GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 /*(DEBLOBBED)*/
88 #ifdef CONFIG_IPW2200_MONITOR
89 /*(DEBLOBBED)*/
90 #endif
91 /*(DEBLOBBED)*/
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224 static DRIVER_ATTR_RW(debug_level);
1225
1226 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1227 {
1228         /* length = 1st dword in log */
1229         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1230 }
1231
1232 static void ipw_capture_event_log(struct ipw_priv *priv,
1233                                   u32 log_len, struct ipw_event *log)
1234 {
1235         u32 base;
1236
1237         if (log_len) {
1238                 base = ipw_read32(priv, IPW_EVENT_LOG);
1239                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1240                                   (u8 *) log, sizeof(*log) * log_len);
1241         }
1242 }
1243
1244 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1245 {
1246         struct ipw_fw_error *error;
1247         u32 log_len = ipw_get_event_log_len(priv);
1248         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1249         u32 elem_len = ipw_read_reg32(priv, base);
1250
1251         error = kmalloc(sizeof(*error) +
1252                         sizeof(*error->elem) * elem_len +
1253                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1254         if (!error) {
1255                 IPW_ERROR("Memory allocation for firmware error log "
1256                           "failed.\n");
1257                 return NULL;
1258         }
1259         error->jiffies = jiffies;
1260         error->status = priv->status;
1261         error->config = priv->config;
1262         error->elem_len = elem_len;
1263         error->log_len = log_len;
1264         error->elem = (struct ipw_error_elem *)error->payload;
1265         error->log = (struct ipw_event *)(error->elem + elem_len);
1266
1267         ipw_capture_event_log(priv, log_len, error->log);
1268
1269         if (elem_len)
1270                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1271                                   sizeof(*error->elem) * elem_len);
1272
1273         return error;
1274 }
1275
1276 static ssize_t show_event_log(struct device *d,
1277                               struct device_attribute *attr, char *buf)
1278 {
1279         struct ipw_priv *priv = dev_get_drvdata(d);
1280         u32 log_len = ipw_get_event_log_len(priv);
1281         u32 log_size;
1282         struct ipw_event *log;
1283         u32 len = 0, i;
1284
1285         /* not using min() because of its strict type checking */
1286         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1287                         sizeof(*log) * log_len : PAGE_SIZE;
1288         log = kzalloc(log_size, GFP_KERNEL);
1289         if (!log) {
1290                 IPW_ERROR("Unable to allocate memory for log\n");
1291                 return 0;
1292         }
1293         log_len = log_size / sizeof(*log);
1294         ipw_capture_event_log(priv, log_len, log);
1295
1296         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1297         for (i = 0; i < log_len; i++)
1298                 len += snprintf(buf + len, PAGE_SIZE - len,
1299                                 "\n%08X%08X%08X",
1300                                 log[i].time, log[i].event, log[i].data);
1301         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1302         kfree(log);
1303         return len;
1304 }
1305
1306 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1307
1308 static ssize_t show_error(struct device *d,
1309                           struct device_attribute *attr, char *buf)
1310 {
1311         struct ipw_priv *priv = dev_get_drvdata(d);
1312         u32 len = 0, i;
1313         if (!priv->error)
1314                 return 0;
1315         len += snprintf(buf + len, PAGE_SIZE - len,
1316                         "%08lX%08X%08X%08X",
1317                         priv->error->jiffies,
1318                         priv->error->status,
1319                         priv->error->config, priv->error->elem_len);
1320         for (i = 0; i < priv->error->elem_len; i++)
1321                 len += snprintf(buf + len, PAGE_SIZE - len,
1322                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1323                                 priv->error->elem[i].time,
1324                                 priv->error->elem[i].desc,
1325                                 priv->error->elem[i].blink1,
1326                                 priv->error->elem[i].blink2,
1327                                 priv->error->elem[i].link1,
1328                                 priv->error->elem[i].link2,
1329                                 priv->error->elem[i].data);
1330
1331         len += snprintf(buf + len, PAGE_SIZE - len,
1332                         "\n%08X", priv->error->log_len);
1333         for (i = 0; i < priv->error->log_len; i++)
1334                 len += snprintf(buf + len, PAGE_SIZE - len,
1335                                 "\n%08X%08X%08X",
1336                                 priv->error->log[i].time,
1337                                 priv->error->log[i].event,
1338                                 priv->error->log[i].data);
1339         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1340         return len;
1341 }
1342
1343 static ssize_t clear_error(struct device *d,
1344                            struct device_attribute *attr,
1345                            const char *buf, size_t count)
1346 {
1347         struct ipw_priv *priv = dev_get_drvdata(d);
1348
1349         kfree(priv->error);
1350         priv->error = NULL;
1351         return count;
1352 }
1353
1354 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1355
1356 static ssize_t show_cmd_log(struct device *d,
1357                             struct device_attribute *attr, char *buf)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         u32 len = 0, i;
1361         if (!priv->cmdlog)
1362                 return 0;
1363         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1364              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1365              i = (i + 1) % priv->cmdlog_len) {
1366                 len +=
1367                     snprintf(buf + len, PAGE_SIZE - len,
1368                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1369                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1370                              priv->cmdlog[i].cmd.len);
1371                 len +=
1372                     snprintk_buf(buf + len, PAGE_SIZE - len,
1373                                  (u8 *) priv->cmdlog[i].cmd.param,
1374                                  priv->cmdlog[i].cmd.len);
1375                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1376         }
1377         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         return len;
1379 }
1380
1381 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1382
1383 #ifdef CONFIG_IPW2200_PROMISCUOUS
1384 static void ipw_prom_free(struct ipw_priv *priv);
1385 static int ipw_prom_alloc(struct ipw_priv *priv);
1386 static ssize_t store_rtap_iface(struct device *d,
1387                          struct device_attribute *attr,
1388                          const char *buf, size_t count)
1389 {
1390         struct ipw_priv *priv = dev_get_drvdata(d);
1391         int rc = 0;
1392
1393         if (count < 1)
1394                 return -EINVAL;
1395
1396         switch (buf[0]) {
1397         case '0':
1398                 if (!rtap_iface)
1399                         return count;
1400
1401                 if (netif_running(priv->prom_net_dev)) {
1402                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1403                         return count;
1404                 }
1405
1406                 ipw_prom_free(priv);
1407                 rtap_iface = 0;
1408                 break;
1409
1410         case '1':
1411                 if (rtap_iface)
1412                         return count;
1413
1414                 rc = ipw_prom_alloc(priv);
1415                 if (!rc)
1416                         rtap_iface = 1;
1417                 break;
1418
1419         default:
1420                 return -EINVAL;
1421         }
1422
1423         if (rc) {
1424                 IPW_ERROR("Failed to register promiscuous network "
1425                           "device (error %d).\n", rc);
1426         }
1427
1428         return count;
1429 }
1430
1431 static ssize_t show_rtap_iface(struct device *d,
1432                         struct device_attribute *attr,
1433                         char *buf)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         if (rtap_iface)
1437                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1438         else {
1439                 buf[0] = '-';
1440                 buf[1] = '1';
1441                 buf[2] = '\0';
1442                 return 3;
1443         }
1444 }
1445
1446 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1447
1448 static ssize_t store_rtap_filter(struct device *d,
1449                          struct device_attribute *attr,
1450                          const char *buf, size_t count)
1451 {
1452         struct ipw_priv *priv = dev_get_drvdata(d);
1453
1454         if (!priv->prom_priv) {
1455                 IPW_ERROR("Attempting to set filter without "
1456                           "rtap_iface enabled.\n");
1457                 return -EPERM;
1458         }
1459
1460         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1461
1462         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1463                        BIT_ARG16(priv->prom_priv->filter));
1464
1465         return count;
1466 }
1467
1468 static ssize_t show_rtap_filter(struct device *d,
1469                         struct device_attribute *attr,
1470                         char *buf)
1471 {
1472         struct ipw_priv *priv = dev_get_drvdata(d);
1473         return sprintf(buf, "0x%04X",
1474                        priv->prom_priv ? priv->prom_priv->filter : 0);
1475 }
1476
1477 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1478 #endif
1479
1480 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1481                              char *buf)
1482 {
1483         struct ipw_priv *priv = dev_get_drvdata(d);
1484         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1485 }
1486
1487 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1488                               const char *buf, size_t count)
1489 {
1490         struct ipw_priv *priv = dev_get_drvdata(d);
1491         struct net_device *dev = priv->net_dev;
1492         char buffer[] = "00000000";
1493         unsigned long len =
1494             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1495         unsigned long val;
1496         char *p = buffer;
1497
1498         IPW_DEBUG_INFO("enter\n");
1499
1500         strncpy(buffer, buf, len);
1501         buffer[len] = 0;
1502
1503         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1504                 p++;
1505                 if (p[0] == 'x' || p[0] == 'X')
1506                         p++;
1507                 val = simple_strtoul(p, &p, 16);
1508         } else
1509                 val = simple_strtoul(p, &p, 10);
1510         if (p == buffer) {
1511                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1512         } else {
1513                 priv->ieee->scan_age = val;
1514                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1515         }
1516
1517         IPW_DEBUG_INFO("exit\n");
1518         return len;
1519 }
1520
1521 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1522
1523 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1524                         char *buf)
1525 {
1526         struct ipw_priv *priv = dev_get_drvdata(d);
1527         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1528 }
1529
1530 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1531                          const char *buf, size_t count)
1532 {
1533         struct ipw_priv *priv = dev_get_drvdata(d);
1534
1535         IPW_DEBUG_INFO("enter\n");
1536
1537         if (count == 0)
1538                 return 0;
1539
1540         if (*buf == 0) {
1541                 IPW_DEBUG_LED("Disabling LED control.\n");
1542                 priv->config |= CFG_NO_LED;
1543                 ipw_led_shutdown(priv);
1544         } else {
1545                 IPW_DEBUG_LED("Enabling LED control.\n");
1546                 priv->config &= ~CFG_NO_LED;
1547                 ipw_led_init(priv);
1548         }
1549
1550         IPW_DEBUG_INFO("exit\n");
1551         return count;
1552 }
1553
1554 static DEVICE_ATTR(led, 0644, show_led, store_led);
1555
1556 static ssize_t show_status(struct device *d,
1557                            struct device_attribute *attr, char *buf)
1558 {
1559         struct ipw_priv *p = dev_get_drvdata(d);
1560         return sprintf(buf, "0x%08x\n", (int)p->status);
1561 }
1562
1563 static DEVICE_ATTR(status, 0444, show_status, NULL);
1564
1565 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1566                         char *buf)
1567 {
1568         struct ipw_priv *p = dev_get_drvdata(d);
1569         return sprintf(buf, "0x%08x\n", (int)p->config);
1570 }
1571
1572 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1573
1574 static ssize_t show_nic_type(struct device *d,
1575                              struct device_attribute *attr, char *buf)
1576 {
1577         struct ipw_priv *priv = dev_get_drvdata(d);
1578         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1579 }
1580
1581 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1582
1583 static ssize_t show_ucode_version(struct device *d,
1584                                   struct device_attribute *attr, char *buf)
1585 {
1586         u32 len = sizeof(u32), tmp = 0;
1587         struct ipw_priv *p = dev_get_drvdata(d);
1588
1589         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1590                 return 0;
1591
1592         return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594
1595 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1596
1597 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1598                         char *buf)
1599 {
1600         u32 len = sizeof(u32), tmp = 0;
1601         struct ipw_priv *p = dev_get_drvdata(d);
1602
1603         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1604                 return 0;
1605
1606         return sprintf(buf, "0x%08x\n", tmp);
1607 }
1608
1609 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1610
1611 /*
1612  * Add a device attribute to view/control the delay between eeprom
1613  * operations.
1614  */
1615 static ssize_t show_eeprom_delay(struct device *d,
1616                                  struct device_attribute *attr, char *buf)
1617 {
1618         struct ipw_priv *p = dev_get_drvdata(d);
1619         int n = p->eeprom_delay;
1620         return sprintf(buf, "%i\n", n);
1621 }
1622 static ssize_t store_eeprom_delay(struct device *d,
1623                                   struct device_attribute *attr,
1624                                   const char *buf, size_t count)
1625 {
1626         struct ipw_priv *p = dev_get_drvdata(d);
1627         sscanf(buf, "%i", &p->eeprom_delay);
1628         return strnlen(buf, count);
1629 }
1630
1631 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1632
1633 static ssize_t show_command_event_reg(struct device *d,
1634                                       struct device_attribute *attr, char *buf)
1635 {
1636         u32 reg = 0;
1637         struct ipw_priv *p = dev_get_drvdata(d);
1638
1639         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1640         return sprintf(buf, "0x%08x\n", reg);
1641 }
1642 static ssize_t store_command_event_reg(struct device *d,
1643                                        struct device_attribute *attr,
1644                                        const char *buf, size_t count)
1645 {
1646         u32 reg;
1647         struct ipw_priv *p = dev_get_drvdata(d);
1648
1649         sscanf(buf, "%x", &reg);
1650         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1651         return strnlen(buf, count);
1652 }
1653
1654 static DEVICE_ATTR(command_event_reg, 0644,
1655                    show_command_event_reg, store_command_event_reg);
1656
1657 static ssize_t show_mem_gpio_reg(struct device *d,
1658                                  struct device_attribute *attr, char *buf)
1659 {
1660         u32 reg = 0;
1661         struct ipw_priv *p = dev_get_drvdata(d);
1662
1663         reg = ipw_read_reg32(p, 0x301100);
1664         return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_mem_gpio_reg(struct device *d,
1667                                   struct device_attribute *attr,
1668                                   const char *buf, size_t count)
1669 {
1670         u32 reg;
1671         struct ipw_priv *p = dev_get_drvdata(d);
1672
1673         sscanf(buf, "%x", &reg);
1674         ipw_write_reg32(p, 0x301100, reg);
1675         return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1679
1680 static ssize_t show_indirect_dword(struct device *d,
1681                                    struct device_attribute *attr, char *buf)
1682 {
1683         u32 reg = 0;
1684         struct ipw_priv *priv = dev_get_drvdata(d);
1685
1686         if (priv->status & STATUS_INDIRECT_DWORD)
1687                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_indirect_dword(struct device *d,
1694                                     struct device_attribute *attr,
1695                                     const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699         sscanf(buf, "%x", &priv->indirect_dword);
1700         priv->status |= STATUS_INDIRECT_DWORD;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(indirect_dword, 0644,
1705                    show_indirect_dword, store_indirect_dword);
1706
1707 static ssize_t show_indirect_byte(struct device *d,
1708                                   struct device_attribute *attr, char *buf)
1709 {
1710         u8 reg = 0;
1711         struct ipw_priv *priv = dev_get_drvdata(d);
1712
1713         if (priv->status & STATUS_INDIRECT_BYTE)
1714                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1715         else
1716                 reg = 0;
1717
1718         return sprintf(buf, "0x%02x\n", reg);
1719 }
1720 static ssize_t store_indirect_byte(struct device *d,
1721                                    struct device_attribute *attr,
1722                                    const char *buf, size_t count)
1723 {
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726         sscanf(buf, "%x", &priv->indirect_byte);
1727         priv->status |= STATUS_INDIRECT_BYTE;
1728         return strnlen(buf, count);
1729 }
1730
1731 static DEVICE_ATTR(indirect_byte, 0644,
1732                    show_indirect_byte, store_indirect_byte);
1733
1734 static ssize_t show_direct_dword(struct device *d,
1735                                  struct device_attribute *attr, char *buf)
1736 {
1737         u32 reg = 0;
1738         struct ipw_priv *priv = dev_get_drvdata(d);
1739
1740         if (priv->status & STATUS_DIRECT_DWORD)
1741                 reg = ipw_read32(priv, priv->direct_dword);
1742         else
1743                 reg = 0;
1744
1745         return sprintf(buf, "0x%08x\n", reg);
1746 }
1747 static ssize_t store_direct_dword(struct device *d,
1748                                   struct device_attribute *attr,
1749                                   const char *buf, size_t count)
1750 {
1751         struct ipw_priv *priv = dev_get_drvdata(d);
1752
1753         sscanf(buf, "%x", &priv->direct_dword);
1754         priv->status |= STATUS_DIRECT_DWORD;
1755         return strnlen(buf, count);
1756 }
1757
1758 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1759
1760 static int rf_kill_active(struct ipw_priv *priv)
1761 {
1762         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1763                 priv->status |= STATUS_RF_KILL_HW;
1764                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1765         } else {
1766                 priv->status &= ~STATUS_RF_KILL_HW;
1767                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1768         }
1769
1770         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1771 }
1772
1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1774                             char *buf)
1775 {
1776         /* 0 - RF kill not enabled
1777            1 - SW based RF kill active (sysfs)
1778            2 - HW based RF kill active
1779            3 - Both HW and SW baed RF kill active */
1780         struct ipw_priv *priv = dev_get_drvdata(d);
1781         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1782             (rf_kill_active(priv) ? 0x2 : 0x0);
1783         return sprintf(buf, "%i\n", val);
1784 }
1785
1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1787 {
1788         if ((disable_radio ? 1 : 0) ==
1789             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1790                 return 0;
1791
1792         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1793                           disable_radio ? "OFF" : "ON");
1794
1795         if (disable_radio) {
1796                 priv->status |= STATUS_RF_KILL_SW;
1797
1798                 cancel_delayed_work(&priv->request_scan);
1799                 cancel_delayed_work(&priv->request_direct_scan);
1800                 cancel_delayed_work(&priv->request_passive_scan);
1801                 cancel_delayed_work(&priv->scan_event);
1802                 schedule_work(&priv->down);
1803         } else {
1804                 priv->status &= ~STATUS_RF_KILL_SW;
1805                 if (rf_kill_active(priv)) {
1806                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1807                                           "disabled by HW switch\n");
1808                         /* Make sure the RF_KILL check timer is running */
1809                         cancel_delayed_work(&priv->rf_kill);
1810                         schedule_delayed_work(&priv->rf_kill,
1811                                               round_jiffies_relative(2 * HZ));
1812                 } else
1813                         schedule_work(&priv->up);
1814         }
1815
1816         return 1;
1817 }
1818
1819 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1820                              const char *buf, size_t count)
1821 {
1822         struct ipw_priv *priv = dev_get_drvdata(d);
1823
1824         ipw_radio_kill_sw(priv, buf[0] == '1');
1825
1826         return count;
1827 }
1828
1829 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1830
1831 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1832                                char *buf)
1833 {
1834         struct ipw_priv *priv = dev_get_drvdata(d);
1835         int pos = 0, len = 0;
1836         if (priv->config & CFG_SPEED_SCAN) {
1837                 while (priv->speed_scan[pos] != 0)
1838                         len += sprintf(&buf[len], "%d ",
1839                                        priv->speed_scan[pos++]);
1840                 return len + sprintf(&buf[len], "\n");
1841         }
1842
1843         return sprintf(buf, "0\n");
1844 }
1845
1846 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1847                                 const char *buf, size_t count)
1848 {
1849         struct ipw_priv *priv = dev_get_drvdata(d);
1850         int channel, pos = 0;
1851         const char *p = buf;
1852
1853         /* list of space separated channels to scan, optionally ending with 0 */
1854         while ((channel = simple_strtol(p, NULL, 0))) {
1855                 if (pos == MAX_SPEED_SCAN - 1) {
1856                         priv->speed_scan[pos] = 0;
1857                         break;
1858                 }
1859
1860                 if (libipw_is_valid_channel(priv->ieee, channel))
1861                         priv->speed_scan[pos++] = channel;
1862                 else
1863                         IPW_WARNING("Skipping invalid channel request: %d\n",
1864                                     channel);
1865                 p = strchr(p, ' ');
1866                 if (!p)
1867                         break;
1868                 while (*p == ' ' || *p == '\t')
1869                         p++;
1870         }
1871
1872         if (pos == 0)
1873                 priv->config &= ~CFG_SPEED_SCAN;
1874         else {
1875                 priv->speed_scan_pos = 0;
1876                 priv->config |= CFG_SPEED_SCAN;
1877         }
1878
1879         return count;
1880 }
1881
1882 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1883
1884 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1885                               char *buf)
1886 {
1887         struct ipw_priv *priv = dev_get_drvdata(d);
1888         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1889 }
1890
1891 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1892                                const char *buf, size_t count)
1893 {
1894         struct ipw_priv *priv = dev_get_drvdata(d);
1895         if (buf[0] == '1')
1896                 priv->config |= CFG_NET_STATS;
1897         else
1898                 priv->config &= ~CFG_NET_STATS;
1899
1900         return count;
1901 }
1902
1903 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1904
1905 static ssize_t show_channels(struct device *d,
1906                              struct device_attribute *attr,
1907                              char *buf)
1908 {
1909         struct ipw_priv *priv = dev_get_drvdata(d);
1910         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1911         int len = 0, i;
1912
1913         len = sprintf(&buf[len],
1914                       "Displaying %d channels in 2.4Ghz band "
1915                       "(802.11bg):\n", geo->bg_channels);
1916
1917         for (i = 0; i < geo->bg_channels; i++) {
1918                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1919                                geo->bg[i].channel,
1920                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1921                                " (radar spectrum)" : "",
1922                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1923                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1924                                ? "" : ", IBSS",
1925                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1926                                "passive only" : "active/passive",
1927                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1928                                "B" : "B/G");
1929         }
1930
1931         len += sprintf(&buf[len],
1932                        "Displaying %d channels in 5.2Ghz band "
1933                        "(802.11a):\n", geo->a_channels);
1934         for (i = 0; i < geo->a_channels; i++) {
1935                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1936                                geo->a[i].channel,
1937                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1938                                " (radar spectrum)" : "",
1939                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1940                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1941                                ? "" : ", IBSS",
1942                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1943                                "passive only" : "active/passive");
1944         }
1945
1946         return len;
1947 }
1948
1949 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1950
1951 static void notify_wx_assoc_event(struct ipw_priv *priv)
1952 {
1953         union iwreq_data wrqu;
1954         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1955         if (priv->status & STATUS_ASSOCIATED)
1956                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1957         else
1958                 eth_zero_addr(wrqu.ap_addr.sa_data);
1959         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1960 }
1961
1962 static void ipw_irq_tasklet(unsigned long data)
1963 {
1964         struct ipw_priv *priv = (struct ipw_priv *)data;
1965         u32 inta, inta_mask, handled = 0;
1966         unsigned long flags;
1967         int rc = 0;
1968
1969         spin_lock_irqsave(&priv->irq_lock, flags);
1970
1971         inta = ipw_read32(priv, IPW_INTA_RW);
1972         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1973
1974         if (inta == 0xFFFFFFFF) {
1975                 /* Hardware disappeared */
1976                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1977                 /* Only handle the cached INTA values */
1978                 inta = 0;
1979         }
1980         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1981
1982         /* Add any cached INTA values that need to be handled */
1983         inta |= priv->isr_inta;
1984
1985         spin_unlock_irqrestore(&priv->irq_lock, flags);
1986
1987         spin_lock_irqsave(&priv->lock, flags);
1988
1989         /* handle all the justifications for the interrupt */
1990         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1991                 ipw_rx(priv);
1992                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1993         }
1994
1995         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1996                 IPW_DEBUG_HC("Command completed.\n");
1997                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1998                 priv->status &= ~STATUS_HCMD_ACTIVE;
1999                 wake_up_interruptible(&priv->wait_command_queue);
2000                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2004                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2005                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2006                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2007         }
2008
2009         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2010                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2011                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2012                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2013         }
2014
2015         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2016                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2017                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2018                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2019         }
2020
2021         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2022                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2023                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2024                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2025         }
2026
2027         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2028                 IPW_WARNING("STATUS_CHANGE\n");
2029                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2030         }
2031
2032         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2033                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2034                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2035         }
2036
2037         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2038                 IPW_WARNING("HOST_CMD_DONE\n");
2039                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2040         }
2041
2042         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2043                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2044                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2045         }
2046
2047         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2048                 IPW_WARNING("PHY_OFF_DONE\n");
2049                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2050         }
2051
2052         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2053                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2054                 priv->status |= STATUS_RF_KILL_HW;
2055                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2056                 wake_up_interruptible(&priv->wait_command_queue);
2057                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2058                 cancel_delayed_work(&priv->request_scan);
2059                 cancel_delayed_work(&priv->request_direct_scan);
2060                 cancel_delayed_work(&priv->request_passive_scan);
2061                 cancel_delayed_work(&priv->scan_event);
2062                 schedule_work(&priv->link_down);
2063                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2064                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2065         }
2066
2067         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2068                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2069                 if (priv->error) {
2070                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2071                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2072                                 struct ipw_fw_error *error =
2073                                     ipw_alloc_error_log(priv);
2074                                 ipw_dump_error_log(priv, error);
2075                                 kfree(error);
2076                         }
2077                 } else {
2078                         priv->error = ipw_alloc_error_log(priv);
2079                         if (priv->error)
2080                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2081                         else
2082                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2083                                              "log.\n");
2084                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2085                                 ipw_dump_error_log(priv, priv->error);
2086                 }
2087
2088                 /* XXX: If hardware encryption is for WPA/WPA2,
2089                  * we have to notify the supplicant. */
2090                 if (priv->ieee->sec.encrypt) {
2091                         priv->status &= ~STATUS_ASSOCIATED;
2092                         notify_wx_assoc_event(priv);
2093                 }
2094
2095                 /* Keep the restart process from trying to send host
2096                  * commands by clearing the INIT status bit */
2097                 priv->status &= ~STATUS_INIT;
2098
2099                 /* Cancel currently queued command. */
2100                 priv->status &= ~STATUS_HCMD_ACTIVE;
2101                 wake_up_interruptible(&priv->wait_command_queue);
2102
2103                 schedule_work(&priv->adapter_restart);
2104                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2105         }
2106
2107         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2108                 IPW_ERROR("Parity error\n");
2109                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2110         }
2111
2112         if (handled != inta) {
2113                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2114         }
2115
2116         spin_unlock_irqrestore(&priv->lock, flags);
2117
2118         /* enable all interrupts */
2119         ipw_enable_interrupts(priv);
2120 }
2121
2122 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2123 static char *get_cmd_string(u8 cmd)
2124 {
2125         switch (cmd) {
2126                 IPW_CMD(HOST_COMPLETE);
2127                 IPW_CMD(POWER_DOWN);
2128                 IPW_CMD(SYSTEM_CONFIG);
2129                 IPW_CMD(MULTICAST_ADDRESS);
2130                 IPW_CMD(SSID);
2131                 IPW_CMD(ADAPTER_ADDRESS);
2132                 IPW_CMD(PORT_TYPE);
2133                 IPW_CMD(RTS_THRESHOLD);
2134                 IPW_CMD(FRAG_THRESHOLD);
2135                 IPW_CMD(POWER_MODE);
2136                 IPW_CMD(WEP_KEY);
2137                 IPW_CMD(TGI_TX_KEY);
2138                 IPW_CMD(SCAN_REQUEST);
2139                 IPW_CMD(SCAN_REQUEST_EXT);
2140                 IPW_CMD(ASSOCIATE);
2141                 IPW_CMD(SUPPORTED_RATES);
2142                 IPW_CMD(SCAN_ABORT);
2143                 IPW_CMD(TX_FLUSH);
2144                 IPW_CMD(QOS_PARAMETERS);
2145                 IPW_CMD(DINO_CONFIG);
2146                 IPW_CMD(RSN_CAPABILITIES);
2147                 IPW_CMD(RX_KEY);
2148                 IPW_CMD(CARD_DISABLE);
2149                 IPW_CMD(SEED_NUMBER);
2150                 IPW_CMD(TX_POWER);
2151                 IPW_CMD(COUNTRY_INFO);
2152                 IPW_CMD(AIRONET_INFO);
2153                 IPW_CMD(AP_TX_POWER);
2154                 IPW_CMD(CCKM_INFO);
2155                 IPW_CMD(CCX_VER_INFO);
2156                 IPW_CMD(SET_CALIBRATION);
2157                 IPW_CMD(SENSITIVITY_CALIB);
2158                 IPW_CMD(RETRY_LIMIT);
2159                 IPW_CMD(IPW_PRE_POWER_DOWN);
2160                 IPW_CMD(VAP_BEACON_TEMPLATE);
2161                 IPW_CMD(VAP_DTIM_PERIOD);
2162                 IPW_CMD(EXT_SUPPORTED_RATES);
2163                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2164                 IPW_CMD(VAP_QUIET_INTERVALS);
2165                 IPW_CMD(VAP_CHANNEL_SWITCH);
2166                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2167                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2168                 IPW_CMD(VAP_CF_PARAM_SET);
2169                 IPW_CMD(VAP_SET_BEACONING_STATE);
2170                 IPW_CMD(MEASUREMENT);
2171                 IPW_CMD(POWER_CAPABILITY);
2172                 IPW_CMD(SUPPORTED_CHANNELS);
2173                 IPW_CMD(TPC_REPORT);
2174                 IPW_CMD(WME_INFO);
2175                 IPW_CMD(PRODUCTION_COMMAND);
2176         default:
2177                 return "UNKNOWN";
2178         }
2179 }
2180
2181 #define HOST_COMPLETE_TIMEOUT HZ
2182
2183 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2184 {
2185         int rc = 0;
2186         unsigned long flags;
2187         unsigned long now, end;
2188
2189         spin_lock_irqsave(&priv->lock, flags);
2190         if (priv->status & STATUS_HCMD_ACTIVE) {
2191                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2192                           get_cmd_string(cmd->cmd));
2193                 spin_unlock_irqrestore(&priv->lock, flags);
2194                 return -EAGAIN;
2195         }
2196
2197         priv->status |= STATUS_HCMD_ACTIVE;
2198
2199         if (priv->cmdlog) {
2200                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2201                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2202                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2203                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2204                        cmd->len);
2205                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2206         }
2207
2208         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2209                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2210                      priv->status);
2211
2212 #ifndef DEBUG_CMD_WEP_KEY
2213         if (cmd->cmd == IPW_CMD_WEP_KEY)
2214                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2215         else
2216 #endif
2217                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2218
2219         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2220         if (rc) {
2221                 priv->status &= ~STATUS_HCMD_ACTIVE;
2222                 IPW_ERROR("Failed to send %s: Reason %d\n",
2223                           get_cmd_string(cmd->cmd), rc);
2224                 spin_unlock_irqrestore(&priv->lock, flags);
2225                 goto exit;
2226         }
2227         spin_unlock_irqrestore(&priv->lock, flags);
2228
2229         now = jiffies;
2230         end = now + HOST_COMPLETE_TIMEOUT;
2231 again:
2232         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2233                                               !(priv->
2234                                                 status & STATUS_HCMD_ACTIVE),
2235                                               end - now);
2236         if (rc < 0) {
2237                 now = jiffies;
2238                 if (time_before(now, end))
2239                         goto again;
2240                 rc = 0;
2241         }
2242
2243         if (rc == 0) {
2244                 spin_lock_irqsave(&priv->lock, flags);
2245                 if (priv->status & STATUS_HCMD_ACTIVE) {
2246                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2247                                   get_cmd_string(cmd->cmd));
2248                         priv->status &= ~STATUS_HCMD_ACTIVE;
2249                         spin_unlock_irqrestore(&priv->lock, flags);
2250                         rc = -EIO;
2251                         goto exit;
2252                 }
2253                 spin_unlock_irqrestore(&priv->lock, flags);
2254         } else
2255                 rc = 0;
2256
2257         if (priv->status & STATUS_RF_KILL_HW) {
2258                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2259                           get_cmd_string(cmd->cmd));
2260                 rc = -EIO;
2261                 goto exit;
2262         }
2263
2264       exit:
2265         if (priv->cmdlog) {
2266                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2267                 priv->cmdlog_pos %= priv->cmdlog_len;
2268         }
2269         return rc;
2270 }
2271
2272 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2273 {
2274         struct host_cmd cmd = {
2275                 .cmd = command,
2276         };
2277
2278         return __ipw_send_cmd(priv, &cmd);
2279 }
2280
2281 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2282                             void *data)
2283 {
2284         struct host_cmd cmd = {
2285                 .cmd = command,
2286                 .len = len,
2287                 .param = data,
2288         };
2289
2290         return __ipw_send_cmd(priv, &cmd);
2291 }
2292
2293 static int ipw_send_host_complete(struct ipw_priv *priv)
2294 {
2295         if (!priv) {
2296                 IPW_ERROR("Invalid args\n");
2297                 return -1;
2298         }
2299
2300         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2301 }
2302
2303 static int ipw_send_system_config(struct ipw_priv *priv)
2304 {
2305         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2306                                 sizeof(priv->sys_config),
2307                                 &priv->sys_config);
2308 }
2309
2310 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2311 {
2312         if (!priv || !ssid) {
2313                 IPW_ERROR("Invalid args\n");
2314                 return -1;
2315         }
2316
2317         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2318                                 ssid);
2319 }
2320
2321 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2322 {
2323         if (!priv || !mac) {
2324                 IPW_ERROR("Invalid args\n");
2325                 return -1;
2326         }
2327
2328         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2329                        priv->net_dev->name, mac);
2330
2331         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2332 }
2333
2334 static void ipw_adapter_restart(void *adapter)
2335 {
2336         struct ipw_priv *priv = adapter;
2337
2338         if (priv->status & STATUS_RF_KILL_MASK)
2339                 return;
2340
2341         ipw_down(priv);
2342
2343         if (priv->assoc_network &&
2344             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2345                 ipw_remove_current_network(priv);
2346
2347         if (ipw_up(priv)) {
2348                 IPW_ERROR("Failed to up device\n");
2349                 return;
2350         }
2351 }
2352
2353 static void ipw_bg_adapter_restart(struct work_struct *work)
2354 {
2355         struct ipw_priv *priv =
2356                 container_of(work, struct ipw_priv, adapter_restart);
2357         mutex_lock(&priv->mutex);
2358         ipw_adapter_restart(priv);
2359         mutex_unlock(&priv->mutex);
2360 }
2361
2362 static void ipw_abort_scan(struct ipw_priv *priv);
2363
2364 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2365
2366 static void ipw_scan_check(void *data)
2367 {
2368         struct ipw_priv *priv = data;
2369
2370         if (priv->status & STATUS_SCAN_ABORTING) {
2371                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2372                                "adapter after (%dms).\n",
2373                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2374                 schedule_work(&priv->adapter_restart);
2375         } else if (priv->status & STATUS_SCANNING) {
2376                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2377                                "after (%dms).\n",
2378                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2379                 ipw_abort_scan(priv);
2380                 schedule_delayed_work(&priv->scan_check, HZ);
2381         }
2382 }
2383
2384 static void ipw_bg_scan_check(struct work_struct *work)
2385 {
2386         struct ipw_priv *priv =
2387                 container_of(work, struct ipw_priv, scan_check.work);
2388         mutex_lock(&priv->mutex);
2389         ipw_scan_check(priv);
2390         mutex_unlock(&priv->mutex);
2391 }
2392
2393 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2394                                      struct ipw_scan_request_ext *request)
2395 {
2396         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2397                                 sizeof(*request), request);
2398 }
2399
2400 static int ipw_send_scan_abort(struct ipw_priv *priv)
2401 {
2402         if (!priv) {
2403                 IPW_ERROR("Invalid args\n");
2404                 return -1;
2405         }
2406
2407         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2408 }
2409
2410 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2411 {
2412         struct ipw_sensitivity_calib calib = {
2413                 .beacon_rssi_raw = cpu_to_le16(sens),
2414         };
2415
2416         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2417                                 &calib);
2418 }
2419
2420 static int ipw_send_associate(struct ipw_priv *priv,
2421                               struct ipw_associate *associate)
2422 {
2423         if (!priv || !associate) {
2424                 IPW_ERROR("Invalid args\n");
2425                 return -1;
2426         }
2427
2428         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2429                                 associate);
2430 }
2431
2432 static int ipw_send_supported_rates(struct ipw_priv *priv,
2433                                     struct ipw_supported_rates *rates)
2434 {
2435         if (!priv || !rates) {
2436                 IPW_ERROR("Invalid args\n");
2437                 return -1;
2438         }
2439
2440         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2441                                 rates);
2442 }
2443
2444 static int ipw_set_random_seed(struct ipw_priv *priv)
2445 {
2446         u32 val;
2447
2448         if (!priv) {
2449                 IPW_ERROR("Invalid args\n");
2450                 return -1;
2451         }
2452
2453         get_random_bytes(&val, sizeof(val));
2454
2455         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2456 }
2457
2458 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2459 {
2460         __le32 v = cpu_to_le32(phy_off);
2461         if (!priv) {
2462                 IPW_ERROR("Invalid args\n");
2463                 return -1;
2464         }
2465
2466         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2467 }
2468
2469 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2470 {
2471         if (!priv || !power) {
2472                 IPW_ERROR("Invalid args\n");
2473                 return -1;
2474         }
2475
2476         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2477 }
2478
2479 static int ipw_set_tx_power(struct ipw_priv *priv)
2480 {
2481         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2482         struct ipw_tx_power tx_power;
2483         s8 max_power;
2484         int i;
2485
2486         memset(&tx_power, 0, sizeof(tx_power));
2487
2488         /* configure device for 'G' band */
2489         tx_power.ieee_mode = IPW_G_MODE;
2490         tx_power.num_channels = geo->bg_channels;
2491         for (i = 0; i < geo->bg_channels; i++) {
2492                 max_power = geo->bg[i].max_power;
2493                 tx_power.channels_tx_power[i].channel_number =
2494                     geo->bg[i].channel;
2495                 tx_power.channels_tx_power[i].tx_power = max_power ?
2496                     min(max_power, priv->tx_power) : priv->tx_power;
2497         }
2498         if (ipw_send_tx_power(priv, &tx_power))
2499                 return -EIO;
2500
2501         /* configure device to also handle 'B' band */
2502         tx_power.ieee_mode = IPW_B_MODE;
2503         if (ipw_send_tx_power(priv, &tx_power))
2504                 return -EIO;
2505
2506         /* configure device to also handle 'A' band */
2507         if (priv->ieee->abg_true) {
2508                 tx_power.ieee_mode = IPW_A_MODE;
2509                 tx_power.num_channels = geo->a_channels;
2510                 for (i = 0; i < tx_power.num_channels; i++) {
2511                         max_power = geo->a[i].max_power;
2512                         tx_power.channels_tx_power[i].channel_number =
2513                             geo->a[i].channel;
2514                         tx_power.channels_tx_power[i].tx_power = max_power ?
2515                             min(max_power, priv->tx_power) : priv->tx_power;
2516                 }
2517                 if (ipw_send_tx_power(priv, &tx_power))
2518                         return -EIO;
2519         }
2520         return 0;
2521 }
2522
2523 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2524 {
2525         struct ipw_rts_threshold rts_threshold = {
2526                 .rts_threshold = cpu_to_le16(rts),
2527         };
2528
2529         if (!priv) {
2530                 IPW_ERROR("Invalid args\n");
2531                 return -1;
2532         }
2533
2534         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2535                                 sizeof(rts_threshold), &rts_threshold);
2536 }
2537
2538 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2539 {
2540         struct ipw_frag_threshold frag_threshold = {
2541                 .frag_threshold = cpu_to_le16(frag),
2542         };
2543
2544         if (!priv) {
2545                 IPW_ERROR("Invalid args\n");
2546                 return -1;
2547         }
2548
2549         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2550                                 sizeof(frag_threshold), &frag_threshold);
2551 }
2552
2553 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2554 {
2555         __le32 param;
2556
2557         if (!priv) {
2558                 IPW_ERROR("Invalid args\n");
2559                 return -1;
2560         }
2561
2562         /* If on battery, set to 3, if AC set to CAM, else user
2563          * level */
2564         switch (mode) {
2565         case IPW_POWER_BATTERY:
2566                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2567                 break;
2568         case IPW_POWER_AC:
2569                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2570                 break;
2571         default:
2572                 param = cpu_to_le32(mode);
2573                 break;
2574         }
2575
2576         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2577                                 &param);
2578 }
2579
2580 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2581 {
2582         struct ipw_retry_limit retry_limit = {
2583                 .short_retry_limit = slimit,
2584                 .long_retry_limit = llimit
2585         };
2586
2587         if (!priv) {
2588                 IPW_ERROR("Invalid args\n");
2589                 return -1;
2590         }
2591
2592         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2593                                 &retry_limit);
2594 }
2595
2596 /*
2597  * The IPW device contains a Microwire compatible EEPROM that stores
2598  * various data like the MAC address.  Usually the firmware has exclusive
2599  * access to the eeprom, but during device initialization (before the
2600  * device driver has sent the HostComplete command to the firmware) the
2601  * device driver has read access to the EEPROM by way of indirect addressing
2602  * through a couple of memory mapped registers.
2603  *
2604  * The following is a simplified implementation for pulling data out of the
2605  * the eeprom, along with some helper functions to find information in
2606  * the per device private data's copy of the eeprom.
