GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / nvdimm / core.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/libnvdimm.h>
14 #include <linux/badblocks.h>
15 #include <linux/export.h>
16 #include <linux/module.h>
17 #include <linux/blkdev.h>
18 #include <linux/device.h>
19 #include <linux/ctype.h>
20 #include <linux/ndctl.h>
21 #include <linux/mutex.h>
22 #include <linux/slab.h>
23 #include <linux/io.h>
24 #include "nd-core.h"
25 #include "nd.h"
26
27 LIST_HEAD(nvdimm_bus_list);
28 DEFINE_MUTEX(nvdimm_bus_list_mutex);
29
30 void nvdimm_bus_lock(struct device *dev)
31 {
32         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
33
34         if (!nvdimm_bus)
35                 return;
36         mutex_lock(&nvdimm_bus->reconfig_mutex);
37 }
38 EXPORT_SYMBOL(nvdimm_bus_lock);
39
40 void nvdimm_bus_unlock(struct device *dev)
41 {
42         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
43
44         if (!nvdimm_bus)
45                 return;
46         mutex_unlock(&nvdimm_bus->reconfig_mutex);
47 }
48 EXPORT_SYMBOL(nvdimm_bus_unlock);
49
50 bool is_nvdimm_bus_locked(struct device *dev)
51 {
52         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
53
54         if (!nvdimm_bus)
55                 return false;
56         return mutex_is_locked(&nvdimm_bus->reconfig_mutex);
57 }
58 EXPORT_SYMBOL(is_nvdimm_bus_locked);
59
60 struct nvdimm_map {
61         struct nvdimm_bus *nvdimm_bus;
62         struct list_head list;
63         resource_size_t offset;
64         unsigned long flags;
65         size_t size;
66         union {
67                 void *mem;
68                 void __iomem *iomem;
69         };
70         struct kref kref;
71 };
72
73 static struct nvdimm_map *find_nvdimm_map(struct device *dev,
74                 resource_size_t offset)
75 {
76         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
77         struct nvdimm_map *nvdimm_map;
78
79         list_for_each_entry(nvdimm_map, &nvdimm_bus->mapping_list, list)
80                 if (nvdimm_map->offset == offset)
81                         return nvdimm_map;
82         return NULL;
83 }
84
85 static struct nvdimm_map *alloc_nvdimm_map(struct device *dev,
86                 resource_size_t offset, size_t size, unsigned long flags)
87 {
88         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
89         struct nvdimm_map *nvdimm_map;
90
91         nvdimm_map = kzalloc(sizeof(*nvdimm_map), GFP_KERNEL);
92         if (!nvdimm_map)
93                 return NULL;
94
95         INIT_LIST_HEAD(&nvdimm_map->list);
96         nvdimm_map->nvdimm_bus = nvdimm_bus;
97         nvdimm_map->offset = offset;
98         nvdimm_map->flags = flags;
99         nvdimm_map->size = size;
100         kref_init(&nvdimm_map->kref);
101
102         if (!request_mem_region(offset, size, dev_name(&nvdimm_bus->dev))) {
103                 dev_err(&nvdimm_bus->dev, "failed to request %pa + %zd for %s\n",
104                                 &offset, size, dev_name(dev));
105                 goto err_request_region;
106         }
107
108         if (flags)
109                 nvdimm_map->mem = memremap(offset, size, flags);
110         else
111                 nvdimm_map->iomem = ioremap(offset, size);
112
113         if (!nvdimm_map->mem)
114                 goto err_map;
115
116         dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev), "%s: bus unlocked!",
117                         __func__);
118         list_add(&nvdimm_map->list, &nvdimm_bus->mapping_list);
119
120         return nvdimm_map;
121
122  err_map:
123         release_mem_region(offset, size);
124  err_request_region:
125         kfree(nvdimm_map);
126         return NULL;
127 }
128
129 static void nvdimm_map_release(struct kref *kref)
130 {
131         struct nvdimm_bus *nvdimm_bus;
132         struct nvdimm_map *nvdimm_map;
133
134         nvdimm_map = container_of(kref, struct nvdimm_map, kref);
135         nvdimm_bus = nvdimm_map->nvdimm_bus;
136
137         dev_dbg(&nvdimm_bus->dev, "%s: %pa\n", __func__, &nvdimm_map->offset);
138         list_del(&nvdimm_map->list);
139         if (nvdimm_map->flags)
140                 memunmap(nvdimm_map->mem);
141         else
142                 iounmap(nvdimm_map->iomem);
143         release_mem_region(nvdimm_map->offset, nvdimm_map->size);
144         kfree(nvdimm_map);
145 }
146
147 static void nvdimm_map_put(void *data)
