025         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8026         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8027         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8028         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8029         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8030         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8031         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8032         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8033         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8034         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8035         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8036         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8037         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8038         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8039         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8040         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8041         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8042         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8043         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8044         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8045         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8046         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8047         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8048         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8049         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8050         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8051         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8052         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8053         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8054         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8055         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8056         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8057         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8058 };
8059
8060 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8061 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8062 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8063 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8064 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8065 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8066 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8067 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8068
8069 static const struct iw_priv_args ipw2100_private_args[] = {
8070
8071 #ifdef CONFIG_IPW2100_MONITOR
8072         {
8073          IPW2100_PRIV_SET_MONITOR,
8074          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8075         {
8076          IPW2100_PRIV_RESET,
8077          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8078 #endif                          /* CONFIG_IPW2100_MONITOR */
8079
8080         {
8081          IPW2100_PRIV_SET_POWER,
8082          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8083         {
8084          IPW2100_PRIV_GET_POWER,
8085          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8086          "get_power"},
8087         {
8088          IPW2100_PRIV_SET_LONGPREAMBLE,
8089          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8090         {
8091          IPW2100_PRIV_GET_LONGPREAMBLE,
8092          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8093 #ifdef CONFIG_IPW2100_MONITOR
8094         {
8095          IPW2100_PRIV_SET_CRC_CHECK,
8096          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8097         {
8098          IPW2100_PRIV_GET_CRC_CHECK,
8099          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8100 #endif                          /* CONFIG_IPW2100_MONITOR */
8101 };
8102
8103 static iw_handler ipw2100_private_handler[] = {
8104 #ifdef CONFIG_IPW2100_MONITOR
8105         ipw2100_wx_set_promisc,
8106         ipw2100_wx_reset,
8107 #else                           /* CONFIG_IPW2100_MONITOR */
8108         NULL,
8109         NULL,
8110 #endif                          /* CONFIG_IPW2100_MONITOR */
8111         ipw2100_wx_set_powermode,
8112         ipw2100_wx_get_powermode,
8113         ipw2100_wx_set_preamble,
8114         ipw2100_wx_get_preamble,
8115 #ifdef CONFIG_IPW2100_MONITOR
8116         ipw2100_wx_set_crc_check,
8117         ipw2100_wx_get_crc_check,
8118 #else                           /* CONFIG_IPW2100_MONITOR */
8119         NULL,
8120         NULL,
8121 #endif                          /* CONFIG_IPW2100_MONITOR */
8122 };
8123
8124 /*
8125  * Get wireless statistics.
8126  * Called by /proc/net/wireless
8127  * Also called by SIOCGIWSTATS
8128  */
8129 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8130 {
8131         enum {
8132                 POOR = 30,
8133                 FAIR = 60,
8134                 GOOD = 80,
8135                 VERY_GOOD = 90,
8136                 EXCELLENT = 95,
8137                 PERFECT = 100
8138         };
8139         int rssi_qual;
8140         int tx_qual;
8141         int beacon_qual;
8142         int quality;
8143
8144         struct ipw2100_priv *priv = libipw_priv(dev);
8145         struct iw_statistics *wstats;
8146         u32 rssi, tx_retries, missed_beacons, tx_failures;
8147         u32 ord_len = sizeof(u32);
8148
8149         if (!priv)
8150                 return (struct iw_statistics *)NULL;
8151
8152         wstats = &priv->wstats;
8153
8154         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8155          * ipw2100_wx_wireless_stats seems to be called before fw is
8156          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8157          * and associated; if not associcated, the values are all meaningless