2607  *
2608  * NOTE: To better understand how these functions work (i.e what is a chip
2609  *       select and why do have to keep driving the eeprom clock?), read
2610  *       just about any data sheet for a Microwire compatible EEPROM.
2611  */
2612
2613 /* write a 32 bit value into the indirect accessor register */
2614 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2615 {
2616         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2617
2618         /* the eeprom requires some time to complete the operation */
2619         udelay(p->eeprom_delay);
2620 }
2621
2622 /* perform a chip select operation */
2623 static void eeprom_cs(struct ipw_priv *priv)
2624 {
2625         eeprom_write_reg(priv, 0);
2626         eeprom_write_reg(priv, EEPROM_BIT_CS);
2627         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2628         eeprom_write_reg(priv, EEPROM_BIT_CS);
2629 }
2630
2631 /* perform a chip select operation */
2632 static void eeprom_disable_cs(struct ipw_priv *priv)
2633 {
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635         eeprom_write_reg(priv, 0);
2636         eeprom_write_reg(priv, EEPROM_BIT_SK);
2637 }
2638
2639 /* push a single bit down to the eeprom */
2640 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2641 {
2642         int d = (bit ? EEPROM_BIT_DI : 0);
2643         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2644         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2645 }
2646
2647 /* push an opcode followed by an address down to the eeprom */
2648 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2649 {
2650         int i;
2651
2652         eeprom_cs(priv);
2653         eeprom_write_bit(priv, 1);
2654         eeprom_write_bit(priv, op & 2);
2655         eeprom_write_bit(priv, op & 1);
2656         for (i = 7; i >= 0; i--) {
2657                 eeprom_write_bit(priv, addr & (1 << i));
2658         }
2659 }
2660
2661 /* pull 16 bits off the eeprom, one bit at a time */
2662 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2663 {
2664         int i;
2665         u16 r = 0;
2666
2667         /* Send READ Opcode */
2668         eeprom_op(priv, EEPROM_CMD_READ, addr);
2669
2670         /* Send dummy bit */
2671         eeprom_write_reg(priv, EEPROM_BIT_CS);
2672
2673         /* Read the byte off the eeprom one bit at a time */
2674         for (i = 0; i < 16; i++) {
2675                 u32 data = 0;
2676                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2677                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2678                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2679                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2680         }
2681
2682         /* Send another dummy bit */
2683         eeprom_write_reg(priv, 0);
2684         eeprom_disable_cs(priv);
2685
2686         return r;
2687 }
2688
2689 /* helper function for pulling the mac address out of the private */
2690 /* data's copy of the eeprom data                                 */
2691 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2692 {
2693         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2694 }
2695
2696 static void ipw_read_eeprom(struct ipw_priv *priv)
2697 {
2698         int i;
2699         __le16 *eeprom = (__le16 *) priv->eeprom;
2700
2701         IPW_DEBUG_TRACE(">>\n");
2702
2703         /* read entire contents of eeprom into private buffer */
2704         for (i = 0; i < 128; i++)
2705                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2706
2707         IPW_DEBUG_TRACE("<<\n");
2708 }
2709
2710 /*
2711  * Either the device driver (i.e. the host) or the firmware can
2712  * load eeprom data into the designated region in SRAM.  If neither
2713  * happens then the FW will shutdown with a fatal error.
2714  *
2715  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2716  * bit needs region of shared SRAM needs to be non-zero.
2717  */
2718 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2719 {
2720         int i;
2721
2722         IPW_DEBUG_TRACE(">>\n");
2723
2724         /*
2725            If the data looks correct, then copy it to our private
2726            copy.  Otherwise let the firmware know to perform the operation
2727            on its own.
2728          */
2729         if (priv->eeprom[EEPROM_VERSION] != 0) {
2730                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2731
2732                 /* write the eeprom data to sram */
2733                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2734                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2735
2736                 /* Do not load eeprom data on fatal error or suspend */
2737                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2738         } else {
2739                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2740
2741                 /* Load eeprom data on fatal error or suspend */
2742                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2743         }
2744
2745         IPW_DEBUG_TRACE("<<\n");
2746 }
2747
2748 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2749 {
2750         count >>= 2;
2751         if (!count)
2752                 return;
2753         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2754         while (count--)
2755                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2756 }
2757
2758 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2759 {
2760         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2761                         CB_NUMBER_OF_ELEMENTS_SMALL *
2762                         sizeof(struct command_block));
2763 }
2764
2765 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2766 {                               /* start dma engine but no transfers yet */
2767
2768         IPW_DEBUG_FW(">> :\n");
2769
2770         /* Start the dma */
2771         ipw_fw_dma_reset_command_blocks(priv);
2772
2773         /* Write CB base address */
2774         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2775
2776         IPW_DEBUG_FW("<< :\n");
2777         return 0;
2778 }
2779
2780 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2781 {
2782         u32 control = 0;
2783
2784         IPW_DEBUG_FW(">> :\n");
2785
2786         /* set the Stop and Abort bit */
2787         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2788         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2789         priv->sram_desc.last_cb_index = 0;
2790
2791         IPW_DEBUG_FW("<<\n");
2792 }
2793
2794 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2795                                           struct command_block *cb)
2796 {
2797         u32 address =
2798             IPW_SHARED_SRAM_DMA_CONTROL +
2799             (sizeof(struct command_block) * index);
2800         IPW_DEBUG_FW(">> :\n");
2801
2802         ipw_write_indirect(priv, address, (u8 *) cb,
2803                            (int)sizeof(struct command_block));
2804
2805         IPW_DEBUG_FW("<< :\n");
2806         return 0;
2807
2808 }
2809
2810 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2811 {
2812         u32 control = 0;
2813         u32 index = 0;
2814
2815         IPW_DEBUG_FW(">> :\n");
2816
2817         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2818                 ipw_fw_dma_write_command_block(priv, index,
2819                                                &priv->sram_desc.cb_list[index]);
2820
2821         /* Enable the DMA in the CSR register */
2822         ipw_clear_bit(priv, IPW_RESET_REG,
2823                       IPW_RESET_REG_MASTER_DISABLED |
2824                       IPW_RESET_REG_STOP_MASTER);
2825
2826         /* Set the Start bit. */
2827         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2828         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2829
2830         IPW_DEBUG_FW("<< :\n");
2831         return 0;
2832 }
2833
2834 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2835 {
2836         u32 address;
2837         u32 register_value = 0;
2838         u32 cb_fields_address = 0;
2839
2840         IPW_DEBUG_FW(">> :\n");
2841         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2842         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2843
2844         /* Read the DMA Controlor register */
2845         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2846         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2847
2848         /* Print the CB values */
2849         cb_fields_address = address;
2850         register_value = ipw_read_reg32(priv, cb_fields_address);
2851         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2852
2853         cb_fields_address += sizeof(u32);
2854         register_value = ipw_read_reg32(priv, cb_fields_address);
2855         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2856
2857         cb_fields_address += sizeof(u32);
2858         register_value = ipw_read_reg32(priv, cb_fields_address);
2859         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2860                           register_value);
2861
2862         cb_fields_address += sizeof(u32);
2863         register_value = ipw_read_reg32(priv, cb_fields_address);
2864         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2865
2866         IPW_DEBUG_FW(">> :\n");
2867 }
2868
2869 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2870 {
2871         u32 current_cb_address = 0;
2872         u32 current_cb_index = 0;
2873
2874         IPW_DEBUG_FW("<< :\n");
2875         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2876
2877         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2878             sizeof(struct command_block);
2879
2880         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2881                           current_cb_index, current_cb_address);
2882
2883         IPW_DEBUG_FW(">> :\n");
2884         return current_cb_index;
2885
2886 }
2887
2888 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2889                                         u32 src_address,
2890                                         u32 dest_address,
2891                                         u32 length,
2892                                         int interrupt_enabled, int is_last)
2893 {
2894
2895         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2896             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2897             CB_DEST_SIZE_LONG;
2898         struct command_block *cb;
2899         u32 last_cb_element = 0;
2900
2901         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2902                           src_address, dest_address, length);
2903
2904         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2905                 return -1;
2906
2907         last_cb_element = priv->sram_desc.last_cb_index;
2908         cb = &priv->sram_desc.cb_list[last_cb_element];
2909         priv->sram_desc.last_cb_index++;
2910
2911         /* Calculate the new CB control word */
2912         if (interrupt_enabled)
2913                 control |= CB_INT_ENABLED;
2914
2915         if (is_last)
2916                 control |= CB_LAST_VALID;
2917
2918         control |= length;
2919
2920         /* Calculate the CB Element's checksum value */
2921         cb->status = control ^ src_address ^ dest_address;
2922
2923         /* Copy the Source and Destination addresses */
2924         cb->dest_addr = dest_address;
2925         cb->source_addr = src_address;
2926
2927         /* Copy the Control Word last */
2928         cb->control = control;
2929
2930         return 0;
2931 }
2932
2933 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2934                                  int nr, u32 dest_address, u32 len)
2935 {
2936         int ret, i;
2937         u32 size;
2938
2939         IPW_DEBUG_FW(">>\n");
2940         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2941                           nr, dest_address, len);
2942
2943         for (i = 0; i < nr; i++) {
2944                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2945                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2946                                                    dest_address +
2947                                                    i * CB_MAX_LENGTH, size,
2948                                                    0, 0);
2949                 if (ret) {
2950                         IPW_DEBUG_FW_INFO(": Failed\n");
2951                         return -1;
2952                 } else
2953                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2954         }
2955
2956         IPW_DEBUG_FW("<<\n");
2957         return 0;
2958 }
2959
2960 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2961 {
2962         u32 current_index = 0, previous_index;
2963         u32 watchdog = 0;
2964
2965         IPW_DEBUG_FW(">> :\n");
2966
2967         current_index = ipw_fw_dma_command_block_index(priv);
2968         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2969                           (int)priv->sram_desc.last_cb_index);
2970
2971         while (current_index < priv->sram_desc.last_cb_index) {
2972                 udelay(50);
2973                 previous_index = current_index;
2974                 current_index = ipw_fw_dma_command_block_index(priv);
2975
2976                 if (previous_index < current_index) {
2977                         watchdog = 0;
2978                         continue;
2979                 }
2980                 if (++watchdog > 400) {
2981                         IPW_DEBUG_FW_INFO("Timeout\n");
2982                         ipw_fw_dma_dump_command_block(priv);
2983                         ipw_fw_dma_abort(priv);
2984                         return -1;
2985                 }
2986         }
2987
2988         ipw_fw_dma_abort(priv);
2989
2990         /*Disable the DMA in the CSR register */
2991         ipw_set_bit(priv, IPW_RESET_REG,
2992                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2993
2994         IPW_DEBUG_FW("<< dmaWaitSync\n");
2995         return 0;
2996 }
2997
2998 static void ipw_remove_current_network(struct ipw_priv *priv)
2999 {
3000         struct list_head *element, *safe;
3001         struct libipw_network *network = NULL;
3002         unsigned long flags;
3003
3004         spin_lock_irqsave(&priv->ieee->lock, flags);
3005         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3006                 network = list_entry(element, struct libipw_network, list);
3007                 if (ether_addr_equal(network->bssid, priv->bssid)) {
3008                         list_del(element);
3009                         list_add_tail(&network->list,
3010                                       &priv->ieee->network_free_list);
3011                 }
3012         }
3013         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3014 }
3015
3016 /**
3017  * Check that card is still alive.
3018  * Reads debug register from domain0.
3019  * If card is present, pre-defined value should
3020  * be found there.
3021  *
3022  * @param priv
3023  * @return 1 if card is present, 0 otherwise
3024  */
3025 static inline int ipw_alive(struct ipw_priv *priv)
3026 {
3027         return ipw_read32(priv, 0x90) == 0xd55555d5;
3028 }
3029
3030 /* timeout in msec, attempted in 10-msec quanta */
3031 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3032                                int timeout)
3033 {
3034         int i = 0;
3035
3036         do {
3037                 if ((ipw_read32(priv, addr) & mask) == mask)
3038                         return i;
3039                 mdelay(10);
3040                 i += 10;
3041         } while (i < timeout);
3042
3043         return -ETIME;
3044 }
3045
3046 /* These functions load the firmware and micro code for the operation of
3047  * the ipw hardware.  It assumes the buffer has all the bits for the
3048  * image and the caller is handling the memory allocation and clean up.
3049  */
3050
3051 static int ipw_stop_master(struct ipw_priv *priv)
3052 {
3053         int rc;
3054
3055         IPW_DEBUG_TRACE(">>\n");
3056         /* stop master. typical delay - 0 */
3057         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3058
3059         /* timeout is in msec, polled in 10-msec quanta */
3060         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3061                           IPW_RESET_REG_MASTER_DISABLED, 100);
3062         if (rc < 0) {
3063                 IPW_ERROR("wait for stop master failed after 100ms\n");
3064                 return -1;
3065         }
3066
3067         IPW_DEBUG_INFO("stop master %dms\n", rc);
3068
3069         return rc;
3070 }
3071
3072 static void ipw_arc_release(struct ipw_priv *priv)
3073 {
3074         IPW_DEBUG_TRACE(">>\n");
3075         mdelay(5);
3076
3077         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3078
3079         /* no one knows timing, for safety add some delay */
3080         mdelay(5);
3081 }
3082
3083 struct fw_chunk {
3084         __le32 address;
3085         __le32 length;
3086 };
3087
3088 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3089 {
3090         int rc = 0, i, addr;
3091         u8 cr = 0;
3092         __le16 *image;
3093
3094         image = (__le16 *) data;
3095
3096         IPW_DEBUG_TRACE(">>\n");
3097
3098         rc = ipw_stop_master(priv);
3099
3100         if (rc < 0)
3101                 return rc;
3102
3103         for (addr = IPW_SHARED_LOWER_BOUND;
3104              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3105                 ipw_write32(priv, addr, 0);
3106         }
3107
3108         /* no ucode (yet) */
3109         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3110         /* destroy DMA queues */
3111         /* reset sequence */
3112
3113         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3114         ipw_arc_release(priv);
3115         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3116         mdelay(1);
3117
3118         /* reset PHY */
3119         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3120         mdelay(1);
3121
3122         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3123         mdelay(1);
3124
3125         /* enable ucode store */
3126         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3127         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3128         mdelay(1);
3129
3130         /* write ucode */
3131         /**
3132          * @bug
3133          * Do NOT set indirect address register once and then
3134          * store data to indirect data register in the loop.
3135          * It seems very reasonable, but in this case DINO do not
3136          * accept ucode. It is essential to set address each time.
3137          */
3138         /* load new ipw uCode */
3139         for (i = 0; i < len / 2; i++)
3140                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3141                                 le16_to_cpu(image[i]));
3142
3143         /* enable DINO */
3144         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3145         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3146
3147         /* this is where the igx / win driver deveates from the VAP driver. */
3148
3149         /* wait for alive response */
3150         for (i = 0; i < 100; i++) {
3151                 /* poll for incoming data */
3152                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3153                 if (cr & DINO_RXFIFO_DATA)
3154                         break;
3155                 mdelay(1);
3156         }
3157
3158         if (cr & DINO_RXFIFO_DATA) {
3159                 /* alive_command_responce size is NOT multiple of 4 */
3160                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3161
3162                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3163                         response_buffer[i] =
3164                             cpu_to_le32(ipw_read_reg32(priv,
3165                                                        IPW_BASEBAND_RX_FIFO_READ));
3166                 memcpy(&priv->dino_alive, response_buffer,
3167                        sizeof(priv->dino_alive));
3168                 if (priv->dino_alive.alive_command == 1
3169                     && priv->dino_alive.ucode_valid == 1) {
3170                         rc = 0;
3171                         IPW_DEBUG_INFO
3172                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3173                              "of %02d/%02d/%02d %02d:%02d\n",
3174                              priv->dino_alive.software_revision,
3175                              priv->dino_alive.software_revision,
3176                              priv->dino_alive.device_identifier,
3177                              priv->dino_alive.device_identifier,
3178                              priv->dino_alive.time_stamp[0],
3179                              priv->dino_alive.time_stamp[1],
3180                              priv->dino_alive.time_stamp[2],
3181                              priv->dino_alive.time_stamp[3],
3182                              priv->dino_alive.time_stamp[4]);
3183                 } else {
3184                         IPW_DEBUG_INFO("Microcode is not alive\n");
3185                         rc = -EINVAL;
3186                 }
3187         } else {
3188                 IPW_DEBUG_INFO("No alive response from DINO\n");
3189                 rc = -ETIME;
3190         }
3191
3192         /* disable DINO, otherwise for some reason
3193            firmware have problem getting alive resp. */
3194         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3195
3196         return rc;
3197 }
3198
3199 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3200 {
3201         int ret = -1;
3202         int offset = 0;
3203         struct fw_chunk *chunk;
3204         int total_nr = 0;
3205         int i;
3206         struct dma_pool *pool;
3207         void **virts;
3208         dma_addr_t *phys;
3209
3210         IPW_DEBUG_TRACE("<< :\n");
3211
3212         virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3213                               GFP_KERNEL);
3214         if (!virts)
3215                 return -ENOMEM;
3216
3217         phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3218                              GFP_KERNEL);
3219         if (!phys) {
3220                 kfree(virts);
3221                 return -ENOMEM;
3222         }
3223         pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3224                                0);
3225         if (!pool) {
3226                 IPW_ERROR("dma_pool_create failed\n");
3227                 kfree(phys);
3228                 kfree(virts);
3229                 return -ENOMEM;
3230         }
3231
3232         /* Start the Dma */
3233         ret = ipw_fw_dma_enable(priv);
3234
3235         /* the DMA is already ready this would be a bug. */
3236         BUG_ON(priv->sram_desc.last_cb_index > 0);
3237
3238         do {
3239                 u32 chunk_len;
3240                 u8 *start;
3241                 int size;
3242                 int nr = 0;
3243
3244                 chunk = (struct fw_chunk *)(data + offset);
3245                 offset += sizeof(struct fw_chunk);
3246                 chunk_len = le32_to_cpu(chunk->length);
3247                 start = data + offset;
3248
3249                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3250                 for (i = 0; i < nr; i++) {
3251                         virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3252                                                          &phys[total_nr]);
3253                         if (!virts[total_nr]) {
3254                                 ret = -ENOMEM;
3255                                 goto out;
3256                         }
3257                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3258                                      CB_MAX_LENGTH);
3259                         memcpy(virts[total_nr], start, size);
3260                         start += size;
3261                         total_nr++;
3262                         /* We don't support fw chunk larger than 64*8K */
3263                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3264                 }
3265
3266                 /* build DMA packet and queue up for sending */
3267                 /* dma to chunk->address, the chunk->length bytes from data +
3268                  * offeset*/
3269                 /* Dma loading */
3270                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3271                                             nr, le32_to_cpu(chunk->address),
3272                                             chunk_len);
3273                 if (ret) {
3274                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3275                         goto out;
3276                 }
3277
3278                 offset += chunk_len;
3279         } while (offset < len);
3280
3281         /* Run the DMA and wait for the answer */
3282         ret = ipw_fw_dma_kick(priv);
3283         if (ret) {
3284                 IPW_ERROR("dmaKick Failed\n");
3285                 goto out;
3286         }
3287
3288         ret = ipw_fw_dma_wait(priv);
3289         if (ret) {
3290                 IPW_ERROR("dmaWaitSync Failed\n");
3291                 goto out;
3292         }
3293  out:
3294         for (i = 0; i < total_nr; i++)
3295                 dma_pool_free(pool, virts[i], phys[i]);
3296
3297         dma_pool_destroy(pool);
3298         kfree(phys);
3299         kfree(virts);
3300
3301         return ret;
3302 }
3303
3304 /* stop nic */
3305 static int ipw_stop_nic(struct ipw_priv *priv)
3306 {
3307         int rc = 0;
3308
3309         /* stop */
3310         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3311
3312         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3313                           IPW_RESET_REG_MASTER_DISABLED, 500);
3314         if (rc < 0) {
3315                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3316                 return rc;
3317         }
3318
3319         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3320
3321         return rc;
3322 }
3323
3324 static void ipw_start_nic(struct ipw_priv *priv)
3325 {
3326         IPW_DEBUG_TRACE(">>\n");
3327
3328         /* prvHwStartNic  release ARC */
3329         ipw_clear_bit(priv, IPW_RESET_REG,
3330                       IPW_RESET_REG_MASTER_DISABLED |
3331                       IPW_RESET_REG_STOP_MASTER |
3332                       CBD_RESET_REG_PRINCETON_RESET);
3333
3334         /* enable power management */
3335         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3336                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3337
3338         IPW_DEBUG_TRACE("<<\n");
3339 }
3340
3341 static int ipw_init_nic(struct ipw_priv *priv)
3342 {
3343         int rc;
3344
3345         IPW_DEBUG_TRACE(">>\n");
3346         /* reset */
3347         /*prvHwInitNic */
3348         /* set "initialization complete" bit to move adapter to D0 state */
3349         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3350
3351         /* low-level PLL activation */
3352         ipw_write32(priv, IPW_READ_INT_REGISTER,
3353                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3354
3355         /* wait for clock stabilization */
3356         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3357                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3358         if (rc < 0)
3359                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3360
3361         /* assert SW reset */
3362         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3363
3364         udelay(10);
3365
3366         /* set "initialization complete" bit to move adapter to D0 state */
3367         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3368
3369         IPW_DEBUG_TRACE(">>\n");
3370         return 0;
3371 }
3372
3373 /* Call this function from process context, it will sleep in request_firmware.
3374  * Probe is an ok place to call this from.
3375  */
3376 static int ipw_reset_nic(struct ipw_priv *priv)
3377 {
3378         int rc = 0;
3379         unsigned long flags;
3380
3381         IPW_DEBUG_TRACE(">>\n");
3382
3383         rc = ipw_init_nic(priv);
3384
3385         spin_lock_irqsave(&priv->lock, flags);
3386         /* Clear the 'host command active' bit... */
3387         priv->status &= ~STATUS_HCMD_ACTIVE;
3388         wake_up_interruptible(&priv->wait_command_queue);
3389         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3390         wake_up_interruptible(&priv->wait_state);
3391         spin_unlock_irqrestore(&priv->lock, flags);
3392
3393         IPW_DEBUG_TRACE("<<\n");
3394         return rc;
3395 }
3396
3397
3398 struct ipw_fw {
3399         __le32 ver;
3400         __le32 boot_size;
3401         __le32 ucode_size;
3402         __le32 fw_size;
3403         u8 data[0];
3404 };
3405
3406 static int ipw_get_fw(struct ipw_priv *priv,
3407                       const struct firmware **raw, const char *name)
3408 {
3409         struct ipw_fw *fw;
3410         int rc;
3411
3412         /* ask firmware_class module to get the boot firmware off disk */
3413         rc = reject_firmware(raw, name, &priv->pci_dev->dev);
3414         if (rc < 0) {
3415                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3416                 return rc;
3417         }
3418
3419         if ((*raw)->size < sizeof(*fw)) {
3420                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3421                 return -EINVAL;
3422         }
3423
3424         fw = (void *)(*raw)->data;
3425
3426         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3427             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3428                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3429                           name, (*raw)->size);
3430                 return -EINVAL;
3431         }
3432
3433         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3434                        name,
3435                        le32_to_cpu(fw->ver) >> 16,
3436                        le32_to_cpu(fw->ver) & 0xff,
3437                        (*raw)->size - sizeof(*fw));
3438         return 0;
3439 }
3440
3441 #define IPW_RX_BUF_SIZE (3000)
3442
3443 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3444                                       struct ipw_rx_queue *rxq)
3445 {
3446         unsigned long flags;
3447         int i;
3448
3449         spin_lock_irqsave(&rxq->lock, flags);
3450
3451         INIT_LIST_HEAD(&rxq->rx_free);
3452         INIT_LIST_HEAD(&rxq->rx_used);
3453
3454         /* Fill the rx_used queue with _all_ of the Rx buffers */
3455         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3456                 /* In the reset function, these buffers may have been allocated
3457                  * to an SKB, so we need to unmap and free potential storage */
3458                 if (rxq->pool[i].skb != NULL) {
3459                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3460                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3461                         dev_kfree_skb(rxq->pool[i].skb);
3462                         rxq->pool[i].skb = NULL;
3463                 }
3464                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3465         }
3466
3467         /* Set us so that we have processed and used all buffers, but have
3468          * not restocked the Rx queue with fresh buffers */
3469         rxq->read = rxq->write = 0;
3470         rxq->free_count = 0;
3471         spin_unlock_irqrestore(&rxq->lock, flags);
3472 }
3473
3474 #ifdef CONFIG_PM
3475 static int fw_loaded = 0;
3476 static const struct firmware *raw = NULL;
3477
3478 static void free_firmware(void)
3479 {
3480         if (fw_loaded) {
3481                 release_firmware(raw);
3482                 raw = NULL;
3483                 fw_loaded = 0;
3484         }
3485 }
3486 #else
3487 #define free_firmware() do {} while (0)
3488 #endif
3489
3490 static int ipw_load(struct ipw_priv *priv)
3491 {
3492 #ifndef CONFIG_PM
3493         const struct firmware *raw = NULL;
3494 #endif
3495         struct ipw_fw *fw;
3496         u8 *boot_img, *ucode_img, *fw_img;
3497         u8 *name = NULL;
3498         int rc = 0, retries = 3;
3499
3500         switch (priv->ieee->iw_mode) {
3501         case IW_MODE_ADHOC:
3502                 name = "/*(DEBLOBBED)*/";
3503                 break;
3504 #ifdef CONFIG_IPW2200_MONITOR
3505         case IW_MODE_MONITOR:
3506                 name = "/*(DEBLOBBED)*/";
3507                 break;
3508 #endif
3509         case IW_MODE_INFRA:
3510                 name = "/*(DEBLOBBED)*/";
3511                 break;
3512         }
3513
3514         if (!name) {
3515                 rc = -EINVAL;
3516                 goto error;
3517         }
3518
3519 #ifdef CONFIG_PM
3520         if (!fw_loaded) {
3521 #endif
3522                 rc = ipw_get_fw(priv, &raw, name);
3523                 if (rc < 0)
3524                         goto error;
3525 #ifdef CONFIG_PM
3526         }
3527 #endif
3528
3529         fw = (void *)raw->data;
3530         boot_img = &fw->data[0];
3531         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3532         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3533                            le32_to_cpu(fw->ucode_size)];
3534
3535         if (!priv->rxq)
3536                 priv->rxq = ipw_rx_queue_alloc(priv);
3537         else
3538                 ipw_rx_queue_reset(priv, priv->rxq);
3539         if (!priv->rxq) {
3540                 IPW_ERROR("Unable to initialize Rx queue\n");
3541                 rc = -ENOMEM;
3542                 goto error;
3543         }
3544
3545       retry:
3546         /* Ensure interrupts are disabled */
3547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3548         priv->status &= ~STATUS_INT_ENABLED;
3549
3550         /* ack pending interrupts */
3551         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3552
3553         ipw_stop_nic(priv);
3554
3555         rc = ipw_reset_nic(priv);
3556         if (rc < 0) {
3557                 IPW_ERROR("Unable to reset NIC\n");
3558                 goto error;
3559         }
3560
3561         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3562                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3563
3564         /* DMA the initial boot firmware into the device */
3565         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3566         if (rc < 0) {
3567                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3568                 goto error;
3569         }
3570
3571         /* kick start the device */
3572         ipw_start_nic(priv);
3573
3574         /* wait for the device to finish its initial startup sequence */
3575         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577         if (rc < 0) {
3578                 IPW_ERROR("device failed to boot initial fw image\n");
3579                 goto error;
3580         }
3581         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3582
3583         /* ack fw init done interrupt */
3584         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585
3586         /* DMA the ucode into the device */
3587         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3588         if (rc < 0) {
3589                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3590                 goto error;
3591         }
3592
3593         /* stop nic */
3594         ipw_stop_nic(priv);
3595
3596         /* DMA bss firmware into the device */
3597         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3598         if (rc < 0) {
3599                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3600                 goto error;
3601         }
3602 #ifdef CONFIG_PM
3603         fw_loaded = 1;
3604 #endif
3605
3606         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3607
3608         rc = ipw_queue_reset(priv);
3609         if (rc < 0) {
3610                 IPW_ERROR("Unable to initialize queues\n");
3611                 goto error;
3612         }
3613
3614         /* Ensure interrupts are disabled */
3615         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3616         /* ack pending interrupts */
3617         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3618
3619         /* kick start the device */
3620         ipw_start_nic(priv);
3621
3622         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3623                 if (retries > 0) {
3624                         IPW_WARNING("Parity error.  Retrying init.\n");
3625                         retries--;
3626                         goto retry;
3627                 }
3628
3629                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3630                 rc = -EIO;
3631                 goto error;
3632         }
3633
3634         /* wait for the device */
3635         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3636                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3637         if (rc < 0) {
3638                 IPW_ERROR("device failed to start within 500ms\n");
3639                 goto error;
3640         }
3641         IPW_DEBUG_INFO("device response after %dms\n", rc);
3642
3643         /* ack fw init done interrupt */
3644         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3645
3646         /* read eeprom data */
3647         priv->eeprom_delay = 1;
3648         ipw_read_eeprom(priv);
3649         /* initialize the eeprom region of sram */
3650         ipw_eeprom_init_sram(priv);
3651
3652         /* enable interrupts */
3653         ipw_enable_interrupts(priv);
3654
3655         /* Ensure our queue has valid packets */
3656         ipw_rx_queue_replenish(priv);
3657
3658         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3659
3660         /* ack pending interrupts */
3661         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3662
3663 #ifndef CONFIG_PM
3664         release_firmware(raw);
3665 #endif
3666         return 0;
3667
3668       error:
3669         if (priv->rxq) {
3670                 ipw_rx_queue_free(priv, priv->rxq);
3671                 priv->rxq = NULL;
3672         }
3673         ipw_tx_queue_free(priv);
3674         release_firmware(raw);
3675 #ifdef CONFIG_PM
3676         fw_loaded = 0;
3677         raw = NULL;
3678 #endif
3679
3680         return rc;
3681 }
3682
3683 /**
3684  * DMA services
3685  *
3686  * Theory of operation
3687  *
3688  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3689  * 2 empty entries always kept in the buffer to protect from overflow.
3690  *
3691  * For Tx queue, there are low mark and high mark limits. If, after queuing
3692  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3693  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3694  * Tx queue resumed.
3695  *
3696  * The IPW operates with six queues, one receive queue in the device's
3697  * sram, one transmit queue for sending commands to the device firmware,
3698  * and four transmit queues for data.
3699  *
3700  * The four transmit queues allow for performing quality of service (qos)
3701  * transmissions as per the 802.11 protocol.  Currently Linux does not
3702  * provide a mechanism to the user for utilizing prioritized queues, so
3703  * we only utilize the first data transmit queue (queue1).
3704  */
3705
3706 /**
3707  * Driver allocates buffers of this size for Rx
3708  */
3709
3710 /**
3711  * ipw_rx_queue_space - Return number of free slots available in queue.
3712  */
3713 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3714 {
3715         int s = q->read - q->write;
3716         if (s <= 0)
3717                 s += RX_QUEUE_SIZE;
3718         /* keep some buffer to not confuse full and empty queue */
3719         s -= 2;
3720         if (s < 0)
3721                 s = 0;
3722         return s;
3723 }
3724
3725 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3726 {
3727         int s = q->last_used - q->first_empty;
3728         if (s <= 0)
3729                 s += q->n_bd;
3730         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3731         if (s < 0)
3732                 s = 0;
3733         return s;
3734 }
3735
3736 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3737 {
3738         return (++index == n_bd) ? 0 : index;
3739 }
3740
3741 /**
3742  * Initialize common DMA queue structure
3743  *
3744  * @param q                queue to init
3745  * @param count            Number of BD's to allocate. Should be power of 2
3746  * @param read_register    Address for 'read' register
3747  *                         (not offset within BAR, full address)
3748  * @param write_register   Address for 'write' register
3749  *                         (not offset within BAR, full address)
3750  * @param base_register    Address for 'base' register
3751  *                         (not offset within BAR, full address)
3752  * @param size             Address for 'size' register
3753  *                         (not offset within BAR, full address)
3754  */
3755 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3756                            int count, u32 read, u32 write, u32 base, u32 size)
3757 {
3758         q->n_bd = count;
3759
3760         q->low_mark = q->n_bd / 4;
3761         if (q->low_mark < 4)
3762                 q->low_mark = 4;
3763
3764         q->high_mark = q->n_bd / 8;
3765         if (q->high_mark < 2)
3766                 q->high_mark = 2;
3767
3768         q->first_empty = q->last_used = 0;
3769         q->reg_r = read;
3770         q->reg_w = write;
3771
3772         ipw_write32(priv, base, q->dma_addr);
3773         ipw_write32(priv, size, count);
3774         ipw_write32(priv, read, 0);
3775         ipw_write32(priv, write, 0);
3776
3777         _ipw_read32(priv, 0x90);
3778 }
3779
3780 static int ipw_queue_tx_init(struct ipw_priv *priv,
3781                              struct clx2_tx_queue *q,
3782                              int count, u32 read, u32 write, u32 base, u32 size)
3783 {
3784         struct pci_dev *dev = priv->pci_dev;
3785
3786         q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3787         if (!q->txb) {
3788                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3789                 return -ENOMEM;
3790         }
3791
3792         q->bd =
3793             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3794         if (!q->bd) {
3795                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3796                           sizeof(q->bd[0]) * count);
3797                 kfree(q->txb);
3798                 q->txb = NULL;
3799                 return -ENOMEM;
3800         }
3801
3802         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3803         return 0;
3804 }
3805
3806 /**
3807  * Free one TFD, those at index [txq->q.last_used].
3808  * Do NOT advance any indexes
3809  *
3810  * @param dev
3811  * @param txq
3812  */
3813 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3814                                   struct clx2_tx_queue *txq)
3815 {
3816         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3817         struct pci_dev *dev = priv->pci_dev;
3818         int i;
3819
3820         /* classify bd */
3821         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3822                 /* nothing to cleanup after for host commands */
3823                 return;
3824
3825         /* sanity check */
3826         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3827                 IPW_ERROR("Too many chunks: %i\n",
3828                           le32_to_cpu(bd->u.data.num_chunks));
3829                 /** @todo issue fatal error, it is quite serious situation */
3830                 return;
3831         }
3832
3833         /* unmap chunks if any */
3834         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3835                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3836                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3837                                  PCI_DMA_TODEVICE);
3838                 if (txq->txb[txq->q.last_used]) {
3839                         libipw_txb_free(txq->txb[txq->q.last_used]);
3840                         txq->txb[txq->q.last_used] = NULL;
3841                 }
3842         }
3843 }
3844
3845 /**
3846  * Deallocate DMA queue.
3847  *
3848  * Empty queue by removing and destroying all BD's.
3849  * Free all buffers.