148 {
149         struct nvdimm_map *nvdimm_map = data;
150         struct nvdimm_bus *nvdimm_bus = nvdimm_map->nvdimm_bus;
151
152         nvdimm_bus_lock(&nvdimm_bus->dev);
153         kref_put(&nvdimm_map->kref, nvdimm_map_release);
154         nvdimm_bus_unlock(&nvdimm_bus->dev);
155 }
156
157 /**
158  * devm_nvdimm_memremap - map a resource that is shared across regions
159  * @dev: device that will own a reference to the shared mapping
160  * @offset: physical base address of the mapping
161  * @size: mapping size
162  * @flags: memremap flags, or, if zero, perform an ioremap instead
163  */
164 void *devm_nvdimm_memremap(struct device *dev, resource_size_t offset,
165                 size_t size, unsigned long flags)
166 {
167         struct nvdimm_map *nvdimm_map;
168
169         nvdimm_bus_lock(dev);
170         nvdimm_map = find_nvdimm_map(dev, offset);
171         if (!nvdimm_map)
172                 nvdimm_map = alloc_nvdimm_map(dev, offset, size, flags);
173         else
174                 kref_get(&nvdimm_map->kref);
175         nvdimm_bus_unlock(dev);
176
177         if (!nvdimm_map)
178                 return NULL;
179
180         if (devm_add_action_or_reset(dev, nvdimm_map_put, nvdimm_map))
181                 return NULL;
182
183         return nvdimm_map->mem;
184 }
185 EXPORT_SYMBOL_GPL(devm_nvdimm_memremap);
186
187 u64 nd_fletcher64(void *addr, size_t len, bool le)
188 {
189         u32 *buf = addr;
190         u32 lo32 = 0;
191         u64 hi32 = 0;
192         int i;
193
194         for (i = 0; i < len / sizeof(u32); i++) {
195                 lo32 += le ? le32_to_cpu((__le32) buf[i]) : buf[i];
196                 hi32 += lo32;
197         }
198
199         return hi32 << 32 | lo32;
200 }
201 EXPORT_SYMBOL_GPL(nd_fletcher64);
202
203 struct nvdimm_bus_descriptor *to_nd_desc(struct nvdimm_bus *nvdimm_bus)
204 {
205         /* struct nvdimm_bus definition is private to libnvdimm */
206         return nvdimm_bus->nd_desc;
207 }
208 EXPORT_SYMBOL_GPL(to_nd_desc);
209
210 struct device *to_nvdimm_bus_dev(struct nvdimm_bus *nvdimm_bus)
211 {
212         /* struct nvdimm_bus definition is private to libnvdimm */
213         return &nvdimm_bus->dev;
214 }
215 EXPORT_SYMBOL_GPL(to_nvdimm_bus_dev);
216
217 static bool is_uuid_sep(char sep)
218 {
219         if (sep == '\n' || sep == '-' || sep == ':' || sep == '\0')
220                 return true;
221         return false;
222 }
223
224 static int nd_uuid_parse(struct device *dev, u8 *uuid_out, const char *buf,
225                 size_t len)
226 {
227         const char *str = buf;
228         u8 uuid[16];
229         int i;
230
231         for (i = 0; i < 16; i++) {
232                 if (!isxdigit(str[0]) || !isxdigit(str[1])) {
233                         dev_dbg(dev, "%s: pos: %d buf[%zd]: %c buf[%zd]: %c\n",
234                                         __func__, i, str - buf, str[0],
235                                         str + 1 - buf, str[1]);
236                         return -EINVAL;
237                 }
238
239                 uuid[i] = (hex_to_bin(str[0]) << 4) | hex_to_bin(str[1]);
240                 str += 2;
241                 if (is_uuid_sep(*str))
242                         str++;
243         }
244
245         memcpy(uuid_out, uuid, sizeof(uuid));
246         return 0;
247 }
248
249 /**
250  * nd_uuid_store: common implementation for writing 'uuid' sysfs attributes
251  * @dev: container device for the uuid property
252  * @uuid_out: uuid buffer to replace
253  * @buf: raw sysfs buffer to parse
254  *
255  * Enforce that uuids can only be changed while the device is disabled
256  * (driver detached)
257  * LOCKING: expects device_lock() is held on entry
258  */
259 int nd_uuid_store(struct device *dev, u8 **uuid_out, const char *buf,
260                 size_t len)
261 {
262         u8 uuid[16];
263         int rc;
264
265         if (dev->driver)
266                 return -EBUSY;
267
268         rc = nd_uuid_parse(dev, uuid, buf, len);
269         if (rc)
270                 return rc;
271
272         kfree(*uuid_out);
273         *uuid_out = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
274         if (!(*uuid_out))
275                 return -ENOMEM;
276
277         return 0;
278 }
279
280 ssize_t nd_sector_size_show(unsigned long current_lbasize,
281                 const unsigned long *supported, char *buf)
