GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / wireless / ralink / rt2x00 / rt2800mmio.c
1 /*      Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2  *      Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3  *      Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4  *      Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5  *      Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6  *      Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7  *      Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8  *      Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9  *      <http://rt2x00.serialmonkey.com>
10  *
11  *      This program is free software; you can redistribute it and/or modify
12  *      it under the terms of the GNU General Public License as published by
13  *      the Free Software Foundation; either version 2 of the License, or
14  *      (at your option) any later version.
15  *
16  *      This program is distributed in the hope that it will be useful,
17  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  *      GNU General Public License for more details.
20  *
21  *      You should have received a copy of the GNU General Public License
22  *      along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24
25 /*      Module: rt2800mmio
26  *      Abstract: rt2800 MMIO device routines.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
38
39 /*
40  * TX descriptor initialization
41  */
42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
43 {
44         return (__le32 *) entry->skb->data;
45 }
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
47
48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49                               struct txentry_desc *txdesc)
50 {
51         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53         __le32 *txd = entry_priv->desc;
54         u32 word;
55         const unsigned int txwi_size = entry->queue->winfo_size;
56
57         /*
58          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59          * must contains a TXWI structure + 802.11 header + padding + 802.11
60          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62          * data. It means that LAST_SEC0 is always 0.
63          */
64
65         /*
66          * Initialize TX descriptor
67          */
68         word = 0;
69         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70         rt2x00_desc_write(txd, 0, word);
71
72         word = 0;
73         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76         rt2x00_set_field32(&word, TXD_W1_BURST,
77                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81         rt2x00_desc_write(txd, 1, word);
82
83         word = 0;
84         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85                            skbdesc->skb_dma + txwi_size);
86         rt2x00_desc_write(txd, 2, word);
87
88         word = 0;
89         rt2x00_set_field32(&word, TXD_W3_WIV,
90                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92         rt2x00_desc_write(txd, 3, word);
93
94         /*
95          * Register descriptor details in skb frame descriptor.
96          */
97         skbdesc->desc = txd;
98         skbdesc->desc_len = TXD_DESC_SIZE;
99 }
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
101
102 /*
103  * RX control handlers
104  */
105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106                             struct rxdone_entry_desc *rxdesc)
107 {
108         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109         __le32 *rxd = entry_priv->desc;
110         u32 word;
111
112         word = rt2x00_desc_read(rxd, 3);
113
114         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
116
117         /*
118          * Unfortunately we don't know the cipher type used during
119          * decryption. This prevents us from correct providing
120          * correct statistics through debugfs.
121          */
122         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
123
124         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
125                 /*
126                  * Hardware has stripped IV/EIV data from 802.11 frame during
127                  * decryption. Unfortunately the descriptor doesn't contain
128                  * any fields with the EIV/IV data either, so they can't
129                  * be restored by rt2x00lib.
130                  */
131                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
132
133                 /*
134                  * The hardware has already checked the Michael Mic and has
135                  * stripped it from the frame. Signal this to mac80211.
136                  */
137                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
138
139                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140                         rxdesc->flags |= RX_FLAG_DECRYPTED;
141                 } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
142                         /*
143                          * In order to check the Michael Mic, the packet must have
144                          * been decrypted.  Mac80211 doesnt check the MMIC failure 
145                          * flag to initiate MMIC countermeasures if the decoded flag
146                          * has not been set.
147                          */
148                         rxdesc->flags |= RX_FLAG_DECRYPTED;
149
150                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
151                 }
152         }
153
154         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155                 rxdesc->dev_flags |= RXDONE_MY_BSS;
156
157         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158                 rxdesc->dev_flags |= RXDONE_L2PAD;
159
160         /*
161          * Process the RXWI structure that is at the start of the buffer.
162          */
163         rt2800_process_rxwi(entry, rxdesc);
164 }
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
166
167 /*
168  * Interrupt functions.