3850  *
3851  * @param dev
3852  * @param q
3853  */
3854 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3855 {
3856         struct clx2_queue *q = &txq->q;
3857         struct pci_dev *dev = priv->pci_dev;
3858
3859         if (q->n_bd == 0)
3860                 return;
3861
3862         /* first, empty all BD's */
3863         for (; q->first_empty != q->last_used;
3864              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3865                 ipw_queue_tx_free_tfd(priv, txq);
3866         }
3867
3868         /* free buffers belonging to queue itself */
3869         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3870                             q->dma_addr);
3871         kfree(txq->txb);
3872
3873         /* 0 fill whole structure */
3874         memset(txq, 0, sizeof(*txq));
3875 }
3876
3877 /**
3878  * Destroy all DMA queues and structures
3879  *
3880  * @param priv
3881  */
3882 static void ipw_tx_queue_free(struct ipw_priv *priv)
3883 {
3884         /* Tx CMD queue */
3885         ipw_queue_tx_free(priv, &priv->txq_cmd);
3886
3887         /* Tx queues */
3888         ipw_queue_tx_free(priv, &priv->txq[0]);
3889         ipw_queue_tx_free(priv, &priv->txq[1]);
3890         ipw_queue_tx_free(priv, &priv->txq[2]);
3891         ipw_queue_tx_free(priv, &priv->txq[3]);
3892 }
3893
3894 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3895 {
3896         /* First 3 bytes are manufacturer */
3897         bssid[0] = priv->mac_addr[0];
3898         bssid[1] = priv->mac_addr[1];
3899         bssid[2] = priv->mac_addr[2];
3900
3901         /* Last bytes are random */
3902         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3903
3904         bssid[0] &= 0xfe;       /* clear multicast bit */
3905         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3906 }
3907
3908 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3909 {
3910         struct ipw_station_entry entry;
3911         int i;
3912
3913         for (i = 0; i < priv->num_stations; i++) {
3914                 if (ether_addr_equal(priv->stations[i], bssid)) {
3915                         /* Another node is active in network */
3916                         priv->missed_adhoc_beacons = 0;
3917                         if (!(priv->config & CFG_STATIC_CHANNEL))
3918                                 /* when other nodes drop out, we drop out */
3919                                 priv->config &= ~CFG_ADHOC_PERSIST;
3920
3921                         return i;
3922                 }
3923         }
3924
3925         if (i == MAX_STATIONS)
3926                 return IPW_INVALID_STATION;
3927
3928         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3929
3930         entry.reserved = 0;
3931         entry.support_mode = 0;
3932         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3933         memcpy(priv->stations[i], bssid, ETH_ALEN);
3934         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3935                          &entry, sizeof(entry));
3936         priv->num_stations++;
3937
3938         return i;
3939 }
3940
3941 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3942 {
3943         int i;
3944
3945         for (i = 0; i < priv->num_stations; i++)
3946                 if (ether_addr_equal(priv->stations[i], bssid))
3947                         return i;
3948
3949         return IPW_INVALID_STATION;
3950 }
3951
3952 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3953 {
3954         int err;
3955
3956         if (priv->status & STATUS_ASSOCIATING) {
3957                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3958                 schedule_work(&priv->disassociate);
3959                 return;
3960         }
3961
3962         if (!(priv->status & STATUS_ASSOCIATED)) {
3963                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3964                 return;
3965         }
3966
3967         IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3968                         "on channel %d.\n",
3969                         priv->assoc_request.bssid,
3970                         priv->assoc_request.channel);
3971
3972         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3973         priv->status |= STATUS_DISASSOCIATING;
3974
3975         if (quiet)
3976                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3977         else
3978                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3979
3980         err = ipw_send_associate(priv, &priv->assoc_request);
3981         if (err) {
3982                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3983                              "failed.\n");
3984                 return;
3985         }
3986
3987 }
3988
3989 static int ipw_disassociate(void *data)
3990 {
3991         struct ipw_priv *priv = data;
3992         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3993                 return 0;
3994         ipw_send_disassociate(data, 0);
3995         netif_carrier_off(priv->net_dev);
3996         return 1;
3997 }
3998
3999 static void ipw_bg_disassociate(struct work_struct *work)
4000 {
4001         struct ipw_priv *priv =
4002                 container_of(work, struct ipw_priv, disassociate);
4003         mutex_lock(&priv->mutex);
4004         ipw_disassociate(priv);
4005         mutex_unlock(&priv->mutex);
4006 }
4007
4008 static void ipw_system_config(struct work_struct *work)
4009 {
4010         struct ipw_priv *priv =
4011                 container_of(work, struct ipw_priv, system_config);
4012
4013 #ifdef CONFIG_IPW2200_PROMISCUOUS
4014         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4015                 priv->sys_config.accept_all_data_frames = 1;
4016                 priv->sys_config.accept_non_directed_frames = 1;
4017                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4018                 priv->sys_config.accept_all_mgmt_frames = 1;
4019         }
4020 #endif
4021
4022         ipw_send_system_config(priv);
4023 }
4024
4025 struct ipw_status_code {
4026         u16 status;
4027         const char *reason;
4028 };
4029
4030 static const struct ipw_status_code ipw_status_codes[] = {
4031         {0x00, "Successful"},
4032         {0x01, "Unspecified failure"},
4033         {0x0A, "Cannot support all requested capabilities in the "
4034          "Capability information field"},
4035         {0x0B, "Reassociation denied due to inability to confirm that "
4036          "association exists"},
4037         {0x0C, "Association denied due to reason outside the scope of this "
4038          "standard"},
4039         {0x0D,
4040          "Responding station does not support the specified authentication "
4041          "algorithm"},
4042         {0x0E,
4043          "Received an Authentication frame with authentication sequence "
4044          "transaction sequence number out of expected sequence"},
4045         {0x0F, "Authentication rejected because of challenge failure"},
4046         {0x10, "Authentication rejected due to timeout waiting for next "
4047          "frame in sequence"},
4048         {0x11, "Association denied because AP is unable to handle additional "
4049          "associated stations"},
4050         {0x12,
4051          "Association denied due to requesting station not supporting all "
4052          "of the datarates in the BSSBasicServiceSet Parameter"},
4053         {0x13,
4054          "Association denied due to requesting station not supporting "
4055          "short preamble operation"},
4056         {0x14,
4057          "Association denied due to requesting station not supporting "
4058          "PBCC encoding"},
4059         {0x15,
4060          "Association denied due to requesting station not supporting "
4061          "channel agility"},
4062         {0x19,
4063          "Association denied due to requesting station not supporting "
4064          "short slot operation"},
4065         {0x1A,
4066          "Association denied due to requesting station not supporting "
4067          "DSSS-OFDM operation"},
4068         {0x28, "Invalid Information Element"},
4069         {0x29, "Group Cipher is not valid"},
4070         {0x2A, "Pairwise Cipher is not valid"},
4071         {0x2B, "AKMP is not valid"},
4072         {0x2C, "Unsupported RSN IE version"},
4073         {0x2D, "Invalid RSN IE Capabilities"},
4074         {0x2E, "Cipher suite is rejected per security policy"},
4075 };
4076
4077 static const char *ipw_get_status_code(u16 status)
4078 {
4079         int i;
4080         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4081                 if (ipw_status_codes[i].status == (status & 0xff))
4082                         return ipw_status_codes[i].reason;
4083         return "Unknown status value.";
4084 }
4085
4086 static inline void average_init(struct average *avg)
4087 {
4088         memset(avg, 0, sizeof(*avg));
4089 }
4090
4091 #define DEPTH_RSSI 8
4092 #define DEPTH_NOISE 16
4093 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4094 {
4095         return ((depth-1)*prev_avg +  val)/depth;
4096 }
4097
4098 static void average_add(struct average *avg, s16 val)
4099 {
4100         avg->sum -= avg->entries[avg->pos];
4101         avg->sum += val;
4102         avg->entries[avg->pos++] = val;
4103         if (unlikely(avg->pos == AVG_ENTRIES)) {
4104                 avg->init = 1;
4105                 avg->pos = 0;
4106         }
4107 }
4108
4109 static s16 average_value(struct average *avg)
4110 {
4111         if (!unlikely(avg->init)) {
4112                 if (avg->pos)
4113                         return avg->sum / avg->pos;
4114                 return 0;
4115         }
4116
4117         return avg->sum / AVG_ENTRIES;
4118 }
4119
4120 static void ipw_reset_stats(struct ipw_priv *priv)
4121 {
4122         u32 len = sizeof(u32);
4123
4124         priv->quality = 0;
4125
4126         average_init(&priv->average_missed_beacons);
4127         priv->exp_avg_rssi = -60;
4128         priv->exp_avg_noise = -85 + 0x100;
4129
4130         priv->last_rate = 0;
4131         priv->last_missed_beacons = 0;
4132         priv->last_rx_packets = 0;
4133         priv->last_tx_packets = 0;
4134         priv->last_tx_failures = 0;
4135
4136         /* Firmware managed, reset only when NIC is restarted, so we have to
4137          * normalize on the current value */
4138         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4139                         &priv->last_rx_err, &len);
4140         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4141                         &priv->last_tx_failures, &len);
4142
4143         /* Driver managed, reset with each association */
4144         priv->missed_adhoc_beacons = 0;
4145         priv->missed_beacons = 0;
4146         priv->tx_packets = 0;
4147         priv->rx_packets = 0;
4148
4149 }
4150
4151 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4152 {
4153         u32 i = 0x80000000;
4154         u32 mask = priv->rates_mask;
4155         /* If currently associated in B mode, restrict the maximum
4156          * rate match to B rates */
4157         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4158                 mask &= LIBIPW_CCK_RATES_MASK;
4159
4160         /* TODO: Verify that the rate is supported by the current rates
4161          * list. */
4162
4163         while (i && !(mask & i))
4164                 i >>= 1;
4165         switch (i) {
4166         case LIBIPW_CCK_RATE_1MB_MASK:
4167                 return 1000000;
4168         case LIBIPW_CCK_RATE_2MB_MASK:
4169                 return 2000000;
4170         case LIBIPW_CCK_RATE_5MB_MASK:
4171                 return 5500000;
4172         case LIBIPW_OFDM_RATE_6MB_MASK:
4173                 return 6000000;
4174         case LIBIPW_OFDM_RATE_9MB_MASK:
4175                 return 9000000;
4176         case LIBIPW_CCK_RATE_11MB_MASK:
4177                 return 11000000;
4178         case LIBIPW_OFDM_RATE_12MB_MASK:
4179                 return 12000000;
4180         case LIBIPW_OFDM_RATE_18MB_MASK:
4181                 return 18000000;
4182         case LIBIPW_OFDM_RATE_24MB_MASK:
4183                 return 24000000;
4184         case LIBIPW_OFDM_RATE_36MB_MASK:
4185                 return 36000000;
4186         case LIBIPW_OFDM_RATE_48MB_MASK:
4187                 return 48000000;
4188         case LIBIPW_OFDM_RATE_54MB_MASK:
4189                 return 54000000;
4190         }
4191
4192         if (priv->ieee->mode == IEEE_B)
4193                 return 11000000;
4194         else
4195                 return 54000000;
4196 }
4197
4198 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4199 {
4200         u32 rate, len = sizeof(rate);
4201         int err;
4202
4203         if (!(priv->status & STATUS_ASSOCIATED))
4204                 return 0;
4205
4206         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4207                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4208                                       &len);
4209                 if (err) {
4210                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4211                         return 0;
4212                 }
4213         } else
4214                 return ipw_get_max_rate(priv);
4215
4216         switch (rate) {
4217         case IPW_TX_RATE_1MB:
4218                 return 1000000;
4219         case IPW_TX_RATE_2MB:
4220                 return 2000000;
4221         case IPW_TX_RATE_5MB:
4222                 return 5500000;
4223         case IPW_TX_RATE_6MB:
4224                 return 6000000;
4225         case IPW_TX_RATE_9MB:
4226                 return 9000000;
4227         case IPW_TX_RATE_11MB:
4228                 return 11000000;
4229         case IPW_TX_RATE_12MB:
4230                 return 12000000;
4231         case IPW_TX_RATE_18MB:
4232                 return 18000000;
4233         case IPW_TX_RATE_24MB:
4234                 return 24000000;
4235         case IPW_TX_RATE_36MB:
4236                 return 36000000;
4237         case IPW_TX_RATE_48MB:
4238                 return 48000000;
4239         case IPW_TX_RATE_54MB:
4240                 return 54000000;
4241         }
4242
4243         return 0;
4244 }
4245
4246 #define IPW_STATS_INTERVAL (2 * HZ)
4247 static void ipw_gather_stats(struct ipw_priv *priv)
4248 {
4249         u32 rx_err, rx_err_delta, rx_packets_delta;
4250         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4251         u32 missed_beacons_percent, missed_beacons_delta;
4252         u32 quality = 0;
4253         u32 len = sizeof(u32);
4254         s16 rssi;
4255         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4256             rate_quality;
4257         u32 max_rate;
4258
4259         if (!(priv->status & STATUS_ASSOCIATED)) {
4260                 priv->quality = 0;
4261                 return;
4262         }
4263
4264         /* Update the statistics */
4265         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4266                         &priv->missed_beacons, &len);
4267         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4268         priv->last_missed_beacons = priv->missed_beacons;
4269         if (priv->assoc_request.beacon_interval) {
4270                 missed_beacons_percent = missed_beacons_delta *
4271                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4272                     (IPW_STATS_INTERVAL * 10);
4273         } else {
4274                 missed_beacons_percent = 0;
4275         }
4276         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4277
4278         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4279         rx_err_delta = rx_err - priv->last_rx_err;
4280         priv->last_rx_err = rx_err;
4281
4282         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4283         tx_failures_delta = tx_failures - priv->last_tx_failures;
4284         priv->last_tx_failures = tx_failures;
4285
4286         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4287         priv->last_rx_packets = priv->rx_packets;
4288
4289         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4290         priv->last_tx_packets = priv->tx_packets;
4291
4292         /* Calculate quality based on the following:
4293          *
4294          * Missed beacon: 100% = 0, 0% = 70% missed
4295          * Rate: 60% = 1Mbs, 100% = Max
4296          * Rx and Tx errors represent a straight % of total Rx/Tx
4297          * RSSI: 100% = > -50,  0% = < -80
4298          * Rx errors: 100% = 0, 0% = 50% missed
4299          *
4300          * The lowest computed quality is used.
4301          *
4302          */
4303 #define BEACON_THRESHOLD 5
4304         beacon_quality = 100 - missed_beacons_percent;
4305         if (beacon_quality < BEACON_THRESHOLD)
4306                 beacon_quality = 0;
4307         else
4308                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4309                     (100 - BEACON_THRESHOLD);
4310         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4311                         beacon_quality, missed_beacons_percent);
4312
4313         priv->last_rate = ipw_get_current_rate(priv);
4314         max_rate = ipw_get_max_rate(priv);
4315         rate_quality = priv->last_rate * 40 / max_rate + 60;
4316         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4317                         rate_quality, priv->last_rate / 1000000);
4318
4319         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4320                 rx_quality = 100 - (rx_err_delta * 100) /
4321                     (rx_packets_delta + rx_err_delta);
4322         else
4323                 rx_quality = 100;
4324         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4325                         rx_quality, rx_err_delta, rx_packets_delta);
4326
4327         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4328                 tx_quality = 100 - (tx_failures_delta * 100) /
4329                     (tx_packets_delta + tx_failures_delta);
4330         else
4331                 tx_quality = 100;
4332         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4333                         tx_quality, tx_failures_delta, tx_packets_delta);
4334
4335         rssi = priv->exp_avg_rssi;
4336         signal_quality =
4337             (100 *
4338              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4339              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4340              (priv->ieee->perfect_rssi - rssi) *
4341              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4342               62 * (priv->ieee->perfect_rssi - rssi))) /
4343             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4344              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4345         if (signal_quality > 100)
4346                 signal_quality = 100;
4347         else if (signal_quality < 1)
4348                 signal_quality = 0;
4349
4350         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4351                         signal_quality, rssi);
4352
4353         quality = min(rx_quality, signal_quality);
4354         quality = min(tx_quality, quality);
4355         quality = min(rate_quality, quality);
4356         quality = min(beacon_quality, quality);
4357         if (quality == beacon_quality)
4358                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4359                                 quality);
4360         if (quality == rate_quality)
4361                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4362                                 quality);
4363         if (quality == tx_quality)
4364                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4365                                 quality);
4366         if (quality == rx_quality)
4367                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4368                                 quality);
4369         if (quality == signal_quality)
4370                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4371                                 quality);
4372
4373         priv->quality = quality;
4374
4375         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4376 }
4377
4378 static void ipw_bg_gather_stats(struct work_struct *work)
4379 {
4380         struct ipw_priv *priv =
4381                 container_of(work, struct ipw_priv, gather_stats.work);
4382         mutex_lock(&priv->mutex);
4383         ipw_gather_stats(priv);
4384         mutex_unlock(&priv->mutex);
4385 }
4386
4387 /* Missed beacon behavior:
4388  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4389  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4390  * Above disassociate threshold, give up and stop scanning.
4391  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4392 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4393                                             int missed_count)
4394 {
4395         priv->notif_missed_beacons = missed_count;
4396
4397         if (missed_count > priv->disassociate_threshold &&
4398             priv->status & STATUS_ASSOCIATED) {
4399                 /* If associated and we've hit the missed
4400                  * beacon threshold, disassociate, turn
4401                  * off roaming, and abort any active scans */
4402                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4403                           IPW_DL_STATE | IPW_DL_ASSOC,
4404                           "Missed beacon: %d - disassociate\n", missed_count);
4405                 priv->status &= ~STATUS_ROAMING;
4406                 if (priv->status & STATUS_SCANNING) {
4407                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4408                                   IPW_DL_STATE,
4409                                   "Aborting scan with missed beacon.\n");
4410                         schedule_work(&priv->abort_scan);
4411                 }
4412
4413                 schedule_work(&priv->disassociate);
4414                 return;
4415         }
4416
4417         if (priv->status & STATUS_ROAMING) {
4418                 /* If we are currently roaming, then just
4419                  * print a debug statement... */
4420                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4421                           "Missed beacon: %d - roam in progress\n",
4422                           missed_count);
4423                 return;
4424         }
4425
4426         if (roaming &&
4427             (missed_count > priv->roaming_threshold &&
4428              missed_count <= priv->disassociate_threshold)) {
4429                 /* If we are not already roaming, set the ROAM
4430                  * bit in the status and kick off a scan.
4431                  * This can happen several times before we reach
4432                  * disassociate_threshold. */
4433                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4434                           "Missed beacon: %d - initiate "
4435                           "roaming\n", missed_count);
4436                 if (!(priv->status & STATUS_ROAMING)) {
4437                         priv->status |= STATUS_ROAMING;
4438                         if (!(priv->status & STATUS_SCANNING))
4439                                 schedule_delayed_work(&priv->request_scan, 0);
4440                 }
4441                 return;
4442         }
4443
4444         if (priv->status & STATUS_SCANNING &&
4445             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4446                 /* Stop scan to keep fw from getting
4447                  * stuck (only if we aren't roaming --
4448                  * otherwise we'll never scan more than 2 or 3
4449                  * channels..) */
4450                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4451                           "Aborting scan with missed beacon.\n");
4452                 schedule_work(&priv->abort_scan);
4453         }
4454
4455         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4456 }
4457
4458 static void ipw_scan_event(struct work_struct *work)
4459 {
4460         union iwreq_data wrqu;
4461
4462         struct ipw_priv *priv =
4463                 container_of(work, struct ipw_priv, scan_event.work);
4464
4465         wrqu.data.length = 0;
4466         wrqu.data.flags = 0;
4467         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4468 }
4469
4470 static void handle_scan_event(struct ipw_priv *priv)
4471 {
4472         /* Only userspace-requested scan completion events go out immediately */
4473         if (!priv->user_requested_scan) {
4474                 schedule_delayed_work(&priv->scan_event,
4475                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4476         } else {
4477                 priv->user_requested_scan = 0;
4478                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4479         }
4480 }
4481
4482 /**
4483  * Handle host notification packet.
4484  * Called from interrupt routine
4485  */
4486 static void ipw_rx_notification(struct ipw_priv *priv,
4487                                        struct ipw_rx_notification *notif)
4488 {
4489         u16 size = le16_to_cpu(notif->size);
4490
4491         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4492
4493         switch (notif->subtype) {
4494         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4495                         struct notif_association *assoc = &notif->u.assoc;
4496
4497                         switch (assoc->state) {
4498                         case CMAS_ASSOCIATED:{
4499                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4500                                                   IPW_DL_ASSOC,
4501                                                   "associated: '%*pE' %pM\n",
4502                                                   priv->essid_len, priv->essid,
4503                                                   priv->bssid);
4504
4505                                         switch (priv->ieee->iw_mode) {
4506                                         case IW_MODE_INFRA:
4507                                                 memcpy(priv->ieee->bssid,
4508                                                        priv->bssid, ETH_ALEN);
4509                                                 break;
4510
4511                                         case IW_MODE_ADHOC:
4512                                                 memcpy(priv->ieee->bssid,
4513                                                        priv->bssid, ETH_ALEN);
4514
4515                                                 /* clear out the station table */
4516                                                 priv->num_stations = 0;
4517
4518                                                 IPW_DEBUG_ASSOC
4519                                                     ("queueing adhoc check\n");
4520                                                 schedule_delayed_work(
4521                                                         &priv->adhoc_check,
4522                                                         le16_to_cpu(priv->
4523                                                         assoc_request.
4524                                                         beacon_interval));
4525                                                 break;
4526                                         }
4527
4528                                         priv->status &= ~STATUS_ASSOCIATING;
4529                                         priv->status |= STATUS_ASSOCIATED;
4530                                         schedule_work(&priv->system_config);
4531
4532 #ifdef CONFIG_IPW2200_QOS
4533 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4534                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4535                                         if ((priv->status & STATUS_AUTH) &&
4536                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4537                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4538                                                 if ((sizeof
4539                                                      (struct
4540                                                       libipw_assoc_response)
4541                                                      <= size)
4542                                                     && (size <= 2314)) {
4543                                                         struct
4544                                                         libipw_rx_stats
4545                                                             stats = {
4546                                                                 .len = size - 1,
4547                                                         };
4548
4549                                                         IPW_DEBUG_QOS
4550                                                             ("QoS Associate "
4551                                                              "size %d\n", size);
4552                                                         libipw_rx_mgt(priv->
4553                                                                          ieee,
4554                                                                          (struct
4555                                                                           libipw_hdr_4addr
4556                                                                           *)
4557                                                                          &notif->u.raw, &stats);
4558                                                 }
4559                                         }
4560 #endif
4561
4562                                         schedule_work(&priv->link_up);
4563
4564                                         break;
4565                                 }
4566
4567                         case CMAS_AUTHENTICATED:{
4568                                         if (priv->
4569                                             status & (STATUS_ASSOCIATED |
4570                                                       STATUS_AUTH)) {
4571                                                 struct notif_authenticate *auth
4572                                                     = &notif->u.auth;
4573                                                 IPW_DEBUG(IPW_DL_NOTIF |
4574                                                           IPW_DL_STATE |
4575                                                           IPW_DL_ASSOC,
4576                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4577                                                           priv->essid_len,
4578                                                           priv->essid,
4579                                                           priv->bssid,
4580                                                           le16_to_cpu(auth->status),
4581                                                           ipw_get_status_code
4582                                                           (le16_to_cpu
4583                                                            (auth->status)));
4584
4585                                                 priv->status &=
4586                                                     ~(STATUS_ASSOCIATING |
4587                                                       STATUS_AUTH |
4588                                                       STATUS_ASSOCIATED);
4589
4590                                                 schedule_work(&priv->link_down);
4591                                                 break;
4592                                         }
4593
4594                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4595                                                   IPW_DL_ASSOC,
4596                                                   "authenticated: '%*pE' %pM\n",
4597                                                   priv->essid_len, priv->essid,
4598                                                   priv->bssid);
4599                                         break;
4600                                 }
4601
4602                         case CMAS_INIT:{
4603                                         if (priv->status & STATUS_AUTH) {
4604                                                 struct
4605                                                     libipw_assoc_response
4606                                                 *resp;
4607                                                 resp =
4608                                                     (struct
4609                                                      libipw_assoc_response
4610                                                      *)&notif->u.raw;
4611                                                 IPW_DEBUG(IPW_DL_NOTIF |
4612                                                           IPW_DL_STATE |
4613                                                           IPW_DL_ASSOC,
4614                                                           "association failed (0x%04X): %s\n",
4615                                                           le16_to_cpu(resp->status),
4616                                                           ipw_get_status_code
4617                                                           (le16_to_cpu
4618                                                            (resp->status)));
4619                                         }
4620
4621                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4622                                                   IPW_DL_ASSOC,
4623                                                   "disassociated: '%*pE' %pM\n",
4624                                                   priv->essid_len, priv->essid,
4625                                                   priv->bssid);
4626
4627                                         priv->status &=
4628                                             ~(STATUS_DISASSOCIATING |
4629                                               STATUS_ASSOCIATING |
4630                                               STATUS_ASSOCIATED | STATUS_AUTH);
4631                                         if (priv->assoc_network
4632                                             && (priv->assoc_network->
4633                                                 capability &
4634                                                 WLAN_CAPABILITY_IBSS))
4635                                                 ipw_remove_current_network
4636                                                     (priv);
4637
4638                                         schedule_work(&priv->link_down);
4639
4640                                         break;
4641                                 }
4642
4643                         case CMAS_RX_ASSOC_RESP:
4644                                 break;
4645
4646                         default:
4647                                 IPW_ERROR("assoc: unknown (%d)\n",
4648                                           assoc->state);
4649                                 break;
4650                         }
4651
4652                         break;
4653                 }
4654
4655         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4656                         struct notif_authenticate *auth = &notif->u.auth;
4657                         switch (auth->state) {
4658                         case CMAS_AUTHENTICATED:
4659                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4660                                           "authenticated: '%*pE' %pM\n",
4661                                           priv->essid_len, priv->essid,
4662                                           priv->bssid);
4663                                 priv->status |= STATUS_AUTH;
4664                                 break;
4665
4666                         case CMAS_INIT:
4667                                 if (priv->status & STATUS_AUTH) {
4668                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4669                                                   IPW_DL_ASSOC,
4670                                                   "authentication failed (0x%04X): %s\n",
4671                                                   le16_to_cpu(auth->status),
4672                                                   ipw_get_status_code(le16_to_cpu
4673                                                                       (auth->
4674                                                                        status)));
4675                                 }
4676                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677                                           IPW_DL_ASSOC,
4678                                           "deauthenticated: '%*pE' %pM\n",
4679                                           priv->essid_len, priv->essid,
4680                                           priv->bssid);
4681
4682                                 priv->status &= ~(STATUS_ASSOCIATING |
4683                                                   STATUS_AUTH |
4684                                                   STATUS_ASSOCIATED);
4685
4686                                 schedule_work(&priv->link_down);
4687                                 break;
4688
4689                         case CMAS_TX_AUTH_SEQ_1:
4690                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4691                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4692                                 break;
4693                         case CMAS_RX_AUTH_SEQ_2:
4694                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4695                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4696                                 break;
4697                         case CMAS_AUTH_SEQ_1_PASS:
4698                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4699                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4700                                 break;
4701                         case CMAS_AUTH_SEQ_1_FAIL:
4702                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4703                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4704                                 break;
4705                         case CMAS_TX_AUTH_SEQ_3:
4706                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4707                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4708                                 break;
4709                         case CMAS_RX_AUTH_SEQ_4:
4710                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4712                                 break;
4713                         case CMAS_AUTH_SEQ_2_PASS:
4714                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4716                                 break;
4717                         case CMAS_AUTH_SEQ_2_FAIL:
4718                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4720                                 break;
4721                         case CMAS_TX_ASSOC:
4722                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4724                                 break;
4725                         case CMAS_RX_ASSOC_RESP:
4726                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4727                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4728
4729                                 break;
4730                         case CMAS_ASSOCIATED:
4731                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4732                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4733                                 break;
4734                         default:
4735                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4736                                                 auth->state);
4737                                 break;
4738                         }
4739                         break;
4740                 }
4741
4742         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4743                         struct notif_channel_result *x =
4744                             &notif->u.channel_result;
4745
4746                         if (size == sizeof(*x)) {
4747                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4748                                                x->channel_num);
4749                         } else {
4750                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4751                                                "(should be %zd)\n",
4752                                                size, sizeof(*x));
4753                         }
4754                         break;
4755                 }
4756
4757         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4758                         struct notif_scan_complete *x = &notif->u.scan_complete;
4759                         if (size == sizeof(*x)) {
4760                                 IPW_DEBUG_SCAN
4761                                     ("Scan completed: type %d, %d channels, "
4762                                      "%d status\n", x->scan_type,
4763                                      x->num_channels, x->status);
4764                         } else {
4765                                 IPW_ERROR("Scan completed of wrong size %d "
4766                                           "(should be %zd)\n",
4767                                           size, sizeof(*x));
4768                         }
4769
4770                         priv->status &=
4771                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4772
4773                         wake_up_interruptible(&priv->wait_state);
4774                         cancel_delayed_work(&priv->scan_check);
4775
4776                         if (priv->status & STATUS_EXIT_PENDING)
4777                                 break;
4778
4779                         priv->ieee->scans++;
4780
4781 #ifdef CONFIG_IPW2200_MONITOR
4782                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4783                                 priv->status |= STATUS_SCAN_FORCED;
4784                                 schedule_delayed_work(&priv->request_scan, 0);
4785                                 break;
4786                         }
4787                         priv->status &= ~STATUS_SCAN_FORCED;
4788 #endif                          /* CONFIG_IPW2200_MONITOR */
4789
4790                         /* Do queued direct scans first */
4791                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4792                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4793
4794                         if (!(priv->status & (STATUS_ASSOCIATED |
4795                                               STATUS_ASSOCIATING |
4796                                               STATUS_ROAMING |
4797                                               STATUS_DISASSOCIATING)))
4798                                 schedule_work(&priv->associate);
4799                         else if (priv->status & STATUS_ROAMING) {
4800                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4801                                         /* If a scan completed and we are in roam mode, then
4802                                          * the scan that completed was the one requested as a
4803                                          * result of entering roam... so, schedule the
4804                                          * roam work */
4805                                         schedule_work(&priv->roam);
4806                                 else
4807                                         /* Don't schedule if we aborted the scan */
4808                                         priv->status &= ~STATUS_ROAMING;
4809                         } else if (priv->status & STATUS_SCAN_PENDING)
4810                                 schedule_delayed_work(&priv->request_scan, 0);
4811                         else if (priv->config & CFG_BACKGROUND_SCAN
4812                                  && priv->status & STATUS_ASSOCIATED)
4813                                 schedule_delayed_work(&priv->request_scan,
4814                                                       round_jiffies_relative(HZ));
4815
4816                         /* Send an empty event to user space.
4817                          * We don't send the received data on the event because
4818                          * it would require us to do complex transcoding, and
4819                          * we want to minimise the work done in the irq handler
4820                          * Use a request to extract the data.
4821                          * Also, we generate this even for any scan, regardless
4822                          * on how the scan was initiated. User space can just
4823                          * sync on periodic scan to get fresh data...
4824                          * Jean II */
4825                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4826                                 handle_scan_event(priv);
4827                         break;
4828                 }
4829
4830         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4831                         struct notif_frag_length *x = &notif->u.frag_len;
4832
4833                         if (size == sizeof(*x))
4834                                 IPW_ERROR("Frag length: %d\n",
4835                                           le16_to_cpu(x->frag_length));
4836                         else
4837                                 IPW_ERROR("Frag length of wrong size %d "
4838                                           "(should be %zd)\n",
4839                                           size, sizeof(*x));
4840                         break;
4841                 }
4842
4843         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4844                         struct notif_link_deterioration *x =
4845                             &notif->u.link_deterioration;
4846
4847                         if (size == sizeof(*x)) {
4848                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4849                                         "link deterioration: type %d, cnt %d\n",
4850                                         x->silence_notification_type,
4851                                         x->silence_count);
4852                                 memcpy(&priv->last_link_deterioration, x,
4853                                        sizeof(*x));
4854                         } else {
4855                                 IPW_ERROR("Link Deterioration of wrong size %d "
4856                                           "(should be %zd)\n",
4857                                           size, sizeof(*x));
4858                         }
4859                         break;
4860                 }
4861
4862         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4863                         IPW_ERROR("Dino config\n");
4864                         if (priv->hcmd
4865                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4866                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4867
4868                         break;
4869                 }
4870
4871         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4872                         struct notif_beacon_state *x = &notif->u.beacon_state;
4873                         if (size != sizeof(*x)) {
4874                                 IPW_ERROR
4875                                     ("Beacon state of wrong size %d (should "
4876                                      "be %zd)\n", size, sizeof(*x));
4877                                 break;
4878                         }
4879
4880                         if (le32_to_cpu(x->state) ==
4881                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4882                                 ipw_handle_missed_beacon(priv,
4883                                                          le32_to_cpu(x->
4884                                                                      number));
4885
4886                         break;
4887                 }
4888
4889         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4890                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4891                         if (size == sizeof(*x)) {
4892                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4893                                           "0x%02x station %d\n",
4894                                           x->key_state, x->security_type,
4895                                           x->station_index);
4896                                 break;
4897                         }
4898
4899                         IPW_ERROR
4900                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4901                              size, sizeof(*x));
4902                         break;
4903                 }
4904
4905         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4906                         struct notif_calibration *x = &notif->u.calibration;
4907
4908                         if (size == sizeof(*x)) {
4909                                 memcpy(&priv->calib, x, sizeof(*x));
4910                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4911                                 break;
4912                         }
4913
4914                         IPW_ERROR
4915                             ("Calibration of wrong size %d (should be %zd)\n",
4916                              size, sizeof(*x));
4917                         break;
4918                 }
4919
4920         case HOST_NOTIFICATION_NOISE_STATS:{
4921                         if (size == sizeof(u32)) {
4922                                 priv->exp_avg_noise =
4923                                     exponential_average(priv->exp_avg_noise,
4924                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4925                                     DEPTH_NOISE);
4926                                 break;
4927                         }
4928
4929                         IPW_ERROR
4930                             ("Noise stat is wrong size %d (should be %zd)\n",
4931                              size, sizeof(u32));
4932                         break;
4933                 }
4934
4935         default:
4936                 IPW_DEBUG_NOTIF("Unknown notification: "
4937                                 "subtype=%d,flags=0x%2x,size=%d\n",
4938                                 notif->subtype, notif->flags, size);
4939         }
4940 }
4941
4942 /**
4943  * Destroys all DMA structures and initialise them again
4944  *
4945  * @param priv
4946  * @return error code
4947  */
4948 static int ipw_queue_reset(struct ipw_priv *priv)
4949 {
4950         int rc = 0;
4951         /** @todo customize queue sizes */
4952         int nTx = 64, nTxCmd = 8;
4953         ipw_tx_queue_free(priv);
4954         /* Tx CMD queue */
4955         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4956                                IPW_TX_CMD_QUEUE_READ_INDEX,
4957                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4958                                IPW_TX_CMD_QUEUE_BD_BASE,
4959                                IPW_TX_CMD_QUEUE_BD_SIZE);
4960         if (rc) {
4961                 IPW_ERROR("Tx Cmd queue init failed\n");
4962                 goto error;
4963         }
4964         /* Tx queue(s) */
4965         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4966                                IPW_TX_QUEUE_0_READ_INDEX,
4967                                IPW_TX_QUEUE_0_WRITE_INDEX,
4968                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4969         if (rc) {
4970                 IPW_ERROR("Tx 0 queue init failed\n");
4971                 goto error;
4972         }
4973         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4974                                IPW_TX_QUEUE_1_READ_INDEX,
4975                                IPW_TX_QUEUE_1_WRITE_INDEX,
4976                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4977         if (rc) {
4978                 IPW_ERROR("Tx 1 queue init failed\n");
4979                 goto error;
4980         }
4981         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4982                                IPW_TX_QUEUE_2_READ_INDEX,
4983                                IPW_TX_QUEUE_2_WRITE_INDEX,
4984                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4985         if (rc) {
4986                 IPW_ERROR("Tx 2 queue init failed\n");
4987                 goto error;
4988         }
4989         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4990                                IPW_TX_QUEUE_3_READ_INDEX,
4991                                IPW_TX_QUEUE_3_WRITE_INDEX,
4992                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4993         if (rc) {
4994                 IPW_ERROR("Tx 3 queue init failed\n");
4995                 goto error;
4996         }
4997         /* statistics */
4998         priv->rx_bufs_min = 0;
4999         priv->rx_pend_max = 0;
5000         return rc;
5001
5002       error:
5003         ipw_tx_queue_free(priv);
5004         return rc;
5005 }
5006
5007 /**
5008  * Reclaim Tx queue entries no more used by NIC.
5009  *
5010  * When FW advances 'R' index, all entries between old and
5011  * new 'R' index need to be reclaimed. As result, some free space
5012  * forms. If there is enough free space (> low mark), wake Tx queue.
5013  *
5014  * @note Need to protect against garbage in 'R' index
5015  * @param priv
5016  * @param txq
5017  * @param qindex
5018  * @return Number of used entries remains in the queue
5019  */
5020 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5021                                 struct clx2_tx_queue *txq, int qindex)
5022 {
5023         u32 hw_tail;
5024         int used;
5025         struct clx2_queue *q = &txq->q;
5026
5027         hw_tail = ipw_read32(priv, q->reg_r);
5028         if (hw_tail >= q->n_bd) {
5029                 IPW_ERROR
5030                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5031                      hw_tail, q->n_bd);
5032                 goto done;
5033         }
5034         for (; q->last_used != hw_tail;
5035              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5036                 ipw_queue_tx_free_tfd(priv, txq);
5037                 priv->tx_packets++;
5038         }
5039       done:
5040         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5041             (qindex >= 0))
5042                 netif_wake_queue(priv->net_dev);
5043         used = q->first_empty - q->last_used;
5044         if (used < 0)
5045                 used += q->n_bd;
5046
5047         return used;
5048 }
5049
5050 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5051                              int len, int sync)
5052 {
5053         struct clx2_tx_queue *txq = &priv->txq_cmd;
5054         struct clx2_queue *q = &txq->q;
5055         struct tfd_frame *tfd;
5056
5057         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5058                 IPW_ERROR("No space for Tx\n");
5059                 return -EBUSY;
5060         }
5061
5062         tfd = &txq->bd[q->first_empty];
5063         txq->txb[q->first_empty] = NULL;
5064
5065         memset(tfd, 0, sizeof(*tfd));
5066         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5067         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5068         priv->hcmd_seq++;
5069         tfd->u.cmd.index = hcmd;
5070         tfd->u.cmd.length = len;
5071         memcpy(tfd->u.cmd.payload, buf, len);
5072         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5073         ipw_write32(priv, q->reg_w, q->first_empty);
5074         _ipw_read32(priv, 0x90);
5075
5076         return 0;
5077 }
5078
5079 /*
5080  * Rx theory of operation
5081  *
5082  * The host allocates 32 DMA target addresses and passes the host address
5083  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5084  * 0 to 31
5085  *
5086  * Rx Queue Indexes
5087  * The host/firmware share two index registers for managing the Rx buffers.
5088  *
5089  * The READ index maps to the first position that the firmware may be writing
5090  * to -- the driver can read up to (but not including) this position and get
5091  * good data.
5092  * The READ index is managed by the firmware once the card is enabled.
5093  *
5094  * The WRITE index maps to the last position the driver has read from -- the
5095  * position preceding WRITE is the last slot the firmware can place a packet.
5096  *
5097  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5098  * WRITE = READ.
5099  *
5100  * During initialization the host sets up the READ queue position to the first
5101  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5102  *
5103  * When the firmware places a packet in a buffer it will advance the READ index
5104  * and fire the RX interrupt.  The driver can then query the READ index and
5105  * process as many packets as possible, moving the WRITE index forward as it
5106  * resets the Rx queue buffers with new memory.
5107  *
5108  * The management in the driver is as follows:
5109  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5110  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5111  *   to replensish the ipw->rxq->rx_free.
5112  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5113  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5114  *   'processed' and 'read' driver indexes as well)
5115  * + A received packet is processed and handed to the kernel network stack,
5116  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5117  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5118  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5119  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5120  *   were enough free buffers and RX_STALLED is set it is cleared.
5121  *
5122  *
5123  * Driver sequence:
5124  *
5125  * ipw_rx_queue_alloc()       Allocates rx_free
5126  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5127  *                            ipw_rx_queue_restock
5128  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5129  *                            queue, updates firmware pointers, and updates
5130  *                            the WRITE index.  If insufficient rx_free buffers
5131  *                            are available, schedules ipw_rx_queue_replenish
5132  *
5133  * -- enable interrupts --
5134  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5135  *                            READ INDEX, detaching the SKB from the pool.
5136  *                            Moves the packet buffer from queue to rx_used.
5137  *                            Calls ipw_rx_queue_restock to refill any empty
5138  *                            slots.
5139  * ...
5140  *
5141  */
5142
5143 /*
5144  * If there are slots in the RX queue that  need to be restocked,
5145  * and we have free pre-allocated buffers, fill the ranks as much
5146  * as we can pulling from rx_free.
5147  *
5148  * This moves the 'write' index forward to catch up with 'processed', and
5149  * also updates the memory address in the firmware to reference the new
5150  * target buffer.
5151  */
5152 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5153 {
5154         struct ipw_rx_queue *rxq = priv->rxq;
5155         struct list_head *element;
5156         struct ipw_rx_mem_buffer *rxb;
5157         unsigned long flags;
5158         int write;
5159
5160         spin_lock_irqsave(&rxq->lock, flags);
5161         write = rxq->write;
5162         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5163                 element = rxq->rx_free.next;
5164                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5165                 list_del(element);
5166
5167                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5168                             rxb->dma_addr);
5169                 rxq->queue[rxq->write] = rxb;
5170                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5171                 rxq->free_count--;
5172         }
5173         spin_unlock_irqrestore(&rxq->lock, flags);
5174
5175         /* If the pre-allocated buffer pool is dropping low, schedule to
5176          * refill it */
5177         if (rxq->free_count <= RX_LOW_WATERMARK)
5178                 schedule_work(&priv->rx_replenish);
5179
5180         /* If we've added more space for the firmware to place data, tell it */
5181         if (write != rxq->write)
5182                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5183 }
5184
5185 /*
5186  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5187  * Also restock the Rx queue via ipw_rx_queue_restock.
