GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / net / wireless / realtek / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Tme full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 #define START_ADDRESS           0x1000
35 #define REG_MCUFWDL             0x0080
36
37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
38         {0, 0, 0, 2},
39         {0, 1, 0, 2},
40         {0, 2, 0, 2},
41         {1, 0, 0, 1},
42         {1, 0, 1, 1},
43         {1, 1, 0, 1},
44         {1, 1, 1, 3},
45         {1, 3, 0, 17},
46         {3, 3, 1, 48},
47         {10, 0, 0, 6},
48         {10, 3, 0, 1},
49         {10, 3, 1, 1},
50         {11, 0, 0, 28}
51 };
52
53 static const struct rtl_efuse_ops efuse_ops = {
54         .efuse_onebyte_read = efuse_one_byte_read,
55         .efuse_logical_map_read = efuse_shadow_read,
56 };
57
58 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
59                                     u8 *value);
60 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
61                                     u16 *value);
62 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
63                                     u32 *value);
64 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
65                                      u8 value);
66 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
67                                      u16 value);
68 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
69                                      u32 value);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71                                 u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74                                 u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76                                  u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78                                         u8 *targetdata);
79 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
80                                   u16 efuse_addr, u8 word_en, u8 *data);
81 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
82 static u8 efuse_calculate_word_cnts(u8 word_en);
83
84 void efuse_initialize(struct ieee80211_hw *hw)
85 {
86         struct rtl_priv *rtlpriv = rtl_priv(hw);
87         u8 bytetemp;
88         u8 temp;
89
90         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
91         temp = bytetemp | 0x20;
92         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
93
94         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
95         temp = bytetemp & 0xFE;
96         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
97
98         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
99         temp = bytetemp | 0x80;
100         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
101
102         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
103
104         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
105
106 }
107
108 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
109 {
110         struct rtl_priv *rtlpriv = rtl_priv(hw);
111         u8 data;
112         u8 bytetemp;
113         u8 temp;
114         u32 k = 0;
115         const u32 efuse_len =
116                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
117
118         if (address < efuse_len) {
119                 temp = address & 0xFF;
120                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
121                                temp);
122                 bytetemp = rtl_read_byte(rtlpriv,
123                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
124                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
125                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
126                                temp);
127
128                 bytetemp = rtl_read_byte(rtlpriv,
129                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130                 temp = bytetemp & 0x7F;
131                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
132                                temp);
133
134                 bytetemp = rtl_read_byte(rtlpriv,
135                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
136                 while (!(bytetemp & 0x80)) {
137                         bytetemp = rtl_read_byte(rtlpriv,
138                                                  rtlpriv->cfg->
139                                                  maps[EFUSE_CTRL] + 3);
140                         k++;
141                         if (k == 1000) {
142                                 k = 0;
143                                 break;
144                         }
145                 }
146                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
147                 return data;
148         } else
149                 return 0xFF;
150
151 }
152 EXPORT_SYMBOL(efuse_read_1byte);
153
154 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
155 {
156         struct rtl_priv *rtlpriv = rtl_priv(hw);
157         u8 bytetemp;
158         u8 temp;
159         u32 k = 0;
160         const u32 efuse_len =
161                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
162
163         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
164                  address, value);
165
166         if (address < efuse_len) {
167                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
168
169                 temp = address & 0xFF;
170                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
171                                temp);
172                 bytetemp = rtl_read_byte(rtlpriv,
173                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
174
175                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
176                 rtl_write_byte(rtlpriv,
177                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
178
179                 bytetemp = rtl_read_byte(rtlpriv,
180                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
181                 temp = bytetemp | 0x80;
182                 rtl_write_byte(rtlpriv,
183                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
184
185                 bytetemp = rtl_read_byte(rtlpriv,
186                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
187
188                 while (bytetemp & 0x80) {
189                         bytetemp = rtl_read_byte(rtlpriv,
190                                                  rtlpriv->cfg->
191                                                  maps[EFUSE_CTRL] + 3);
192                         k++;
193                         if (k == 100) {
194                                 k = 0;
195                                 break;
196                         }
197                 }
198         }
199
200 }
201
202 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
203 {
204         struct rtl_priv *rtlpriv = rtl_priv(hw);
205         u32 value32;
206         u8 readbyte;
207         u16 retry;
208
209         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