169  */
170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
171 {
172         struct ieee80211_conf conf = { .flags = 0 };
173         struct rt2x00lib_conf libconf = { .conf = &conf };
174
175         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
176 }
177
178 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
179 {
180         __le32 *txwi;
181         u32 word;
182         int wcid, tx_wcid;
183
184         wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
185
186         txwi = rt2800_drv_get_txwi(entry);
187         word = rt2x00_desc_read(txwi, 1);
188         tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
189
190         return (tx_wcid == wcid);
191 }
192
193 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
194 {
195         u32 status = *(u32 *)data;
196
197         /*
198          * rt2800pci hardware might reorder frames when exchanging traffic
199          * with multiple BA enabled STAs.
200          *
201          * For example, a tx queue
202          *    [ STA1 | STA2 | STA1 | STA2 ]
203          * can result in tx status reports
204          *    [ STA1 | STA1 | STA2 | STA2 ]
205          * when the hw decides to aggregate the frames for STA1 into one AMPDU.
206          *
207          * To mitigate this effect, associate the tx status to the first frame
208          * in the tx queue with a matching wcid.
209          */
210         if (rt2800mmio_txdone_entry_check(entry, status) &&
211             !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
212                 /*
213                  * Got a matching frame, associate the tx status with
214                  * the frame
215                  */
216                 entry->status = status;
217                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
218                 return true;
219         }
220
221         /* Check the next frame */
222         return false;
223 }
224
225 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
226 {
227         u32 status = *(u32 *)data;
228
229         /*
230          * Find the first frame without tx status and assign this status to it
231          * regardless if it matches or not.
232          */
233         if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
234                 /*
235                  * Got a matching frame, associate the tx status with
236                  * the frame
237                  */
238                 entry->status = status;
239                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
240                 return true;
241         }
242
243         /* Check the next frame */
244         return false;
245 }
246 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
247                                               void *data)
248 {
249         if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
250                 rt2800_txdone_entry(entry, entry->status,
251                                     rt2800mmio_get_txwi(entry), true);
252                 return false;
253         }
254
255         /* No more frames to release */
256         return true;
257 }
258
259 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
260 {
261         struct data_queue *queue;
262         u32 status;
263         u8 qid;
264         int max_tx_done = 16;
265
266         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
267                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
268                 if (unlikely(qid >= QID_RX)) {
269                         /*
270                          * Unknown queue, this shouldn't happen. Just drop
271                          * this tx status.
272                          */
273                         rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
274                                     qid);
275                         break;
276                 }
277
278                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
279                 if (unlikely(queue == NULL)) {
280                         /*
281                          * The queue is NULL, this shouldn't happen. Stop
282                          * processing here and drop the tx status
283                          */
284                         rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
285                                     qid);
286                         break;
287                 }
288
289                 if (unlikely(rt2x00queue_empty(queue))) {
290                         /*
291                          * The queue is empty. Stop processing here
292                          * and drop the tx status.
293                          */
294                         rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
295                                     qid);
296                         break;
297                 }
298
299                 /*
300                  * Let's associate this tx status with the first
301                  * matching frame.
302                  */
303                 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
304                                                 Q_INDEX, &status,
305                                                 rt2800mmio_txdone_find_entry)) {
306                         /*
307                          * We cannot match the tx status to any frame, so just
308                          * use the first one.
309                          */
310                         if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
311                                                         Q_INDEX, &status,
312                                                         rt2800mmio_txdone_match_first)) {
313                                 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
314                                             qid);
315                                 break;
316                         }
317                 }
318
319                 /*
320                  * Release all frames with a valid tx status.
321                  */
322                 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
323                                            Q_INDEX, NULL,
324                                            rt2800mmio_txdone_release_entries);
325
326                 if (--max_tx_done == 0)
327                         break;
328         }
329
330         return !max_tx_done;
331 }
332
333 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
334                                                struct rt2x00_field32 irq_field)
335 {
336         u32 reg;
337
338         /*
339          * Enable a single interrupt. The interrupt mask register
340          * access needs locking.