5188  *
5189  * This is called as a scheduled work item (except for during initialization)
5190  */
5191 static void ipw_rx_queue_replenish(void *data)
5192 {
5193         struct ipw_priv *priv = data;
5194         struct ipw_rx_queue *rxq = priv->rxq;
5195         struct list_head *element;
5196         struct ipw_rx_mem_buffer *rxb;
5197         unsigned long flags;
5198
5199         spin_lock_irqsave(&rxq->lock, flags);
5200         while (!list_empty(&rxq->rx_used)) {
5201                 element = rxq->rx_used.next;
5202                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5203                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5204                 if (!rxb->skb) {
5205                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5206                                priv->net_dev->name);
5207                         /* We don't reschedule replenish work here -- we will
5208                          * call the restock method and if it still needs
5209                          * more buffers it will schedule replenish */
5210                         break;
5211                 }
5212                 list_del(element);
5213
5214                 rxb->dma_addr =
5215                     pci_map_single(priv->pci_dev, rxb->skb->data,
5216                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5217
5218                 list_add_tail(&rxb->list, &rxq->rx_free);
5219                 rxq->free_count++;
5220         }
5221         spin_unlock_irqrestore(&rxq->lock, flags);
5222
5223         ipw_rx_queue_restock(priv);
5224 }
5225
5226 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5227 {
5228         struct ipw_priv *priv =
5229                 container_of(work, struct ipw_priv, rx_replenish);
5230         mutex_lock(&priv->mutex);
5231         ipw_rx_queue_replenish(priv);
5232         mutex_unlock(&priv->mutex);
5233 }
5234
5235 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5236  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5237  * This free routine walks the list of POOL entries and if SKB is set to
5238  * non NULL it is unmapped and freed
5239  */
5240 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5241 {
5242         int i;
5243
5244         if (!rxq)
5245                 return;
5246
5247         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5248                 if (rxq->pool[i].skb != NULL) {
5249                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5250                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5251                         dev_kfree_skb(rxq->pool[i].skb);
5252                 }
5253         }
5254
5255         kfree(rxq);
5256 }
5257
5258 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5259 {
5260         struct ipw_rx_queue *rxq;
5261         int i;
5262
5263         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5264         if (unlikely(!rxq)) {
5265                 IPW_ERROR("memory allocation failed\n");
5266                 return NULL;
5267         }
5268         spin_lock_init(&rxq->lock);
5269         INIT_LIST_HEAD(&rxq->rx_free);
5270         INIT_LIST_HEAD(&rxq->rx_used);
5271
5272         /* Fill the rx_used queue with _all_ of the Rx buffers */
5273         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5274                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5275
5276         /* Set us so that we have processed and used all buffers, but have
5277          * not restocked the Rx queue with fresh buffers */
5278         rxq->read = rxq->write = 0;
5279         rxq->free_count = 0;
5280
5281         return rxq;
5282 }
5283
5284 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5285 {
5286         rate &= ~LIBIPW_BASIC_RATE_MASK;
5287         if (ieee_mode == IEEE_A) {
5288                 switch (rate) {
5289                 case LIBIPW_OFDM_RATE_6MB:
5290                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5291                             1 : 0;
5292                 case LIBIPW_OFDM_RATE_9MB:
5293                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5294                             1 : 0;
5295                 case LIBIPW_OFDM_RATE_12MB:
5296                         return priv->
5297                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5298                 case LIBIPW_OFDM_RATE_18MB:
5299                         return priv->
5300                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5301                 case LIBIPW_OFDM_RATE_24MB:
5302                         return priv->
5303                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5304                 case LIBIPW_OFDM_RATE_36MB:
5305                         return priv->
5306                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5307                 case LIBIPW_OFDM_RATE_48MB:
5308                         return priv->
5309                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5310                 case LIBIPW_OFDM_RATE_54MB:
5311                         return priv->
5312                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5313                 default:
5314                         return 0;
5315                 }
5316         }
5317
5318         /* B and G mixed */
5319         switch (rate) {
5320         case LIBIPW_CCK_RATE_1MB:
5321                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5322         case LIBIPW_CCK_RATE_2MB:
5323                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5324         case LIBIPW_CCK_RATE_5MB:
5325                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5326         case LIBIPW_CCK_RATE_11MB:
5327                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5328         }
5329
5330         /* If we are limited to B modulations, bail at this point */
5331         if (ieee_mode == IEEE_B)
5332                 return 0;
5333
5334         /* G */
5335         switch (rate) {
5336         case LIBIPW_OFDM_RATE_6MB:
5337                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5338         case LIBIPW_OFDM_RATE_9MB:
5339                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5340         case LIBIPW_OFDM_RATE_12MB:
5341                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5342         case LIBIPW_OFDM_RATE_18MB:
5343                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5344         case LIBIPW_OFDM_RATE_24MB:
5345                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5346         case LIBIPW_OFDM_RATE_36MB:
5347                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5348         case LIBIPW_OFDM_RATE_48MB:
5349                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5350         case LIBIPW_OFDM_RATE_54MB:
5351                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5352         }
5353
5354         return 0;
5355 }
5356
5357 static int ipw_compatible_rates(struct ipw_priv *priv,
5358                                 const struct libipw_network *network,
5359                                 struct ipw_supported_rates *rates)
5360 {
5361         int num_rates, i;
5362
5363         memset(rates, 0, sizeof(*rates));
5364         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5365         rates->num_rates = 0;
5366         for (i = 0; i < num_rates; i++) {
5367                 if (!ipw_is_rate_in_mask(priv, network->mode,
5368                                          network->rates[i])) {
5369
5370                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5371                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5372                                                "rate %02X\n",
5373                                                network->rates[i]);
5374                                 rates->supported_rates[rates->num_rates++] =
5375                                     network->rates[i];
5376                                 continue;
5377                         }
5378
5379                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5380                                        network->rates[i], priv->rates_mask);
5381                         continue;
5382                 }
5383
5384                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5385         }
5386
5387         num_rates = min(network->rates_ex_len,
5388                         (u8) (IPW_MAX_RATES - num_rates));
5389         for (i = 0; i < num_rates; i++) {
5390                 if (!ipw_is_rate_in_mask(priv, network->mode,
5391                                          network->rates_ex[i])) {
5392                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5393                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5394                                                "rate %02X\n",
5395                                                network->rates_ex[i]);
5396                                 rates->supported_rates[rates->num_rates++] =
5397                                     network->rates[i];
5398                                 continue;
5399                         }
5400
5401                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5402                                        network->rates_ex[i], priv->rates_mask);
5403                         continue;
5404                 }
5405
5406                 rates->supported_rates[rates->num_rates++] =
5407                     network->rates_ex[i];
5408         }
5409
5410         return 1;
5411 }
5412
5413 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5414                                   const struct ipw_supported_rates *src)
5415 {
5416         u8 i;
5417         for (i = 0; i < src->num_rates; i++)
5418                 dest->supported_rates[i] = src->supported_rates[i];
5419         dest->num_rates = src->num_rates;
5420 }
5421
5422 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5423  * mask should ever be used -- right now all callers to add the scan rates are
5424  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5425 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5426                                    u8 modulation, u32 rate_mask)
5427 {
5428         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5429             LIBIPW_BASIC_RATE_MASK : 0;
5430
5431         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5432                 rates->supported_rates[rates->num_rates++] =
5433                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5434
5435         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5436                 rates->supported_rates[rates->num_rates++] =
5437                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5438
5439         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5440                 rates->supported_rates[rates->num_rates++] = basic_mask |
5441                     LIBIPW_CCK_RATE_5MB;
5442
5443         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5444                 rates->supported_rates[rates->num_rates++] = basic_mask |
5445                     LIBIPW_CCK_RATE_11MB;
5446 }
5447
5448 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5449                                     u8 modulation, u32 rate_mask)
5450 {
5451         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5452             LIBIPW_BASIC_RATE_MASK : 0;
5453
5454         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5455                 rates->supported_rates[rates->num_rates++] = basic_mask |
5456                     LIBIPW_OFDM_RATE_6MB;
5457
5458         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5459                 rates->supported_rates[rates->num_rates++] =
5460                     LIBIPW_OFDM_RATE_9MB;
5461
5462         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5463                 rates->supported_rates[rates->num_rates++] = basic_mask |
5464                     LIBIPW_OFDM_RATE_12MB;
5465
5466         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5467                 rates->supported_rates[rates->num_rates++] =
5468                     LIBIPW_OFDM_RATE_18MB;
5469
5470         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5471                 rates->supported_rates[rates->num_rates++] = basic_mask |
5472                     LIBIPW_OFDM_RATE_24MB;
5473
5474         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5475                 rates->supported_rates[rates->num_rates++] =
5476                     LIBIPW_OFDM_RATE_36MB;
5477
5478         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5479                 rates->supported_rates[rates->num_rates++] =
5480                     LIBIPW_OFDM_RATE_48MB;
5481
5482         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5483                 rates->supported_rates[rates->num_rates++] =
5484                     LIBIPW_OFDM_RATE_54MB;
5485 }
5486
5487 struct ipw_network_match {
5488         struct libipw_network *network;
5489         struct ipw_supported_rates rates;
5490 };
5491
5492 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5493                                   struct ipw_network_match *match,
5494                                   struct libipw_network *network,
5495                                   int roaming)
5496 {
5497         struct ipw_supported_rates rates;
5498
5499         /* Verify that this network's capability is compatible with the
5500          * current mode (AdHoc or Infrastructure) */
5501         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5502              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5503                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5504                                 network->ssid_len, network->ssid,
5505                                 network->bssid);
5506                 return 0;
5507         }
5508
5509         if (unlikely(roaming)) {
5510                 /* If we are roaming, then ensure check if this is a valid
5511                  * network to try and roam to */
5512                 if ((network->ssid_len != match->network->ssid_len) ||
5513                     memcmp(network->ssid, match->network->ssid,
5514                            network->ssid_len)) {
5515                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5516                                         network->ssid_len, network->ssid,
5517                                         network->bssid);
5518                         return 0;
5519                 }
5520         } else {
5521                 /* If an ESSID has been configured then compare the broadcast
5522                  * ESSID to ours */
5523                 if ((priv->config & CFG_STATIC_ESSID) &&
5524                     ((network->ssid_len != priv->essid_len) ||
5525                      memcmp(network->ssid, priv->essid,
5526                             min(network->ssid_len, priv->essid_len)))) {
5527                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5528                                         network->ssid_len, network->ssid,
5529                                         network->bssid, priv->essid_len,
5530                                         priv->essid);
5531                         return 0;
5532                 }
5533         }
5534
5535         /* If the old network rate is better than this one, don't bother
5536          * testing everything else. */
5537
5538         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5539                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5540                                 match->network->ssid_len, match->network->ssid);
5541                 return 0;
5542         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5543                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5544                                 match->network->ssid_len, match->network->ssid);
5545                 return 0;
5546         }
5547
5548         /* Now go through and see if the requested network is valid... */
5549         if (priv->ieee->scan_age != 0 &&
5550             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5551                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5552                                 network->ssid_len, network->ssid,
5553                                 network->bssid,
5554                                 jiffies_to_msecs(jiffies -
5555                                                  network->last_scanned));
5556                 return 0;
5557         }
5558
5559         if ((priv->config & CFG_STATIC_CHANNEL) &&
5560             (network->channel != priv->channel)) {
5561                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5562                                 network->ssid_len, network->ssid,
5563                                 network->bssid,
5564                                 network->channel, priv->channel);
5565                 return 0;
5566         }
5567
5568         /* Verify privacy compatibility */
5569         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5570             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5571                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5572                                 network->ssid_len, network->ssid,
5573                                 network->bssid,
5574                                 priv->
5575                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5576                                 network->
5577                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5578                                 "off");
5579                 return 0;
5580         }
5581
5582         if (ether_addr_equal(network->bssid, priv->bssid)) {
5583                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5584                                 network->ssid_len, network->ssid,
5585                                 network->bssid, priv->bssid);
5586                 return 0;
5587         }
5588
5589         /* Filter out any incompatible freq / mode combinations */
5590         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5591                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5592                                 network->ssid_len, network->ssid,
5593                                 network->bssid);
5594                 return 0;
5595         }
5596
5597         /* Ensure that the rates supported by the driver are compatible with
5598          * this AP, including verification of basic rates (mandatory) */
5599         if (!ipw_compatible_rates(priv, network, &rates)) {
5600                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5601                                 network->ssid_len, network->ssid,
5602                                 network->bssid);
5603                 return 0;
5604         }
5605
5606         if (rates.num_rates == 0) {
5607                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5608                                 network->ssid_len, network->ssid,
5609                                 network->bssid);
5610                 return 0;
5611         }
5612
5613         /* TODO: Perform any further minimal comparititive tests.  We do not
5614          * want to put too much policy logic here; intelligent scan selection
5615          * should occur within a generic IEEE 802.11 user space tool.  */
5616
5617         /* Set up 'new' AP to this network */
5618         ipw_copy_rates(&match->rates, &rates);
5619         match->network = network;
5620         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5621                         network->ssid_len, network->ssid, network->bssid);
5622
5623         return 1;
5624 }
5625
5626 static void ipw_merge_adhoc_network(struct work_struct *work)
5627 {
5628         struct ipw_priv *priv =
5629                 container_of(work, struct ipw_priv, merge_networks);
5630         struct libipw_network *network = NULL;
5631         struct ipw_network_match match = {
5632                 .network = priv->assoc_network
5633         };
5634
5635         if ((priv->status & STATUS_ASSOCIATED) &&
5636             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5637                 /* First pass through ROAM process -- look for a better
5638                  * network */
5639                 unsigned long flags;
5640
5641                 spin_lock_irqsave(&priv->ieee->lock, flags);
5642                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5643                         if (network != priv->assoc_network)
5644                                 ipw_find_adhoc_network(priv, &match, network,
5645                                                        1);
5646                 }
5647                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5648
5649                 if (match.network == priv->assoc_network) {
5650                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5651                                         "merge to.\n");
5652                         return;
5653                 }
5654
5655                 mutex_lock(&priv->mutex);
5656                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5657                         IPW_DEBUG_MERGE("remove network %*pE\n",
5658                                         priv->essid_len, priv->essid);
5659                         ipw_remove_current_network(priv);
5660                 }
5661
5662                 ipw_disassociate(priv);
5663                 priv->assoc_network = match.network;
5664                 mutex_unlock(&priv->mutex);
5665                 return;
5666         }
5667 }
5668
5669 static int ipw_best_network(struct ipw_priv *priv,
5670                             struct ipw_network_match *match,
5671                             struct libipw_network *network, int roaming)
5672 {
5673         struct ipw_supported_rates rates;
5674
5675         /* Verify that this network's capability is compatible with the
5676          * current mode (AdHoc or Infrastructure) */
5677         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5678              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5679             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5680              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5681                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5682                                 network->ssid_len, network->ssid,
5683                                 network->bssid);
5684                 return 0;
5685         }
5686
5687         if (unlikely(roaming)) {
5688                 /* If we are roaming, then ensure check if this is a valid
5689                  * network to try and roam to */
5690                 if ((network->ssid_len != match->network->ssid_len) ||
5691                     memcmp(network->ssid, match->network->ssid,
5692                            network->ssid_len)) {
5693                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5694                                         network->ssid_len, network->ssid,
5695                                         network->bssid);
5696                         return 0;
5697                 }
5698         } else {
5699                 /* If an ESSID has been configured then compare the broadcast
5700                  * ESSID to ours */
5701                 if ((priv->config & CFG_STATIC_ESSID) &&
5702                     ((network->ssid_len != priv->essid_len) ||
5703                      memcmp(network->ssid, priv->essid,
5704                             min(network->ssid_len, priv->essid_len)))) {
5705                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5706                                         network->ssid_len, network->ssid,
5707                                         network->bssid, priv->essid_len,
5708                                         priv->essid);
5709                         return 0;
5710                 }
5711         }
5712
5713         /* If the old network rate is better than this one, don't bother
5714          * testing everything else. */
5715         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5716                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5717                                 network->ssid_len, network->ssid,
5718                                 network->bssid, match->network->ssid_len,
5719                                 match->network->ssid, match->network->bssid);
5720                 return 0;
5721         }
5722
5723         /* If this network has already had an association attempt within the
5724          * last 3 seconds, do not try and associate again... */
5725         if (network->last_associate &&
5726             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5727                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5728                                 network->ssid_len, network->ssid,
5729                                 network->bssid,
5730                                 jiffies_to_msecs(jiffies -
5731                                                  network->last_associate));
5732                 return 0;
5733         }
5734
5735         /* Now go through and see if the requested network is valid... */
5736         if (priv->ieee->scan_age != 0 &&
5737             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5739                                 network->ssid_len, network->ssid,
5740                                 network->bssid,
5741                                 jiffies_to_msecs(jiffies -
5742                                                  network->last_scanned));
5743                 return 0;
5744         }
5745
5746         if ((priv->config & CFG_STATIC_CHANNEL) &&
5747             (network->channel != priv->channel)) {
5748                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5749                                 network->ssid_len, network->ssid,
5750                                 network->bssid,
5751                                 network->channel, priv->channel);
5752                 return 0;
5753         }
5754
5755         /* Verify privacy compatibility */
5756         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5757             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5758                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5759                                 network->ssid_len, network->ssid,
5760                                 network->bssid,
5761                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5762                                 "off",
5763                                 network->capability &
5764                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5765                 return 0;
5766         }
5767
5768         if ((priv->config & CFG_STATIC_BSSID) &&
5769             !ether_addr_equal(network->bssid, priv->bssid)) {
5770                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5771                                 network->ssid_len, network->ssid,
5772                                 network->bssid, priv->bssid);
5773                 return 0;
5774         }
5775
5776         /* Filter out any incompatible freq / mode combinations */
5777         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5778                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5779                                 network->ssid_len, network->ssid,
5780                                 network->bssid);
5781                 return 0;
5782         }
5783
5784         /* Filter out invalid channel in current GEO */
5785         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5786                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5787                                 network->ssid_len, network->ssid,
5788                                 network->bssid);
5789                 return 0;
5790         }
5791
5792         /* Ensure that the rates supported by the driver are compatible with
5793          * this AP, including verification of basic rates (mandatory) */
5794         if (!ipw_compatible_rates(priv, network, &rates)) {
5795                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5796                                 network->ssid_len, network->ssid,
5797                                 network->bssid);
5798                 return 0;
5799         }
5800
5801         if (rates.num_rates == 0) {
5802                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5803                                 network->ssid_len, network->ssid,
5804                                 network->bssid);
5805                 return 0;
5806         }
5807
5808         /* TODO: Perform any further minimal comparititive tests.  We do not
5809          * want to put too much policy logic here; intelligent scan selection
5810          * should occur within a generic IEEE 802.11 user space tool.  */
5811
5812         /* Set up 'new' AP to this network */
5813         ipw_copy_rates(&match->rates, &rates);
5814         match->network = network;
5815
5816         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5817                         network->ssid_len, network->ssid, network->bssid);
5818
5819         return 1;
5820 }
5821
5822 static void ipw_adhoc_create(struct ipw_priv *priv,
5823                              struct libipw_network *network)
5824 {
5825         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5826         int i;
5827
5828         /*
5829          * For the purposes of scanning, we can set our wireless mode
5830          * to trigger scans across combinations of bands, but when it
5831          * comes to creating a new ad-hoc network, we have tell the FW
5832          * exactly which band to use.
5833          *
5834          * We also have the possibility of an invalid channel for the
5835          * chossen band.  Attempting to create a new ad-hoc network
5836          * with an invalid channel for wireless mode will trigger a
5837          * FW fatal error.
5838          *
5839          */
5840         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5841         case LIBIPW_52GHZ_BAND:
5842                 network->mode = IEEE_A;
5843                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5844                 BUG_ON(i == -1);
5845                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5846                         IPW_WARNING("Overriding invalid channel\n");
5847                         priv->channel = geo->a[0].channel;
5848                 }
5849                 break;
5850
5851         case LIBIPW_24GHZ_BAND:
5852                 if (priv->ieee->mode & IEEE_G)
5853                         network->mode = IEEE_G;
5854                 else
5855                         network->mode = IEEE_B;
5856                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5857                 BUG_ON(i == -1);
5858                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5859                         IPW_WARNING("Overriding invalid channel\n");
5860                         priv->channel = geo->bg[0].channel;
5861                 }
5862                 break;
5863
5864         default:
5865                 IPW_WARNING("Overriding invalid channel\n");
5866                 if (priv->ieee->mode & IEEE_A) {
5867                         network->mode = IEEE_A;
5868                         priv->channel = geo->a[0].channel;
5869                 } else if (priv->ieee->mode & IEEE_G) {
5870                         network->mode = IEEE_G;
5871                         priv->channel = geo->bg[0].channel;
5872                 } else {
5873                         network->mode = IEEE_B;
5874                         priv->channel = geo->bg[0].channel;
5875                 }
5876                 break;
5877         }
5878
5879         network->channel = priv->channel;
5880         priv->config |= CFG_ADHOC_PERSIST;
5881         ipw_create_bssid(priv, network->bssid);
5882         network->ssid_len = priv->essid_len;
5883         memcpy(network->ssid, priv->essid, priv->essid_len);
5884         memset(&network->stats, 0, sizeof(network->stats));
5885         network->capability = WLAN_CAPABILITY_IBSS;
5886         if (!(priv->config & CFG_PREAMBLE_LONG))
5887                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5888         if (priv->capability & CAP_PRIVACY_ON)
5889                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5890         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5891         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5892         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5893         memcpy(network->rates_ex,
5894                &priv->rates.supported_rates[network->rates_len],
5895                network->rates_ex_len);
5896         network->last_scanned = 0;
5897         network->flags = 0;
5898         network->last_associate = 0;
5899         network->time_stamp[0] = 0;
5900         network->time_stamp[1] = 0;
5901         network->beacon_interval = 100; /* Default */
5902         network->listen_interval = 10;  /* Default */
5903         network->atim_window = 0;       /* Default */
5904         network->wpa_ie_len = 0;
5905         network->rsn_ie_len = 0;
5906 }
5907
5908 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5909 {
5910         struct ipw_tgi_tx_key key;
5911
5912         if (!(priv->ieee->sec.flags & (1 << index)))
5913                 return;
5914
5915         key.key_id = index;
5916         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5917         key.security_type = type;
5918         key.station_index = 0;  /* always 0 for BSS */
5919         key.flags = 0;
5920         /* 0 for new key; previous value of counter (after fatal error) */
5921         key.tx_counter[0] = cpu_to_le32(0);
5922         key.tx_counter[1] = cpu_to_le32(0);
5923
5924         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5925 }
5926
5927 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5928 {
5929         struct ipw_wep_key key;
5930         int i;
5931
5932         key.cmd_id = DINO_CMD_WEP_KEY;
5933         key.seq_num = 0;
5934
5935         /* Note: AES keys cannot be set for multiple times.
5936          * Only set it at the first time. */
5937         for (i = 0; i < 4; i++) {
5938                 key.key_index = i | type;
5939                 if (!(priv->ieee->sec.flags & (1 << i))) {
5940                         key.key_size = 0;
5941                         continue;
5942                 }
5943
5944                 key.key_size = priv->ieee->sec.key_sizes[i];
5945                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5946
5947                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5948         }
5949 }
5950
5951 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5952 {
5953         if (priv->ieee->host_encrypt)
5954                 return;
5955
5956         switch (level) {
5957         case SEC_LEVEL_3:
5958                 priv->sys_config.disable_unicast_decryption = 0;
5959                 priv->ieee->host_decrypt = 0;
5960                 break;
5961         case SEC_LEVEL_2:
5962                 priv->sys_config.disable_unicast_decryption = 1;
5963                 priv->ieee->host_decrypt = 1;
5964                 break;
5965         case SEC_LEVEL_1:
5966                 priv->sys_config.disable_unicast_decryption = 0;
5967                 priv->ieee->host_decrypt = 0;
5968                 break;
5969         case SEC_LEVEL_0:
5970                 priv->sys_config.disable_unicast_decryption = 1;
5971                 break;
5972         default:
5973                 break;
5974         }
5975 }
5976
5977 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5978 {
5979         if (priv->ieee->host_encrypt)
5980                 return;
5981
5982         switch (level) {
5983         case SEC_LEVEL_3:
5984                 priv->sys_config.disable_multicast_decryption = 0;
5985                 break;
5986         case SEC_LEVEL_2:
5987                 priv->sys_config.disable_multicast_decryption = 1;
5988                 break;
5989         case SEC_LEVEL_1:
5990                 priv->sys_config.disable_multicast_decryption = 0;
5991                 break;
5992         case SEC_LEVEL_0:
5993                 priv->sys_config.disable_multicast_decryption = 1;
5994                 break;
5995         default:
5996                 break;
5997         }
5998 }
5999
6000 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6001 {
6002         switch (priv->ieee->sec.level) {
6003         case SEC_LEVEL_3:
6004                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6005                         ipw_send_tgi_tx_key(priv,
6006                                             DCT_FLAG_EXT_SECURITY_CCM,
6007                                             priv->ieee->sec.active_key);
6008
6009                 if (!priv->ieee->host_mc_decrypt)
6010                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6011                 break;
6012         case SEC_LEVEL_2:
6013                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6014                         ipw_send_tgi_tx_key(priv,
6015                                             DCT_FLAG_EXT_SECURITY_TKIP,
6016                                             priv->ieee->sec.active_key);
6017                 break;
6018         case SEC_LEVEL_1:
6019                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6020                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6021                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6022                 break;
6023         case SEC_LEVEL_0:
6024         default:
6025                 break;
6026         }
6027 }
6028
6029 static void ipw_adhoc_check(void *data)
6030 {
6031         struct ipw_priv *priv = data;
6032
6033         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6034             !(priv->config & CFG_ADHOC_PERSIST)) {
6035                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6036                           IPW_DL_STATE | IPW_DL_ASSOC,
6037                           "Missed beacon: %d - disassociate\n",
6038                           priv->missed_adhoc_beacons);
6039                 ipw_remove_current_network(priv);
6040                 ipw_disassociate(priv);
6041                 return;
6042         }
6043
6044         schedule_delayed_work(&priv->adhoc_check,
6045                               le16_to_cpu(priv->assoc_request.beacon_interval));
6046 }
6047
6048 static void ipw_bg_adhoc_check(struct work_struct *work)
6049 {
6050         struct ipw_priv *priv =
6051                 container_of(work, struct ipw_priv, adhoc_check.work);
6052         mutex_lock(&priv->mutex);
6053         ipw_adhoc_check(priv);
6054         mutex_unlock(&priv->mutex);
6055 }
6056
6057 static void ipw_debug_config(struct ipw_priv *priv)
6058 {
6059         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6060                        "[CFG 0x%08X]\n", priv->config);
6061         if (priv->config & CFG_STATIC_CHANNEL)
6062                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6063         else
6064                 IPW_DEBUG_INFO("Channel unlocked.\n");
6065         if (priv->config & CFG_STATIC_ESSID)
6066                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6067                                priv->essid_len, priv->essid);
6068         else
6069                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6070         if (priv->config & CFG_STATIC_BSSID)
6071                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6072         else
6073                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6074         if (priv->capability & CAP_PRIVACY_ON)
6075                 IPW_DEBUG_INFO("PRIVACY on\n");
6076         else
6077                 IPW_DEBUG_INFO("PRIVACY off\n");
6078         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6079 }
6080
6081 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6082 {
6083         /* TODO: Verify that this works... */
6084         struct ipw_fixed_rate fr;
6085         u32 reg;
6086         u16 mask = 0;
6087         u16 new_tx_rates = priv->rates_mask;
6088
6089         /* Identify 'current FW band' and match it with the fixed
6090          * Tx rates */
6091
6092         switch (priv->ieee->freq_band) {
6093         case LIBIPW_52GHZ_BAND: /* A only */
6094                 /* IEEE_A */
6095                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6096                         /* Invalid fixed rate mask */
6097                         IPW_DEBUG_WX
6098                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6099                         new_tx_rates = 0;
6100                         break;
6101                 }
6102
6103                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6104                 break;
6105
6106         default:                /* 2.4Ghz or Mixed */
6107                 /* IEEE_B */
6108                 if (mode == IEEE_B) {
6109                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6110                                 /* Invalid fixed rate mask */
6111                                 IPW_DEBUG_WX
6112                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6113                                 new_tx_rates = 0;
6114                         }
6115                         break;
6116                 }
6117
6118                 /* IEEE_G */
6119                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6120                                     LIBIPW_OFDM_RATES_MASK)) {
6121                         /* Invalid fixed rate mask */
6122                         IPW_DEBUG_WX
6123                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6124                         new_tx_rates = 0;
6125                         break;
6126                 }
6127
6128                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6129                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6130                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6131                 }
6132
6133                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6134                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6135                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6136                 }
6137
6138                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6139                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6140                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6141                 }
6142
6143                 new_tx_rates |= mask;
6144                 break;
6145         }
6146
6147         fr.tx_rates = cpu_to_le16(new_tx_rates);
6148
6149         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6150         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6151 }
6152
6153 static void ipw_abort_scan(struct ipw_priv *priv)
6154 {
6155         int err;
6156
6157         if (priv->status & STATUS_SCAN_ABORTING) {
6158                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6159                 return;
6160         }
6161         priv->status |= STATUS_SCAN_ABORTING;
6162
6163         err = ipw_send_scan_abort(priv);
6164         if (err)
6165                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6166 }
6167
6168 static void ipw_add_scan_channels(struct ipw_priv *priv,
6169                                   struct ipw_scan_request_ext *scan,
6170                                   int scan_type)
6171 {
6172         int channel_index = 0;
6173         const struct libipw_geo *geo;
6174         int i;
6175
6176         geo = libipw_get_geo(priv->ieee);
6177
6178         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6179                 int start = channel_index;
6180                 for (i = 0; i < geo->a_channels; i++) {
6181                         if ((priv->status & STATUS_ASSOCIATED) &&
6182                             geo->a[i].channel == priv->channel)
6183                                 continue;
6184                         channel_index++;
6185                         scan->channels_list[channel_index] = geo->a[i].channel;
6186                         ipw_set_scan_type(scan, channel_index,
6187                                           geo->a[i].
6188                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6189                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6190                                           scan_type);
6191                 }
6192
6193                 if (start != channel_index) {
6194                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6195                             (channel_index - start);
6196                         channel_index++;
6197                 }
6198         }
6199
6200         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6201                 int start = channel_index;
6202                 if (priv->config & CFG_SPEED_SCAN) {
6203                         int index;
6204                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6205                                 /* nop out the list */
6206                                 [0] = 0
6207                         };
6208
6209                         u8 channel;
6210                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6211                                 channel =
6212                                     priv->speed_scan[priv->speed_scan_pos];
6213                                 if (channel == 0) {
6214                                         priv->speed_scan_pos = 0;
6215                                         channel = priv->speed_scan[0];
6216                                 }
6217                                 if ((priv->status & STATUS_ASSOCIATED) &&
6218                                     channel == priv->channel) {
6219                                         priv->speed_scan_pos++;
6220                                         continue;
6221                                 }
6222
6223                                 /* If this channel has already been
6224                                  * added in scan, break from loop
6225                                  * and this will be the first channel
6226                                  * in the next scan.
6227                                  */
6228                                 if (channels[channel - 1] != 0)
6229                                         break;
6230
6231                                 channels[channel - 1] = 1;
6232                                 priv->speed_scan_pos++;
6233                                 channel_index++;
6234                                 scan->channels_list[channel_index] = channel;
6235                                 index =
6236                                     libipw_channel_to_index(priv->ieee, channel);
6237                                 ipw_set_scan_type(scan, channel_index,
6238                                                   geo->bg[index].
6239                                                   flags &
6240                                                   LIBIPW_CH_PASSIVE_ONLY ?
6241                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6242                                                   : scan_type);
6243                         }
6244                 } else {
6245                         for (i = 0; i < geo->bg_channels; i++) {
6246                                 if ((priv->status & STATUS_ASSOCIATED) &&
6247                                     geo->bg[i].channel == priv->channel)
6248                                         continue;
6249                                 channel_index++;
6250                                 scan->channels_list[channel_index] =
6251                                     geo->bg[i].channel;
6252                                 ipw_set_scan_type(scan, channel_index,
6253                                                   geo->bg[i].
6254                                                   flags &
6255                                                   LIBIPW_CH_PASSIVE_ONLY ?
6256                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6257                                                   : scan_type);
6258                         }
6259                 }
6260
6261                 if (start != channel_index) {
6262                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6263                             (channel_index - start);
6264                 }
6265         }
6266 }
6267
6268 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6269 {
6270         /* staying on passive channels longer than the DTIM interval during a
6271          * scan, while associated, causes the firmware to cancel the scan
6272          * without notification. Hence, don't stay on passive channels longer
6273          * than the beacon interval.
6274          */
6275         if (priv->status & STATUS_ASSOCIATED
6276             && priv->assoc_network->beacon_interval > 10)
6277                 return priv->assoc_network->beacon_interval - 10;
6278         else
6279                 return 120;
6280 }
6281
6282 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6283 {
6284         struct ipw_scan_request_ext scan;
6285         int err = 0, scan_type;
6286
6287         if (!(priv->status & STATUS_INIT) ||
6288             (priv->status & STATUS_EXIT_PENDING))
6289                 return 0;
6290
6291         mutex_lock(&priv->mutex);
6292
6293         if (direct && (priv->direct_scan_ssid_len == 0)) {
6294                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6295                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6296                 goto done;
6297         }
6298
6299         if (priv->status & STATUS_SCANNING) {
6300                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6301                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6302                                         STATUS_SCAN_PENDING;
6303                 goto done;
6304         }
6305
6306         if (!(priv->status & STATUS_SCAN_FORCED) &&
6307             priv->status & STATUS_SCAN_ABORTING) {
6308                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6309                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6310                                         STATUS_SCAN_PENDING;
6311                 goto done;
6312         }
6313
6314         if (priv->status & STATUS_RF_KILL_MASK) {
6315                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6316                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6317                                         STATUS_SCAN_PENDING;
6318                 goto done;
6319         }
6320
6321         memset(&scan, 0, sizeof(scan));
6322         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6323
6324         if (type == IW_SCAN_TYPE_PASSIVE) {
6325                 IPW_DEBUG_WX("use passive scanning\n");
6326                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6327                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6328                         cpu_to_le16(ipw_passive_dwell_time(priv));
6329                 ipw_add_scan_channels(priv, &scan, scan_type);
6330                 goto send_request;
6331         }
6332
6333         /* Use active scan by default. */
6334         if (priv->config & CFG_SPEED_SCAN)
6335                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6336                         cpu_to_le16(30);
6337         else
6338                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6339                         cpu_to_le16(20);
6340
6341         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6342                 cpu_to_le16(20);
6343
6344         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6345                 cpu_to_le16(ipw_passive_dwell_time(priv));
6346         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6347
6348 #ifdef CONFIG_IPW2200_MONITOR
6349         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6350                 u8 channel;
6351                 u8 band = 0;
6352
6353                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6354                 case LIBIPW_52GHZ_BAND:
6355                         band = (u8) (IPW_A_MODE << 6) | 1;
6356                         channel = priv->channel;
6357                         break;
6358
6359                 case LIBIPW_24GHZ_BAND:
6360                         band = (u8) (IPW_B_MODE << 6) | 1;
6361                         channel = priv->channel;
6362                         break;
6363
6364                 default:
6365                         band = (u8) (IPW_B_MODE << 6) | 1;
6366                         channel = 9;
6367                         break;
6368                 }
6369
6370                 scan.channels_list[0] = band;
6371                 scan.channels_list[1] = channel;
6372                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6373
6374                 /* NOTE:  The card will sit on this channel for this time
6375                  * period.  Scan aborts are timing sensitive and frequently
6376                  * result in firmware restarts.  As such, it is best to
6377                  * set a small dwell_time here and just keep re-issuing
6378                  * scans.  Otherwise fast channel hopping will not actually
6379                  * hop channels.
6380                  *
6381                  * TODO: Move SPEED SCAN support to all modes and bands */
6382                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6383                         cpu_to_le16(2000);
6384         } else {
6385 #endif                          /* CONFIG_IPW2200_MONITOR */
6386                 /* Honor direct scans first, otherwise if we are roaming make
6387                  * this a direct scan for the current network.  Finally,
6388                  * ensure that every other scan is a fast channel hop scan */
6389                 if (direct) {
6390                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6391                                             priv->direct_scan_ssid_len);
6392                         if (err) {
6393                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6394                                              "failed\n");
6395                                 goto done;
6396                         }
6397
6398                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6399                 } else if ((priv->status & STATUS_ROAMING)
6400                            || (!(priv->status & STATUS_ASSOCIATED)
6401                                && (priv->config & CFG_STATIC_ESSID)
6402                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6403                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6404                         if (err) {
6405                                 IPW_DEBUG_HC("Attempt to send SSID command "
6406                                              "failed.\n");
6407                                 goto done;
6408                         }
6409
6410                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6411                 } else
6412                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6413
6414                 ipw_add_scan_channels(priv, &scan, scan_type);
6415 #ifdef CONFIG_IPW2200_MONITOR
6416         }
6417 #endif
6418
6419 send_request:
6420         err = ipw_send_scan_request_ext(priv, &scan);
6421         if (err) {
6422                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6423                 goto done;
6424         }
6425
6426         priv->status |= STATUS_SCANNING;
6427         if (direct) {
6428                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6429                 priv->direct_scan_ssid_len = 0;
6430         } else
6431                 priv->status &= ~STATUS_SCAN_PENDING;
6432
6433         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6434 done:
6435         mutex_unlock(&priv->mutex);
6436         return err;
6437 }
6438
6439 static void ipw_request_passive_scan(struct work_struct *work)
6440 {
6441         struct ipw_priv *priv =
6442                 container_of(work, struct ipw_priv, request_passive_scan.work);
6443         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6444 }
6445
6446 static void ipw_request_scan(struct work_struct *work)
6447 {
6448         struct ipw_priv *priv =
6449                 container_of(work, struct ipw_priv, request_scan.work);
6450         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6451 }
6452
6453 static void ipw_request_direct_scan(struct work_struct *work)
6454 {
6455         struct ipw_priv *priv =
6456                 container_of(work, struct ipw_priv, request_direct_scan.work);
6457         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6458 }
6459
6460 static void ipw_bg_abort_scan(struct work_struct *work)
6461 {
6462         struct ipw_priv *priv =
6463                 container_of(work, struct ipw_priv, abort_scan);
6464         mutex_lock(&priv->mutex);
6465         ipw_abort_scan(priv);
6466         mutex_unlock(&priv->mutex);
6467 }
6468
6469 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6470 {
6471         /* This is called when wpa_supplicant loads and closes the driver
6472          * interface. */
6473         priv->ieee->wpa_enabled = value;
6474         return 0;
6475 }
6476
6477 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6478 {
6479         struct libipw_device *ieee = priv->ieee;
6480         struct libipw_security sec = {
6481                 .flags = SEC_AUTH_MODE,
6482         };
6483         int ret = 0;
6484
6485         if (value & IW_AUTH_ALG_SHARED_KEY) {
6486                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6487                 ieee->open_wep = 0;
6488         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6489                 sec.auth_mode = WLAN_AUTH_OPEN;
6490                 ieee->open_wep = 1;
6491         } else if (value & IW_AUTH_ALG_LEAP) {
6492                 sec.auth_mode = WLAN_AUTH_LEAP;
6493                 ieee->open_wep = 1;
6494         } else
6495                 return -EINVAL;
6496
6497         if (ieee->set_security)
6498                 ieee->set_security(ieee->dev, &sec);
6499         else
6500                 ret = -EOPNOTSUPP;
6501
6502         return ret;
6503 }
6504
6505 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6506                                 int wpa_ie_len)
6507 {
6508         /* make sure WPA is enabled */
6509         ipw_wpa_enable(priv, 1);
6510 }
6511
6512 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6513                             char *capabilities, int length)
6514 {
6515         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6516
6517         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6518                                 capabilities);
6519 }
6520
6521 /*
6522  * WE-18 support
6523  */
6524
6525 /* SIOCSIWGENIE */
6526 static int ipw_wx_set_genie(struct net_device *dev,
6527                             struct iw_request_info *info,
6528                             union iwreq_data *wrqu, char *extra)
6529 {
6530         struct ipw_priv *priv = libipw_priv(dev);
6531         struct libipw_device *ieee = priv->ieee;
6532         u8 *buf;
6533         int err = 0;
6534
6535         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6536             (wrqu->data.length && extra == NULL))
6537                 return -EINVAL;
6538
6539         if (wrqu->data.length) {
6540                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6541                 if (buf == NULL) {
6542                         err = -ENOMEM;
6543                         goto out;
6544                 }
6545
6546                 kfree(ieee->wpa_ie);
6547                 ieee->wpa_ie = buf;
6548                 ieee->wpa_ie_len = wrqu->data.length;
6549         } else {
6550                 kfree(ieee->wpa_ie);
6551                 ieee->wpa_ie = NULL;
6552                 ieee->wpa_ie_len = 0;
6553         }
6554
6555         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6556       out:
6557         return err;
6558 }
6559
6560 /* SIOCGIWGENIE */
6561 static int ipw_wx_get_genie(struct net_device *dev,
6562                             struct iw_request_info *info,
6563                             union iwreq_data *wrqu, char *extra)
6564 {
6565         struct ipw_priv *priv = libipw_priv(dev);
6566         struct libipw_device *ieee = priv->ieee;
6567         int err = 0;
6568
6569         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6570                 wrqu->data.length = 0;
6571                 goto out;
6572         }
6573
6574         if (wrqu->data.length < ieee->wpa_ie_len) {
6575                 err = -E2BIG;
6576                 goto out;
6577         }
6578
6579         wrqu->data.length = ieee->wpa_ie_len;
6580         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6581
6582       out:
6583         return err;
6584 }
6585
6586 static int wext_cipher2level(int cipher)
6587 {
6588         switch (cipher) {
6589         case IW_AUTH_CIPHER_NONE:
6590                 return SEC_LEVEL_0;
6591         case IW_AUTH_CIPHER_WEP40:
6592         case IW_AUTH_CIPHER_WEP104:
6593                 return SEC_LEVEL_1;
6594         case IW_AUTH_CIPHER_TKIP:
6595                 return SEC_LEVEL_2;
6596         case IW_AUTH_CIPHER_CCMP:
6597                 return SEC_LEVEL_3;
6598         default:
6599                 return -1;
6600         }
6601 }
6602
6603 /* SIOCSIWAUTH */
6604 static int ipw_wx_set_auth(struct net_device *dev,
6605                            struct iw_request_info *info,
6606                            union iwreq_data *wrqu, char *extra)
6607 {
6608         struct ipw_priv *priv = libipw_priv(dev);
6609         struct libipw_device *ieee = priv->ieee;
6610         struct iw_param *param = &wrqu->param;
6611         struct lib80211_crypt_data *crypt;
6612         unsigned long flags;
6613         int ret = 0;
6614
6615         switch (param->flags & IW_AUTH_INDEX) {
6616         case IW_AUTH_WPA_VERSION:
6617                 break;
6618         case IW_AUTH_CIPHER_PAIRWISE:
6619                 ipw_set_hw_decrypt_unicast(priv,
6620                                            wext_cipher2level(param->value));
6621                 break;
6622         case IW_AUTH_CIPHER_GROUP:
6623                 ipw_set_hw_decrypt_multicast(priv,
6624                                              wext_cipher2level(param->value));
6625                 break;
6626         case IW_AUTH_KEY_MGMT:
6627                 /*
6628                  * ipw2200 does not use these parameters
6629                  */
6630                 break;
6631
6632         case IW_AUTH_TKIP_COUNTERMEASURES:
6633                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6634                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6635                         break;
6636
6637                 flags = crypt->ops->get_flags(crypt->priv);
6638
6639                 if (param->value)
6640                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6641                 else
6642                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6643
6644                 crypt->ops->set_flags(flags, crypt->priv);
6645
6646                 break;
6647
6648         case IW_AUTH_DROP_UNENCRYPTED:{
6649                         /* HACK:
6650                          *
6651                          * wpa_supplicant calls set_wpa_enabled when the driver
6652                          * is loaded and unloaded, regardless of if WPA is being
6653                          * used.  No other calls are made which can be used to
6654                          * determine if encryption will be used or not prior to
6655                          * association being expected.  If encryption is not being
6656                          * used, drop_unencrypted is set to false, else true -- we
6657                          * can use this to determine if the CAP_PRIVACY_ON bit should
6658                          * be set.
6659                          */
6660                         struct libipw_security sec = {
6661                                 .flags = SEC_ENABLED,
6662                                 .enabled = param->value,
6663                         };
6664                         priv->ieee->drop_unencrypted = param->value;
6665                         /* We only change SEC_LEVEL for open mode. Others
6666                          * are set by ipw_wpa_set_encryption.