210                        (_offset & 0xff));
211         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
212         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
213                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
214
215         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
216         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
217                        (readbyte & 0x7f));
218
219         retry = 0;
220         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
221         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
222                 value32 = rtl_read_dword(rtlpriv,
223                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
224                 retry++;
225         }
226
227         udelay(50);
228         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
229
230         *pbuf = (u8) (value32 & 0xff);
231 }
232 EXPORT_SYMBOL_GPL(read_efuse_byte);
233
234 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
235 {
236         struct rtl_priv *rtlpriv = rtl_priv(hw);
237         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
238         u8 *efuse_tbl;
239         u8 rtemp8[1];
240         u16 efuse_addr = 0;
241         u8 offset, wren;
242         u8 u1temp = 0;
243         u16 i;
244         u16 j;
245         const u16 efuse_max_section =
246                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247         const u32 efuse_len =
248                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249         u16 **efuse_word;
250         u16 efuse_utilized = 0;
251         u8 efuse_usage;
252
253         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255                          "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256                          _offset, _size_byte);
257                 return;
258         }
259
260         /* allocate memory for efuse_tbl and efuse_word */
261         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
262                             GFP_ATOMIC);
263         if (!efuse_tbl)
264                 return;
265         efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
266         if (!efuse_word)
267                 goto out;
268         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269                 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
270                                         GFP_ATOMIC);
271                 if (!efuse_word[i])
272                         goto done;
273         }
274
275         for (i = 0; i < efuse_max_section; i++)
276                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277                         efuse_word[j][i] = 0xFFFF;
278
279         read_efuse_byte(hw, efuse_addr, rtemp8);
280         if (*rtemp8 != 0xFF) {
281                 efuse_utilized++;
282                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283                         "Addr=%d\n", efuse_addr);
284                 efuse_addr++;
285         }
286
287         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288                 /*  Check PG header for section num.  */
289                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
290                         u1temp = ((*rtemp8 & 0xE0) >> 5);
291                         read_efuse_byte(hw, efuse_addr, rtemp8);
292
293                         if ((*rtemp8 & 0x0F) == 0x0F) {
294                                 efuse_addr++;
295                                 read_efuse_byte(hw, efuse_addr, rtemp8);
296
297                                 if (*rtemp8 != 0xFF &&
298                                     (efuse_addr < efuse_len)) {
299                                         efuse_addr++;
300                                 }
301                                 continue;
302                         } else {
303                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
304                                 wren = (*rtemp8 & 0x0F);
305                                 efuse_addr++;
306                         }
307                 } else {
308                         offset = ((*rtemp8 >> 4) & 0x0f);
309                         wren = (*rtemp8 & 0x0f);
310                 }
311
312                 if (offset < efuse_max_section) {
313                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
314                                 "offset-%d Worden=%x\n", offset, wren);
315
316                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
317                                 if (!(wren & 0x01)) {
318                                         RTPRINT(rtlpriv, FEEPROM,
319                                                 EFUSE_READ_ALL,
320                                                 "Addr=%d\n", efuse_addr);
321
322                                         read_efuse_byte(hw, efuse_addr, rtemp8);
323                                         efuse_addr++;
324                                         efuse_utilized++;
325                                         efuse_word[i][offset] =
326                                                          (*rtemp8 & 0xff);
327
328                                         if (efuse_addr >= efuse_len)
329                                                 break;
330
331                                         RTPRINT(rtlpriv, FEEPROM,
332                                                 EFUSE_READ_ALL,
333                                                 "Addr=%d\n", efuse_addr);
334
335                                         read_efuse_byte(hw, efuse_addr, rtemp8);
336                                         efuse_addr++;
337                                         efuse_utilized++;
338                                         efuse_word[i][offset] |=
339                                             (((u16)*rtemp8 << 8) & 0xff00);
340
341                                         if (efuse_addr >= efuse_len)
342                                                 break;
343                                 }
344
345                                 wren >>= 1;
346                         }
347                 }
348
349                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
350                         "Addr=%d\n", efuse_addr);
351                 read_efuse_byte(hw, efuse_addr, rtemp8);
352                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
353                         efuse_utilized++;
354                         efuse_addr++;
355                 }
356         }
357
358         for (i = 0; i < efuse_max_section; i++) {
359                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
360                         efuse_tbl[(i * 8) + (j * 2)] =
361                             (efuse_word[j][i] & 0xff);
362                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
363                             ((efuse_word[j][i] >> 8) & 0xff);
364                 }
365         }
366
367         for (i = 0; i < _size_byte; i++)
368                 pbuf[i] = efuse_tbl[_offset + i];