341          */
342         spin_lock_irq(&rt2x00dev->irqmask_lock);
343         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
344         rt2x00_set_field32(&reg, irq_field, 1);
345         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
346         spin_unlock_irq(&rt2x00dev->irqmask_lock);
347 }
348
349 void rt2800mmio_txstatus_tasklet(unsigned long data)
350 {
351         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
352         if (rt2800mmio_txdone(rt2x00dev))
353                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
354
355         /*
356          * No need to enable the tx status interrupt here as we always
357          * leave it enabled to minimize the possibility of a tx status
358          * register overflow. See comment in interrupt handler.
359          */
360 }
361 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
362
363 void rt2800mmio_pretbtt_tasklet(unsigned long data)
364 {
365         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
366         rt2x00lib_pretbtt(rt2x00dev);
367         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
368                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
369 }
370 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
371
372 void rt2800mmio_tbtt_tasklet(unsigned long data)
373 {
374         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
375         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
376         u32 reg;
377
378         rt2x00lib_beacondone(rt2x00dev);
379
380         if (rt2x00dev->intf_ap_count) {
381                 /*
382                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
383                  * causing beacon skew and as a result causing problems with
384                  * some powersaving clients over time. Shorten the beacon
385                  * interval every 64 beacons by 64us to mitigate this effect.
386                  */
387                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
388                         reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
389                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
390                                            (rt2x00dev->beacon_int * 16) - 1);
391                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
392                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
393                         reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
394                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
395                                            (rt2x00dev->beacon_int * 16));
396                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
397                 }
398                 drv_data->tbtt_tick++;
399                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
400         }
401
402         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
403                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
404 }
405 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
406
407 void rt2800mmio_rxdone_tasklet(unsigned long data)
408 {
409         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
410         if (rt2x00mmio_rxdone(rt2x00dev))
411                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
412         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
413                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
414 }
415 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
416
417 void rt2800mmio_autowake_tasklet(unsigned long data)
418 {
419         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
420         rt2800mmio_wakeup(rt2x00dev);
421         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
422                 rt2800mmio_enable_interrupt(rt2x00dev,
423                                             INT_MASK_CSR_AUTO_WAKEUP);
424 }
425 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
426
427 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
428 {
429         u32 status;
430         int i;
431
432         /*
433          * The TX_FIFO_STATUS interrupt needs special care. We should
434          * read TX_STA_FIFO but we should do it immediately as otherwise
435          * the register can overflow and we would lose status reports.
436          *
437          * Hence, read the TX_STA_FIFO register and copy all tx status
438          * reports into a kernel FIFO which is handled in the txstatus
439          * tasklet. We use a tasklet to process the tx status reports
440          * because we can schedule the tasklet multiple times (when the
441          * interrupt fires again during tx status processing).
442          *
443          * Furthermore we don't disable the TX_FIFO_STATUS
444          * interrupt here but leave it enabled so that the TX_STA_FIFO
445          * can also be read while the tx status tasklet gets executed.
446          *
447          * Since we have only one producer and one consumer we don't
448          * need to lock the kfifo.
449          */
450         for (i = 0; i < rt2x00dev->tx->limit; i++) {
451                 status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
452
453                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
454                         break;
455
456                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
457                         rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
458                         break;
459                 }
460         }
461
462         /* Schedule the tasklet for processing the tx status. */
463         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
464 }
465
466 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
467 {
468         struct rt2x00_dev *rt2x00dev = dev_instance;
469         u32 reg, mask;
470
471         /* Read status and ACK all interrupts */
472         reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
473         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
474
475         if (!reg)
476                 return IRQ_NONE;
477
478         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
479                 return IRQ_HANDLED;
480
481         /*
482          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
483          * for interrupts and interrupt masks we can just use the value of
484          * INT_SOURCE_CSR to create the interrupt mask.
485          */
486         mask = ~reg;
487
488         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
489                 rt2800mmio_txstatus_interrupt(rt2x00dev);
490                 /*
491                  * Never disable the TX_FIFO_STATUS interrupt.
492                  */
493                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
494         }
495
496         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
497                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
498
499         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
500                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
501
502         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
503                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
504
505         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
506                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
507
508         /*
509          * Disable all interrupts for which a tasklet was scheduled right now,
510          * the tasklet will reenable the appropriate interrupts.