6667                          */
6668                         if (!param->value) {
6669                                 sec.flags |= SEC_LEVEL;
6670                                 sec.level = SEC_LEVEL_0;
6671                         } else {
6672                                 sec.flags |= SEC_LEVEL;
6673                                 sec.level = SEC_LEVEL_1;
6674                         }
6675                         if (priv->ieee->set_security)
6676                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6677                         break;
6678                 }
6679
6680         case IW_AUTH_80211_AUTH_ALG:
6681                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6682                 break;
6683
6684         case IW_AUTH_WPA_ENABLED:
6685                 ret = ipw_wpa_enable(priv, param->value);
6686                 ipw_disassociate(priv);
6687                 break;
6688
6689         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6690                 ieee->ieee802_1x = param->value;
6691                 break;
6692
6693         case IW_AUTH_PRIVACY_INVOKED:
6694                 ieee->privacy_invoked = param->value;
6695                 break;
6696
6697         default:
6698                 return -EOPNOTSUPP;
6699         }
6700         return ret;
6701 }
6702
6703 /* SIOCGIWAUTH */
6704 static int ipw_wx_get_auth(struct net_device *dev,
6705                            struct iw_request_info *info,
6706                            union iwreq_data *wrqu, char *extra)
6707 {
6708         struct ipw_priv *priv = libipw_priv(dev);
6709         struct libipw_device *ieee = priv->ieee;
6710         struct lib80211_crypt_data *crypt;
6711         struct iw_param *param = &wrqu->param;
6712
6713         switch (param->flags & IW_AUTH_INDEX) {
6714         case IW_AUTH_WPA_VERSION:
6715         case IW_AUTH_CIPHER_PAIRWISE:
6716         case IW_AUTH_CIPHER_GROUP:
6717         case IW_AUTH_KEY_MGMT:
6718                 /*
6719                  * wpa_supplicant will control these internally
6720                  */
6721                 return -EOPNOTSUPP;
6722
6723         case IW_AUTH_TKIP_COUNTERMEASURES:
6724                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6725                 if (!crypt || !crypt->ops->get_flags)
6726                         break;
6727
6728                 param->value = (crypt->ops->get_flags(crypt->priv) &
6729                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6730
6731                 break;
6732
6733         case IW_AUTH_DROP_UNENCRYPTED:
6734                 param->value = ieee->drop_unencrypted;
6735                 break;
6736
6737         case IW_AUTH_80211_AUTH_ALG:
6738                 param->value = ieee->sec.auth_mode;
6739                 break;
6740
6741         case IW_AUTH_WPA_ENABLED:
6742                 param->value = ieee->wpa_enabled;
6743                 break;
6744
6745         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6746                 param->value = ieee->ieee802_1x;
6747                 break;
6748
6749         case IW_AUTH_ROAMING_CONTROL:
6750         case IW_AUTH_PRIVACY_INVOKED:
6751                 param->value = ieee->privacy_invoked;
6752                 break;
6753
6754         default:
6755                 return -EOPNOTSUPP;
6756         }
6757         return 0;
6758 }
6759
6760 /* SIOCSIWENCODEEXT */
6761 static int ipw_wx_set_encodeext(struct net_device *dev,
6762                                 struct iw_request_info *info,
6763                                 union iwreq_data *wrqu, char *extra)
6764 {
6765         struct ipw_priv *priv = libipw_priv(dev);
6766         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6767
6768         if (hwcrypto) {
6769                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6770                         /* IPW HW can't build TKIP MIC,
6771                            host decryption still needed */
6772                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6773                                 priv->ieee->host_mc_decrypt = 1;
6774                         else {
6775                                 priv->ieee->host_encrypt = 0;
6776                                 priv->ieee->host_encrypt_msdu = 1;
6777                                 priv->ieee->host_decrypt = 1;
6778                         }
6779                 } else {
6780                         priv->ieee->host_encrypt = 0;
6781                         priv->ieee->host_encrypt_msdu = 0;
6782                         priv->ieee->host_decrypt = 0;
6783                         priv->ieee->host_mc_decrypt = 0;
6784                 }
6785         }
6786
6787         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6788 }
6789
6790 /* SIOCGIWENCODEEXT */
6791 static int ipw_wx_get_encodeext(struct net_device *dev,
6792                                 struct iw_request_info *info,
6793                                 union iwreq_data *wrqu, char *extra)
6794 {
6795         struct ipw_priv *priv = libipw_priv(dev);
6796         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6797 }
6798
6799 /* SIOCSIWMLME */
6800 static int ipw_wx_set_mlme(struct net_device *dev,
6801                            struct iw_request_info *info,
6802                            union iwreq_data *wrqu, char *extra)
6803 {
6804         struct ipw_priv *priv = libipw_priv(dev);
6805         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6806         __le16 reason;
6807
6808         reason = cpu_to_le16(mlme->reason_code);
6809
6810         switch (mlme->cmd) {
6811         case IW_MLME_DEAUTH:
6812                 /* silently ignore */
6813                 break;
6814
6815         case IW_MLME_DISASSOC:
6816                 ipw_disassociate(priv);
6817                 break;
6818
6819         default:
6820                 return -EOPNOTSUPP;
6821         }
6822         return 0;
6823 }
6824
6825 #ifdef CONFIG_IPW2200_QOS
6826
6827 /* QoS */
6828 /*
6829 * get the modulation type of the current network or
6830 * the card current mode
6831 */
6832 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6833 {
6834         u8 mode = 0;
6835
6836         if (priv->status & STATUS_ASSOCIATED) {
6837                 unsigned long flags;
6838
6839                 spin_lock_irqsave(&priv->ieee->lock, flags);
6840                 mode = priv->assoc_network->mode;
6841                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6842         } else {
6843                 mode = priv->ieee->mode;
6844         }
6845         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6846         return mode;
6847 }
6848
6849 /*
6850 * Handle management frame beacon and probe response
6851 */
6852 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6853                                          int active_network,
6854                                          struct libipw_network *network)
6855 {
6856         u32 size = sizeof(struct libipw_qos_parameters);
6857
6858         if (network->capability & WLAN_CAPABILITY_IBSS)
6859                 network->qos_data.active = network->qos_data.supported;
6860
6861         if (network->flags & NETWORK_HAS_QOS_MASK) {
6862                 if (active_network &&
6863                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6864                         network->qos_data.active = network->qos_data.supported;
6865
6866                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6867                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6868                     (network->qos_data.old_param_count !=
6869                      network->qos_data.param_count)) {
6870                         network->qos_data.old_param_count =
6871                             network->qos_data.param_count;
6872                         schedule_work(&priv->qos_activate);
6873                         IPW_DEBUG_QOS("QoS parameters change call "
6874                                       "qos_activate\n");
6875                 }
6876         } else {
6877                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6878                         memcpy(&network->qos_data.parameters,
6879                                &def_parameters_CCK, size);
6880                 else
6881                         memcpy(&network->qos_data.parameters,
6882                                &def_parameters_OFDM, size);
6883
6884                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6885                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6886                         schedule_work(&priv->qos_activate);
6887                 }
6888
6889                 network->qos_data.active = 0;
6890                 network->qos_data.supported = 0;
6891         }
6892         if ((priv->status & STATUS_ASSOCIATED) &&
6893             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6894                 if (!ether_addr_equal(network->bssid, priv->bssid))
6895                         if (network->capability & WLAN_CAPABILITY_IBSS)
6896                                 if ((network->ssid_len ==
6897                                      priv->assoc_network->ssid_len) &&
6898                                     !memcmp(network->ssid,
6899                                             priv->assoc_network->ssid,
6900                                             network->ssid_len)) {
6901                                         schedule_work(&priv->merge_networks);
6902                                 }
6903         }
6904
6905         return 0;
6906 }
6907
6908 /*
6909 * This function set up the firmware to support QoS. It sends
6910 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6911 */
6912 static int ipw_qos_activate(struct ipw_priv *priv,
6913                             struct libipw_qos_data *qos_network_data)
6914 {
6915         int err;
6916         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6917         struct libipw_qos_parameters *active_one = NULL;
6918         u32 size = sizeof(struct libipw_qos_parameters);
6919         u32 burst_duration;
6920         int i;
6921         u8 type;
6922
6923         type = ipw_qos_current_mode(priv);
6924
6925         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6926         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6927         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6928         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6929
6930         if (qos_network_data == NULL) {
6931                 if (type == IEEE_B) {
6932                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6933                         active_one = &def_parameters_CCK;
6934                 } else
6935                         active_one = &def_parameters_OFDM;
6936
6937                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6938                 burst_duration = ipw_qos_get_burst_duration(priv);
6939                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6940                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6941                             cpu_to_le16(burst_duration);
6942         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6943                 if (type == IEEE_B) {
6944                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6945                                       type);
6946                         if (priv->qos_data.qos_enable == 0)
6947                                 active_one = &def_parameters_CCK;
6948                         else
6949                                 active_one = priv->qos_data.def_qos_parm_CCK;
6950                 } else {
6951                         if (priv->qos_data.qos_enable == 0)
6952                                 active_one = &def_parameters_OFDM;
6953                         else
6954                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6955                 }
6956                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6957         } else {
6958                 unsigned long flags;
6959                 int active;
6960
6961                 spin_lock_irqsave(&priv->ieee->lock, flags);
6962                 active_one = &(qos_network_data->parameters);
6963                 qos_network_data->old_param_count =
6964                     qos_network_data->param_count;
6965                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6966                 active = qos_network_data->supported;
6967                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6968
6969                 if (active == 0) {
6970                         burst_duration = ipw_qos_get_burst_duration(priv);
6971                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6972                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6973                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6974                 }
6975         }
6976
6977         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6978         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6979         if (err)
6980                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6981
6982         return err;
6983 }
6984
6985 /*
6986 * send IPW_CMD_WME_INFO to the firmware
6987 */
6988 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6989 {
6990         int ret = 0;
6991         struct libipw_qos_information_element qos_info;
6992
6993         if (priv == NULL)
6994                 return -1;
6995
6996         qos_info.elementID = QOS_ELEMENT_ID;
6997         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6998
6999         qos_info.version = QOS_VERSION_1;
7000         qos_info.ac_info = 0;
7001
7002         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7003         qos_info.qui_type = QOS_OUI_TYPE;
7004         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7005
7006         ret = ipw_send_qos_info_command(priv, &qos_info);
7007         if (ret != 0) {
7008                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7009         }
7010         return ret;
7011 }
7012
7013 /*
7014 * Set the QoS parameter with the association request structure
7015 */
7016 static int ipw_qos_association(struct ipw_priv *priv,
7017                                struct libipw_network *network)
7018 {
7019         int err = 0;
7020         struct libipw_qos_data *qos_data = NULL;
7021         struct libipw_qos_data ibss_data = {
7022                 .supported = 1,
7023                 .active = 1,
7024         };
7025
7026         switch (priv->ieee->iw_mode) {
7027         case IW_MODE_ADHOC:
7028                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7029
7030                 qos_data = &ibss_data;
7031                 break;
7032
7033         case IW_MODE_INFRA:
7034                 qos_data = &network->qos_data;
7035                 break;
7036
7037         default:
7038                 BUG();
7039                 break;
7040         }
7041
7042         err = ipw_qos_activate(priv, qos_data);
7043         if (err) {
7044                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7045                 return err;
7046         }
7047
7048         if (priv->qos_data.qos_enable && qos_data->supported) {
7049                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7050                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7051                 return ipw_qos_set_info_element(priv);
7052         }
7053
7054         return 0;
7055 }
7056
7057 /*
7058 * handling the beaconing responses. if we get different QoS setting
7059 * off the network from the associated setting, adjust the QoS
7060 * setting
7061 */
7062 static int ipw_qos_association_resp(struct ipw_priv *priv,
7063                                     struct libipw_network *network)
7064 {
7065         int ret = 0;
7066         unsigned long flags;
7067         u32 size = sizeof(struct libipw_qos_parameters);
7068         int set_qos_param = 0;
7069
7070         if ((priv == NULL) || (network == NULL) ||
7071             (priv->assoc_network == NULL))
7072                 return ret;
7073
7074         if (!(priv->status & STATUS_ASSOCIATED))
7075                 return ret;
7076
7077         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7078                 return ret;
7079
7080         spin_lock_irqsave(&priv->ieee->lock, flags);
7081         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7082                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7083                        sizeof(struct libipw_qos_data));
7084                 priv->assoc_network->qos_data.active = 1;
7085                 if ((network->qos_data.old_param_count !=
7086                      network->qos_data.param_count)) {
7087                         set_qos_param = 1;
7088                         network->qos_data.old_param_count =
7089                             network->qos_data.param_count;
7090                 }
7091
7092         } else {
7093                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7094                         memcpy(&priv->assoc_network->qos_data.parameters,
7095                                &def_parameters_CCK, size);
7096                 else
7097                         memcpy(&priv->assoc_network->qos_data.parameters,
7098                                &def_parameters_OFDM, size);
7099                 priv->assoc_network->qos_data.active = 0;
7100                 priv->assoc_network->qos_data.supported = 0;
7101                 set_qos_param = 1;
7102         }
7103
7104         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7105
7106         if (set_qos_param == 1)
7107                 schedule_work(&priv->qos_activate);
7108
7109         return ret;
7110 }
7111
7112 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7113 {
7114         u32 ret = 0;
7115
7116         if (!priv)
7117                 return 0;
7118
7119         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7120                 ret = priv->qos_data.burst_duration_CCK;
7121         else
7122                 ret = priv->qos_data.burst_duration_OFDM;
7123
7124         return ret;
7125 }
7126
7127 /*
7128 * Initialize the setting of QoS global
7129 */
7130 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7131                          int burst_enable, u32 burst_duration_CCK,
7132                          u32 burst_duration_OFDM)
7133 {
7134         priv->qos_data.qos_enable = enable;
7135
7136         if (priv->qos_data.qos_enable) {
7137                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7138                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7139                 IPW_DEBUG_QOS("QoS is enabled\n");
7140         } else {
7141                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7142                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7143                 IPW_DEBUG_QOS("QoS is not enabled\n");
7144         }
7145
7146         priv->qos_data.burst_enable = burst_enable;
7147
7148         if (burst_enable) {
7149                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7150                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7151         } else {
7152                 priv->qos_data.burst_duration_CCK = 0;
7153                 priv->qos_data.burst_duration_OFDM = 0;
7154         }
7155 }
7156
7157 /*
7158 * map the packet priority to the right TX Queue
7159 */
7160 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7161 {
7162         if (priority > 7 || !priv->qos_data.qos_enable)
7163                 priority = 0;
7164
7165         return from_priority_to_tx_queue[priority] - 1;
7166 }
7167
7168 static int ipw_is_qos_active(struct net_device *dev,
7169                              struct sk_buff *skb)
7170 {
7171         struct ipw_priv *priv = libipw_priv(dev);
7172         struct libipw_qos_data *qos_data = NULL;
7173         int active, supported;
7174         u8 *daddr = skb->data + ETH_ALEN;
7175         int unicast = !is_multicast_ether_addr(daddr);
7176
7177         if (!(priv->status & STATUS_ASSOCIATED))
7178                 return 0;
7179
7180         qos_data = &priv->assoc_network->qos_data;
7181
7182         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7183                 if (unicast == 0)
7184                         qos_data->active = 0;
7185                 else
7186                         qos_data->active = qos_data->supported;
7187         }
7188         active = qos_data->active;
7189         supported = qos_data->supported;
7190         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7191                       "unicast %d\n",
7192                       priv->qos_data.qos_enable, active, supported, unicast);
7193         if (active && priv->qos_data.qos_enable)
7194                 return 1;
7195
7196         return 0;
7197
7198 }
7199 /*
7200 * add QoS parameter to the TX command
7201 */
7202 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7203                                         u16 priority,
7204                                         struct tfd_data *tfd)
7205 {
7206         int tx_queue_id = 0;
7207
7208
7209         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7210         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7211
7212         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7213                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7214                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7215         }
7216         return 0;
7217 }
7218
7219 /*
7220 * background support to run QoS activate functionality
7221 */
7222 static void ipw_bg_qos_activate(struct work_struct *work)
7223 {
7224         struct ipw_priv *priv =
7225                 container_of(work, struct ipw_priv, qos_activate);
7226
7227         mutex_lock(&priv->mutex);
7228
7229         if (priv->status & STATUS_ASSOCIATED)
7230                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7231
7232         mutex_unlock(&priv->mutex);
7233 }
7234
7235 static int ipw_handle_probe_response(struct net_device *dev,
7236                                      struct libipw_probe_response *resp,
7237                                      struct libipw_network *network)
7238 {
7239         struct ipw_priv *priv = libipw_priv(dev);
7240         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7241                               (network == priv->assoc_network));
7242
7243         ipw_qos_handle_probe_response(priv, active_network, network);
7244
7245         return 0;
7246 }
7247
7248 static int ipw_handle_beacon(struct net_device *dev,
7249                              struct libipw_beacon *resp,
7250                              struct libipw_network *network)
7251 {
7252         struct ipw_priv *priv = libipw_priv(dev);
7253         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7254                               (network == priv->assoc_network));
7255
7256         ipw_qos_handle_probe_response(priv, active_network, network);
7257
7258         return 0;
7259 }
7260
7261 static int ipw_handle_assoc_response(struct net_device *dev,
7262                                      struct libipw_assoc_response *resp,
7263                                      struct libipw_network *network)
7264 {
7265         struct ipw_priv *priv = libipw_priv(dev);
7266         ipw_qos_association_resp(priv, network);
7267         return 0;
7268 }
7269
7270 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7271                                        *qos_param)
7272 {
7273         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7274                                 sizeof(*qos_param) * 3, qos_param);
7275 }
7276
7277 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7278                                      *qos_param)
7279 {
7280         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7281                                 qos_param);
7282 }
7283
7284 #endif                          /* CONFIG_IPW2200_QOS */
7285
7286 static int ipw_associate_network(struct ipw_priv *priv,
7287                                  struct libipw_network *network,
7288                                  struct ipw_supported_rates *rates, int roaming)
7289 {
7290         int err;
7291
7292         if (priv->config & CFG_FIXED_RATE)
7293                 ipw_set_fixed_rate(priv, network->mode);
7294
7295         if (!(priv->config & CFG_STATIC_ESSID)) {
7296                 priv->essid_len = min(network->ssid_len,
7297                                       (u8) IW_ESSID_MAX_SIZE);
7298                 memcpy(priv->essid, network->ssid, priv->essid_len);
7299         }
7300
7301         network->last_associate = jiffies;
7302
7303         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7304         priv->assoc_request.channel = network->channel;
7305         priv->assoc_request.auth_key = 0;
7306
7307         if ((priv->capability & CAP_PRIVACY_ON) &&
7308             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7309                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7310                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7311
7312                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7313                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7314
7315         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7316                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7317                 priv->assoc_request.auth_type = AUTH_LEAP;
7318         else
7319                 priv->assoc_request.auth_type = AUTH_OPEN;
7320
7321         if (priv->ieee->wpa_ie_len) {
7322                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7323                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7324                                  priv->ieee->wpa_ie_len);
7325         }
7326
7327         /*
7328          * It is valid for our ieee device to support multiple modes, but
7329          * when it comes to associating to a given network we have to choose
7330          * just one mode.
7331          */
7332         if (network->mode & priv->ieee->mode & IEEE_A)
7333                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7334         else if (network->mode & priv->ieee->mode & IEEE_G)
7335                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7336         else if (network->mode & priv->ieee->mode & IEEE_B)
7337                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7338
7339         priv->assoc_request.capability = cpu_to_le16(network->capability);
7340         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7341             && !(priv->config & CFG_PREAMBLE_LONG)) {
7342                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7343         } else {
7344                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7345
7346                 /* Clear the short preamble if we won't be supporting it */
7347                 priv->assoc_request.capability &=
7348                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7349         }
7350
7351         /* Clear capability bits that aren't used in Ad Hoc */
7352         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7353                 priv->assoc_request.capability &=
7354                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7355
7356         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7357                         roaming ? "Rea" : "A",
7358                         priv->essid_len, priv->essid,
7359                         network->channel,
7360                         ipw_modes[priv->assoc_request.ieee_mode],
7361                         rates->num_rates,
7362                         (priv->assoc_request.preamble_length ==
7363                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7364                         network->capability &
7365                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7366                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7367                         priv->capability & CAP_PRIVACY_ON ?
7368                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7369                          "(open)") : "",
7370                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7371                         priv->capability & CAP_PRIVACY_ON ?
7372                         '1' + priv->ieee->sec.active_key : '.',
7373                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7374
7375         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7376         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7377             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7378                 priv->assoc_request.assoc_type = HC_IBSS_START;
7379                 priv->assoc_request.assoc_tsf_msw = 0;
7380                 priv->assoc_request.assoc_tsf_lsw = 0;
7381         } else {
7382                 if (unlikely(roaming))
7383                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7384                 else
7385                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7386                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7387                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7388         }
7389
7390         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7391
7392         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7393                 eth_broadcast_addr(priv->assoc_request.dest);
7394                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7395         } else {
7396                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7397                 priv->assoc_request.atim_window = 0;
7398         }
7399
7400         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7401
7402         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7403         if (err) {
7404                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7405                 return err;
7406         }
7407
7408         rates->ieee_mode = priv->assoc_request.ieee_mode;
7409         rates->purpose = IPW_RATE_CONNECT;
7410         ipw_send_supported_rates(priv, rates);
7411
7412         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7413                 priv->sys_config.dot11g_auto_detection = 1;
7414         else
7415                 priv->sys_config.dot11g_auto_detection = 0;
7416
7417         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7418                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7419         else
7420                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7421
7422         err = ipw_send_system_config(priv);
7423         if (err) {
7424                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7425                 return err;
7426         }
7427
7428         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7429         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7430         if (err) {
7431                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7432                 return err;
7433         }
7434
7435         /*
7436          * If preemption is enabled, it is possible for the association
7437          * to complete before we return from ipw_send_associate.  Therefore
7438          * we have to be sure and update our priviate data first.
7439          */
7440         priv->channel = network->channel;
7441         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7442         priv->status |= STATUS_ASSOCIATING;
7443         priv->status &= ~STATUS_SECURITY_UPDATED;
7444
7445         priv->assoc_network = network;
7446
7447 #ifdef CONFIG_IPW2200_QOS
7448         ipw_qos_association(priv, network);
7449 #endif
7450
7451         err = ipw_send_associate(priv, &priv->assoc_request);
7452         if (err) {
7453                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7454                 return err;
7455         }
7456
7457         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7458                   priv->essid_len, priv->essid, priv->bssid);
7459
7460         return 0;
7461 }
7462
7463 static void ipw_roam(void *data)
7464 {
7465         struct ipw_priv *priv = data;
7466         struct libipw_network *network = NULL;
7467         struct ipw_network_match match = {
7468                 .network = priv->assoc_network
7469         };
7470
7471         /* The roaming process is as follows:
7472          *
7473          * 1.  Missed beacon threshold triggers the roaming process by
7474          *     setting the status ROAM bit and requesting a scan.
7475          * 2.  When the scan completes, it schedules the ROAM work
7476          * 3.  The ROAM work looks at all of the known networks for one that
7477          *     is a better network than the currently associated.  If none
7478          *     found, the ROAM process is over (ROAM bit cleared)
7479          * 4.  If a better network is found, a disassociation request is
7480          *     sent.
7481          * 5.  When the disassociation completes, the roam work is again
7482          *     scheduled.  The second time through, the driver is no longer
7483          *     associated, and the newly selected network is sent an
7484          *     association request.
7485          * 6.  At this point ,the roaming process is complete and the ROAM
7486          *     status bit is cleared.
7487          */
7488
7489         /* If we are no longer associated, and the roaming bit is no longer
7490          * set, then we are not actively roaming, so just return */
7491         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7492                 return;
7493
7494         if (priv->status & STATUS_ASSOCIATED) {
7495                 /* First pass through ROAM process -- look for a better
7496                  * network */
7497                 unsigned long flags;
7498                 u8 rssi = priv->assoc_network->stats.rssi;
7499                 priv->assoc_network->stats.rssi = -128;
7500                 spin_lock_irqsave(&priv->ieee->lock, flags);
7501                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7502                         if (network != priv->assoc_network)
7503                                 ipw_best_network(priv, &match, network, 1);
7504                 }
7505                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7506                 priv->assoc_network->stats.rssi = rssi;
7507
7508                 if (match.network == priv->assoc_network) {
7509                         IPW_DEBUG_ASSOC("No better APs in this network to "
7510                                         "roam to.\n");
7511                         priv->status &= ~STATUS_ROAMING;
7512                         ipw_debug_config(priv);
7513                         return;
7514                 }
7515
7516                 ipw_send_disassociate(priv, 1);
7517                 priv->assoc_network = match.network;
7518
7519                 return;
7520         }
7521
7522         /* Second pass through ROAM process -- request association */
7523         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7524         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7525         priv->status &= ~STATUS_ROAMING;
7526 }
7527
7528 static void ipw_bg_roam(struct work_struct *work)
7529 {
7530         struct ipw_priv *priv =
7531                 container_of(work, struct ipw_priv, roam);
7532         mutex_lock(&priv->mutex);
7533         ipw_roam(priv);
7534         mutex_unlock(&priv->mutex);
7535 }
7536
7537 static int ipw_associate(void *data)
7538 {
7539         struct ipw_priv *priv = data;
7540
7541         struct libipw_network *network = NULL;
7542         struct ipw_network_match match = {
7543                 .network = NULL
7544         };
7545         struct ipw_supported_rates *rates;
7546         struct list_head *element;
7547         unsigned long flags;
7548
7549         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7550                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7551                 return 0;
7552         }
7553
7554         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7555                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7556                                 "progress)\n");
7557                 return 0;
7558         }
7559
7560         if (priv->status & STATUS_DISASSOCIATING) {
7561                 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7562                 schedule_work(&priv->associate);
7563                 return 0;
7564         }
7565
7566         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7567                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7568                                 "initialized)\n");
7569                 return 0;
7570         }
7571
7572         if (!(priv->config & CFG_ASSOCIATE) &&
7573             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7574                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7575                 return 0;
7576         }
7577
7578         /* Protect our use of the network_list */
7579         spin_lock_irqsave(&priv->ieee->lock, flags);
7580         list_for_each_entry(network, &priv->ieee->network_list, list)
7581             ipw_best_network(priv, &match, network, 0);
7582
7583         network = match.network;
7584         rates = &match.rates;
7585
7586         if (network == NULL &&
7587             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7588             priv->config & CFG_ADHOC_CREATE &&
7589             priv->config & CFG_STATIC_ESSID &&
7590             priv->config & CFG_STATIC_CHANNEL) {
7591                 /* Use oldest network if the free list is empty */
7592                 if (list_empty(&priv->ieee->network_free_list)) {
7593                         struct libipw_network *oldest = NULL;
7594                         struct libipw_network *target;
7595
7596                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7597                                 if ((oldest == NULL) ||
7598                                     (target->last_scanned < oldest->last_scanned))
7599                                         oldest = target;
7600                         }
7601
7602                         /* If there are no more slots, expire the oldest */
7603                         list_del(&oldest->list);
7604                         target = oldest;
7605                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7606                                         target->ssid_len, target->ssid,
7607                                         target->bssid);
7608                         list_add_tail(&target->list,
7609                                       &priv->ieee->network_free_list);
7610                 }
7611
7612                 element = priv->ieee->network_free_list.next;
7613                 network = list_entry(element, struct libipw_network, list);
7614                 ipw_adhoc_create(priv, network);
7615                 rates = &priv->rates;
7616                 list_del(element);
7617                 list_add_tail(&network->list, &priv->ieee->network_list);
7618         }
7619         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7620
7621         /* If we reached the end of the list, then we don't have any valid
7622          * matching APs */
7623         if (!network) {
7624                 ipw_debug_config(priv);
7625
7626                 if (!(priv->status & STATUS_SCANNING)) {
7627                         if (!(priv->config & CFG_SPEED_SCAN))
7628                                 schedule_delayed_work(&priv->request_scan,
7629                                                       SCAN_INTERVAL);
7630                         else
7631                                 schedule_delayed_work(&priv->request_scan, 0);
7632                 }
7633
7634                 return 0;
7635         }
7636
7637         ipw_associate_network(priv, network, rates, 0);
7638
7639         return 1;
7640 }
7641
7642 static void ipw_bg_associate(struct work_struct *work)
7643 {
7644         struct ipw_priv *priv =
7645                 container_of(work, struct ipw_priv, associate);
7646         mutex_lock(&priv->mutex);
7647         ipw_associate(priv);
7648         mutex_unlock(&priv->mutex);
7649 }
7650
7651 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7652                                       struct sk_buff *skb)
7653 {
7654         struct ieee80211_hdr *hdr;
7655         u16 fc;
7656
7657         hdr = (struct ieee80211_hdr *)skb->data;
7658         fc = le16_to_cpu(hdr->frame_control);
7659         if (!(fc & IEEE80211_FCTL_PROTECTED))
7660                 return;
7661
7662         fc &= ~IEEE80211_FCTL_PROTECTED;
7663         hdr->frame_control = cpu_to_le16(fc);
7664         switch (priv->ieee->sec.level) {
7665         case SEC_LEVEL_3:
7666                 /* Remove CCMP HDR */
7667                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7668                         skb->data + LIBIPW_3ADDR_LEN + 8,
7669                         skb->len - LIBIPW_3ADDR_LEN - 8);
7670                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7671                 break;
7672         case SEC_LEVEL_2:
7673                 break;
7674         case SEC_LEVEL_1:
7675                 /* Remove IV */
7676                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7677                         skb->data + LIBIPW_3ADDR_LEN + 4,
7678                         skb->len - LIBIPW_3ADDR_LEN - 4);
7679                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7680                 break;
7681         case SEC_LEVEL_0:
7682                 break;
7683         default:
7684                 printk(KERN_ERR "Unknown security level %d\n",
7685                        priv->ieee->sec.level);
7686                 break;
7687         }
7688 }
7689
7690 static void ipw_handle_data_packet(struct ipw_priv *priv,
7691                                    struct ipw_rx_mem_buffer *rxb,
7692                                    struct libipw_rx_stats *stats)
7693 {
7694         struct net_device *dev = priv->net_dev;
7695         struct libipw_hdr_4addr *hdr;
7696         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7697
7698         /* We received data from the HW, so stop the watchdog */
7699         netif_trans_update(dev);
7700
7701         /* We only process data packets if the
7702          * interface is open */
7703         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7704                      skb_tailroom(rxb->skb))) {
7705                 dev->stats.rx_errors++;
7706                 priv->wstats.discard.misc++;
7707                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7708                 return;
7709         } else if (unlikely(!netif_running(priv->net_dev))) {
7710                 dev->stats.rx_dropped++;
7711                 priv->wstats.discard.misc++;
7712                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7713                 return;
7714         }
7715
7716         /* Advance skb->data to the start of the actual payload */
7717         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7718
7719         /* Set the size of the skb to the size of the frame */
7720         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7721
7722         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7723
7724         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7725         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7726         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7727             (is_multicast_ether_addr(hdr->addr1) ?
7728              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7729                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7730
7731         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7732                 dev->stats.rx_errors++;
7733         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7734                 rxb->skb = NULL;
7735                 __ipw_led_activity_on(priv);
7736         }
7737 }
7738
7739 #ifdef CONFIG_IPW2200_RADIOTAP
7740 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7741                                            struct ipw_rx_mem_buffer *rxb,
7742                                            struct libipw_rx_stats *stats)
7743 {
7744         struct net_device *dev = priv->net_dev;
7745         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7746         struct ipw_rx_frame *frame = &pkt->u.frame;
7747
7748         /* initial pull of some data */
7749         u16 received_channel = frame->received_channel;
7750         u8 antennaAndPhy = frame->antennaAndPhy;
7751         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7752         u16 pktrate = frame->rate;
7753
7754         /* Magic struct that slots into the radiotap header -- no reason
7755          * to build this manually element by element, we can write it much
7756          * more efficiently than we can parse it. ORDER MATTERS HERE */
7757         struct ipw_rt_hdr *ipw_rt;
7758
7759         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7760
7761         /* We received data from the HW, so stop the watchdog */
7762         netif_trans_update(dev);
7763
7764         /* We only process data packets if the
7765          * interface is open */
7766         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7767                      skb_tailroom(rxb->skb))) {
7768                 dev->stats.rx_errors++;
7769                 priv->wstats.discard.misc++;
7770                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7771                 return;
7772         } else if (unlikely(!netif_running(priv->net_dev))) {
7773                 dev->stats.rx_dropped++;
7774                 priv->wstats.discard.misc++;
7775                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7776                 return;
7777         }
7778
7779         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7780          * that now */
7781         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7782                 /* FIXME: Should alloc bigger skb instead */
7783                 dev->stats.rx_dropped++;
7784                 priv->wstats.discard.misc++;
7785                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7786                 return;
7787         }
7788
7789         /* copy the frame itself */
7790         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7791                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7792
7793         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7794
7795         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7796         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7797         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7798
7799         /* Big bitfield of all the fields we provide in radiotap */
7800         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7801              (1 << IEEE80211_RADIOTAP_TSFT) |
7802              (1 << IEEE80211_RADIOTAP_FLAGS) |
7803              (1 << IEEE80211_RADIOTAP_RATE) |
7804              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7805              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7806              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7807              (1 << IEEE80211_RADIOTAP_ANTENNA));
7808
7809         /* Zero the flags, we'll add to them as we go */
7810         ipw_rt->rt_flags = 0;
7811         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7812                                frame->parent_tsf[2] << 16 |
7813                                frame->parent_tsf[1] << 8  |
7814                                frame->parent_tsf[0]);
7815
7816         /* Convert signal to DBM */
7817         ipw_rt->rt_dbmsignal = antsignal;
7818         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7819
7820         /* Convert the channel data and set the flags */
7821         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7822         if (received_channel > 14) {    /* 802.11a */
7823                 ipw_rt->rt_chbitmask =
7824                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7825         } else if (antennaAndPhy & 32) {        /* 802.11b */
7826                 ipw_rt->rt_chbitmask =
7827                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7828         } else {                /* 802.11g */
7829                 ipw_rt->rt_chbitmask =
7830                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7831         }
7832
7833         /* set the rate in multiples of 500k/s */
7834         switch (pktrate) {
7835         case IPW_TX_RATE_1MB:
7836                 ipw_rt->rt_rate = 2;
7837                 break;
7838         case IPW_TX_RATE_2MB:
7839                 ipw_rt->rt_rate = 4;
7840                 break;
7841         case IPW_TX_RATE_5MB:
7842                 ipw_rt->rt_rate = 10;
7843                 break;
7844         case IPW_TX_RATE_6MB:
7845                 ipw_rt->rt_rate = 12;
7846                 break;
7847         case IPW_TX_RATE_9MB:
7848                 ipw_rt->rt_rate = 18;
7849                 break;
7850         case IPW_TX_RATE_11MB:
7851                 ipw_rt->rt_rate = 22;
7852                 break;
7853         case IPW_TX_RATE_12MB:
7854                 ipw_rt->rt_rate = 24;
7855                 break;
7856         case IPW_TX_RATE_18MB:
7857                 ipw_rt->rt_rate = 36;
7858                 break;
7859         case IPW_TX_RATE_24MB:
7860                 ipw_rt->rt_rate = 48;
7861                 break;
7862         case IPW_TX_RATE_36MB:
7863                 ipw_rt->rt_rate = 72;
7864                 break;
7865         case IPW_TX_RATE_48MB:
7866                 ipw_rt->rt_rate = 96;
7867                 break;
7868         case IPW_TX_RATE_54MB:
7869                 ipw_rt->rt_rate = 108;
7870                 break;
7871         default:
7872                 ipw_rt->rt_rate = 0;
7873                 break;
7874         }
7875
7876         /* antenna number */
7877         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7878
7879         /* set the preamble flag if we have it */
7880         if ((antennaAndPhy & 64))
7881                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7882
7883         /* Set the size of the skb to the size of the frame */
7884         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7885
7886         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7887
7888         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7889                 dev->stats.rx_errors++;
7890         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7891                 rxb->skb = NULL;
7892                 /* no LED during capture */
7893         }
7894 }
7895 #endif
7896
7897 #ifdef CONFIG_IPW2200_PROMISCUOUS
7898 #define libipw_is_probe_response(fc) \
7899    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7900     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7901
7902 #define libipw_is_management(fc) \
7903    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7904
7905 #define libipw_is_control(fc) \
7906    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7907
7908 #define libipw_is_data(fc) \
7909    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7910
7911 #define libipw_is_assoc_request(fc) \
7912    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7913
7914 #define libipw_is_reassoc_request(fc) \
7915    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7916
7917 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7918                                       struct ipw_rx_mem_buffer *rxb,
7919                                       struct libipw_rx_stats *stats)
7920 {
7921         struct net_device *dev = priv->prom_net_dev;
7922         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7923         struct ipw_rx_frame *frame = &pkt->u.frame;
7924         struct ipw_rt_hdr *ipw_rt;
7925
7926         /* First cache any information we need before we overwrite
7927          * the information provided in the skb from the hardware */
7928         struct ieee80211_hdr *hdr;
7929         u16 channel = frame->received_channel;
7930         u8 phy_flags = frame->antennaAndPhy;
7931         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7932         s8 noise = (s8) le16_to_cpu(frame->noise);
7933         u8 rate = frame->rate;
7934         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7935         struct sk_buff *skb;
7936         int hdr_only = 0;
7937         u16 filter = priv->prom_priv->filter;
7938
7939         /* If the filter is set to not include Rx frames then return */
7940         if (filter & IPW_PROM_NO_RX)
7941                 return;
7942
7943         /* We received data from the HW, so stop the watchdog */
7944         netif_trans_update(dev);
7945
7946         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7947                 dev->stats.rx_errors++;
7948                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7949                 return;
7950         }
7951
7952         /* We only process data packets if the interface is open */
7953         if (unlikely(!netif_running(dev))) {
7954                 dev->stats.rx_dropped++;
7955                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7956                 return;
7957         }
7958
7959         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7960          * that now */
7961         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7962                 /* FIXME: Should alloc bigger skb instead */
7963                 dev->stats.rx_dropped++;
7964                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7965                 return;
7966         }
7967
7968         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7969         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7970                 if (filter & IPW_PROM_NO_MGMT)
7971                         return;
7972                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7973                         hdr_only = 1;
7974         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7975                 if (filter & IPW_PROM_NO_CTL)
7976                         return;
7977                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7978                         hdr_only = 1;
7979         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7980                 if (filter & IPW_PROM_NO_DATA)
7981                         return;
7982                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7983                         hdr_only = 1;
7984         }
7985
7986         /* Copy the SKB since this is for the promiscuous side */
7987         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7988         if (skb == NULL) {
7989                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7990                 return;
7991         }
7992
7993         /* copy the frame data to write after where the radiotap header goes */
7994         ipw_rt = (void *)skb->data;
7995
7996         if (hdr_only)
7997                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7998
7999         memcpy(ipw_rt->payload, hdr, len);
8000
8001         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8002         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8003         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8004
8005         /* Set the size of the skb to the size of the frame */
8006         skb_put(skb, sizeof(*ipw_rt) + len);
8007
8008         /* Big bitfield of all the fields we provide in radiotap */
8009         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8010              (1 << IEEE80211_RADIOTAP_TSFT) |
8011              (1 << IEEE80211_RADIOTAP_FLAGS) |
8012              (1 << IEEE80211_RADIOTAP_RATE) |
8013              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8014              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8015              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8016              (1 << IEEE80211_RADIOTAP_ANTENNA));
8017
8018         /* Zero the flags, we'll add to them as we go */
8019         ipw_rt->rt_flags = 0;
8020         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8021                                frame->parent_tsf[2] << 16 |
8022                                frame->parent_tsf[1] << 8  |
8023                                frame->parent_tsf[0]);
8024
8025         /* Convert to DBM */
8026         ipw_rt->rt_dbmsignal = signal;
8027         ipw_rt->rt_dbmnoise = noise;
8028
8029         /* Convert the channel data and set the flags */
8030         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8031         if (channel > 14) {     /* 802.11a */
8032                 ipw_rt->rt_chbitmask =
8033                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8034         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8035                 ipw_rt->rt_chbitmask =
8036                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8037         } else {                /* 802.11g */
8038                 ipw_rt->rt_chbitmask =
8039                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8040         }
8041
8042         /* set the rate in multiples of 500k/s */
8043         switch (rate) {
8044         case IPW_TX_RATE_1MB:
8045                 ipw_rt->rt_rate = 2;
8046                 break;
8047         case IPW_TX_RATE_2MB:
8048                 ipw_rt->rt_rate = 4;
8049                 break;
8050         case IPW_TX_RATE_5MB:
8051                 ipw_rt->rt_rate = 10;
8052                 break;
8053         case IPW_TX_RATE_6MB:
8054                 ipw_rt->rt_rate = 12;
8055                 break;
8056         case IPW_TX_RATE_9MB:
8057                 ipw_rt->rt_rate = 18;
8058                 break;
8059         case IPW_TX_RATE_11MB:
8060                 ipw_rt->rt_rate = 22;
8061                 break;
8062         case IPW_TX_RATE_12MB:
8063                 ipw_rt->rt_rate = 24;
8064                 break;
8065         case IPW_TX_RATE_18MB:
8066                 ipw_rt->rt_rate = 36;
8067                 break;
8068         case IPW_TX_RATE_24MB:
8069                 ipw_rt->rt_rate = 48;
8070                 break;
8071         case IPW_TX_RATE_36MB:
8072                 ipw_rt->rt_rate = 72;
8073                 break;
8074         case IPW_TX_RATE_48MB:
8075                 ipw_rt->rt_rate = 96;
8076                 break;
8077         case IPW_TX_RATE_54MB:
8078                 ipw_rt->rt_rate = 108;
8079                 break;
8080         default:
8081                 ipw_rt->rt_rate = 0;
8082                 break;
8083         }
8084
8085         /* antenna number */
8086         ipw_rt->rt_antenna = (phy_flags & 3);
8087
8088         /* set the preamble flag if we have it */
8089         if (phy_flags & (1 << 6))
8090                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8091
8092         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8093
8094         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8095                 dev->stats.rx_errors++;
8096                 dev_kfree_skb_any(skb);
8097         }
8098 }
8099 #endif
8100
8101 static int is_network_packet(struct ipw_priv *priv,
8102                                     struct libipw_hdr_4addr *header)
8103 {
8104         /* Filter incoming packets to determine if they are targeted toward
8105          * this network, discarding packets coming from ourselves */
8106         switch (priv->ieee->iw_mode) {
8107         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8108                 /* packets from our adapter are dropped (echo) */
8109                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8110                         return 0;
8111
8112                 /* {broad,multi}cast packets to our BSSID go through */
8113                 if (is_multicast_ether_addr(header->addr1))
8114                         return ether_addr_equal(header->addr3, priv->bssid);
8115
8116                 /* packets to our adapter go through */
8117                 return ether_addr_equal(header->addr1,
8118                                         priv->net_dev->dev_addr);
8119
8120         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8121                 /* packets from our adapter are dropped (echo) */
8122                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8123                         return 0;
8124
8125                 /* {broad,multi}cast packets to our BSS go through */
8126                 if (is_multicast_ether_addr(header->addr1))
8127                         return ether_addr_equal(header->addr2, priv->bssid);
8128
8129                 /* packets to our adapter go through */
8130                 return ether_addr_equal(header->addr1,
8131                                         priv->net_dev->dev_addr);
8132         }
8133
8134         return 1;
8135 }
8136
8137 #define IPW_PACKET_RETRY_TIME HZ
8138
8139 static  int is_duplicate_packet(struct ipw_priv *priv,
8140                                       struct libipw_hdr_4addr *header)
8141 {
8142         u16 sc = le16_to_cpu(header->seq_ctl);
8143         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8144         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8145         u16 *last_seq, *last_frag;
8146         unsigned long *last_time;
8147
8148         switch (priv->ieee->iw_mode) {
8149         case IW_MODE_ADHOC:
8150                 {
8151                         struct list_head *p;
8152                         struct ipw_ibss_seq *entry = NULL;
8153                         u8 *mac = header->addr2;
8154                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8155
8156                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8157                                 entry =
8158                                     list_entry(p, struct ipw_ibss_seq, list);
8159                                 if (ether_addr_equal(entry->mac, mac))
8160                                         break;
8161                         }
8162                         if (p == &priv->ibss_mac_hash[index]) {
8163                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8164                                 if (!entry) {
8165                                         IPW_ERROR
8166                                             ("Cannot malloc new mac entry\n");
8167                                         return 0;
8168                                 }
8169                                 memcpy(entry->mac, mac, ETH_ALEN);
8170                                 entry->seq_num = seq;
8171                                 entry->frag_num = frag;
8172                                 entry->packet_time = jiffies;
8173                                 list_add(&entry->list,
8174                                          &priv->ibss_mac_hash[index]);
8175                                 return 0;
8176                         }
8177                         last_seq = &entry->seq_num;
8178                         last_frag = &entry->frag_num;
8179                         last_time = &entry->packet_time;
8180                         break;
8181                 }
8182         case IW_MODE_INFRA:
8183                 last_seq = &priv->last_seq_num;
8184                 last_frag = &priv->last_frag_num;
8185                 last_time = &priv->last_packet_time;
8186                 break;
8187         default:
8188                 return 0;
8189         }
8190         if ((*last_seq == seq) &&
8191             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8192                 if (*last_frag == frag)
8193                         goto drop;
8194                 if (*last_frag + 1 != frag)
8195                         /* out-of-order fragment */
8196                         goto drop;
8197         } else
8198                 *last_seq = seq;
8199
8200         *last_frag = frag;
8201         *last_time = jiffies;
8202         return 0;
8203
8204       drop:
8205         /* Comment this line now since we observed the card receives
8206          * duplicate packets but the FCTL_RETRY bit is not set in the
8207          * IBSS mode with fragmentation enabled.