369
370         rtlefuse->efuse_usedbytes = efuse_utilized;
371         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
372         rtlefuse->efuse_usedpercentage = efuse_usage;
373         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
374                                       (u8 *)&efuse_utilized);
375         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
376                                       &efuse_usage);
377 done:
378         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
379                 kfree(efuse_word[i]);
380         kfree(efuse_word);
381 out:
382         kfree(efuse_tbl);
383 }
384
385 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
386 {
387         struct rtl_priv *rtlpriv = rtl_priv(hw);
388         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
389         u8 section_idx, i, Base;
390         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
391         bool wordchanged, result = true;
392
393         for (section_idx = 0; section_idx < 16; section_idx++) {
394                 Base = section_idx * 8;
395                 wordchanged = false;
396
397                 for (i = 0; i < 8; i = i + 2) {
398                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
399                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
400                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
401                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
402                                                                    1])) {
403                                 words_need++;
404                                 wordchanged = true;
405                         }
406                 }
407
408                 if (wordchanged)
409                         hdr_num++;
410         }
411
412         totalbytes = hdr_num + words_need * 2;
413         efuse_used = rtlefuse->efuse_usedbytes;
414
415         if ((totalbytes + efuse_used) >=
416             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
417                 result = false;
418
419         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
420                  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
421                  totalbytes, hdr_num, words_need, efuse_used);
422
423         return result;
424 }
425
426 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
427                        u16 offset, u32 *value)
428 {
429         if (type == 1)
430                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
431         else if (type == 2)
432                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
433         else if (type == 4)
434                 efuse_shadow_read_4byte(hw, offset, value);
435
436 }
437 EXPORT_SYMBOL(efuse_shadow_read);
438
439 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
440                                 u32 value)
441 {
442         if (type == 1)
443                 efuse_shadow_write_1byte(hw, offset, (u8) value);
444         else if (type == 2)
445                 efuse_shadow_write_2byte(hw, offset, (u16) value);
446         else if (type == 4)
447                 efuse_shadow_write_4byte(hw, offset, value);
448
449 }
450
451 bool efuse_shadow_update(struct ieee80211_hw *hw)
452 {
453         struct rtl_priv *rtlpriv = rtl_priv(hw);
454         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
455         u16 i, offset, base;
456         u8 word_en = 0x0F;
457         u8 first_pg = false;
458
459         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
460
461         if (!efuse_shadow_update_chk(hw)) {
462                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
463                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
464                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
465                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
466
467                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
468                          "efuse out of capacity!!\n");
469                 return false;
470         }
471         efuse_power_switch(hw, true, true);
472
473         for (offset = 0; offset < 16; offset++) {
474
475                 word_en = 0x0F;
476                 base = offset * 8;
477
478                 for (i = 0; i < 8; i++) {
479                         if (first_pg) {
480                                 word_en &= ~(BIT(i / 2));
481
482                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
483                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
484                         } else {
485
486                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
487                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
488                                         word_en &= ~(BIT(i / 2));
489
490                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
491                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
492                                 }
493                         }
494                 }
495
496                 if (word_en != 0x0F) {
497                         u8 tmpdata[8];
498                         memcpy(tmpdata,
499                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
500                                8);
501                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
502                                       "U-efuse\n", tmpdata, 8);
503
504                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
505                                                    tmpdata)) {
506                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
507                                          "PG section(%#x) fail!!\n", offset);
508                                 break;
509                         }
510                 }
511
512         }
513
514         efuse_power_switch(hw, true, false);
515         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
516
517         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
518                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
519                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
520
521         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
522         return true;
523 }
524
525 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
526 {
527         struct rtl_priv *rtlpriv = rtl_priv(hw);
528         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
529
530         if (rtlefuse->autoload_failflag)
531                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
532                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
533         else
534                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
535
536         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
537                         &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
538                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
539
540 }