511          */
512         spin_lock(&rt2x00dev->irqmask_lock);
513         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
514         reg &= mask;
515         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
516         spin_unlock(&rt2x00dev->irqmask_lock);
517
518         return IRQ_HANDLED;
519 }
520 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
521
522 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
523                            enum dev_state state)
524 {
525         u32 reg;
526         unsigned long flags;
527
528         /*
529          * When interrupts are being enabled, the interrupt registers
530          * should clear the register to assure a clean state.
531          */
532         if (state == STATE_RADIO_IRQ_ON) {
533                 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
534                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
535         }
536
537         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
538         reg = 0;
539         if (state == STATE_RADIO_IRQ_ON) {
540                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
541                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
542                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
543                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
544                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
545         }
546         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
547         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
548
549         if (state == STATE_RADIO_IRQ_OFF) {
550                 /*
551                  * Wait for possibly running tasklets to finish.
552                  */
553                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
554                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
555                 tasklet_kill(&rt2x00dev->autowake_tasklet);
556                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
557                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
558         }
559 }
560 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
561
562 /*
563  * Queue handlers.
564  */
565 void rt2800mmio_start_queue(struct data_queue *queue)
566 {
567         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
568         u32 reg;
569
570         switch (queue->qid) {
571         case QID_RX:
572                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
573                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
574                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
575                 break;
576         case QID_BEACON:
577                 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
578                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
579                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
580                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
581                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
582
583                 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
584                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
585                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
586                 break;
587         default:
588                 break;
589         }
590 }
591 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
592
593 void rt2800mmio_kick_queue(struct data_queue *queue)
594 {
595         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
596         struct queue_entry *entry;
597
598         switch (queue->qid) {
599         case QID_AC_VO:
600         case QID_AC_VI:
601         case QID_AC_BE:
602         case QID_AC_BK:
603                 WARN_ON_ONCE(rt2x00queue_empty(queue));
604                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
605                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
606                                           entry->entry_idx);
607                 break;
608         case QID_MGMT:
609                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
610                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
611                                           entry->entry_idx);
612                 break;
613         default:
614                 break;
615         }
616 }
617 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
618
619 void rt2800mmio_stop_queue(struct data_queue *queue)
620 {
621         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
622         u32 reg;
623
624         switch (queue->qid) {
625         case QID_RX:
626                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
627                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
628                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
629                 break;
630         case QID_BEACON:
631                 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
632                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
633                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
634                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
635                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
636
637                 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
638                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
639                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
640
641                 /*
642                  * Wait for current invocation to finish. The tasklet
643                  * won't be scheduled anymore afterwards since we disabled
644                  * the TBTT and PRE TBTT timer.
645                  */
646                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
647                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
648
649                 break;
650         default:
651                 break;
652         }
653 }
654 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
655
656 void rt2800mmio_queue_init(struct data_queue *queue)
657 {
658         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
659         unsigned short txwi_size, rxwi_size;
660
661         rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
662
663         switch (queue->qid) {
664         case QID_RX:
665                 queue->limit = 128;
666                 queue->data_size = AGGREGATION_SIZE;
667                 queue->desc_size = RXD_DESC_SIZE;
668                 queue->winfo_size = rxwi_size;
669                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
670                 break;
671
672         case QID_AC_VO:
673         case QID_AC_VI:
674         case QID_AC_BE:
675         case QID_AC_BK:
676                 queue->limit = 64;
677                 queue->data_size = AGGREGATION_SIZE;
678                 queue->desc_size = TXD_DESC_SIZE;
679                 queue->winfo_size = txwi_size;
680                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
681                 break;
682
683         case QID_BEACON:
684                 queue->limit = 8;
685                 queue->data_size = 0; /* No DMA required for beacons */
686                 queue->desc_size = TXD_DESC_SIZE;
687                 queue->winfo_size = txwi_size;
688                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
689                 break;
690
691         case QID_ATIM:
692                 /* fallthrough */
693         default:
694                 BUG();
695                 break;
696         }
697 }
698 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
699
700 /*
701  * Initialization functions.