8158          * anyway, so set them all to NULL and INVALID */
8159         if (!(priv->status & STATUS_ASSOCIATED)) {
8160                 wstats->miss.beacon = 0;
8161                 wstats->discard.retries = 0;
8162                 wstats->qual.qual = 0;
8163                 wstats->qual.level = 0;
8164                 wstats->qual.noise = 0;
8165                 wstats->qual.updated = 7;
8166                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8167                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8168                 return wstats;
8169         }
8170
8171         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8172                                 &missed_beacons, &ord_len))
8173                 goto fail_get_ordinal;
8174
8175         /* If we don't have a connection the quality and level is 0 */
8176         if (!(priv->status & STATUS_ASSOCIATED)) {
8177                 wstats->qual.qual = 0;
8178                 wstats->qual.level = 0;
8179         } else {
8180                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8181                                         &rssi, &ord_len))
8182                         goto fail_get_ordinal;
8183                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8184                 if (rssi < 10)
8185                         rssi_qual = rssi * POOR / 10;
8186                 else if (rssi < 15)
8187                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8188                 else if (rssi < 20)
8189                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8190                 else if (rssi < 30)
8191                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8192                             10 + GOOD;
8193                 else
8194                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8195                             10 + VERY_GOOD;
8196
8197                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8198                                         &tx_retries, &ord_len))
8199                         goto fail_get_ordinal;
8200
8201                 if (tx_retries > 75)
8202                         tx_qual = (90 - tx_retries) * POOR / 15;
8203                 else if (tx_retries > 70)
8204                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8205                 else if (tx_retries > 65)
8206                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8207                 else if (tx_retries > 50)
8208                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8209                             15 + GOOD;
8210                 else
8211                         tx_qual = (50 - tx_retries) *
8212                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8213
8214                 if (missed_beacons > 50)
8215                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8216                 else if (missed_beacons > 40)
8217                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8218                             10 + POOR;
8219                 else if (missed_beacons > 32)
8220                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8221                             18 + FAIR;
8222                 else if (missed_beacons > 20)
8223                         beacon_qual = (32 - missed_beacons) *
8224                             (VERY_GOOD - GOOD) / 20 + GOOD;
8225                 else
8226                         beacon_qual = (20 - missed_beacons) *
8227                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8228
8229                 quality = min(tx_qual, rssi_qual);
8230                 quality = min(beacon_qual, quality);
8231
8232 #ifdef CONFIG_IPW2100_DEBUG
8233                 if (beacon_qual == quality)
8234                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8235                 else if (tx_qual == quality)
8236                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8237                 else if (quality != 100)
8238                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8239                 else
8240                         IPW_DEBUG_WX("Quality not clamped.\n");
8241 #endif
8242
8243                 wstats->qual.qual = quality;
8244                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8245         }
8246
8247         wstats->qual.noise = 0;
8248         wstats->qual.updated = 7;
8249         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8250
8251         /* FIXME: this is percent and not a # */
8252         wstats->miss.beacon = missed_beacons;
8253
8254         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8255                                 &tx_failures, &ord_len))
8256                 goto fail_get_ordinal;
8257         wstats->discard.retries = tx_failures;
8258
8259         return wstats;
8260
8261       fail_get_ordinal:
8262         IPW_DEBUG_WX("failed querying ordinals.\n");
8263
8264         return (struct iw_statistics *)NULL;
8265 }
8266
8267 static const struct iw_handler_def ipw2100_wx_handler_def = {
8268         .standard = ipw2100_wx_handlers,
8269         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8270         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8271         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8272         .private = (iw_handler *) ipw2100_private_handler,
8273         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8274         .get_wireless_stats = ipw2100_wx_wireless_stats,
8275 };
8276
8277 static void ipw2100_wx_event_work(struct work_struct *work)
8278 {
8279         struct ipw2100_priv *priv =
8280                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8281         union iwreq_data wrqu;
8282         unsigned int len = ETH_ALEN;
8283
8284         if (priv->status & STATUS_STOPPING)
8285                 return;
8286
8287         mutex_lock(&priv->action_mutex);