541 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
542
543 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
544 {
545         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
546
547         efuse_power_switch(hw, true, true);
548
549         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
550
551         efuse_power_switch(hw, true, false);
552
553 }
554
555 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
556 {
557 }
558
559 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
560                                     u16 offset, u8 *value)
561 {
562         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
563         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
564 }
565
566 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
567                                     u16 offset, u16 *value)
568 {
569         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
570
571         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
572         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
573
574 }
575
576 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
577                                     u16 offset, u32 *value)
578 {
579         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
580
581         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
582         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
583         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
584         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
585 }
586
587 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
588                                      u16 offset, u8 value)
589 {
590         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
591
592         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
593 }
594
595 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
596                                      u16 offset, u16 value)
597 {
598         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
599
600         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
601         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
602
603 }
604
605 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
606                                      u16 offset, u32 value)
607 {
608         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
609
610         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
611             (u8) (value & 0x000000FF);
612         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
613             (u8) ((value >> 8) & 0x0000FF);
614         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
615             (u8) ((value >> 16) & 0x00FF);
616         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
617             (u8) ((value >> 24) & 0xFF);
618
619 }
620
621 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
622 {
623         struct rtl_priv *rtlpriv = rtl_priv(hw);
624         u8 tmpidx = 0;
625         int result;
626
627         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
628                        (u8) (addr & 0xff));
629         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
630                        ((u8) ((addr >> 8) & 0x03)) |
631                        (rtl_read_byte(rtlpriv,
632                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
633                         0xFC));
634
635         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
636
637         while (!(0x80 & rtl_read_byte(rtlpriv,
638                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
639                && (tmpidx < 100)) {
640                 tmpidx++;
641         }
642
643         if (tmpidx < 100) {
644                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
645                 result = true;
646         } else {
647                 *data = 0xff;
648                 result = false;
649         }
650         return result;
651 }
652 EXPORT_SYMBOL(efuse_one_byte_read);
653
654 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
655 {
656         struct rtl_priv *rtlpriv = rtl_priv(hw);
657         u8 tmpidx = 0;
658
659         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
660                  "Addr = %x Data=%x\n", addr, data);
661
662         rtl_write_byte(rtlpriv,
663                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
664         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
665                        (rtl_read_byte(rtlpriv,
666                          rtlpriv->cfg->maps[EFUSE_CTRL] +
667                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
668
669         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
670         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
671
672         while ((0x80 & rtl_read_byte(rtlpriv,
673                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
674                && (tmpidx < 100)) {
675                 tmpidx++;
676         }
677
678         if (tmpidx < 100)
679                 return true;
680         return false;
681 }
682
683 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
684 {
685         struct rtl_priv *rtlpriv = rtl_priv(hw);
686         efuse_power_switch(hw, false, true);
687         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
688         efuse_power_switch(hw, false, false);
689 }
690
691 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
692                                 u8 efuse_data, u8 offset, u8 *tmpdata,
693                                 u8 *readstate)
694 {
695         bool dataempty = true;
696         u8 hoffset;
697         u8 tmpidx;
698         u8 hworden;
699         u8 word_cnts;
700
701         hoffset = (efuse_data >> 4) & 0x0F;
702         hworden = efuse_data & 0x0F;
703         word_cnts = efuse_calculate_word_cnts(hworden);
704
705         if (hoffset == offset) {
706                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
707                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
708                                                 &efuse_data)) {
709                                 tmpdata[tmpidx] = efuse_data;
710                                 if (efuse_data != 0xff)
711                                         dataempty = false;
712                         }
713                 }
714
715                 if (!dataempty) {
716                         *readstate = PG_STATE_DATA;
717                 } else {
718                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
719                         *readstate = PG_STATE_HEADER;
720                 }
721
722         } else {
723                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
724                 *readstate = PG_STATE_HEADER;
725         }
726 }
727
728 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
729 {
730         u8 readstate = PG_STATE_HEADER;
731
732         bool continual = true;
733
734         u8 efuse_data, word_cnts = 0;
735         u16 efuse_addr = 0;
736         u8 tmpdata[8];
737