702  */
703 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
704 {
705         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
706         u32 word;
707
708         if (entry->queue->qid == QID_RX) {
709                 word = rt2x00_desc_read(entry_priv->desc, 1);
710
711                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
712         } else {
713                 word = rt2x00_desc_read(entry_priv->desc, 1);
714
715                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
716         }
717 }
718 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
719
720 void rt2800mmio_clear_entry(struct queue_entry *entry)
721 {
722         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
723         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
724         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
725         u32 word;
726
727         if (entry->queue->qid == QID_RX) {
728                 word = rt2x00_desc_read(entry_priv->desc, 0);
729                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
730                 rt2x00_desc_write(entry_priv->desc, 0, word);
731
732                 word = rt2x00_desc_read(entry_priv->desc, 1);
733                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
734                 rt2x00_desc_write(entry_priv->desc, 1, word);
735
736                 /*
737                  * Set RX IDX in register to inform hardware that we have
738                  * handled this entry and it is available for reuse again.
739                  */
740                 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
741                                           entry->entry_idx);
742         } else {
743                 word = rt2x00_desc_read(entry_priv->desc, 1);
744                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
745                 rt2x00_desc_write(entry_priv->desc, 1, word);
746         }
747 }
748 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
749
750 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
751 {
752         struct queue_entry_priv_mmio *entry_priv;
753
754         /*
755          * Initialize registers.
756          */
757         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
758         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
759                                   entry_priv->desc_dma);
760         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
761                                   rt2x00dev->tx[0].limit);
762         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
763         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
764
765         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
766         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
767                                   entry_priv->desc_dma);
768         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
769                                   rt2x00dev->tx[1].limit);
770         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
771         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
772
773         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
774         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
775                                   entry_priv->desc_dma);
776         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
777                                   rt2x00dev->tx[2].limit);
778         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
779         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
780
781         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
782         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
783                                   entry_priv->desc_dma);
784         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
785                                   rt2x00dev->tx[3].limit);
786         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
787         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
788
789         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
790         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
791         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
792         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
793
794         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
795         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
796         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
797         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
798
799         entry_priv = rt2x00dev->rx->entries[0].priv_data;
800         rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
801                                   entry_priv->desc_dma);
802         rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
803                                   rt2x00dev->rx[0].limit);
804         rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
805                                   rt2x00dev->rx[0].limit - 1);
806         rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
807
808         rt2800_disable_wpdma(rt2x00dev);
809
810         rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
811
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
815
816 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
817 {
818         u32 reg;
819
820         /*
821          * Reset DMA indexes
822          */
823         reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
824         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
825         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
826         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
827         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
828         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
829         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
830         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
831         rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
832
833         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
834         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
835
836         if (rt2x00_is_pcie(rt2x00dev) &&
837             (rt2x00_rt(rt2x00dev, RT3090) ||
838              rt2x00_rt(rt2x00dev, RT3390) ||
839              rt2x00_rt(rt2x00dev, RT3572) ||
840              rt2x00_rt(rt2x00dev, RT3593) ||
841              rt2x00_rt(rt2x00dev, RT5390) ||
842              rt2x00_rt(rt2x00dev, RT5392) ||
843              rt2x00_rt(rt2x00dev, RT5592))) {
844                 reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
845                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
846                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
847                 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
848         }
849
850         rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
851
852         reg = 0;
853         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
854         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
855         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
856
857         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
858
859         return 0;
860 }
861 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
862
863 /*
864  * Device state switch handlers.
865  */
866 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
867 {
868         /* Wait for DMA, ignore error until we initialize queues. */
869         rt2800_wait_wpdma_ready(rt2x00dev);
870
871         if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
872                 return -EIO;
873
874         return rt2800_enable_radio(rt2x00dev);
875 }
876 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
877
878 MODULE_AUTHOR(DRV_PROJECT);
879 MODULE_VERSION(DRV_VERSION);
880 MODULE_DESCRIPTION("rt2800 MMIO library");
881 MODULE_LICENSE("GPL");