8288
8289         IPW_DEBUG_WX("enter\n");
8290
8291         mutex_unlock(&priv->action_mutex);
8292
8293         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8294
8295         /* Fetch BSSID from the hardware */
8296         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8297             priv->status & STATUS_RF_KILL_MASK ||
8298             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8299                                 &priv->bssid, &len)) {
8300                 eth_zero_addr(wrqu.ap_addr.sa_data);
8301         } else {
8302                 /* We now have the BSSID, so can finish setting to the full
8303                  * associated state */
8304                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8305                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8306                 priv->status &= ~STATUS_ASSOCIATING;
8307                 priv->status |= STATUS_ASSOCIATED;
8308                 netif_carrier_on(priv->net_dev);
8309                 netif_wake_queue(priv->net_dev);
8310         }
8311
8312         if (!(priv->status & STATUS_ASSOCIATED)) {
8313                 IPW_DEBUG_WX("Configuring ESSID\n");
8314                 mutex_lock(&priv->action_mutex);
8315                 /* This is a disassociation event, so kick the firmware to
8316                  * look for another AP */
8317                 if (priv->config & CFG_STATIC_ESSID)
8318                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8319                                           0);
8320                 else
8321                         ipw2100_set_essid(priv, NULL, 0, 0);
8322                 mutex_unlock(&priv->action_mutex);
8323         }
8324
8325         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8326 }
8327
8328 /*(DEBLOBBED)*/
8329
8330 #define IPW2100_FW_PREFIX "/*(DEBLOBBED)*/" /*(DEBLOBBED)*/
8331
8332 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX /*(DEBLOBBED)*/
8333
8334 /*
8335
8336 BINARY FIRMWARE HEADER FORMAT
8337
8338 offset      length   desc
8339 0           2        version
8340 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8341 4           4        fw_len
8342 8           4        uc_len
8343 C           fw_len   firmware data
8344 12 + fw_len uc_len   microcode data
8345
8346 */
8347
8348 struct ipw2100_fw_header {
8349         short version;
8350         short mode;
8351         unsigned int fw_size;
8352         unsigned int uc_size;
8353 } __packed;
8354
8355 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8356 {
8357         struct ipw2100_fw_header *h =
8358             (struct ipw2100_fw_header *)fw->fw_entry->data;
8359
8360         /*(DEBLOBBED)*/
8361
8362         fw->version = h->version;
8363         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8364         fw->fw.size = h->fw_size;
8365         fw->uc.data = fw->fw.data + h->fw_size;
8366         fw->uc.size = h->uc_size;
8367
8368         return 0;
8369 }
8370
8371 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8372                                 struct ipw2100_fw *fw)
8373 {
8374         char *fw_name;
8375         int rc;
8376
8377         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8378                        priv->net_dev->name);
8379
8380         switch (priv->ieee->iw_mode) {
8381         case IW_MODE_ADHOC:
8382                 fw_name = IPW2100_FW_NAME("-i");
8383                 break;
8384 #ifdef CONFIG_IPW2100_MONITOR
8385         case IW_MODE_MONITOR:
8386                 fw_name = IPW2100_FW_NAME("-p");
8387                 break;
8388 #endif
8389         case IW_MODE_INFRA:
8390         default:
8391                 fw_name = IPW2100_FW_NAME("");
8392                 break;
8393         }
8394
8395         rc = reject_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8396
8397         if (rc < 0) {
8398                 printk(KERN_ERR DRV_NAME ": "
8399                        "%s: Firmware '%s' not available or load failed.\n",
8400                        priv->net_dev->name, fw_name);
8401                 return rc;
8402         }
8403         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8404                        fw->fw_entry->size);
8405
8406         ipw2100_mod_firmware_load(fw);
8407
8408         return 0;
8409 }
8410
8411 /*(DEBLOBBED)*/
8412 #ifdef CONFIG_IPW2100_MONITOR
8413 /*(DEBLOBBED)*/
8414 #endif
8415 /*(DEBLOBBED)*/
8416
8417 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8418                                      struct ipw2100_fw *fw)
8419 {
8420         fw->version = 0;
8421         release_firmware(fw->fw_entry);
8422         fw->fw_entry = NULL;
8423 }
8424
8425 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8426                                  size_t max)
8427 {
8428         char ver[MAX_FW_VERSION_LEN];
8429         u32 len = MAX_FW_VERSION_LEN;
8430         u32 tmp;
8431         int i;
8432         /* firmware version is an ascii string (max len of 14) */
8433         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8434                 return -EIO;
8435         tmp = max;
8436         if (len >= max)
8437                 len = max - 1;
8438         for (i = 0; i < len; i++)
8439                 buf[i] = ver[i];
8440         buf[i] = '\0';
8441         return tmp;
8442 }
8443
8444 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8445                                     size_t max)
8446 {
8447         u32 ver;
8448         u32 len = sizeof(ver);
8449         /* microcode version is a 32 bit integer */
8450         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8451                 return -EIO;
8452         return snprintf(buf, max, "%08X", ver);
8453 }
8454
8455 /*
8456  * On exit, the firmware will have been freed from the fw list
8457  */
8458 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8459 {
8460         /* firmware is constructed of N contiguous entries, each entry is