738         if (data == NULL)
739                 return false;
740         if (offset > 15)
741                 return false;
742
743         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
744         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
745
746         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
747                 if (readstate & PG_STATE_HEADER) {
748                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
749                             && (efuse_data != 0xFF))
750                                 efuse_read_data_case1(hw, &efuse_addr,
751                                                       efuse_data, offset,
752                                                       tmpdata, &readstate);
753                         else
754                                 continual = false;
755                 } else if (readstate & PG_STATE_DATA) {
756                         efuse_word_enable_data_read(0, tmpdata, data);
757                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
758                         readstate = PG_STATE_HEADER;
759                 }
760
761         }
762
763         if ((data[0] == 0xff) && (data[1] == 0xff) &&
764             (data[2] == 0xff) && (data[3] == 0xff) &&
765             (data[4] == 0xff) && (data[5] == 0xff) &&
766             (data[6] == 0xff) && (data[7] == 0xff))
767                 return false;
768         else
769                 return true;
770
771 }
772
773 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
774                                    u8 efuse_data, u8 offset,
775                                    int *continual, u8 *write_state,
776                                    struct pgpkt_struct *target_pkt,
777                                    int *repeat_times, int *result, u8 word_en)
778 {
779         struct rtl_priv *rtlpriv = rtl_priv(hw);
780         struct pgpkt_struct tmp_pkt;
781         int dataempty = true;
782         u8 originaldata[8 * sizeof(u8)];
783         u8 badworden = 0x0F;
784         u8 match_word_en, tmp_word_en;
785         u8 tmpindex;
786         u8 tmp_header = efuse_data;
787         u8 tmp_word_cnts;
788
789         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
790         tmp_pkt.word_en = tmp_header & 0x0F;
791         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
792
793         if (tmp_pkt.offset != target_pkt->offset) {
794                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
795                 *write_state = PG_STATE_HEADER;
796         } else {
797                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
798                         if (efuse_one_byte_read(hw,
799                                                 (*efuse_addr + 1 + tmpindex),
800                                                 &efuse_data) &&
801                             (efuse_data != 0xFF))
802                                 dataempty = false;
803                 }
804
805                 if (!dataempty) {
806                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
807                         *write_state = PG_STATE_HEADER;
808                 } else {
809                         match_word_en = 0x0F;
810                         if (!((target_pkt->word_en & BIT(0)) |
811                             (tmp_pkt.word_en & BIT(0))))
812                                 match_word_en &= (~BIT(0));
813
814                         if (!((target_pkt->word_en & BIT(1)) |
815                             (tmp_pkt.word_en & BIT(1))))
816                                 match_word_en &= (~BIT(1));
817
818                         if (!((target_pkt->word_en & BIT(2)) |
819                             (tmp_pkt.word_en & BIT(2))))
820                                 match_word_en &= (~BIT(2));
821
822                         if (!((target_pkt->word_en & BIT(3)) |
823                             (tmp_pkt.word_en & BIT(3))))
824                                 match_word_en &= (~BIT(3));
825
826                         if ((match_word_en & 0x0F) != 0x0F) {
827                                 badworden =
828                                   enable_efuse_data_write(hw,
829                                                           *efuse_addr + 1,
830                                                           tmp_pkt.word_en,
831                                                           target_pkt->data);
832
833                                 if (0x0F != (badworden & 0x0F)) {
834                                         u8 reorg_offset = offset;
835                                         u8 reorg_worden = badworden;
836                                         efuse_pg_packet_write(hw, reorg_offset,
837                                                               reorg_worden,
838                                                               originaldata);
839                                 }
840
841                                 tmp_word_en = 0x0F;
842                                 if ((target_pkt->word_en & BIT(0)) ^
843                                     (match_word_en & BIT(0)))
844                                         tmp_word_en &= (~BIT(0));
845
846                                 if ((target_pkt->word_en & BIT(1)) ^
847                                     (match_word_en & BIT(1)))
848                                         tmp_word_en &= (~BIT(1));
849
850                                 if ((target_pkt->word_en & BIT(2)) ^
851                                     (match_word_en & BIT(2)))
852                                         tmp_word_en &= (~BIT(2));
853
854                                 if ((target_pkt->word_en & BIT(3)) ^
855                                     (match_word_en & BIT(3)))
856                                         tmp_word_en &= (~BIT(3));
857
858                                 if ((tmp_word_en & 0x0F) != 0x0F) {
859                                         *efuse_addr = efuse_get_current_size(hw);
860                                         target_pkt->offset = offset;
861                                         target_pkt->word_en = tmp_word_en;
862                                 } else {
863                                         *continual = false;
864                                 }
865                                 *write_state = PG_STATE_HEADER;
866                                 *repeat_times += 1;
867                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
868                                         *continual = false;
869                                         *result = false;
870                                 }
871                         } else {
872                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
873                                 target_pkt->offset = offset;
874                                 target_pkt->word_en = word_en;
875                                 *write_state = PG_STATE_HEADER;
876                         }
877                 }
878         }