8208          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8209         return 1;
8210 }
8211
8212 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8213                                    struct ipw_rx_mem_buffer *rxb,
8214                                    struct libipw_rx_stats *stats)
8215 {
8216         struct sk_buff *skb = rxb->skb;
8217         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8218         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8219             (skb->data + IPW_RX_FRAME_SIZE);
8220
8221         libipw_rx_mgt(priv->ieee, header, stats);
8222
8223         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8224             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8225               IEEE80211_STYPE_PROBE_RESP) ||
8226              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8227               IEEE80211_STYPE_BEACON))) {
8228                 if (ether_addr_equal(header->addr3, priv->bssid))
8229                         ipw_add_station(priv, header->addr2);
8230         }
8231
8232         if (priv->config & CFG_NET_STATS) {
8233                 IPW_DEBUG_HC("sending stat packet\n");
8234
8235                 /* Set the size of the skb to the size of the full
8236                  * ipw header and 802.11 frame */
8237                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8238                         IPW_RX_FRAME_SIZE);
8239
8240                 /* Advance past the ipw packet header to the 802.11 frame */
8241                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8242
8243                 /* Push the libipw_rx_stats before the 802.11 frame */
8244                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8245
8246                 skb->dev = priv->ieee->dev;
8247
8248                 /* Point raw at the libipw_stats */
8249                 skb_reset_mac_header(skb);
8250
8251                 skb->pkt_type = PACKET_OTHERHOST;
8252                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8253                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8254                 netif_rx(skb);
8255                 rxb->skb = NULL;
8256         }
8257 }
8258
8259 /*
8260  * Main entry function for receiving a packet with 80211 headers.  This
8261  * should be called when ever the FW has notified us that there is a new
8262  * skb in the receive queue.
8263  */
8264 static void ipw_rx(struct ipw_priv *priv)
8265 {
8266         struct ipw_rx_mem_buffer *rxb;
8267         struct ipw_rx_packet *pkt;
8268         struct libipw_hdr_4addr *header;
8269         u32 r, w, i;
8270         u8 network_packet;
8271         u8 fill_rx = 0;
8272
8273         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8274         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8275         i = priv->rxq->read;
8276
8277         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8278                 fill_rx = 1;
8279
8280         while (i != r) {
8281                 rxb = priv->rxq->queue[i];
8282                 if (unlikely(rxb == NULL)) {
8283                         printk(KERN_CRIT "Queue not allocated!\n");
8284                         break;
8285                 }
8286                 priv->rxq->queue[i] = NULL;
8287
8288                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8289                                             IPW_RX_BUF_SIZE,
8290                                             PCI_DMA_FROMDEVICE);
8291
8292                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8293                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8294                              pkt->header.message_type,
8295                              pkt->header.rx_seq_num, pkt->header.control_bits);
8296
8297                 switch (pkt->header.message_type) {
8298                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8299                                 struct libipw_rx_stats stats = {
8300                                         .rssi = pkt->u.frame.rssi_dbm -
8301                                             IPW_RSSI_TO_DBM,
8302                                         .signal =
8303                                             pkt->u.frame.rssi_dbm -
8304                                             IPW_RSSI_TO_DBM + 0x100,
8305                                         .noise =
8306                                             le16_to_cpu(pkt->u.frame.noise),
8307                                         .rate = pkt->u.frame.rate,
8308                                         .mac_time = jiffies,
8309                                         .received_channel =
8310                                             pkt->u.frame.received_channel,
8311                                         .freq =
8312                                             (pkt->u.frame.
8313                                              control & (1 << 0)) ?
8314                                             LIBIPW_24GHZ_BAND :
8315                                             LIBIPW_52GHZ_BAND,
8316                                         .len = le16_to_cpu(pkt->u.frame.length),
8317                                 };
8318
8319                                 if (stats.rssi != 0)
8320                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8321                                 if (stats.signal != 0)
8322                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8323                                 if (stats.noise != 0)
8324                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8325                                 if (stats.rate != 0)
8326                                         stats.mask |= LIBIPW_STATMASK_RATE;
8327
8328                                 priv->rx_packets++;
8329
8330 #ifdef CONFIG_IPW2200_PROMISCUOUS
8331         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8332                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8333 #endif
8334
8335 #ifdef CONFIG_IPW2200_MONITOR
8336                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8337 #ifdef CONFIG_IPW2200_RADIOTAP
8338
8339                 ipw_handle_data_packet_monitor(priv,
8340                                                rxb,
8341                                                &stats);
8342 #else
8343                 ipw_handle_data_packet(priv, rxb,
8344                                        &stats);
8345 #endif
8346                                         break;
8347                                 }
8348 #endif
8349
8350                                 header =
8351                                     (struct libipw_hdr_4addr *)(rxb->skb->
8352                                                                    data +
8353                                                                    IPW_RX_FRAME_SIZE);
8354                                 /* TODO: Check Ad-Hoc dest/source and make sure
8355                                  * that we are actually parsing these packets
8356                                  * correctly -- we should probably use the
8357                                  * frame control of the packet and disregard
8358                                  * the current iw_mode */
8359
8360                                 network_packet =
8361                                     is_network_packet(priv, header);
8362                                 if (network_packet && priv->assoc_network) {
8363                                         priv->assoc_network->stats.rssi =
8364                                             stats.rssi;
8365                                         priv->exp_avg_rssi =
8366                                             exponential_average(priv->exp_avg_rssi,
8367                                             stats.rssi, DEPTH_RSSI);
8368                                 }
8369
8370                                 IPW_DEBUG_RX("Frame: len=%u\n",
8371                                              le16_to_cpu(pkt->u.frame.length));
8372
8373                                 if (le16_to_cpu(pkt->u.frame.length) <
8374                                     libipw_get_hdrlen(le16_to_cpu(
8375                                                     header->frame_ctl))) {
8376                                         IPW_DEBUG_DROP
8377                                             ("Received packet is too small. "
8378                                              "Dropping.\n");
8379                                         priv->net_dev->stats.rx_errors++;
8380                                         priv->wstats.discard.misc++;
8381                                         break;
8382                                 }
8383
8384                                 switch (WLAN_FC_GET_TYPE
8385                                         (le16_to_cpu(header->frame_ctl))) {
8386
8387                                 case IEEE80211_FTYPE_MGMT:
8388                                         ipw_handle_mgmt_packet(priv, rxb,
8389                                                                &stats);
8390                                         break;
8391
8392                                 case IEEE80211_FTYPE_CTL:
8393                                         break;
8394
8395                                 case IEEE80211_FTYPE_DATA:
8396                                         if (unlikely(!network_packet ||
8397                                                      is_duplicate_packet(priv,
8398                                                                          header)))
8399                                         {
8400                                                 IPW_DEBUG_DROP("Dropping: "
8401                                                                "%pM, "
8402                                                                "%pM, "
8403                                                                "%pM\n",
8404                                                                header->addr1,
8405                                                                header->addr2,
8406                                                                header->addr3);
8407                                                 break;
8408                                         }
8409
8410                                         ipw_handle_data_packet(priv, rxb,
8411                                                                &stats);
8412
8413                                         break;
8414                                 }
8415                                 break;
8416                         }
8417
8418                 case RX_HOST_NOTIFICATION_TYPE:{
8419                                 IPW_DEBUG_RX
8420                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8421                                      pkt->u.notification.subtype,
8422                                      pkt->u.notification.flags,
8423                                      le16_to_cpu(pkt->u.notification.size));
8424                                 ipw_rx_notification(priv, &pkt->u.notification);
8425                                 break;
8426                         }
8427
8428                 default:
8429                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8430                                      pkt->header.message_type);
8431                         break;
8432                 }
8433
8434                 /* For now we just don't re-use anything.  We can tweak this
8435                  * later to try and re-use notification packets and SKBs that
8436                  * fail to Rx correctly */
8437                 if (rxb->skb != NULL) {
8438                         dev_kfree_skb_any(rxb->skb);
8439                         rxb->skb = NULL;
8440                 }
8441
8442                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8443                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8444                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8445
8446                 i = (i + 1) % RX_QUEUE_SIZE;
8447
8448                 /* If there are a lot of unsued frames, restock the Rx queue
8449                  * so the ucode won't assert */
8450                 if (fill_rx) {
8451                         priv->rxq->read = i;
8452                         ipw_rx_queue_replenish(priv);
8453                 }
8454         }
8455
8456         /* Backtrack one entry */
8457         priv->rxq->read = i;
8458         ipw_rx_queue_restock(priv);
8459 }
8460
8461 #define DEFAULT_RTS_THRESHOLD     2304U
8462 #define MIN_RTS_THRESHOLD         1U
8463 #define MAX_RTS_THRESHOLD         2304U
8464 #define DEFAULT_BEACON_INTERVAL   100U
8465 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8466 #define DEFAULT_LONG_RETRY_LIMIT  4U
8467
8468 /**
8469  * ipw_sw_reset
8470  * @option: options to control different reset behaviour
8471  *          0 = reset everything except the 'disable' module_param
8472  *          1 = reset everything and print out driver info (for probe only)
8473  *          2 = reset everything
8474  */
8475 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8476 {
8477         int band, modulation;
8478         int old_mode = priv->ieee->iw_mode;
8479
8480         /* Initialize module parameter values here */
8481         priv->config = 0;
8482
8483         /* We default to disabling the LED code as right now it causes
8484          * too many systems to lock up... */
8485         if (!led_support)
8486                 priv->config |= CFG_NO_LED;
8487
8488         if (associate)
8489                 priv->config |= CFG_ASSOCIATE;
8490         else
8491                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8492
8493         if (auto_create)
8494                 priv->config |= CFG_ADHOC_CREATE;
8495         else
8496                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8497
8498         priv->config &= ~CFG_STATIC_ESSID;
8499         priv->essid_len = 0;
8500         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8501
8502         if (disable && option) {
8503                 priv->status |= STATUS_RF_KILL_SW;
8504                 IPW_DEBUG_INFO("Radio disabled.\n");
8505         }
8506
8507         if (default_channel != 0) {
8508                 priv->config |= CFG_STATIC_CHANNEL;
8509                 priv->channel = default_channel;
8510                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8511                 /* TODO: Validate that provided channel is in range */
8512         }
8513 #ifdef CONFIG_IPW2200_QOS
8514         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8515                      burst_duration_CCK, burst_duration_OFDM);
8516 #endif                          /* CONFIG_IPW2200_QOS */
8517
8518         switch (network_mode) {
8519         case 1:
8520                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8521                 priv->net_dev->type = ARPHRD_ETHER;
8522
8523                 break;
8524 #ifdef CONFIG_IPW2200_MONITOR
8525         case 2:
8526                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8527 #ifdef CONFIG_IPW2200_RADIOTAP
8528                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8529 #else
8530                 priv->net_dev->type = ARPHRD_IEEE80211;
8531 #endif
8532                 break;
8533 #endif
8534         default:
8535         case 0:
8536                 priv->net_dev->type = ARPHRD_ETHER;
8537                 priv->ieee->iw_mode = IW_MODE_INFRA;
8538                 break;
8539         }
8540
8541         if (hwcrypto) {
8542                 priv->ieee->host_encrypt = 0;
8543                 priv->ieee->host_encrypt_msdu = 0;
8544                 priv->ieee->host_decrypt = 0;
8545                 priv->ieee->host_mc_decrypt = 0;
8546         }
8547         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8548
8549         /* IPW2200/2915 is abled to do hardware fragmentation. */
8550         priv->ieee->host_open_frag = 0;
8551
8552         if ((priv->pci_dev->device == 0x4223) ||
8553             (priv->pci_dev->device == 0x4224)) {
8554                 if (option == 1)
8555                         printk(KERN_INFO DRV_NAME
8556                                ": Detected Intel PRO/Wireless 2915ABG Network "
8557                                "Connection\n");
8558                 priv->ieee->abg_true = 1;
8559                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8560                 modulation = LIBIPW_OFDM_MODULATION |
8561                     LIBIPW_CCK_MODULATION;
8562                 priv->adapter = IPW_2915ABG;
8563                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8564         } else {
8565                 if (option == 1)
8566                         printk(KERN_INFO DRV_NAME
8567                                ": Detected Intel PRO/Wireless 2200BG Network "
8568                                "Connection\n");
8569
8570                 priv->ieee->abg_true = 0;
8571                 band = LIBIPW_24GHZ_BAND;
8572                 modulation = LIBIPW_OFDM_MODULATION |
8573                     LIBIPW_CCK_MODULATION;
8574                 priv->adapter = IPW_2200BG;
8575                 priv->ieee->mode = IEEE_G | IEEE_B;
8576         }
8577
8578         priv->ieee->freq_band = band;
8579         priv->ieee->modulation = modulation;
8580
8581         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8582
8583         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8584         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8585
8586         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8587         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8588         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8589
8590         /* If power management is turned on, default to AC mode */
8591         priv->power_mode = IPW_POWER_AC;
8592         priv->tx_power = IPW_TX_POWER_DEFAULT;
8593
8594         return old_mode == priv->ieee->iw_mode;
8595 }
8596
8597 /*
8598  * This file defines the Wireless Extension handlers.  It does not
8599  * define any methods of hardware manipulation and relies on the
8600  * functions defined in ipw_main to provide the HW interaction.
8601  *
8602  * The exception to this is the use of the ipw_get_ordinal()
8603  * function used to poll the hardware vs. making unnecessary calls.
8604  *
8605  */
8606
8607 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8608 {
8609         if (channel == 0) {
8610                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8611                 priv->config &= ~CFG_STATIC_CHANNEL;
8612                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8613                                 "parameters.\n");
8614                 ipw_associate(priv);
8615                 return 0;
8616         }
8617
8618         priv->config |= CFG_STATIC_CHANNEL;
8619
8620         if (priv->channel == channel) {
8621                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8622                                channel);
8623                 return 0;
8624         }
8625
8626         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8627         priv->channel = channel;
8628
8629 #ifdef CONFIG_IPW2200_MONITOR
8630         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8631                 int i;
8632                 if (priv->status & STATUS_SCANNING) {
8633                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8634                                        "channel change.\n");
8635                         ipw_abort_scan(priv);
8636                 }
8637
8638                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8639                         udelay(10);
8640
8641                 if (priv->status & STATUS_SCANNING)
8642                         IPW_DEBUG_SCAN("Still scanning...\n");
8643                 else
8644                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8645                                        1000 - i);
8646
8647                 return 0;
8648         }
8649 #endif                          /* CONFIG_IPW2200_MONITOR */
8650
8651         /* Network configuration changed -- force [re]association */
8652         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8653         if (!ipw_disassociate(priv))
8654                 ipw_associate(priv);
8655
8656         return 0;
8657 }
8658
8659 static int ipw_wx_set_freq(struct net_device *dev,
8660                            struct iw_request_info *info,
8661                            union iwreq_data *wrqu, char *extra)
8662 {
8663         struct ipw_priv *priv = libipw_priv(dev);
8664         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8665         struct iw_freq *fwrq = &wrqu->freq;
8666         int ret = 0, i;
8667         u8 channel, flags;
8668         int band;
8669
8670         if (fwrq->m == 0) {
8671                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8672                 mutex_lock(&priv->mutex);
8673                 ret = ipw_set_channel(priv, 0);
8674                 mutex_unlock(&priv->mutex);
8675                 return ret;
8676         }
8677         /* if setting by freq convert to channel */
8678         if (fwrq->e == 1) {
8679                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8680                 if (channel == 0)
8681                         return -EINVAL;
8682         } else
8683                 channel = fwrq->m;
8684
8685         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8686                 return -EINVAL;
8687
8688         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8689                 i = libipw_channel_to_index(priv->ieee, channel);
8690                 if (i == -1)
8691                         return -EINVAL;
8692
8693                 flags = (band == LIBIPW_24GHZ_BAND) ?
8694                     geo->bg[i].flags : geo->a[i].flags;
8695                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8696                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8697                         return -EINVAL;
8698                 }
8699         }
8700
8701         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8702         mutex_lock(&priv->mutex);
8703         ret = ipw_set_channel(priv, channel);
8704         mutex_unlock(&priv->mutex);
8705         return ret;
8706 }
8707
8708 static int ipw_wx_get_freq(struct net_device *dev,
8709                            struct iw_request_info *info,
8710                            union iwreq_data *wrqu, char *extra)
8711 {
8712         struct ipw_priv *priv = libipw_priv(dev);
8713
8714         wrqu->freq.e = 0;
8715
8716         /* If we are associated, trying to associate, or have a statically
8717          * configured CHANNEL then return that; otherwise return ANY */
8718         mutex_lock(&priv->mutex);
8719         if (priv->config & CFG_STATIC_CHANNEL ||
8720             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8721                 int i;
8722
8723                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8724                 BUG_ON(i == -1);
8725                 wrqu->freq.e = 1;
8726
8727                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8728                 case LIBIPW_52GHZ_BAND:
8729                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8730                         break;
8731
8732                 case LIBIPW_24GHZ_BAND:
8733                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8734                         break;
8735
8736                 default:
8737                         BUG();
8738                 }
8739         } else
8740                 wrqu->freq.m = 0;
8741
8742         mutex_unlock(&priv->mutex);
8743         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8744         return 0;
8745 }
8746
8747 static int ipw_wx_set_mode(struct net_device *dev,
8748                            struct iw_request_info *info,
8749                            union iwreq_data *wrqu, char *extra)
8750 {
8751         struct ipw_priv *priv = libipw_priv(dev);
8752         int err = 0;
8753
8754         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8755
8756         switch (wrqu->mode) {
8757 #ifdef CONFIG_IPW2200_MONITOR
8758         case IW_MODE_MONITOR:
8759 #endif
8760         case IW_MODE_ADHOC:
8761         case IW_MODE_INFRA:
8762                 break;
8763         case IW_MODE_AUTO:
8764                 wrqu->mode = IW_MODE_INFRA;
8765                 break;
8766         default:
8767                 return -EINVAL;
8768         }
8769         if (wrqu->mode == priv->ieee->iw_mode)
8770                 return 0;
8771
8772         mutex_lock(&priv->mutex);
8773
8774         ipw_sw_reset(priv, 0);
8775
8776 #ifdef CONFIG_IPW2200_MONITOR
8777         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8778                 priv->net_dev->type = ARPHRD_ETHER;
8779
8780         if (wrqu->mode == IW_MODE_MONITOR)
8781 #ifdef CONFIG_IPW2200_RADIOTAP
8782                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8783 #else
8784                 priv->net_dev->type = ARPHRD_IEEE80211;
8785 #endif
8786 #endif                          /* CONFIG_IPW2200_MONITOR */
8787
8788         /* Free the existing firmware and reset the fw_loaded
8789          * flag so ipw_load() will bring in the new firmware */
8790         free_firmware();
8791
8792         priv->ieee->iw_mode = wrqu->mode;
8793
8794         schedule_work(&priv->adapter_restart);
8795         mutex_unlock(&priv->mutex);
8796         return err;
8797 }
8798
8799 static int ipw_wx_get_mode(struct net_device *dev,
8800                            struct iw_request_info *info,
8801                            union iwreq_data *wrqu, char *extra)
8802 {
8803         struct ipw_priv *priv = libipw_priv(dev);
8804         mutex_lock(&priv->mutex);
8805         wrqu->mode = priv->ieee->iw_mode;
8806         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8807         mutex_unlock(&priv->mutex);
8808         return 0;
8809 }
8810
8811 /* Values are in microsecond */
8812 static const s32 timeout_duration[] = {
8813         350000,
8814         250000,
8815         75000,
8816         37000,
8817         25000,
8818 };
8819
8820 static const s32 period_duration[] = {
8821         400000,
8822         700000,
8823         1000000,
8824         1000000,
8825         1000000
8826 };
8827
8828 static int ipw_wx_get_range(struct net_device *dev,
8829                             struct iw_request_info *info,
8830                             union iwreq_data *wrqu, char *extra)
8831 {
8832         struct ipw_priv *priv = libipw_priv(dev);
8833         struct iw_range *range = (struct iw_range *)extra;
8834         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8835         int i = 0, j;
8836
8837         wrqu->data.length = sizeof(*range);
8838         memset(range, 0, sizeof(*range));
8839
8840         /* 54Mbs == ~27 Mb/s real (802.11g) */
8841         range->throughput = 27 * 1000 * 1000;
8842
8843         range->max_qual.qual = 100;
8844         /* TODO: Find real max RSSI and stick here */
8845         range->max_qual.level = 0;
8846         range->max_qual.noise = 0;
8847         range->max_qual.updated = 7;    /* Updated all three */
8848
8849         range->avg_qual.qual = 70;
8850         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8851         range->avg_qual.level = 0;      /* FIXME to real average level */
8852         range->avg_qual.noise = 0;
8853         range->avg_qual.updated = 7;    /* Updated all three */
8854         mutex_lock(&priv->mutex);
8855         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8856
8857         for (i = 0; i < range->num_bitrates; i++)
8858                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8859                     500000;
8860
8861         range->max_rts = DEFAULT_RTS_THRESHOLD;
8862         range->min_frag = MIN_FRAG_THRESHOLD;
8863         range->max_frag = MAX_FRAG_THRESHOLD;
8864
8865         range->encoding_size[0] = 5;
8866         range->encoding_size[1] = 13;
8867         range->num_encoding_sizes = 2;
8868         range->max_encoding_tokens = WEP_KEYS;
8869
8870         /* Set the Wireless Extension versions */
8871         range->we_version_compiled = WIRELESS_EXT;
8872         range->we_version_source = 18;
8873
8874         i = 0;
8875         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8876                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8877                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8878                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8879                                 continue;
8880
8881                         range->freq[i].i = geo->bg[j].channel;
8882                         range->freq[i].m = geo->bg[j].freq * 100000;
8883                         range->freq[i].e = 1;
8884                         i++;
8885                 }
8886         }
8887
8888         if (priv->ieee->mode & IEEE_A) {
8889                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8890                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8891                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8892                                 continue;
8893
8894                         range->freq[i].i = geo->a[j].channel;
8895                         range->freq[i].m = geo->a[j].freq * 100000;
8896                         range->freq[i].e = 1;
8897                         i++;
8898                 }
8899         }
8900
8901         range->num_channels = i;
8902         range->num_frequency = i;
8903
8904         mutex_unlock(&priv->mutex);
8905
8906         /* Event capability (kernel + driver) */
8907         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8908                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8909                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8910                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8911         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8912
8913         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8914                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8915
8916         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8917
8918         IPW_DEBUG_WX("GET Range\n");
8919         return 0;
8920 }
8921
8922 static int ipw_wx_set_wap(struct net_device *dev,
8923                           struct iw_request_info *info,
8924                           union iwreq_data *wrqu, char *extra)
8925 {
8926         struct ipw_priv *priv = libipw_priv(dev);
8927
8928         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8929                 return -EINVAL;
8930         mutex_lock(&priv->mutex);
8931         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8932             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8933                 /* we disable mandatory BSSID association */
8934                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8935                 priv->config &= ~CFG_STATIC_BSSID;
8936                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8937                                 "parameters.\n");
8938                 ipw_associate(priv);
8939                 mutex_unlock(&priv->mutex);
8940                 return 0;
8941         }
8942
8943         priv->config |= CFG_STATIC_BSSID;
8944         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8945                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8946                 mutex_unlock(&priv->mutex);
8947                 return 0;
8948         }
8949
8950         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8951                      wrqu->ap_addr.sa_data);
8952
8953         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8954
8955         /* Network configuration changed -- force [re]association */
8956         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8957         if (!ipw_disassociate(priv))
8958                 ipw_associate(priv);
8959
8960         mutex_unlock(&priv->mutex);
8961         return 0;
8962 }
8963
8964 static int ipw_wx_get_wap(struct net_device *dev,
8965                           struct iw_request_info *info,
8966                           union iwreq_data *wrqu, char *extra)
8967 {
8968         struct ipw_priv *priv = libipw_priv(dev);
8969
8970         /* If we are associated, trying to associate, or have a statically
8971          * configured BSSID then return that; otherwise return ANY */
8972         mutex_lock(&priv->mutex);
8973         if (priv->config & CFG_STATIC_BSSID ||
8974             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8975                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8976                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8977         } else
8978                 eth_zero_addr(wrqu->ap_addr.sa_data);
8979
8980         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8981                      wrqu->ap_addr.sa_data);
8982         mutex_unlock(&priv->mutex);
8983         return 0;
8984 }
8985
8986 static int ipw_wx_set_essid(struct net_device *dev,
8987                             struct iw_request_info *info,
8988                             union iwreq_data *wrqu, char *extra)
8989 {
8990         struct ipw_priv *priv = libipw_priv(dev);
8991         int length;
8992
8993         mutex_lock(&priv->mutex);
8994
8995         if (!wrqu->essid.flags)
8996         {
8997                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8998                 ipw_disassociate(priv);
8999                 priv->config &= ~CFG_STATIC_ESSID;
9000                 ipw_associate(priv);
9001                 mutex_unlock(&priv->mutex);
9002                 return 0;
9003         }
9004
9005         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9006
9007         priv->config |= CFG_STATIC_ESSID;
9008
9009         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9010             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9011                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9012                 mutex_unlock(&priv->mutex);
9013                 return 0;
9014         }
9015
9016         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9017
9018         priv->essid_len = length;
9019         memcpy(priv->essid, extra, priv->essid_len);
9020
9021         /* Network configuration changed -- force [re]association */
9022         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9023         if (!ipw_disassociate(priv))
9024                 ipw_associate(priv);
9025
9026         mutex_unlock(&priv->mutex);
9027         return 0;
9028 }
9029
9030 static int ipw_wx_get_essid(struct net_device *dev,
9031                             struct iw_request_info *info,
9032                             union iwreq_data *wrqu, char *extra)
9033 {
9034         struct ipw_priv *priv = libipw_priv(dev);
9035
9036         /* If we are associated, trying to associate, or have a statically
9037          * configured ESSID then return that; otherwise return ANY */
9038         mutex_lock(&priv->mutex);
9039         if (priv->config & CFG_STATIC_ESSID ||
9040             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9041                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9042                              priv->essid_len, priv->essid);
9043                 memcpy(extra, priv->essid, priv->essid_len);
9044                 wrqu->essid.length = priv->essid_len;
9045                 wrqu->essid.flags = 1;  /* active */
9046         } else {
9047                 IPW_DEBUG_WX("Getting essid: ANY\n");
9048                 wrqu->essid.length = 0;
9049                 wrqu->essid.flags = 0;  /* active */
9050         }
9051         mutex_unlock(&priv->mutex);
9052         return 0;
9053 }
9054
9055 static int ipw_wx_set_nick(struct net_device *dev,
9056                            struct iw_request_info *info,
9057                            union iwreq_data *wrqu, char *extra)
9058 {
9059         struct ipw_priv *priv = libipw_priv(dev);
9060
9061         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9062         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9063                 return -E2BIG;
9064         mutex_lock(&priv->mutex);
9065         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9066         memset(priv->nick, 0, sizeof(priv->nick));
9067         memcpy(priv->nick, extra, wrqu->data.length);
9068         IPW_DEBUG_TRACE("<<\n");
9069         mutex_unlock(&priv->mutex);
9070         return 0;
9071
9072 }
9073
9074 static int ipw_wx_get_nick(struct net_device *dev,
9075                            struct iw_request_info *info,
9076                            union iwreq_data *wrqu, char *extra)
9077 {
9078         struct ipw_priv *priv = libipw_priv(dev);
9079         IPW_DEBUG_WX("Getting nick\n");
9080         mutex_lock(&priv->mutex);
9081         wrqu->data.length = strlen(priv->nick);
9082         memcpy(extra, priv->nick, wrqu->data.length);
9083         wrqu->data.flags = 1;   /* active */
9084         mutex_unlock(&priv->mutex);
9085         return 0;
9086 }
9087
9088 static int ipw_wx_set_sens(struct net_device *dev,
9089                             struct iw_request_info *info,
9090                             union iwreq_data *wrqu, char *extra)
9091 {
9092         struct ipw_priv *priv = libipw_priv(dev);
9093         int err = 0;
9094
9095         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9096         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9097         mutex_lock(&priv->mutex);
9098
9099         if (wrqu->sens.fixed == 0)
9100         {
9101                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9102                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9103                 goto out;
9104         }
9105         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9106             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9107                 err = -EINVAL;
9108                 goto out;
9109         }
9110
9111         priv->roaming_threshold = wrqu->sens.value;
9112         priv->disassociate_threshold = 3*wrqu->sens.value;
9113       out:
9114         mutex_unlock(&priv->mutex);
9115         return err;
9116 }
9117
9118 static int ipw_wx_get_sens(struct net_device *dev,
9119                             struct iw_request_info *info,
9120                             union iwreq_data *wrqu, char *extra)
9121 {
9122         struct ipw_priv *priv = libipw_priv(dev);
9123         mutex_lock(&priv->mutex);
9124         wrqu->sens.fixed = 1;
9125         wrqu->sens.value = priv->roaming_threshold;
9126         mutex_unlock(&priv->mutex);
9127
9128         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9129                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9130
9131         return 0;
9132 }
9133
9134 static int ipw_wx_set_rate(struct net_device *dev,
9135                            struct iw_request_info *info,
9136                            union iwreq_data *wrqu, char *extra)
9137 {
9138         /* TODO: We should use semaphores or locks for access to priv */
9139         struct ipw_priv *priv = libipw_priv(dev);
9140         u32 target_rate = wrqu->bitrate.value;
9141         u32 fixed, mask;
9142
9143         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9144         /* value = X, fixed = 1 means only rate X */
9145         /* value = X, fixed = 0 means all rates lower equal X */
9146
9147         if (target_rate == -1) {
9148                 fixed = 0;
9149                 mask = LIBIPW_DEFAULT_RATES_MASK;
9150                 /* Now we should reassociate */
9151                 goto apply;
9152         }
9153
9154         mask = 0;
9155         fixed = wrqu->bitrate.fixed;
9156
9157         if (target_rate == 1000000 || !fixed)
9158                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9159         if (target_rate == 1000000)
9160                 goto apply;
9161
9162         if (target_rate == 2000000 || !fixed)
9163                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9164         if (target_rate == 2000000)
9165                 goto apply;
9166
9167         if (target_rate == 5500000 || !fixed)
9168                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9169         if (target_rate == 5500000)
9170                 goto apply;
9171
9172         if (target_rate == 6000000 || !fixed)
9173                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9174         if (target_rate == 6000000)
9175                 goto apply;
9176
9177         if (target_rate == 9000000 || !fixed)
9178                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9179         if (target_rate == 9000000)
9180                 goto apply;
9181
9182         if (target_rate == 11000000 || !fixed)
9183                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9184         if (target_rate == 11000000)
9185                 goto apply;
9186
9187         if (target_rate == 12000000 || !fixed)
9188                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9189         if (target_rate == 12000000)
9190                 goto apply;
9191
9192         if (target_rate == 18000000 || !fixed)
9193                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9194         if (target_rate == 18000000)
9195                 goto apply;
9196
9197         if (target_rate == 24000000 || !fixed)
9198                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9199         if (target_rate == 24000000)
9200                 goto apply;
9201
9202         if (target_rate == 36000000 || !fixed)
9203                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9204         if (target_rate == 36000000)
9205                 goto apply;
9206
9207         if (target_rate == 48000000 || !fixed)
9208                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9209         if (target_rate == 48000000)
9210                 goto apply;
9211
9212         if (target_rate == 54000000 || !fixed)
9213                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9214         if (target_rate == 54000000)
9215                 goto apply;
9216
9217         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9218         return -EINVAL;
9219
9220       apply:
9221         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9222                      mask, fixed ? "fixed" : "sub-rates");
9223         mutex_lock(&priv->mutex);
9224         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9225                 priv->config &= ~CFG_FIXED_RATE;
9226                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9227         } else
9228                 priv->config |= CFG_FIXED_RATE;
9229
9230         if (priv->rates_mask == mask) {
9231                 IPW_DEBUG_WX("Mask set to current mask.\n");
9232                 mutex_unlock(&priv->mutex);
9233                 return 0;
9234         }
9235
9236         priv->rates_mask = mask;
9237
9238         /* Network configuration changed -- force [re]association */
9239         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9240         if (!ipw_disassociate(priv))
9241                 ipw_associate(priv);
9242
9243         mutex_unlock(&priv->mutex);
9244         return 0;
9245 }
9246
9247 static int ipw_wx_get_rate(struct net_device *dev,
9248                            struct iw_request_info *info,
9249                            union iwreq_data *wrqu, char *extra)
9250 {
9251         struct ipw_priv *priv = libipw_priv(dev);
9252         mutex_lock(&priv->mutex);
9253         wrqu->bitrate.value = priv->last_rate;
9254         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9255         mutex_unlock(&priv->mutex);
9256         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9257         return 0;
9258 }
9259
9260 static int ipw_wx_set_rts(struct net_device *dev,
9261                           struct iw_request_info *info,
9262                           union iwreq_data *wrqu, char *extra)
9263 {
9264         struct ipw_priv *priv = libipw_priv(dev);
9265         mutex_lock(&priv->mutex);
9266         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9267                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9268         else {
9269                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9270                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9271                         mutex_unlock(&priv->mutex);
9272                         return -EINVAL;
9273                 }
9274                 priv->rts_threshold = wrqu->rts.value;
9275         }
9276
9277         ipw_send_rts_threshold(priv, priv->rts_threshold);
9278         mutex_unlock(&priv->mutex);
9279         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9280         return 0;
9281 }
9282
9283 static int ipw_wx_get_rts(struct net_device *dev,
9284                           struct iw_request_info *info,
9285                           union iwreq_data *wrqu, char *extra)
9286 {
9287         struct ipw_priv *priv = libipw_priv(dev);
9288         mutex_lock(&priv->mutex);
9289         wrqu->rts.value = priv->rts_threshold;
9290         wrqu->rts.fixed = 0;    /* no auto select */
9291         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9292         mutex_unlock(&priv->mutex);
9293         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9294         return 0;
9295 }
9296
9297 static int ipw_wx_set_txpow(struct net_device *dev,
9298                             struct iw_request_info *info,
9299                             union iwreq_data *wrqu, char *extra)
9300 {
9301         struct ipw_priv *priv = libipw_priv(dev);
9302         int err = 0;
9303
9304         mutex_lock(&priv->mutex);
9305         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9306                 err = -EINPROGRESS;
9307                 goto out;
9308         }
9309
9310         if (!wrqu->power.fixed)
9311                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9312
9313         if (wrqu->power.flags != IW_TXPOW_DBM) {
9314                 err = -EINVAL;
9315                 goto out;
9316         }
9317
9318         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9319             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9320                 err = -EINVAL;
9321                 goto out;
9322         }
9323
9324         priv->tx_power = wrqu->power.value;
9325         err = ipw_set_tx_power(priv);
9326       out:
9327         mutex_unlock(&priv->mutex);
9328         return err;
9329 }
9330
9331 static int ipw_wx_get_txpow(struct net_device *dev,
9332                             struct iw_request_info *info,
9333                             union iwreq_data *wrqu, char *extra)
9334 {
9335         struct ipw_priv *priv = libipw_priv(dev);
9336         mutex_lock(&priv->mutex);
9337         wrqu->power.value = priv->tx_power;
9338         wrqu->power.fixed = 1;
9339         wrqu->power.flags = IW_TXPOW_DBM;
9340         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9341         mutex_unlock(&priv->mutex);
9342
9343         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9344                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9345
9346         return 0;
9347 }
9348
9349 static int ipw_wx_set_frag(struct net_device *dev,
9350                            struct iw_request_info *info,
9351                            union iwreq_data *wrqu, char *extra)
9352 {
9353         struct ipw_priv *priv = libipw_priv(dev);
9354         mutex_lock(&priv->mutex);
9355         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9356                 priv->ieee->fts = DEFAULT_FTS;
9357         else {
9358                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9359                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9360                         mutex_unlock(&priv->mutex);
9361                         return -EINVAL;
9362                 }
9363
9364                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9365         }
9366
9367         ipw_send_frag_threshold(priv, wrqu->frag.value);
9368         mutex_unlock(&priv->mutex);
9369         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9370         return 0;
9371 }
9372
9373 static int ipw_wx_get_frag(struct net_device *dev,
9374                            struct iw_request_info *info,
9375                            union iwreq_data *wrqu, char *extra)
9376 {
9377         struct ipw_priv *priv = libipw_priv(dev);
9378         mutex_lock(&priv->mutex);
9379         wrqu->frag.value = priv->ieee->fts;
9380         wrqu->frag.fixed = 0;   /* no auto select */
9381         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9382         mutex_unlock(&priv->mutex);
9383         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9384
9385         return 0;
9386 }
9387
9388 static int ipw_wx_set_retry(struct net_device *dev,
9389                             struct iw_request_info *info,
9390                             union iwreq_data *wrqu, char *extra)
9391 {
9392         struct ipw_priv *priv = libipw_priv(dev);
9393
9394         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9395                 return -EINVAL;
9396
9397         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9398                 return 0;
9399
9400         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9401                 return -EINVAL;
9402
9403         mutex_lock(&priv->mutex);
9404         if (wrqu->retry.flags & IW_RETRY_SHORT)
9405                 priv->short_retry_limit = (u8) wrqu->retry.value;
9406         else if (wrqu->retry.flags & IW_RETRY_LONG)
9407                 priv->long_retry_limit = (u8) wrqu->retry.value;
9408         else {
9409                 priv->short_retry_limit = (u8) wrqu->retry.value;
9410                 priv->long_retry_limit = (u8) wrqu->retry.value;
9411         }
9412
9413         ipw_send_retry_limit(priv, priv->short_retry_limit,
9414                              priv->long_retry_limit);
9415         mutex_unlock(&priv->mutex);
9416         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9417                      priv->short_retry_limit, priv->long_retry_limit);
9418         return 0;
9419 }
9420
9421 static int ipw_wx_get_retry(struct net_device *dev,
9422                             struct iw_request_info *info,
9423                             union iwreq_data *wrqu, char *extra)
9424 {
9425         struct ipw_priv *priv = libipw_priv(dev);
9426
9427         mutex_lock(&priv->mutex);
9428         wrqu->retry.disabled = 0;
9429
9430         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9431                 mutex_unlock(&priv->mutex);
9432                 return -EINVAL;
9433         }
9434
9435         if (wrqu->retry.flags & IW_RETRY_LONG) {
9436                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9437                 wrqu->retry.value = priv->long_retry_limit;
9438         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9439                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9440                 wrqu->retry.value = priv->short_retry_limit;
9441         } else {
9442                 wrqu->retry.flags = IW_RETRY_LIMIT;
9443                 wrqu->retry.value = priv->short_retry_limit;
9444         }
9445         mutex_unlock(&priv->mutex);
9446
9447         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9448
9449         return 0;
9450 }
9451
9452 static int ipw_wx_set_scan(struct net_device *dev,
9453                            struct iw_request_info *info,
9454                            union iwreq_data *wrqu, char *extra)
9455 {
9456         struct ipw_priv *priv = libipw_priv(dev);
9457         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9458         struct delayed_work *work = NULL;
9459
9460         mutex_lock(&priv->mutex);
9461
9462         priv->user_requested_scan = 1;
9463
9464         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9465                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9466                         int len = min((int)req->essid_len,
9467                                       (int)sizeof(priv->direct_scan_ssid));
9468                         memcpy(priv->direct_scan_ssid, req->essid, len);
9469                         priv->direct_scan_ssid_len = len;
9470                         work = &priv->request_direct_scan;
9471                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9472                         work = &priv->request_passive_scan;
9473                 }
9474         } else {
9475                 /* Normal active broadcast scan */
9476                 work = &priv->request_scan;
9477         }
9478
9479         mutex_unlock(&priv->mutex);
9480
9481         IPW_DEBUG_WX("Start scan\n");
9482
9483         schedule_delayed_work(work, 0);
9484
9485         return 0;
9486 }
9487
9488 static int ipw_wx_get_scan(struct net_device *dev,
9489                            struct iw_request_info *info,
9490                            union iwreq_data *wrqu, char *extra)
9491 {
9492         struct ipw_priv *priv = libipw_priv(dev);
9493         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9494 }
9495
9496 static int ipw_wx_set_encode(struct net_device *dev,
9497                              struct iw_request_info *info,
9498                              union iwreq_data *wrqu, char *key)
9499 {
9500         struct ipw_priv *priv = libipw_priv(dev);
9501         int ret;
9502         u32 cap = priv->capability;
9503
9504         mutex_lock(&priv->mutex);
9505         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9506
9507         /* In IBSS mode, we need to notify the firmware to update
9508          * the beacon info after we changed the capability. */
9509         if (cap != priv->capability &&
9510             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9511             priv->status & STATUS_ASSOCIATED)
9512                 ipw_disassociate(priv);
9513
9514         mutex_unlock(&priv->mutex);
9515         return ret;
9516 }
9517
9518 static int ipw_wx_get_encode(struct net_device *dev,
9519                              struct iw_request_info *info,
9520                              union iwreq_data *wrqu, char *key)
9521 {
9522         struct ipw_priv *priv = libipw_priv(dev);
9523         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9524 }
9525
9526 static int ipw_wx_set_power(struct net_device *dev,
9527                             struct iw_request_info *info,
9528                             union iwreq_data *wrqu, char *extra)
9529 {
9530         struct ipw_priv *priv = libipw_priv(dev);
9531         int err;
9532         mutex_lock(&priv->mutex);
9533         if (wrqu->power.disabled) {
9534                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9535                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9536                 if (err) {
9537                         IPW_DEBUG_WX("failed setting power mode.\n");
9538                         mutex_unlock(&priv->mutex);
9539                         return err;
9540                 }
9541                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9542                 mutex_unlock(&priv->mutex);
9543                 return 0;
9544         }
9545
9546         switch (wrqu->power.flags & IW_POWER_MODE) {
9547         case IW_POWER_ON:       /* If not specified */
9548         case IW_POWER_MODE:     /* If set all mask */
9549         case IW_POWER_ALL_R:    /* If explicitly state all */
9550                 break;
9551         default:                /* Otherwise we don't support it */
9552                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9553                              wrqu->power.flags);
9554                 mutex_unlock(&priv->mutex);
9555                 return -EOPNOTSUPP;
9556         }
9557
9558         /* If the user hasn't specified a power management mode yet, default
9559          * to BATTERY */
9560         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9561                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9562         else