8461          * structured as:
8462          *
8463          * offset    sie         desc
8464          * 0         4           address to write to
8465          * 4         2           length of data run
8466          * 6         length      data
8467          */
8468         unsigned int addr;
8469         unsigned short len;
8470
8471         const unsigned char *firmware_data = fw->fw.data;
8472         unsigned int firmware_data_left = fw->fw.size;
8473
8474         while (firmware_data_left > 0) {
8475                 addr = *(u32 *) (firmware_data);
8476                 firmware_data += 4;
8477                 firmware_data_left -= 4;
8478
8479                 len = *(u16 *) (firmware_data);
8480                 firmware_data += 2;
8481                 firmware_data_left -= 2;
8482
8483                 if (len > 32) {
8484                         printk(KERN_ERR DRV_NAME ": "
8485                                "Invalid firmware run-length of %d bytes\n",
8486                                len);
8487                         return -EINVAL;
8488                 }
8489
8490                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8491                 firmware_data += len;
8492                 firmware_data_left -= len;
8493         }
8494
8495         return 0;
8496 }
8497
8498 struct symbol_alive_response {
8499         u8 cmd_id;
8500         u8 seq_num;
8501         u8 ucode_rev;
8502         u8 eeprom_valid;
8503         u16 valid_flags;
8504         u8 IEEE_addr[6];
8505         u16 flags;
8506         u16 pcb_rev;
8507         u16 clock_settle_time;  // 1us LSB
8508         u16 powerup_settle_time;        // 1us LSB
8509         u16 hop_settle_time;    // 1us LSB
8510         u8 date[3];             // month, day, year
8511         u8 time[2];             // hours, minutes
8512         u8 ucode_valid;
8513 };
8514
8515 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8516                                   struct ipw2100_fw *fw)
8517 {
8518         struct net_device *dev = priv->net_dev;
8519         const unsigned char *microcode_data = fw->uc.data;
8520         unsigned int microcode_data_left = fw->uc.size;
8521         void __iomem *reg = priv->ioaddr;
8522
8523         struct symbol_alive_response response;
8524         int i, j;
8525         u8 data;
8526
8527         /* Symbol control */
8528         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8529         readl(reg);
8530         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8531         readl(reg);
8532
8533         /* HW config */
8534         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8535         readl(reg);
8536         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8537         readl(reg);
8538
8539         /* EN_CS_ACCESS bit to reset control store pointer */
8540         write_nic_byte(dev, 0x210000, 0x40);
8541         readl(reg);
8542         write_nic_byte(dev, 0x210000, 0x0);
8543         readl(reg);
8544         write_nic_byte(dev, 0x210000, 0x40);
8545         readl(reg);
8546
8547         /* copy microcode from buffer into Symbol */
8548
8549         while (microcode_data_left > 0) {
8550                 write_nic_byte(dev, 0x210010, *microcode_data++);
8551                 write_nic_byte(dev, 0x210010, *microcode_data++);
8552                 microcode_data_left -= 2;
8553         }
8554
8555         /* EN_CS_ACCESS bit to reset the control store pointer */
8556         write_nic_byte(dev, 0x210000, 0x0);
8557         readl(reg);
8558
8559         /* Enable System (Reg 0)
8560          * first enable causes garbage in RX FIFO */
8561         write_nic_byte(dev, 0x210000, 0x0);
8562         readl(reg);
8563         write_nic_byte(dev, 0x210000, 0x80);
8564         readl(reg);
8565
8566         /* Reset External Baseband Reg */
8567         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8568         readl(reg);
8569         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8570         readl(reg);
8571
8572         /* HW Config (Reg 5) */
8573         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8574         readl(reg);
8575         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8576         readl(reg);
8577
8578         /* Enable System (Reg 0)
8579          * second enable should be OK */
8580         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8581         readl(reg);
8582         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8583
8584         /* check Symbol is enabled - upped this from 5 as it wasn't always
8585          * catching the update */
8586         for (i = 0; i < 10; i++) {
8587                 udelay(10);
8588
8589                 /* check Dino is enabled bit */
8590                 read_nic_byte(dev, 0x210000, &data);
8591                 if (data & 0x1)
8592                         break;
8593         }
8594
8595         if (i == 10) {
8596                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8597                        dev->name);
8598                 return -EIO;
8599         }
8600
8601         /* Get Symbol alive response */
8602         for (i = 0; i < 30; i++) {
8603                 /* Read alive response structure */
8604                 for (j = 0;
8605                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8606                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8607
8608                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8609                         break;
8610                 udelay(10);
8611         }
8612
8613         if (i == 30) {
8614                 printk(KERN_ERR DRV_NAME
8615                        ": %s: No response from Symbol - hw not alive\n",
8616                        dev->name);
8617                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8618                 return -EIO;
8619         }
8620
8621         return 0;
8622 }