879         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
880 }
881
882 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
883                                    int *continual, u8 *write_state,
884                                    struct pgpkt_struct target_pkt,
885                                    int *repeat_times, int *result)
886 {
887         struct rtl_priv *rtlpriv = rtl_priv(hw);
888         struct pgpkt_struct tmp_pkt;
889         u8 pg_header;
890         u8 tmp_header;
891         u8 originaldata[8 * sizeof(u8)];
892         u8 tmp_word_cnts;
893         u8 badworden = 0x0F;
894
895         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
896         efuse_one_byte_write(hw, *efuse_addr, pg_header);
897         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
898
899         if (tmp_header == pg_header) {
900                 *write_state = PG_STATE_DATA;
901         } else if (tmp_header == 0xFF) {
902                 *write_state = PG_STATE_HEADER;
903                 *repeat_times += 1;
904                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
905                         *continual = false;
906                         *result = false;
907                 }
908         } else {
909                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
910                 tmp_pkt.word_en = tmp_header & 0x0F;
911
912                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
913
914                 memset(originaldata, 0xff,  8 * sizeof(u8));
915
916                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
917                         badworden = enable_efuse_data_write(hw,
918                                                             *efuse_addr + 1,
919                                                             tmp_pkt.word_en,
920                                                             originaldata);
921
922                         if (0x0F != (badworden & 0x0F)) {
923                                 u8 reorg_offset = tmp_pkt.offset;
924                                 u8 reorg_worden = badworden;
925                                 efuse_pg_packet_write(hw, reorg_offset,
926                                                       reorg_worden,
927                                                       originaldata);
928                                 *efuse_addr = efuse_get_current_size(hw);
929                         } else {
930                                 *efuse_addr = *efuse_addr +
931                                               (tmp_word_cnts * 2) + 1;
932                         }
933                 } else {
934                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
935                 }
936
937                 *write_state = PG_STATE_HEADER;
938                 *repeat_times += 1;
939                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
940                         *continual = false;
941                         *result = false;
942                 }
943
944                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
945                         "efuse PG_STATE_HEADER-2\n");
946         }
947 }
948
949 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
950                                  u8 offset, u8 word_en, u8 *data)
951 {
952         struct rtl_priv *rtlpriv = rtl_priv(hw);
953         struct pgpkt_struct target_pkt;
954         u8 write_state = PG_STATE_HEADER;
955         int continual = true, dataempty = true, result = true;
956         u16 efuse_addr = 0;
957         u8 efuse_data;
958         u8 target_word_cnts = 0;
959         u8 badworden = 0x0F;
960         static int repeat_times;
961
962         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
963                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
964                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
965                         "efuse_pg_packet_write error\n");
966                 return false;
967         }
968
969         target_pkt.offset = offset;
970         target_pkt.word_en = word_en;
971
972         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
973
974         efuse_word_enable_data_read(word_en, data, target_pkt.data);
975         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
976
977         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
978
979         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
980                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
981
982                 if (write_state == PG_STATE_HEADER) {
983                         dataempty = true;
984                         badworden = 0x0F;
985                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
986                                 "efuse PG_STATE_HEADER\n");
987
988                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
989                             (efuse_data != 0xFF))
990                                 efuse_write_data_case1(hw, &efuse_addr,
991                                                        efuse_data, offset,
992                                                        &continual,
993                                                        &write_state,
994                                                        &target_pkt,
995                                                        &repeat_times, &result,
996                                                        word_en);
997                         else
998                                 efuse_write_data_case2(hw, &efuse_addr,
999                                                        &continual,
1000                                                        &write_state,
1001                                                        target_pkt,
1002                                                        &repeat_times,
1003                                                        &result);
1004
1005                 } else if (write_state == PG_STATE_DATA) {
1006                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1007                                 "efuse PG_STATE_DATA\n");
1008                         badworden = 0x0f;
1009                         badworden =
1010                             enable_efuse_data_write(hw, efuse_addr + 1,
1011                                                     target_pkt.word_en,
1012                                                     target_pkt.data);
1013
1014                         if ((badworden & 0x0F) == 0x0F) {
1015                                 continual = false;
1016                         } else {
1017                                 efuse_addr =
1018                                     efuse_addr + (2 * target_word_cnts) + 1;
1019
1020                                 target_pkt.offset = offset;
1021                                 target_pkt.word_en = badworden;
1022                                 target_word_cnts =
1023                                     efuse_calculate_word_cnts(target_pkt.