9563                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9564
9565         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9566         if (err) {
9567                 IPW_DEBUG_WX("failed setting power mode.\n");
9568                 mutex_unlock(&priv->mutex);
9569                 return err;
9570         }
9571
9572         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9573         mutex_unlock(&priv->mutex);
9574         return 0;
9575 }
9576
9577 static int ipw_wx_get_power(struct net_device *dev,
9578                             struct iw_request_info *info,
9579                             union iwreq_data *wrqu, char *extra)
9580 {
9581         struct ipw_priv *priv = libipw_priv(dev);
9582         mutex_lock(&priv->mutex);
9583         if (!(priv->power_mode & IPW_POWER_ENABLED))
9584                 wrqu->power.disabled = 1;
9585         else
9586                 wrqu->power.disabled = 0;
9587
9588         mutex_unlock(&priv->mutex);
9589         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9590
9591         return 0;
9592 }
9593
9594 static int ipw_wx_set_powermode(struct net_device *dev,
9595                                 struct iw_request_info *info,
9596                                 union iwreq_data *wrqu, char *extra)
9597 {
9598         struct ipw_priv *priv = libipw_priv(dev);
9599         int mode = *(int *)extra;
9600         int err;
9601
9602         mutex_lock(&priv->mutex);
9603         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9604                 mode = IPW_POWER_AC;
9605
9606         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9607                 err = ipw_send_power_mode(priv, mode);
9608                 if (err) {
9609                         IPW_DEBUG_WX("failed setting power mode.\n");
9610                         mutex_unlock(&priv->mutex);
9611                         return err;
9612                 }
9613                 priv->power_mode = IPW_POWER_ENABLED | mode;
9614         }
9615         mutex_unlock(&priv->mutex);
9616         return 0;
9617 }
9618
9619 #define MAX_WX_STRING 80
9620 static int ipw_wx_get_powermode(struct net_device *dev,
9621                                 struct iw_request_info *info,
9622                                 union iwreq_data *wrqu, char *extra)
9623 {
9624         struct ipw_priv *priv = libipw_priv(dev);
9625         int level = IPW_POWER_LEVEL(priv->power_mode);
9626         char *p = extra;
9627
9628         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9629
9630         switch (level) {
9631         case IPW_POWER_AC:
9632                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9633                 break;
9634         case IPW_POWER_BATTERY:
9635                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9636                 break;
9637         default:
9638                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9639                               "(Timeout %dms, Period %dms)",
9640                               timeout_duration[level - 1] / 1000,
9641                               period_duration[level - 1] / 1000);
9642         }
9643
9644         if (!(priv->power_mode & IPW_POWER_ENABLED))
9645                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9646
9647         wrqu->data.length = p - extra + 1;
9648
9649         return 0;
9650 }
9651
9652 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9653                                     struct iw_request_info *info,
9654                                     union iwreq_data *wrqu, char *extra)
9655 {
9656         struct ipw_priv *priv = libipw_priv(dev);
9657         int mode = *(int *)extra;
9658         u8 band = 0, modulation = 0;
9659
9660         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9661                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9662                 return -EINVAL;
9663         }
9664         mutex_lock(&priv->mutex);
9665         if (priv->adapter == IPW_2915ABG) {
9666                 priv->ieee->abg_true = 1;
9667                 if (mode & IEEE_A) {
9668                         band |= LIBIPW_52GHZ_BAND;
9669                         modulation |= LIBIPW_OFDM_MODULATION;
9670                 } else
9671                         priv->ieee->abg_true = 0;
9672         } else {
9673                 if (mode & IEEE_A) {
9674                         IPW_WARNING("Attempt to set 2200BG into "
9675                                     "802.11a mode\n");
9676                         mutex_unlock(&priv->mutex);
9677                         return -EINVAL;
9678                 }
9679
9680                 priv->ieee->abg_true = 0;
9681         }
9682
9683         if (mode & IEEE_B) {
9684                 band |= LIBIPW_24GHZ_BAND;
9685                 modulation |= LIBIPW_CCK_MODULATION;
9686         } else
9687                 priv->ieee->abg_true = 0;
9688
9689         if (mode & IEEE_G) {
9690                 band |= LIBIPW_24GHZ_BAND;
9691                 modulation |= LIBIPW_OFDM_MODULATION;
9692         } else
9693                 priv->ieee->abg_true = 0;
9694
9695         priv->ieee->mode = mode;
9696         priv->ieee->freq_band = band;
9697         priv->ieee->modulation = modulation;
9698         init_supported_rates(priv, &priv->rates);
9699
9700         /* Network configuration changed -- force [re]association */
9701         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9702         if (!ipw_disassociate(priv)) {
9703                 ipw_send_supported_rates(priv, &priv->rates);
9704                 ipw_associate(priv);
9705         }
9706
9707         /* Update the band LEDs */
9708         ipw_led_band_on(priv);
9709
9710         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9711                      mode & IEEE_A ? 'a' : '.',
9712                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9713         mutex_unlock(&priv->mutex);
9714         return 0;
9715 }
9716
9717 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9718                                     struct iw_request_info *info,
9719                                     union iwreq_data *wrqu, char *extra)
9720 {
9721         struct ipw_priv *priv = libipw_priv(dev);
9722         mutex_lock(&priv->mutex);
9723         switch (priv->ieee->mode) {
9724         case IEEE_A:
9725                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9726                 break;
9727         case IEEE_B:
9728                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9729                 break;
9730         case IEEE_A | IEEE_B:
9731                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9732                 break;
9733         case IEEE_G:
9734                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9735                 break;
9736         case IEEE_A | IEEE_G:
9737                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9738                 break;
9739         case IEEE_B | IEEE_G:
9740                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9741                 break;
9742         case IEEE_A | IEEE_B | IEEE_G:
9743                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9744                 break;
9745         default:
9746                 strncpy(extra, "unknown", MAX_WX_STRING);
9747                 break;
9748         }
9749         extra[MAX_WX_STRING - 1] = '\0';
9750
9751         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9752
9753         wrqu->data.length = strlen(extra) + 1;
9754         mutex_unlock(&priv->mutex);
9755
9756         return 0;
9757 }
9758
9759 static int ipw_wx_set_preamble(struct net_device *dev,
9760                                struct iw_request_info *info,
9761                                union iwreq_data *wrqu, char *extra)
9762 {
9763         struct ipw_priv *priv = libipw_priv(dev);
9764         int mode = *(int *)extra;
9765         mutex_lock(&priv->mutex);
9766         /* Switching from SHORT -> LONG requires a disassociation */
9767         if (mode == 1) {
9768                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9769                         priv->config |= CFG_PREAMBLE_LONG;
9770
9771                         /* Network configuration changed -- force [re]association */
9772                         IPW_DEBUG_ASSOC
9773                             ("[re]association triggered due to preamble change.\n");
9774                         if (!ipw_disassociate(priv))
9775                                 ipw_associate(priv);
9776                 }
9777                 goto done;
9778         }
9779
9780         if (mode == 0) {
9781                 priv->config &= ~CFG_PREAMBLE_LONG;
9782                 goto done;
9783         }
9784         mutex_unlock(&priv->mutex);
9785         return -EINVAL;
9786
9787       done:
9788         mutex_unlock(&priv->mutex);
9789         return 0;
9790 }
9791
9792 static int ipw_wx_get_preamble(struct net_device *dev,
9793                                struct iw_request_info *info,
9794                                union iwreq_data *wrqu, char *extra)
9795 {
9796         struct ipw_priv *priv = libipw_priv(dev);
9797         mutex_lock(&priv->mutex);
9798         if (priv->config & CFG_PREAMBLE_LONG)
9799                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9800         else
9801                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9802         mutex_unlock(&priv->mutex);
9803         return 0;
9804 }
9805
9806 #ifdef CONFIG_IPW2200_MONITOR
9807 static int ipw_wx_set_monitor(struct net_device *dev,
9808                               struct iw_request_info *info,
9809                               union iwreq_data *wrqu, char *extra)
9810 {
9811         struct ipw_priv *priv = libipw_priv(dev);
9812         int *parms = (int *)extra;
9813         int enable = (parms[0] > 0);
9814         mutex_lock(&priv->mutex);
9815         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9816         if (enable) {
9817                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9818 #ifdef CONFIG_IPW2200_RADIOTAP
9819                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9820 #else
9821                         priv->net_dev->type = ARPHRD_IEEE80211;
9822 #endif
9823                         schedule_work(&priv->adapter_restart);
9824                 }
9825
9826                 ipw_set_channel(priv, parms[1]);
9827         } else {
9828                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9829                         mutex_unlock(&priv->mutex);
9830                         return 0;
9831                 }
9832                 priv->net_dev->type = ARPHRD_ETHER;
9833                 schedule_work(&priv->adapter_restart);
9834         }
9835         mutex_unlock(&priv->mutex);
9836         return 0;
9837 }
9838
9839 #endif                          /* CONFIG_IPW2200_MONITOR */
9840
9841 static int ipw_wx_reset(struct net_device *dev,
9842                         struct iw_request_info *info,
9843                         union iwreq_data *wrqu, char *extra)
9844 {
9845         struct ipw_priv *priv = libipw_priv(dev);
9846         IPW_DEBUG_WX("RESET\n");
9847         schedule_work(&priv->adapter_restart);
9848         return 0;
9849 }
9850
9851 static int ipw_wx_sw_reset(struct net_device *dev,
9852                            struct iw_request_info *info,
9853                            union iwreq_data *wrqu, char *extra)
9854 {
9855         struct ipw_priv *priv = libipw_priv(dev);
9856         union iwreq_data wrqu_sec = {
9857                 .encoding = {
9858                              .flags = IW_ENCODE_DISABLED,
9859                              },
9860         };
9861         int ret;
9862
9863         IPW_DEBUG_WX("SW_RESET\n");
9864
9865         mutex_lock(&priv->mutex);
9866
9867         ret = ipw_sw_reset(priv, 2);
9868         if (!ret) {
9869                 free_firmware();
9870                 ipw_adapter_restart(priv);
9871         }
9872
9873         /* The SW reset bit might have been toggled on by the 'disable'
9874          * module parameter, so take appropriate action */
9875         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9876
9877         mutex_unlock(&priv->mutex);
9878         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9879         mutex_lock(&priv->mutex);
9880
9881         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9882                 /* Configuration likely changed -- force [re]association */
9883                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9884                                 "reset.\n");
9885                 if (!ipw_disassociate(priv))
9886                         ipw_associate(priv);
9887         }
9888
9889         mutex_unlock(&priv->mutex);
9890
9891         return 0;
9892 }
9893
9894 /* Rebase the WE IOCTLs to zero for the handler array */
9895 static iw_handler ipw_wx_handlers[] = {
9896         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9897         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9898         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9899         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9900         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9901         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9902         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9903         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9904         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9905         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9906         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9907         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9908         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9909         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9910         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9911         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9912         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9913         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9914         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9915         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9916         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9917         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9918         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9919         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9920         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9921         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9922         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9923         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9924         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9925         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9926         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9927         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9928         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9929         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9930         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9931         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9932         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9933         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9934         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9935         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9936         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9937 };
9938
9939 enum {
9940         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9941         IPW_PRIV_GET_POWER,
9942         IPW_PRIV_SET_MODE,
9943         IPW_PRIV_GET_MODE,
9944         IPW_PRIV_SET_PREAMBLE,
9945         IPW_PRIV_GET_PREAMBLE,
9946         IPW_PRIV_RESET,
9947         IPW_PRIV_SW_RESET,
9948 #ifdef CONFIG_IPW2200_MONITOR
9949         IPW_PRIV_SET_MONITOR,
9950 #endif
9951 };
9952
9953 static struct iw_priv_args ipw_priv_args[] = {
9954         {
9955          .cmd = IPW_PRIV_SET_POWER,
9956          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9957          .name = "set_power"},
9958         {
9959          .cmd = IPW_PRIV_GET_POWER,
9960          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9961          .name = "get_power"},
9962         {
9963          .cmd = IPW_PRIV_SET_MODE,
9964          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965          .name = "set_mode"},
9966         {
9967          .cmd = IPW_PRIV_GET_MODE,
9968          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969          .name = "get_mode"},
9970         {
9971          .cmd = IPW_PRIV_SET_PREAMBLE,
9972          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973          .name = "set_preamble"},
9974         {
9975          .cmd = IPW_PRIV_GET_PREAMBLE,
9976          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9977          .name = "get_preamble"},
9978         {
9979          IPW_PRIV_RESET,
9980          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9981         {
9982          IPW_PRIV_SW_RESET,
9983          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9984 #ifdef CONFIG_IPW2200_MONITOR
9985         {
9986          IPW_PRIV_SET_MONITOR,
9987          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9988 #endif                          /* CONFIG_IPW2200_MONITOR */
9989 };
9990
9991 static iw_handler ipw_priv_handler[] = {
9992         ipw_wx_set_powermode,
9993         ipw_wx_get_powermode,
9994         ipw_wx_set_wireless_mode,
9995         ipw_wx_get_wireless_mode,
9996         ipw_wx_set_preamble,
9997         ipw_wx_get_preamble,
9998         ipw_wx_reset,
9999         ipw_wx_sw_reset,
10000 #ifdef CONFIG_IPW2200_MONITOR
10001         ipw_wx_set_monitor,
10002 #endif
10003 };
10004
10005 static const struct iw_handler_def ipw_wx_handler_def = {
10006         .standard = ipw_wx_handlers,
10007         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10008         .num_private = ARRAY_SIZE(ipw_priv_handler),
10009         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10010         .private = ipw_priv_handler,
10011         .private_args = ipw_priv_args,
10012         .get_wireless_stats = ipw_get_wireless_stats,
10013 };
10014
10015 /*
10016  * Get wireless statistics.
10017  * Called by /proc/net/wireless
10018  * Also called by SIOCGIWSTATS
10019  */
10020 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10021 {
10022         struct ipw_priv *priv = libipw_priv(dev);
10023         struct iw_statistics *wstats;
10024
10025         wstats = &priv->wstats;
10026
10027         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10028          * netdev->get_wireless_stats seems to be called before fw is
10029          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10030          * and associated; if not associcated, the values are all meaningless
10031          * anyway, so set them all to NULL and INVALID */
10032         if (!(priv->status & STATUS_ASSOCIATED)) {
10033                 wstats->miss.beacon = 0;
10034                 wstats->discard.retries = 0;
10035                 wstats->qual.qual = 0;
10036                 wstats->qual.level = 0;
10037                 wstats->qual.noise = 0;
10038                 wstats->qual.updated = 7;
10039                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10040                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10041                 return wstats;
10042         }
10043
10044         wstats->qual.qual = priv->quality;
10045         wstats->qual.level = priv->exp_avg_rssi;
10046         wstats->qual.noise = priv->exp_avg_noise;
10047         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10048             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10049
10050         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10051         wstats->discard.retries = priv->last_tx_failures;
10052         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10053
10054 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10055         goto fail_get_ordinal;
10056         wstats->discard.retries += tx_retry; */
10057
10058         return wstats;
10059 }
10060
10061 /* net device stuff */
10062
10063 static  void init_sys_config(struct ipw_sys_config *sys_config)
10064 {
10065         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10066         sys_config->bt_coexistence = 0;
10067         sys_config->answer_broadcast_ssid_probe = 0;
10068         sys_config->accept_all_data_frames = 0;
10069         sys_config->accept_non_directed_frames = 1;
10070         sys_config->exclude_unicast_unencrypted = 0;
10071         sys_config->disable_unicast_decryption = 1;
10072         sys_config->exclude_multicast_unencrypted = 0;
10073         sys_config->disable_multicast_decryption = 1;
10074         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10075                 antenna = CFG_SYS_ANTENNA_BOTH;
10076         sys_config->antenna_diversity = antenna;
10077         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10078         sys_config->dot11g_auto_detection = 0;
10079         sys_config->enable_cts_to_self = 0;
10080         sys_config->bt_coexist_collision_thr = 0;
10081         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10082         sys_config->silence_threshold = 0x1e;
10083 }
10084
10085 static int ipw_net_open(struct net_device *dev)
10086 {
10087         IPW_DEBUG_INFO("dev->open\n");
10088         netif_start_queue(dev);
10089         return 0;
10090 }
10091
10092 static int ipw_net_stop(struct net_device *dev)
10093 {
10094         IPW_DEBUG_INFO("dev->close\n");
10095         netif_stop_queue(dev);
10096         return 0;
10097 }
10098
10099 /*
10100 todo:
10101
10102 modify to send one tfd per fragment instead of using chunking.  otherwise
10103 we need to heavily modify the libipw_skb_to_txb.
10104 */
10105
10106 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10107                              int pri)
10108 {
10109         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10110             txb->fragments[0]->data;
10111         int i = 0;
10112         struct tfd_frame *tfd;
10113 #ifdef CONFIG_IPW2200_QOS
10114         int tx_id = ipw_get_tx_queue_number(priv, pri);
10115         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10116 #else
10117         struct clx2_tx_queue *txq = &priv->txq[0];
10118 #endif
10119         struct clx2_queue *q = &txq->q;
10120         u8 id, hdr_len, unicast;
10121         int fc;
10122
10123         if (!(priv->status & STATUS_ASSOCIATED))
10124                 goto drop;
10125
10126         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10127         switch (priv->ieee->iw_mode) {
10128         case IW_MODE_ADHOC:
10129                 unicast = !is_multicast_ether_addr(hdr->addr1);
10130                 id = ipw_find_station(priv, hdr->addr1);
10131                 if (id == IPW_INVALID_STATION) {
10132                         id = ipw_add_station(priv, hdr->addr1);
10133                         if (id == IPW_INVALID_STATION) {
10134                                 IPW_WARNING("Attempt to send data to "
10135                                             "invalid cell: %pM\n",
10136                                             hdr->addr1);
10137                                 goto drop;
10138                         }
10139                 }
10140                 break;
10141
10142         case IW_MODE_INFRA:
10143         default:
10144                 unicast = !is_multicast_ether_addr(hdr->addr3);
10145                 id = 0;
10146                 break;
10147         }
10148
10149         tfd = &txq->bd[q->first_empty];
10150         txq->txb[q->first_empty] = txb;
10151         memset(tfd, 0, sizeof(*tfd));
10152         tfd->u.data.station_number = id;
10153
10154         tfd->control_flags.message_type = TX_FRAME_TYPE;
10155         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10156
10157         tfd->u.data.cmd_id = DINO_CMD_TX;
10158         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10159
10160         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10161                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10162         else
10163                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10164
10165         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10166                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10167
10168         fc = le16_to_cpu(hdr->frame_ctl);
10169         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10170
10171         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10172
10173         if (likely(unicast))
10174                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10175
10176         if (txb->encrypted && !priv->ieee->host_encrypt) {
10177                 switch (priv->ieee->sec.level) {
10178                 case SEC_LEVEL_3:
10179                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10180                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10181                         /* XXX: ACK flag must be set for CCMP even if it
10182                          * is a multicast/broadcast packet, because CCMP
10183                          * group communication encrypted by GTK is
10184                          * actually done by the AP. */
10185                         if (!unicast)
10186                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10187
10188                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10189                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10190                         tfd->u.data.key_index = 0;
10191                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10192                         break;
10193                 case SEC_LEVEL_2:
10194                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10195                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10196                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10197                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10198                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10199                         break;
10200                 case SEC_LEVEL_1:
10201                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10202                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10203                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10204                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10205                             40)
10206                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10207                         else
10208                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10209                         break;
10210                 case SEC_LEVEL_0:
10211                         break;
10212                 default:
10213                         printk(KERN_ERR "Unknown security level %d\n",
10214                                priv->ieee->sec.level);
10215                         break;
10216                 }
10217         } else
10218                 /* No hardware encryption */
10219                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10220
10221 #ifdef CONFIG_IPW2200_QOS
10222         if (fc & IEEE80211_STYPE_QOS_DATA)
10223                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10224 #endif                          /* CONFIG_IPW2200_QOS */
10225
10226         /* payload */
10227         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10228                                                  txb->nr_frags));
10229         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10230                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10231         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10232                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10233                                i, le32_to_cpu(tfd->u.data.num_chunks),
10234                                txb->fragments[i]->len - hdr_len);
10235                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10236                              i, tfd->u.data.num_chunks,
10237                              txb->fragments[i]->len - hdr_len);
10238                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10239                            txb->fragments[i]->len - hdr_len);
10240
10241                 tfd->u.data.chunk_ptr[i] =
10242                     cpu_to_le32(pci_map_single
10243                                 (priv->pci_dev,
10244                                  txb->fragments[i]->data + hdr_len,
10245                                  txb->fragments[i]->len - hdr_len,
10246                                  PCI_DMA_TODEVICE));
10247                 tfd->u.data.chunk_len[i] =
10248                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10249         }
10250
10251         if (i != txb->nr_frags) {
10252                 struct sk_buff *skb;
10253                 u16 remaining_bytes = 0;
10254                 int j;
10255
10256                 for (j = i; j < txb->nr_frags; j++)
10257                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10258
10259                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10260                        remaining_bytes);
10261                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10262                 if (skb != NULL) {
10263                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10264                         for (j = i; j < txb->nr_frags; j++) {
10265                                 int size = txb->fragments[j]->len - hdr_len;
10266
10267                                 printk(KERN_INFO "Adding frag %d %d...\n",
10268                                        j, size);
10269                                 skb_put_data(skb,
10270                                              txb->fragments[j]->data + hdr_len,
10271                                              size);
10272                         }
10273                         dev_kfree_skb_any(txb->fragments[i]);
10274                         txb->fragments[i] = skb;
10275                         tfd->u.data.chunk_ptr[i] =
10276                             cpu_to_le32(pci_map_single
10277                                         (priv->pci_dev, skb->data,
10278                                          remaining_bytes,
10279                                          PCI_DMA_TODEVICE));
10280
10281                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10282                 }
10283         }
10284
10285         /* kick DMA */
10286         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10287         ipw_write32(priv, q->reg_w, q->first_empty);
10288
10289         if (ipw_tx_queue_space(q) < q->high_mark)
10290                 netif_stop_queue(priv->net_dev);
10291
10292         return NETDEV_TX_OK;
10293
10294       drop:
10295         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10296         libipw_txb_free(txb);
10297         return NETDEV_TX_OK;
10298 }
10299
10300 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10301 {
10302         struct ipw_priv *priv = libipw_priv(dev);
10303 #ifdef CONFIG_IPW2200_QOS
10304         int tx_id = ipw_get_tx_queue_number(priv, pri);
10305         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10306 #else
10307         struct clx2_tx_queue *txq = &priv->txq[0];
10308 #endif                          /* CONFIG_IPW2200_QOS */
10309
10310         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10311                 return 1;
10312
10313         return 0;
10314 }
10315
10316 #ifdef CONFIG_IPW2200_PROMISCUOUS
10317 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10318                                       struct libipw_txb *txb)
10319 {
10320         struct libipw_rx_stats dummystats;
10321         struct ieee80211_hdr *hdr;
10322         u8 n;
10323         u16 filter = priv->prom_priv->filter;
10324         int hdr_only = 0;
10325
10326         if (filter & IPW_PROM_NO_TX)
10327                 return;
10328
10329         memset(&dummystats, 0, sizeof(dummystats));
10330
10331         /* Filtering of fragment chains is done against the first fragment */
10332         hdr = (void *)txb->fragments[0]->data;
10333         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10334                 if (filter & IPW_PROM_NO_MGMT)
10335                         return;
10336                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10337                         hdr_only = 1;
10338         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10339                 if (filter & IPW_PROM_NO_CTL)
10340                         return;
10341                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10342                         hdr_only = 1;
10343         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10344                 if (filter & IPW_PROM_NO_DATA)
10345                         return;
10346                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10347                         hdr_only = 1;
10348         }
10349
10350         for(n=0; n<txb->nr_frags; ++n) {
10351                 struct sk_buff *src = txb->fragments[n];
10352                 struct sk_buff *dst;
10353                 struct ieee80211_radiotap_header *rt_hdr;
10354                 int len;
10355
10356                 if (hdr_only) {
10357                         hdr = (void *)src->data;
10358                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10359                 } else
10360                         len = src->len;
10361
10362                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10363                 if (!dst)
10364                         continue;
10365
10366                 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10367
10368                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10369                 rt_hdr->it_pad = 0;
10370                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10371                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10372
10373                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10374                         ieee80211chan2mhz(priv->channel));
10375                 if (priv->channel > 14)         /* 802.11a */
10376                         *(__le16*)skb_put(dst, sizeof(u16)) =
10377                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10378                                              IEEE80211_CHAN_5GHZ);
10379                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10380                         *(__le16*)skb_put(dst, sizeof(u16)) =
10381                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10382                                              IEEE80211_CHAN_2GHZ);
10383                 else            /* 802.11g */
10384                         *(__le16*)skb_put(dst, sizeof(u16)) =
10385                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10386                                  IEEE80211_CHAN_2GHZ);
10387
10388                 rt_hdr->it_len = cpu_to_le16(dst->len);
10389
10390                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10391
10392                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10393                         dev_kfree_skb_any(dst);
10394         }
10395 }
10396 #endif
10397
10398 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10399                                            struct net_device *dev, int pri)
10400 {
10401         struct ipw_priv *priv = libipw_priv(dev);
10402         unsigned long flags;
10403         netdev_tx_t ret;
10404
10405         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10406         spin_lock_irqsave(&priv->lock, flags);
10407
10408 #ifdef CONFIG_IPW2200_PROMISCUOUS
10409         if (rtap_iface && netif_running(priv->prom_net_dev))
10410                 ipw_handle_promiscuous_tx(priv, txb);
10411 #endif
10412
10413         ret = ipw_tx_skb(priv, txb, pri);
10414         if (ret == NETDEV_TX_OK)
10415                 __ipw_led_activity_on(priv);
10416         spin_unlock_irqrestore(&priv->lock, flags);
10417
10418         return ret;
10419 }
10420
10421 static void ipw_net_set_multicast_list(struct net_device *dev)
10422 {
10423
10424 }
10425
10426 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10427 {
10428         struct ipw_priv *priv = libipw_priv(dev);
10429         struct sockaddr *addr = p;
10430
10431         if (!is_valid_ether_addr(addr->sa_data))
10432                 return -EADDRNOTAVAIL;
10433         mutex_lock(&priv->mutex);
10434         priv->config |= CFG_CUSTOM_MAC;
10435         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10436         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10437                priv->net_dev->name, priv->mac_addr);
10438         schedule_work(&priv->adapter_restart);
10439         mutex_unlock(&priv->mutex);
10440         return 0;
10441 }
10442
10443 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10444                                     struct ethtool_drvinfo *info)
10445 {
10446         struct ipw_priv *p = libipw_priv(dev);
10447         char vers[64];
10448         char date[32];
10449         u32 len;
10450
10451         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10452         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10453
10454         len = sizeof(vers);
10455         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10456         len = sizeof(date);
10457         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10458
10459         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10460                  vers, date);
10461         strlcpy(info->bus_info, pci_name(p->pci_dev),
10462                 sizeof(info->bus_info));
10463 }
10464
10465 static u32 ipw_ethtool_get_link(struct net_device *dev)
10466 {
10467         struct ipw_priv *priv = libipw_priv(dev);
10468         return (priv->status & STATUS_ASSOCIATED) != 0;
10469 }
10470
10471 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10472 {
10473         return IPW_EEPROM_IMAGE_SIZE;
10474 }
10475
10476 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10477                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10478 {
10479         struct ipw_priv *p = libipw_priv(dev);
10480
10481         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10482                 return -EINVAL;
10483         mutex_lock(&p->mutex);
10484         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10485         mutex_unlock(&p->mutex);
10486         return 0;
10487 }
10488
10489 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10490                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10491 {
10492         struct ipw_priv *p = libipw_priv(dev);
10493         int i;
10494
10495         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10496                 return -EINVAL;
10497         mutex_lock(&p->mutex);
10498         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10499         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10500                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10501         mutex_unlock(&p->mutex);
10502         return 0;
10503 }
10504
10505 static const struct ethtool_ops ipw_ethtool_ops = {
10506         .get_link = ipw_ethtool_get_link,
10507         .get_drvinfo = ipw_ethtool_get_drvinfo,
10508         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10509         .get_eeprom = ipw_ethtool_get_eeprom,
10510         .set_eeprom = ipw_ethtool_set_eeprom,
10511 };
10512
10513 static irqreturn_t ipw_isr(int irq, void *data)
10514 {
10515         struct ipw_priv *priv = data;
10516         u32 inta, inta_mask;
10517
10518         if (!priv)
10519                 return IRQ_NONE;
10520
10521         spin_lock(&priv->irq_lock);
10522
10523         if (!(priv->status & STATUS_INT_ENABLED)) {
10524                 /* IRQ is disabled */
10525                 goto none;
10526         }
10527
10528         inta = ipw_read32(priv, IPW_INTA_RW);
10529         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10530
10531         if (inta == 0xFFFFFFFF) {
10532                 /* Hardware disappeared */
10533                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10534                 goto none;
10535         }
10536
10537         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10538                 /* Shared interrupt */
10539                 goto none;
10540         }
10541
10542         /* tell the device to stop sending interrupts */
10543         __ipw_disable_interrupts(priv);
10544
10545         /* ack current interrupts */
10546         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10547         ipw_write32(priv, IPW_INTA_RW, inta);
10548
10549         /* Cache INTA value for our tasklet */
10550         priv->isr_inta = inta;
10551
10552         tasklet_schedule(&priv->irq_tasklet);
10553
10554         spin_unlock(&priv->irq_lock);
10555
10556         return IRQ_HANDLED;
10557       none:
10558         spin_unlock(&priv->irq_lock);
10559         return IRQ_NONE;
10560 }
10561
10562 static void ipw_rf_kill(void *adapter)
10563 {
10564         struct ipw_priv *priv = adapter;
10565         unsigned long flags;
10566
10567         spin_lock_irqsave(&priv->lock, flags);
10568
10569         if (rf_kill_active(priv)) {
10570                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10571                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10572                 goto exit_unlock;
10573         }
10574
10575         /* RF Kill is now disabled, so bring the device back up */
10576
10577         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10578                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10579                                   "device\n");
10580
10581                 /* we can not do an adapter restart while inside an irq lock */
10582                 schedule_work(&priv->adapter_restart);
10583         } else
10584                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10585                                   "enabled\n");
10586
10587       exit_unlock:
10588         spin_unlock_irqrestore(&priv->lock, flags);
10589 }
10590
10591 static void ipw_bg_rf_kill(struct work_struct *work)
10592 {
10593         struct ipw_priv *priv =
10594                 container_of(work, struct ipw_priv, rf_kill.work);
10595         mutex_lock(&priv->mutex);
10596         ipw_rf_kill(priv);
10597         mutex_unlock(&priv->mutex);
10598 }
10599
10600 static void ipw_link_up(struct ipw_priv *priv)
10601 {
10602         priv->last_seq_num = -1;
10603         priv->last_frag_num = -1;
10604         priv->last_packet_time = 0;
10605
10606         netif_carrier_on(priv->net_dev);
10607
10608         cancel_delayed_work(&priv->request_scan);
10609         cancel_delayed_work(&priv->request_direct_scan);
10610         cancel_delayed_work(&priv->request_passive_scan);
10611         cancel_delayed_work(&priv->scan_event);
10612         ipw_reset_stats(priv);
10613         /* Ensure the rate is updated immediately */
10614         priv->last_rate = ipw_get_current_rate(priv);
10615         ipw_gather_stats(priv);
10616         ipw_led_link_up(priv);
10617         notify_wx_assoc_event(priv);
10618
10619         if (priv->config & CFG_BACKGROUND_SCAN)
10620                 schedule_delayed_work(&priv->request_scan, HZ);
10621 }
10622
10623 static void ipw_bg_link_up(struct work_struct *work)
10624 {
10625         struct ipw_priv *priv =
10626                 container_of(work, struct ipw_priv, link_up);
10627         mutex_lock(&priv->mutex);
10628         ipw_link_up(priv);
10629         mutex_unlock(&priv->mutex);
10630 }
10631
10632 static void ipw_link_down(struct ipw_priv *priv)
10633 {
10634         ipw_led_link_down(priv);
10635         netif_carrier_off(priv->net_dev);
10636         notify_wx_assoc_event(priv);
10637
10638         /* Cancel any queued work ... */
10639         cancel_delayed_work(&priv->request_scan);
10640         cancel_delayed_work(&priv->request_direct_scan);
10641         cancel_delayed_work(&priv->request_passive_scan);
10642         cancel_delayed_work(&priv->adhoc_check);
10643         cancel_delayed_work(&priv->gather_stats);
10644
10645         ipw_reset_stats(priv);
10646
10647         if (!(priv->status & STATUS_EXIT_PENDING)) {
10648                 /* Queue up another scan... */
10649                 schedule_delayed_work(&priv->request_scan, 0);
10650         } else
10651                 cancel_delayed_work(&priv->scan_event);
10652 }
10653
10654 static void ipw_bg_link_down(struct work_struct *work)
10655 {
10656         struct ipw_priv *priv =
10657                 container_of(work, struct ipw_priv, link_down);
10658         mutex_lock(&priv->mutex);
10659         ipw_link_down(priv);
10660         mutex_unlock(&priv->mutex);
10661 }
10662
10663 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10664 {
10665         int ret = 0;
10666
10667         init_waitqueue_head(&priv->wait_command_queue);
10668         init_waitqueue_head(&priv->wait_state);
10669
10670         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10671         INIT_WORK(&priv->associate, ipw_bg_associate);
10672         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10673         INIT_WORK(&priv->system_config, ipw_system_config);
10674         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10675         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10676         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10677         INIT_WORK(&priv->up, ipw_bg_up);
10678         INIT_WORK(&priv->down, ipw_bg_down);
10679         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10680         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10681         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10682         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10683         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10684         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10685         INIT_WORK(&priv->roam, ipw_bg_roam);
10686         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10687         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10688         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10689         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10690         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10691         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10692         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10693
10694 #ifdef CONFIG_IPW2200_QOS
10695         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10696 #endif                          /* CONFIG_IPW2200_QOS */
10697
10698         tasklet_init(&priv->irq_tasklet,
10699                      ipw_irq_tasklet, (unsigned long)priv);
10700
10701         return ret;
10702 }
10703
10704 static void shim__set_security(struct net_device *dev,
10705                                struct libipw_security *sec)
10706 {
10707         struct ipw_priv *priv = libipw_priv(dev);
10708         int i;
10709         for (i = 0; i < 4; i++) {
10710                 if (sec->flags & (1 << i)) {
10711                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10712                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10713                         if (sec->key_sizes[i] == 0)
10714                                 priv->ieee->sec.flags &= ~(1 << i);
10715                         else {
10716                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10717                                        sec->key_sizes[i]);
10718                                 priv->ieee->sec.flags |= (1 << i);
10719                         }
10720                         priv->status |= STATUS_SECURITY_UPDATED;
10721                 } else if (sec->level != SEC_LEVEL_1)
10722                         priv->ieee->sec.flags &= ~(1 << i);
10723         }
10724
10725         if (sec->flags & SEC_ACTIVE_KEY) {
10726                 if (sec->active_key <= 3) {
10727                         priv->ieee->sec.active_key = sec->active_key;
10728                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10729                 } else
10730                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10731                 priv->status |= STATUS_SECURITY_UPDATED;
10732         } else
10733                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10734
10735         if ((sec->flags & SEC_AUTH_MODE) &&
10736             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10737                 priv->ieee->sec.auth_mode = sec->auth_mode;
10738                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10739                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10740                         priv->capability |= CAP_SHARED_KEY;
10741                 else
10742                         priv->capability &= ~CAP_SHARED_KEY;
10743                 priv->status |= STATUS_SECURITY_UPDATED;
10744         }
10745
10746         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10747                 priv->ieee->sec.flags |= SEC_ENABLED;
10748                 priv->ieee->sec.enabled = sec->enabled;
10749                 priv->status |= STATUS_SECURITY_UPDATED;
10750                 if (sec->enabled)
10751                         priv->capability |= CAP_PRIVACY_ON;
10752                 else
10753                         priv->capability &= ~CAP_PRIVACY_ON;
10754         }
10755
10756         if (sec->flags & SEC_ENCRYPT)
10757                 priv->ieee->sec.encrypt = sec->encrypt;
10758
10759         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10760                 priv->ieee->sec.level = sec->level;
10761                 priv->ieee->sec.flags |= SEC_LEVEL;
10762                 priv->status |= STATUS_SECURITY_UPDATED;
10763         }
10764
10765         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10766                 ipw_set_hwcrypto_keys(priv);
10767
10768         /* To match current functionality of ipw2100 (which works well w/
10769          * various supplicants, we don't force a disassociate if the
10770          * privacy capability changes ... */
10771 #if 0
10772         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10773             (((priv->assoc_request.capability &
10774                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10775              (!(priv->assoc_request.capability &
10776                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10777                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10778                                 "change.\n");
10779                 ipw_disassociate(priv);
10780         }
10781 #endif
10782 }
10783
10784 static int init_supported_rates(struct ipw_priv *priv,
10785                                 struct ipw_supported_rates *rates)
10786 {
10787         /* TODO: Mask out rates based on priv->rates_mask */
10788
10789         memset(rates, 0, sizeof(*rates));
10790         /* configure supported rates */
10791         switch (priv->ieee->freq_band) {
10792         case LIBIPW_52GHZ_BAND:
10793                 rates->ieee_mode = IPW_A_MODE;
10794                 rates->purpose = IPW_RATE_CAPABILITIES;
10795                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10796                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10797                 break;
10798
10799         default:                /* Mixed or 2.4Ghz */
10800                 rates->ieee_mode = IPW_G_MODE;
10801                 rates->purpose = IPW_RATE_CAPABILITIES;
10802                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10803                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10804                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10805                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10806                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10807                 }
10808                 break;
10809         }
10810
10811         return 0;
10812 }
10813
10814 static int ipw_config(struct ipw_priv *priv)
10815 {
10816         /* This is only called from ipw_up, which resets/reloads the firmware
10817            so, we don't need to first disable the card before we configure
10818            it */
10819         if (ipw_set_tx_power(priv))
10820                 goto error;
10821
10822         /* initialize adapter address */
10823         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10824                 goto error;
10825
10826         /* set basic system config settings */
10827         init_sys_config(&priv->sys_config);
10828
10829         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10830          * Does not support BT priority yet (don't abort or defer our Tx) */
10831         if (bt_coexist) {
10832                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10833
10834                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10835                         priv->sys_config.bt_coexistence
10836                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10837                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10838                         priv->sys_config.bt_coexistence
10839                             |= CFG_BT_COEXISTENCE_OOB;
10840         }
10841
10842 #ifdef CONFIG_IPW2200_PROMISCUOUS
10843         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10844                 priv->sys_config.accept_all_data_frames = 1;
10845                 priv->sys_config.accept_non_directed_frames = 1;
10846                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10847                 priv->sys_config.accept_all_mgmt_frames = 1;
10848         }
10849 #endif
10850
10851         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10852                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10853         else
10854                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10855
10856         if (ipw_send_system_config(priv))
10857                 goto error;
10858
10859         init_supported_rates(priv, &priv->rates);
10860         if (ipw_send_supported_rates(priv, &priv->rates))
10861                 goto error;
10862
10863         /* Set request-to-send threshold */
10864         if (priv->rts_threshold) {
10865                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10866                         goto error;
10867         }
10868 #ifdef CONFIG_IPW2200_QOS
10869         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10870         ipw_qos_activate(priv, NULL);
10871 #endif                          /* CONFIG_IPW2200_QOS */
10872
10873         if (ipw_set_random_seed(priv))
10874                 goto error;
10875
10876         /* final state transition to the RUN state */
10877         if (ipw_send_host_complete(priv))
10878                 goto error;
10879
10880         priv->status |= STATUS_INIT;
10881
10882         ipw_led_init(priv);
10883         ipw_led_radio_on(priv);
10884         priv->notif_missed_beacons = 0;
10885
10886         /* Set hardware WEP key if it is configured. */
10887         if ((priv->capability & CAP_PRIVACY_ON) &&
10888             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10889             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10890                 ipw_set_hwcrypto_keys(priv);
10891
10892         return 0;
10893
10894       error:
10895         return -EIO;
10896 }
10897
10898 /*
10899  * NOTE:
10900  *
10901  * These tables have been tested in conjunction with the
10902  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10903  *
10904  * Altering this values, using it on other hardware, or in geographies
10905  * not intended for resale of the above mentioned Intel adapters has
10906  * not been tested.