1024                                                               word_en);
1025                                 write_state = PG_STATE_HEADER;
1026                                 repeat_times++;
1027                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1028                                         continual = false;
1029                                         result = false;
1030                                 }
1031                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1032                                         "efuse PG_STATE_HEADER-3\n");
1033                         }
1034                 }
1035         }
1036
1037         if (efuse_addr >= (EFUSE_MAX_SIZE -
1038                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1039                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1040                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1041         }
1042
1043         return true;
1044 }
1045
1046 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1047                                         u8 *targetdata)
1048 {
1049         if (!(word_en & BIT(0))) {
1050                 targetdata[0] = sourdata[0];
1051                 targetdata[1] = sourdata[1];
1052         }
1053
1054         if (!(word_en & BIT(1))) {
1055                 targetdata[2] = sourdata[2];
1056                 targetdata[3] = sourdata[3];
1057         }
1058
1059         if (!(word_en & BIT(2))) {
1060                 targetdata[4] = sourdata[4];
1061                 targetdata[5] = sourdata[5];
1062         }
1063
1064         if (!(word_en & BIT(3))) {
1065                 targetdata[6] = sourdata[6];
1066                 targetdata[7] = sourdata[7];
1067         }
1068 }
1069
1070 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1071                                   u16 efuse_addr, u8 word_en, u8 *data)
1072 {
1073         struct rtl_priv *rtlpriv = rtl_priv(hw);
1074         u16 tmpaddr;
1075         u16 start_addr = efuse_addr;
1076         u8 badworden = 0x0F;
1077         u8 tmpdata[8];
1078
1079         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1080         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1081                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1082
1083         if (!(word_en & BIT(0))) {
1084                 tmpaddr = start_addr;
1085                 efuse_one_byte_write(hw, start_addr++, data[0]);
1086                 efuse_one_byte_write(hw, start_addr++, data[1]);
1087
1088                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1089                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1090                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1091                         badworden &= (~BIT(0));
1092         }
1093
1094         if (!(word_en & BIT(1))) {
1095                 tmpaddr = start_addr;
1096                 efuse_one_byte_write(hw, start_addr++, data[2]);
1097                 efuse_one_byte_write(hw, start_addr++, data[3]);
1098
1099                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1100                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1101                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1102                         badworden &= (~BIT(1));
1103         }
1104
1105         if (!(word_en & BIT(2))) {
1106                 tmpaddr = start_addr;
1107                 efuse_one_byte_write(hw, start_addr++, data[4]);
1108                 efuse_one_byte_write(hw, start_addr++, data[5]);
1109
1110                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1111                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1112                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1113                         badworden &= (~BIT(2));
1114         }
1115
1116         if (!(word_en & BIT(3))) {
1117                 tmpaddr = start_addr;
1118                 efuse_one_byte_write(hw, start_addr++, data[6]);
1119                 efuse_one_byte_write(hw, start_addr++, data[7]);
1120
1121                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1122                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1123                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1124                         badworden &= (~BIT(3));
1125         }
1126
1127         return badworden;
1128 }
1129
1130 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1131 {
1132         struct rtl_priv *rtlpriv = rtl_priv(hw);
1133         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1134         u8 tempval;
1135         u16 tmpV16;
1136
1137         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1138
1139                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1140                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1141                         rtl_write_byte(rtlpriv,
1142                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1143                 } else {
1144                         tmpV16 =
1145                           rtl_read_word(rtlpriv,
1146                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1147                         if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1148                                 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1149                                 rtl_write_word(rtlpriv,
1150                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1151                                                tmpV16);
1152                         }
1153                 }
1154                 tmpV16 = rtl_read_word(rtlpriv,
1155                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1156                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1157                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1158                         rtl_write_word(rtlpriv,
1159                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1160                 }
1161
1162                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1163                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1164                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1165                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1166                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1167                         rtl_write_word(rtlpriv,
1168                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1169                 }
1170         }
1171
1172         if (pwrstate) {
1173                 if (write) {
1174                         tempval = rtl_read_byte(rtlpriv,
1175                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1176                                                 3);
1177
1178                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1179                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1180                                 tempval |= (VOLTAGE_V25 << 3);
1181                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1182                                 tempval &= 0x0F;
1183                                 tempval |= (VOLTAGE_V25 << 4);
1184                         }
1185
1186                         rtl_write_byte(rtlpriv,
1187                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1188                                        (tempval | 0x80));
1189                 }
1190
1191                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1192                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1193                                        0x03);
1194                 }
1195         } else {
1196                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1197                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1198                         rtl_write_byte(rtlpriv,
1199                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1200
1201                 if (write) {
1202                         tempval = rtl_read_byte(rtlpriv,
1203                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1204                                                 3);
1205                         rtl_write_byte(rtlpriv,
1206                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1207                                        (tempval & 0x7F));
1208                 }
1209
1210                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1211                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1212                                        0x02);
1213                 }
1214         }
1215 }
1216 EXPORT_SYMBOL(efuse_power_switch);
1217
1218 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1219 {
1220         int continual = true;
1221         u16 efuse_addr = 0;
1222         u8 hoffset, hworden;
1223         u8 efuse_data, word_cnts;
1224
1225         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1226                (efuse_addr < EFUSE_MAX_SIZE)) {
1227                 if (efuse_data != 0xFF) {
1228                         hoffset = (efuse_data >> 4) & 0x0F;
1229                         hworden = efuse_data & 0x0F;
1230                         word_cnts = efuse_calculate_word_cnts(hworden);
1231                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1232                 } else {
1233                         continual = false;
1234                 }
1235         }
1236
1237         return efuse_addr;
1238 }
1239
1240 static u8 efuse_calculate_word_cnts(u8 word_en)
1241 {
1242         u8 word_cnts = 0;
1243         if (!(word_en & BIT(0)))
1244                 word_cnts++;
1245         if (!(word_en & BIT(1)))
1246                 word_cnts++;
1247         if (!(word_en & BIT(2)))
1248                 word_cnts++;
1249         if (!(word_en & BIT(3)))
1250                 word_cnts++;
1251         return word_cnts;
1252 }
1253
1254 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1255                    int max_size, u8 *hwinfo, int *params)
1256 {
1257         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1258         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1259         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1260         u16 eeprom_id;
1261         u16 i, usvalue;
1262
1263         switch (rtlefuse->epromtype) {
1264         case EEPROM_BOOT_EFUSE:
1265                 rtl_efuse_shadow_map_update(hw);
1266                 break;
1267
1268         case EEPROM_93C46:
1269                 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1270                 return 1;
1271
1272         default:
1273                 dev_warn(dev, "no efuse data\n");
1274                 return 1;
1275         }
1276
1277         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1278
1279         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1280                       hwinfo, max_size);
1281
1282         eeprom_id = *((u16 *)&hwinfo[0]);
1283         if (eeprom_id != params[0]) {
1284                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1285                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1286                 rtlefuse->autoload_failflag = true;
1287         } else {
1288                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1289                 rtlefuse->autoload_failflag = false;
1290         }
1291
1292         if (rtlefuse->autoload_failflag)
1293                 return 1;
1294
1295         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1296         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1297         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1298         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1299         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1300                  "EEPROMId = 0x%4x\n", eeprom_id);
1301         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1302                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1303         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1304                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1305         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1306                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1307         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1308                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1309
1310         for (i = 0; i < 6; i += 2) {
1311                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1312                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1313         }
1314         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1315
1316         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1317         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1318         rtlefuse->txpwr_fromeprom = true;
1319         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1320
1321         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1322                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1323
1324         /* set channel plan to world wide 13 */
1325         rtlefuse->channel_plan = params[9];
1326
1327         return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
1330
1331 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1332 {
1333         struct rtl_priv *rtlpriv = rtl_priv(hw);
1334         u8 *pu4byteptr = (u8 *)buffer;
1335         u32 i;
1336
1337         for (i = 0; i < size; i++)
1338                 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1339 }
1340 EXPORT_SYMBOL_GPL(rtl_fw_block_write);
1341
1342 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1343                        u32 size)
1344 {
1345         struct rtl_priv *rtlpriv = rtl_priv(hw);
1346         u8 value8;
1347         u8 u8page = (u8)(page & 0x07);
1348
1349         value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1350
1351         rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1352         rtl_fw_block_write(hw, buffer, size);
1353 }
1354 EXPORT_SYMBOL_GPL(rtl_fw_page_write);
1355
1356 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1357 {
1358         u32 fwlen = *pfwlen;
1359         u8 remain = (u8)(fwlen % 4);
1360
1361         remain = (remain == 0) ? 0 : (4 - remain);
1362
1363         while (remain > 0) {
1364                 pfwbuf[fwlen] = 0;
1365                 fwlen++;
1366                 remain--;
1367         }
1368
1369         *pfwlen = fwlen;
1370 }
1371 EXPORT_SYMBOL_GPL(rtl_fill_dummy);
1372
1373 void rtl_efuse_ops_init(struct ieee80211_hw *hw)
1374 {
1375         struct rtl_priv *rtlpriv = rtl_priv(hw);
1376
1377         rtlpriv->efuse.efuse_ops = &efuse_ops;
1378 }
1379 EXPORT_SYMBOL_GPL(rtl_efuse_ops_init);