10907  *
10908  * Remember to update the table in README.ipw2200 when changing this
10909  * table.
10910  *
10911  */
10912 static const struct libipw_geo ipw_geos[] = {
10913         {                       /* Restricted */
10914          "---",
10915          .bg_channels = 11,
10916          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10917                 {2427, 4}, {2432, 5}, {2437, 6},
10918                 {2442, 7}, {2447, 8}, {2452, 9},
10919                 {2457, 10}, {2462, 11}},
10920          },
10921
10922         {                       /* Custom US/Canada */
10923          "ZZF",
10924          .bg_channels = 11,
10925          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10926                 {2427, 4}, {2432, 5}, {2437, 6},
10927                 {2442, 7}, {2447, 8}, {2452, 9},
10928                 {2457, 10}, {2462, 11}},
10929          .a_channels = 8,
10930          .a = {{5180, 36},
10931                {5200, 40},
10932                {5220, 44},
10933                {5240, 48},
10934                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10935                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10936                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10937                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10938          },
10939
10940         {                       /* Rest of World */
10941          "ZZD",
10942          .bg_channels = 13,
10943          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10944                 {2427, 4}, {2432, 5}, {2437, 6},
10945                 {2442, 7}, {2447, 8}, {2452, 9},
10946                 {2457, 10}, {2462, 11}, {2467, 12},
10947                 {2472, 13}},
10948          },
10949
10950         {                       /* Custom USA & Europe & High */
10951          "ZZA",
10952          .bg_channels = 11,
10953          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10954                 {2427, 4}, {2432, 5}, {2437, 6},
10955                 {2442, 7}, {2447, 8}, {2452, 9},
10956                 {2457, 10}, {2462, 11}},
10957          .a_channels = 13,
10958          .a = {{5180, 36},
10959                {5200, 40},
10960                {5220, 44},
10961                {5240, 48},
10962                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10963                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10964                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10965                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10966                {5745, 149},
10967                {5765, 153},
10968                {5785, 157},
10969                {5805, 161},
10970                {5825, 165}},
10971          },
10972
10973         {                       /* Custom NA & Europe */
10974          "ZZB",
10975          .bg_channels = 11,
10976          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10977                 {2427, 4}, {2432, 5}, {2437, 6},
10978                 {2442, 7}, {2447, 8}, {2452, 9},
10979                 {2457, 10}, {2462, 11}},
10980          .a_channels = 13,
10981          .a = {{5180, 36},
10982                {5200, 40},
10983                {5220, 44},
10984                {5240, 48},
10985                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10986                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10987                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10988                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10989                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10990                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10991                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10992                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10993                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10994          },
10995
10996         {                       /* Custom Japan */
10997          "ZZC",
10998          .bg_channels = 11,
10999          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000                 {2427, 4}, {2432, 5}, {2437, 6},
11001                 {2442, 7}, {2447, 8}, {2452, 9},
11002                 {2457, 10}, {2462, 11}},
11003          .a_channels = 4,
11004          .a = {{5170, 34}, {5190, 38},
11005                {5210, 42}, {5230, 46}},
11006          },
11007
11008         {                       /* Custom */
11009          "ZZM",
11010          .bg_channels = 11,
11011          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11012                 {2427, 4}, {2432, 5}, {2437, 6},
11013                 {2442, 7}, {2447, 8}, {2452, 9},
11014                 {2457, 10}, {2462, 11}},
11015          },
11016
11017         {                       /* Europe */
11018          "ZZE",
11019          .bg_channels = 13,
11020          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021                 {2427, 4}, {2432, 5}, {2437, 6},
11022                 {2442, 7}, {2447, 8}, {2452, 9},
11023                 {2457, 10}, {2462, 11}, {2467, 12},
11024                 {2472, 13}},
11025          .a_channels = 19,
11026          .a = {{5180, 36},
11027                {5200, 40},
11028                {5220, 44},
11029                {5240, 48},
11030                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11031                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11032                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11033                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11034                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11035                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11036                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11037                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11038                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11039                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11040                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11041                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11042                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11043                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11044                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11045          },
11046
11047         {                       /* Custom Japan */
11048          "ZZJ",
11049          .bg_channels = 14,
11050          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11051                 {2427, 4}, {2432, 5}, {2437, 6},
11052                 {2442, 7}, {2447, 8}, {2452, 9},
11053                 {2457, 10}, {2462, 11}, {2467, 12},
11054                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11055          .a_channels = 4,
11056          .a = {{5170, 34}, {5190, 38},
11057                {5210, 42}, {5230, 46}},
11058          },
11059
11060         {                       /* Rest of World */
11061          "ZZR",
11062          .bg_channels = 14,
11063          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11064                 {2427, 4}, {2432, 5}, {2437, 6},
11065                 {2442, 7}, {2447, 8}, {2452, 9},
11066                 {2457, 10}, {2462, 11}, {2467, 12},
11067                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11068                              LIBIPW_CH_PASSIVE_ONLY}},
11069          },
11070
11071         {                       /* High Band */
11072          "ZZH",
11073          .bg_channels = 13,
11074          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075                 {2427, 4}, {2432, 5}, {2437, 6},
11076                 {2442, 7}, {2447, 8}, {2452, 9},
11077                 {2457, 10}, {2462, 11},
11078                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11079                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11080          .a_channels = 4,
11081          .a = {{5745, 149}, {5765, 153},
11082                {5785, 157}, {5805, 161}},
11083          },
11084
11085         {                       /* Custom Europe */
11086          "ZZG",
11087          .bg_channels = 13,
11088          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11089                 {2427, 4}, {2432, 5}, {2437, 6},
11090                 {2442, 7}, {2447, 8}, {2452, 9},
11091                 {2457, 10}, {2462, 11},
11092                 {2467, 12}, {2472, 13}},
11093          .a_channels = 4,
11094          .a = {{5180, 36}, {5200, 40},
11095                {5220, 44}, {5240, 48}},
11096          },
11097
11098         {                       /* Europe */
11099          "ZZK",
11100          .bg_channels = 13,
11101          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11102                 {2427, 4}, {2432, 5}, {2437, 6},
11103                 {2442, 7}, {2447, 8}, {2452, 9},
11104                 {2457, 10}, {2462, 11},
11105                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11106                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11107          .a_channels = 24,
11108          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11109                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11110                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11111                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11112                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11113                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11114                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11115                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11116                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11117                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11118                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11119                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11120                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11121                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11122                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11123                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11124                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11125                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11126                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11127                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11128                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11129                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11130                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11131                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11132          },
11133
11134         {                       /* Europe */
11135          "ZZL",
11136          .bg_channels = 11,
11137          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11138                 {2427, 4}, {2432, 5}, {2437, 6},
11139                 {2442, 7}, {2447, 8}, {2452, 9},
11140                 {2457, 10}, {2462, 11}},
11141          .a_channels = 13,
11142          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11143                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11144                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11145                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11146                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11147                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11148                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11149                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11150                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11151                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11152                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11153                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11154                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11155          }
11156 };
11157
11158 static void ipw_set_geo(struct ipw_priv *priv)
11159 {
11160         int j;
11161
11162         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11163                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11164                             ipw_geos[j].name, 3))
11165                         break;
11166         }
11167
11168         if (j == ARRAY_SIZE(ipw_geos)) {
11169                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11170                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11171                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11172                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11173                 j = 0;
11174         }
11175
11176         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11177 }
11178
11179 #define MAX_HW_RESTARTS 5
11180 static int ipw_up(struct ipw_priv *priv)
11181 {
11182         int rc, i;
11183
11184         /* Age scan list entries found before suspend */
11185         if (priv->suspend_time) {
11186                 libipw_networks_age(priv->ieee, priv->suspend_time);
11187                 priv->suspend_time = 0;
11188         }
11189
11190         if (priv->status & STATUS_EXIT_PENDING)
11191                 return -EIO;
11192
11193         if (cmdlog && !priv->cmdlog) {
11194                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11195                                        GFP_KERNEL);
11196                 if (priv->cmdlog == NULL) {
11197                         IPW_ERROR("Error allocating %d command log entries.\n",
11198                                   cmdlog);
11199                         return -ENOMEM;
11200                 } else {
11201                         priv->cmdlog_len = cmdlog;
11202                 }
11203         }
11204
11205         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11206                 /* Load the microcode, firmware, and eeprom.
11207                  * Also start the clocks. */
11208                 rc = ipw_load(priv);
11209                 if (rc) {
11210                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11211                         return rc;
11212                 }
11213
11214                 ipw_init_ordinals(priv);
11215                 if (!(priv->config & CFG_CUSTOM_MAC))
11216                         eeprom_parse_mac(priv, priv->mac_addr);
11217                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11218
11219                 ipw_set_geo(priv);
11220
11221                 if (priv->status & STATUS_RF_KILL_SW) {
11222                         IPW_WARNING("Radio disabled by module parameter.\n");
11223                         return 0;
11224                 } else if (rf_kill_active(priv)) {
11225                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11226                                     "Kill switch must be turned off for "
11227                                     "wireless networking to work.\n");
11228                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11229                         return 0;
11230                 }
11231
11232                 rc = ipw_config(priv);
11233                 if (!rc) {
11234                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11235
11236                         /* If configure to try and auto-associate, kick
11237                          * off a scan. */
11238                         schedule_delayed_work(&priv->request_scan, 0);
11239
11240                         return 0;
11241                 }
11242
11243                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11244                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11245                                i, MAX_HW_RESTARTS);
11246
11247                 /* We had an error bringing up the hardware, so take it
11248                  * all the way back down so we can try again */
11249                 ipw_down(priv);
11250         }
11251
11252         /* tried to restart and config the device for as long as our
11253          * patience could withstand */
11254         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11255
11256         return -EIO;
11257 }
11258
11259 static void ipw_bg_up(struct work_struct *work)
11260 {
11261         struct ipw_priv *priv =
11262                 container_of(work, struct ipw_priv, up);
11263         mutex_lock(&priv->mutex);
11264         ipw_up(priv);
11265         mutex_unlock(&priv->mutex);
11266 }
11267
11268 static void ipw_deinit(struct ipw_priv *priv)
11269 {
11270         int i;
11271
11272         if (priv->status & STATUS_SCANNING) {
11273                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11274                 ipw_abort_scan(priv);
11275         }
11276
11277         if (priv->status & STATUS_ASSOCIATED) {
11278                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11279                 ipw_disassociate(priv);
11280         }
11281
11282         ipw_led_shutdown(priv);
11283
11284         /* Wait up to 1s for status to change to not scanning and not
11285          * associated (disassociation can take a while for a ful 802.11
11286          * exchange */
11287         for (i = 1000; i && (priv->status &
11288                              (STATUS_DISASSOCIATING |
11289                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11290                 udelay(10);
11291
11292         if (priv->status & (STATUS_DISASSOCIATING |
11293                             STATUS_ASSOCIATED | STATUS_SCANNING))
11294                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11295         else
11296                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11297
11298         /* Attempt to disable the card */
11299         ipw_send_card_disable(priv, 0);
11300
11301         priv->status &= ~STATUS_INIT;
11302 }
11303
11304 static void ipw_down(struct ipw_priv *priv)
11305 {
11306         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11307
11308         priv->status |= STATUS_EXIT_PENDING;
11309
11310         if (ipw_is_init(priv))
11311                 ipw_deinit(priv);
11312
11313         /* Wipe out the EXIT_PENDING status bit if we are not actually
11314          * exiting the module */
11315         if (!exit_pending)
11316                 priv->status &= ~STATUS_EXIT_PENDING;
11317
11318         /* tell the device to stop sending interrupts */
11319         ipw_disable_interrupts(priv);
11320
11321         /* Clear all bits but the RF Kill */
11322         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11323         netif_carrier_off(priv->net_dev);
11324
11325         ipw_stop_nic(priv);
11326
11327         ipw_led_radio_off(priv);
11328 }
11329
11330 static void ipw_bg_down(struct work_struct *work)
11331 {
11332         struct ipw_priv *priv =
11333                 container_of(work, struct ipw_priv, down);
11334         mutex_lock(&priv->mutex);
11335         ipw_down(priv);
11336         mutex_unlock(&priv->mutex);
11337 }
11338
11339 static int ipw_wdev_init(struct net_device *dev)
11340 {
11341         int i, rc = 0;
11342         struct ipw_priv *priv = libipw_priv(dev);
11343         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11344         struct wireless_dev *wdev = &priv->ieee->wdev;
11345
11346         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11347
11348         /* fill-out priv->ieee->bg_band */
11349         if (geo->bg_channels) {
11350                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11351
11352                 bg_band->band = NL80211_BAND_2GHZ;
11353                 bg_band->n_channels = geo->bg_channels;
11354                 bg_band->channels = kcalloc(geo->bg_channels,
11355                                             sizeof(struct ieee80211_channel),
11356                                             GFP_KERNEL);
11357                 if (!bg_band->channels) {
11358                         rc = -ENOMEM;
11359                         goto out;
11360                 }
11361                 /* translate geo->bg to bg_band.channels */
11362                 for (i = 0; i < geo->bg_channels; i++) {
11363                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11364                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11365                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11366                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11367                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11368                                 bg_band->channels[i].flags |=
11369                                         IEEE80211_CHAN_NO_IR;
11370                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11371                                 bg_band->channels[i].flags |=
11372                                         IEEE80211_CHAN_NO_IR;
11373                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11374                                 bg_band->channels[i].flags |=
11375                                         IEEE80211_CHAN_RADAR;
11376                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11377                            LIBIPW_CH_UNIFORM_SPREADING, or
11378                            LIBIPW_CH_B_ONLY... */
11379                 }
11380                 /* point at bitrate info */
11381                 bg_band->bitrates = ipw2200_bg_rates;
11382                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11383
11384                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11385         }
11386
11387         /* fill-out priv->ieee->a_band */
11388         if (geo->a_channels) {
11389                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11390
11391                 a_band->band = NL80211_BAND_5GHZ;
11392                 a_band->n_channels = geo->a_channels;
11393                 a_band->channels = kcalloc(geo->a_channels,
11394                                            sizeof(struct ieee80211_channel),
11395                                            GFP_KERNEL);
11396                 if (!a_band->channels) {
11397                         rc = -ENOMEM;
11398                         goto out;
11399                 }
11400                 /* translate geo->a to a_band.channels */
11401                 for (i = 0; i < geo->a_channels; i++) {
11402                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11403                         a_band->channels[i].center_freq = geo->a[i].freq;
11404                         a_band->channels[i].hw_value = geo->a[i].channel;
11405                         a_band->channels[i].max_power = geo->a[i].max_power;
11406                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11407                                 a_band->channels[i].flags |=
11408                                         IEEE80211_CHAN_NO_IR;
11409                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11410                                 a_band->channels[i].flags |=
11411                                         IEEE80211_CHAN_NO_IR;
11412                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11413                                 a_band->channels[i].flags |=
11414                                         IEEE80211_CHAN_RADAR;
11415                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11416                            LIBIPW_CH_UNIFORM_SPREADING, or
11417                            LIBIPW_CH_B_ONLY... */
11418                 }
11419                 /* point at bitrate info */
11420                 a_band->bitrates = ipw2200_a_rates;
11421                 a_band->n_bitrates = ipw2200_num_a_rates;
11422
11423                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11424         }
11425
11426         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11427         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11428
11429         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11430
11431         /* With that information in place, we can now register the wiphy... */
11432         if (wiphy_register(wdev->wiphy))
11433                 rc = -EIO;
11434 out:
11435         return rc;
11436 }
11437
11438 /* PCI driver stuff */
11439 static const struct pci_device_id card_ids[] = {
11440         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11441         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11442         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11443         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11444         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11445         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11446         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11447         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11448         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11449         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11457         {PCI_VDEVICE(INTEL, 0x104f), 0},
11458         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11459         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11460         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11461         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11462
11463         /* required last entry */
11464         {0,}
11465 };
11466
11467 MODULE_DEVICE_TABLE(pci, card_ids);
11468
11469 static struct attribute *ipw_sysfs_entries[] = {
11470         &dev_attr_rf_kill.attr,
11471         &dev_attr_direct_dword.attr,
11472         &dev_attr_indirect_byte.attr,
11473         &dev_attr_indirect_dword.attr,
11474         &dev_attr_mem_gpio_reg.attr,
11475         &dev_attr_command_event_reg.attr,
11476         &dev_attr_nic_type.attr,
11477         &dev_attr_status.attr,
11478         &dev_attr_cfg.attr,
11479         &dev_attr_error.attr,
11480         &dev_attr_event_log.attr,
11481         &dev_attr_cmd_log.attr,
11482         &dev_attr_eeprom_delay.attr,
11483         &dev_attr_ucode_version.attr,
11484         &dev_attr_rtc.attr,
11485         &dev_attr_scan_age.attr,
11486         &dev_attr_led.attr,
11487         &dev_attr_speed_scan.attr,
11488         &dev_attr_net_stats.attr,
11489         &dev_attr_channels.attr,
11490 #ifdef CONFIG_IPW2200_PROMISCUOUS
11491         &dev_attr_rtap_iface.attr,
11492         &dev_attr_rtap_filter.attr,
11493 #endif
11494         NULL
11495 };
11496
11497 static const struct attribute_group ipw_attribute_group = {
11498         .name = NULL,           /* put in device directory */
11499         .attrs = ipw_sysfs_entries,
11500 };
11501
11502 #ifdef CONFIG_IPW2200_PROMISCUOUS
11503 static int ipw_prom_open(struct net_device *dev)
11504 {
11505         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11506         struct ipw_priv *priv = prom_priv->priv;
11507
11508         IPW_DEBUG_INFO("prom dev->open\n");
11509         netif_carrier_off(dev);
11510
11511         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11512                 priv->sys_config.accept_all_data_frames = 1;
11513                 priv->sys_config.accept_non_directed_frames = 1;
11514                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11515                 priv->sys_config.accept_all_mgmt_frames = 1;
11516
11517                 ipw_send_system_config(priv);
11518         }
11519
11520         return 0;
11521 }
11522
11523 static int ipw_prom_stop(struct net_device *dev)
11524 {
11525         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11526         struct ipw_priv *priv = prom_priv->priv;
11527
11528         IPW_DEBUG_INFO("prom dev->stop\n");
11529
11530         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11531                 priv->sys_config.accept_all_data_frames = 0;
11532                 priv->sys_config.accept_non_directed_frames = 0;
11533                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11534                 priv->sys_config.accept_all_mgmt_frames = 0;
11535
11536                 ipw_send_system_config(priv);
11537         }
11538
11539         return 0;
11540 }
11541
11542 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11543                                             struct net_device *dev)
11544 {
11545         IPW_DEBUG_INFO("prom dev->xmit\n");
11546         dev_kfree_skb(skb);
11547         return NETDEV_TX_OK;
11548 }
11549
11550 static const struct net_device_ops ipw_prom_netdev_ops = {
11551         .ndo_open               = ipw_prom_open,
11552         .ndo_stop               = ipw_prom_stop,
11553         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11554         .ndo_set_mac_address    = eth_mac_addr,
11555         .ndo_validate_addr      = eth_validate_addr,
11556 };
11557
11558 static int ipw_prom_alloc(struct ipw_priv *priv)
11559 {
11560         int rc = 0;
11561
11562         if (priv->prom_net_dev)
11563                 return -EPERM;
11564
11565         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11566         if (priv->prom_net_dev == NULL)
11567                 return -ENOMEM;
11568
11569         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11570         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11571         priv->prom_priv->priv = priv;
11572
11573         strcpy(priv->prom_net_dev->name, "rtap%d");
11574         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11575
11576         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11577         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11578
11579         priv->prom_net_dev->min_mtu = 68;
11580         priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11581
11582         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11583         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11584
11585         rc = register_netdev(priv->prom_net_dev);
11586         if (rc) {
11587                 free_libipw(priv->prom_net_dev, 1);
11588                 priv->prom_net_dev = NULL;
11589                 return rc;
11590         }
11591
11592         return 0;
11593 }
11594
11595 static void ipw_prom_free(struct ipw_priv *priv)
11596 {
11597         if (!priv->prom_net_dev)
11598                 return;
11599
11600         unregister_netdev(priv->prom_net_dev);
11601         free_libipw(priv->prom_net_dev, 1);
11602
11603         priv->prom_net_dev = NULL;
11604 }
11605
11606 #endif
11607
11608 static const struct net_device_ops ipw_netdev_ops = {
11609         .ndo_open               = ipw_net_open,
11610         .ndo_stop               = ipw_net_stop,
11611         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11612         .ndo_set_mac_address    = ipw_net_set_mac_address,
11613         .ndo_start_xmit         = libipw_xmit,
11614         .ndo_validate_addr      = eth_validate_addr,
11615 };
11616
11617 static int ipw_pci_probe(struct pci_dev *pdev,
11618                                    const struct pci_device_id *ent)
11619 {
11620         int err = 0;
11621         struct net_device *net_dev;
11622         void __iomem *base;
11623         u32 length, val;
11624         struct ipw_priv *priv;
11625         int i;
11626
11627         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11628         if (net_dev == NULL) {
11629                 err = -ENOMEM;
11630                 goto out;
11631         }
11632
11633         priv = libipw_priv(net_dev);
11634         priv->ieee = netdev_priv(net_dev);
11635
11636         priv->net_dev = net_dev;
11637         priv->pci_dev = pdev;
11638         ipw_debug_level = debug;
11639         spin_lock_init(&priv->irq_lock);
11640         spin_lock_init(&priv->lock);
11641         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11642                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11643
11644         mutex_init(&priv->mutex);
11645         if (pci_enable_device(pdev)) {
11646                 err = -ENODEV;
11647                 goto out_free_libipw;
11648         }
11649
11650         pci_set_master(pdev);
11651
11652         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11653         if (!err)
11654                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11655         if (err) {
11656                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11657                 goto out_pci_disable_device;
11658         }
11659
11660         pci_set_drvdata(pdev, priv);
11661
11662         err = pci_request_regions(pdev, DRV_NAME);
11663         if (err)
11664                 goto out_pci_disable_device;
11665
11666         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11667          * PCI Tx retries from interfering with C3 CPU state */
11668         pci_read_config_dword(pdev, 0x40, &val);
11669         if ((val & 0x0000ff00) != 0)
11670                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11671
11672         length = pci_resource_len(pdev, 0);
11673         priv->hw_len = length;
11674
11675         base = pci_ioremap_bar(pdev, 0);
11676         if (!base) {
11677                 err = -ENODEV;
11678                 goto out_pci_release_regions;
11679         }
11680
11681         priv->hw_base = base;
11682         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11683         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11684
11685         err = ipw_setup_deferred_work(priv);
11686         if (err) {
11687                 IPW_ERROR("Unable to setup deferred work\n");
11688                 goto out_iounmap;
11689         }
11690
11691         ipw_sw_reset(priv, 1);
11692
11693         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11694         if (err) {
11695                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11696                 goto out_iounmap;
11697         }
11698
11699         SET_NETDEV_DEV(net_dev, &pdev->dev);
11700
11701         mutex_lock(&priv->mutex);
11702
11703         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11704         priv->ieee->set_security = shim__set_security;
11705         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11706
11707 #ifdef CONFIG_IPW2200_QOS
11708         priv->ieee->is_qos_active = ipw_is_qos_active;
11709         priv->ieee->handle_probe_response = ipw_handle_beacon;
11710         priv->ieee->handle_beacon = ipw_handle_probe_response;
11711         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11712 #endif                          /* CONFIG_IPW2200_QOS */
11713
11714         priv->ieee->perfect_rssi = -20;
11715         priv->ieee->worst_rssi = -85;
11716
11717         net_dev->netdev_ops = &ipw_netdev_ops;
11718         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11719         net_dev->wireless_data = &priv->wireless_data;
11720         net_dev->wireless_handlers = &ipw_wx_handler_def;
11721         net_dev->ethtool_ops = &ipw_ethtool_ops;
11722
11723         net_dev->min_mtu = 68;
11724         net_dev->max_mtu = LIBIPW_DATA_LEN;
11725
11726         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11727         if (err) {
11728                 IPW_ERROR("failed to create sysfs device attributes\n");
11729                 mutex_unlock(&priv->mutex);
11730                 goto out_release_irq;
11731         }
11732
11733         if (ipw_up(priv)) {
11734                 mutex_unlock(&priv->mutex);
11735                 err = -EIO;
11736                 goto out_remove_sysfs;
11737         }
11738
11739         mutex_unlock(&priv->mutex);
11740
11741         err = ipw_wdev_init(net_dev);
11742         if (err) {
11743                 IPW_ERROR("failed to register wireless device\n");
11744                 goto out_remove_sysfs;
11745         }
11746
11747         err = register_netdev(net_dev);
11748         if (err) {
11749                 IPW_ERROR("failed to register network device\n");
11750                 goto out_unregister_wiphy;
11751         }
11752
11753 #ifdef CONFIG_IPW2200_PROMISCUOUS
11754         if (rtap_iface) {
11755                 err = ipw_prom_alloc(priv);
11756                 if (err) {
11757                         IPW_ERROR("Failed to register promiscuous network "
11758                                   "device (error %d).\n", err);
11759                         unregister_netdev(priv->net_dev);
11760                         goto out_unregister_wiphy;
11761                 }
11762         }
11763 #endif
11764
11765         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11766                "channels, %d 802.11a channels)\n",
11767                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11768                priv->ieee->geo.a_channels);
11769
11770         return 0;
11771
11772       out_unregister_wiphy:
11773         wiphy_unregister(priv->ieee->wdev.wiphy);
11774         kfree(priv->ieee->a_band.channels);
11775         kfree(priv->ieee->bg_band.channels);
11776       out_remove_sysfs:
11777         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11778       out_release_irq:
11779         free_irq(pdev->irq, priv);
11780       out_iounmap:
11781         iounmap(priv->hw_base);
11782       out_pci_release_regions:
11783         pci_release_regions(pdev);
11784       out_pci_disable_device:
11785         pci_disable_device(pdev);
11786       out_free_libipw:
11787         free_libipw(priv->net_dev, 0);
11788       out:
11789         return err;
11790 }
11791
11792 static void ipw_pci_remove(struct pci_dev *pdev)
11793 {
11794         struct ipw_priv *priv = pci_get_drvdata(pdev);
11795         struct list_head *p, *q;
11796         int i;
11797
11798         if (!priv)
11799                 return;
11800
11801         mutex_lock(&priv->mutex);
11802
11803         priv->status |= STATUS_EXIT_PENDING;
11804         ipw_down(priv);
11805         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11806
11807         mutex_unlock(&priv->mutex);
11808
11809         unregister_netdev(priv->net_dev);
11810
11811         if (priv->rxq) {
11812                 ipw_rx_queue_free(priv, priv->rxq);
11813                 priv->rxq = NULL;
11814         }
11815         ipw_tx_queue_free(priv);
11816
11817         if (priv->cmdlog) {
11818                 kfree(priv->cmdlog);
11819                 priv->cmdlog = NULL;
11820         }
11821
11822         /* make sure all works are inactive */
11823         cancel_delayed_work_sync(&priv->adhoc_check);
11824         cancel_work_sync(&priv->associate);
11825         cancel_work_sync(&priv->disassociate);
11826         cancel_work_sync(&priv->system_config);
11827         cancel_work_sync(&priv->rx_replenish);
11828         cancel_work_sync(&priv->adapter_restart);
11829         cancel_delayed_work_sync(&priv->rf_kill);
11830         cancel_work_sync(&priv->up);
11831         cancel_work_sync(&priv->down);
11832         cancel_delayed_work_sync(&priv->request_scan);
11833         cancel_delayed_work_sync(&priv->request_direct_scan);
11834         cancel_delayed_work_sync(&priv->request_passive_scan);
11835         cancel_delayed_work_sync(&priv->scan_event);
11836         cancel_delayed_work_sync(&priv->gather_stats);
11837         cancel_work_sync(&priv->abort_scan);
11838         cancel_work_sync(&priv->roam);
11839         cancel_delayed_work_sync(&priv->scan_check);
11840         cancel_work_sync(&priv->link_up);
11841         cancel_work_sync(&priv->link_down);
11842         cancel_delayed_work_sync(&priv->led_link_on);
11843         cancel_delayed_work_sync(&priv->led_link_off);
11844         cancel_delayed_work_sync(&priv->led_act_off);
11845         cancel_work_sync(&priv->merge_networks);
11846
11847         /* Free MAC hash list for ADHOC */
11848         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11849                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11850                         list_del(p);
11851                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11852                 }
11853         }
11854
11855         kfree(priv->error);
11856         priv->error = NULL;
11857
11858 #ifdef CONFIG_IPW2200_PROMISCUOUS
11859         ipw_prom_free(priv);
11860 #endif
11861
11862         free_irq(pdev->irq, priv);
11863         iounmap(priv->hw_base);
11864         pci_release_regions(pdev);
11865         pci_disable_device(pdev);
11866         /* wiphy_unregister needs to be here, before free_libipw */
11867         wiphy_unregister(priv->ieee->wdev.wiphy);
11868         kfree(priv->ieee->a_band.channels);
11869         kfree(priv->ieee->bg_band.channels);
11870         free_libipw(priv->net_dev, 0);
11871         free_firmware();
11872 }
11873
11874 #ifdef CONFIG_PM
11875 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11876 {
11877         struct ipw_priv *priv = pci_get_drvdata(pdev);
11878         struct net_device *dev = priv->net_dev;
11879
11880         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11881
11882         /* Take down the device; powers it off, etc. */
11883         ipw_down(priv);
11884
11885         /* Remove the PRESENT state of the device */
11886         netif_device_detach(dev);
11887
11888         pci_save_state(pdev);
11889         pci_disable_device(pdev);
11890         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11891
11892         priv->suspend_at = ktime_get_boottime_seconds();
11893
11894         return 0;
11895 }
11896
11897 static int ipw_pci_resume(struct pci_dev *pdev)
11898 {
11899         struct ipw_priv *priv = pci_get_drvdata(pdev);
11900         struct net_device *dev = priv->net_dev;
11901         int err;
11902         u32 val;
11903
11904         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11905
11906         pci_set_power_state(pdev, PCI_D0);
11907         err = pci_enable_device(pdev);
11908         if (err) {
11909                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11910                        dev->name);
11911                 return err;
11912         }
11913         pci_restore_state(pdev);
11914
11915         /*
11916          * Suspend/Resume resets the PCI configuration space, so we have to
11917          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11918          * from interfering with C3 CPU state. pci_restore_state won't help
11919          * here since it only restores the first 64 bytes pci config header.
11920          */
11921         pci_read_config_dword(pdev, 0x40, &val);
11922         if ((val & 0x0000ff00) != 0)
11923                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11924
11925         /* Set the device back into the PRESENT state; this will also wake
11926          * the queue of needed */
11927         netif_device_attach(dev);
11928
11929         priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11930
11931         /* Bring the device back up */
11932         schedule_work(&priv->up);
11933
11934         return 0;
11935 }
11936 #endif
11937
11938 static void ipw_pci_shutdown(struct pci_dev *pdev)
11939 {
11940         struct ipw_priv *priv = pci_get_drvdata(pdev);
11941
11942         /* Take down the device; powers it off, etc. */
11943         ipw_down(priv);
11944
11945         pci_disable_device(pdev);
11946 }
11947
11948 /* driver initialization stuff */
11949 static struct pci_driver ipw_driver = {
11950         .name = DRV_NAME,
11951         .id_table = card_ids,
11952         .probe = ipw_pci_probe,
11953         .remove = ipw_pci_remove,
11954 #ifdef CONFIG_PM
11955         .suspend = ipw_pci_suspend,
11956         .resume = ipw_pci_resume,
11957 #endif
11958         .shutdown = ipw_pci_shutdown,
11959 };
11960
11961 static int __init ipw_init(void)
11962 {
11963         int ret;
11964
11965         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11966         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11967
11968         ret = pci_register_driver(&ipw_driver);
11969         if (ret) {
11970                 IPW_ERROR("Unable to initialize PCI module\n");
11971                 return ret;
11972         }
11973
11974         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11975         if (ret) {
11976                 IPW_ERROR("Unable to create driver sysfs file\n");
11977                 pci_unregister_driver(&ipw_driver);
11978                 return ret;
11979         }
11980
11981         return ret;
11982 }
11983
11984 static void __exit ipw_exit(void)
11985 {
11986         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11987         pci_unregister_driver(&ipw_driver);
11988 }
11989
11990 module_param(disable, int, 0444);
11991 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11992
11993 module_param(associate, int, 0444);
11994 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11995
11996 module_param(auto_create, int, 0444);
11997 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11998
11999 module_param_named(led, led_support, int, 0444);
12000 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12001
12002 module_param(debug, int, 0444);
12003 MODULE_PARM_DESC(debug, "debug output mask");
12004
12005 module_param_named(channel, default_channel, int, 0444);
12006 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12007
12008 #ifdef CONFIG_IPW2200_PROMISCUOUS
12009 module_param(rtap_iface, int, 0444);
12010 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12011 #endif
12012
12013 #ifdef CONFIG_IPW2200_QOS
12014 module_param(qos_enable, int, 0444);
12015 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
12016
12017 module_param(qos_burst_enable, int, 0444);
12018 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12019
12020 module_param(qos_no_ack_mask, int, 0444);
12021 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12022
12023 module_param(burst_duration_CCK, int, 0444);
12024 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12025
12026 module_param(burst_duration_OFDM, int, 0444);
12027 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12028 #endif                          /* CONFIG_IPW2200_QOS */
12029
12030 #ifdef CONFIG_IPW2200_MONITOR
12031 module_param_named(mode, network_mode, int, 0444);
12032 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12033 #else
12034 module_param_named(mode, network_mode, int, 0444);
12035 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12036 #endif
12037
12038 module_param(bt_coexist, int, 0444);
12039 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12040
12041 module_param(hwcrypto, int, 0444);
12042 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12043
12044 module_param(cmdlog, int, 0444);
12045 MODULE_PARM_DESC(cmdlog,
12046                  "allocate a ring buffer for logging firmware commands");
12047
12048 module_param(roaming, int, 0444);
12049 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12050
12051 module_param(antenna, int, 0444);
12052 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12053
12054 module_exit(ipw_exit);
12055 module_init(ipw_init);