282 {
283         ssize_t len = 0;
284         int i;
285
286         for (i = 0; supported[i]; i++)
287                 if (current_lbasize == supported[i])
288                         len += sprintf(buf + len, "[%ld] ", supported[i]);
289                 else
290                         len += sprintf(buf + len, "%ld ", supported[i]);
291         len += sprintf(buf + len, "\n");
292         return len;
293 }
294
295 ssize_t nd_sector_size_store(struct device *dev, const char *buf,
296                 unsigned long *current_lbasize, const unsigned long *supported)
297 {
298         unsigned long lbasize;
299         int rc, i;
300
301         if (dev->driver)
302                 return -EBUSY;
303
304         rc = kstrtoul(buf, 0, &lbasize);
305         if (rc)
306                 return rc;
307
308         for (i = 0; supported[i]; i++)
309                 if (lbasize == supported[i])
310                         break;
311
312         if (supported[i]) {
313                 *current_lbasize = lbasize;
314                 return 0;
315         } else {
316                 return -EINVAL;
317         }
318 }
319
320 void __nd_iostat_start(struct bio *bio, unsigned long *start)
321 {
322         struct gendisk *disk = bio->bi_bdev->bd_disk;
323         const int rw = bio_data_dir(bio);
324         int cpu = part_stat_lock();
325
326         *start = jiffies;
327         part_round_stats(cpu, &disk->part0);
328         part_stat_inc(cpu, &disk->part0, ios[rw]);
329         part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
330         part_inc_in_flight(&disk->part0, rw);
331         part_stat_unlock();
332 }
333 EXPORT_SYMBOL(__nd_iostat_start);
334
335 void nd_iostat_end(struct bio *bio, unsigned long start)
336 {
337         struct gendisk *disk = bio->bi_bdev->bd_disk;
338         unsigned long duration = jiffies - start;
339         const int rw = bio_data_dir(bio);
340         int cpu = part_stat_lock();
341
342         part_stat_add(cpu, &disk->part0, ticks[rw], duration);
343         part_round_stats(cpu, &disk->part0);
344         part_dec_in_flight(&disk->part0, rw);
345         part_stat_unlock();
346 }
347 EXPORT_SYMBOL(nd_iostat_end);
348
349 static ssize_t commands_show(struct device *dev,
350                 struct device_attribute *attr, char *buf)
351 {
352         int cmd, len = 0;
353         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
354         struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
355
356         for_each_set_bit(cmd, &nd_desc->cmd_mask, BITS_PER_LONG)
357                 len += sprintf(buf + len, "%s ", nvdimm_bus_cmd_name(cmd));
358         len += sprintf(buf + len, "\n");
359         return len;
360 }
361 static DEVICE_ATTR_RO(commands);
362
363 static const char *nvdimm_bus_provider(struct nvdimm_bus *nvdimm_bus)
364 {
365         struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
366         struct device *parent = nvdimm_bus->dev.parent;
367
368         if (nd_desc->provider_name)
369                 return nd_desc->provider_name;
370         else if (parent)
371                 return dev_name(parent);
372         else
373                 return "unknown";
374 }
375
376 static ssize_t provider_show(struct device *dev,
377                 struct device_attribute *attr, char *buf)
378 {
379         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
380
381         return sprintf(buf, "%s\n", nvdimm_bus_provider(nvdimm_bus));
382 }
383 static DEVICE_ATTR_RO(provider);
384
385 static int flush_namespaces(struct device *dev, void *data)
386 {
387         device_lock(dev);
388         device_unlock(dev);
389         return 0;
390 }
391
392 static int flush_regions_dimms(struct device *dev, void *data)
393 {
394         device_lock(dev);
395         device_unlock(dev);
396         device_for_each_child(dev, NULL, flush_namespaces);
397         return 0;
398 }
399
400 static ssize_t wait_probe_show(struct device *dev,
401                 struct device_attribute *attr, char *buf)
402 {
403         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
404         struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
405         int rc;
406
407         if (nd_desc->flush_probe) {
408                 rc = nd_desc->flush_probe(nd_desc);
409                 if (rc)
410                         return rc;
411         }
412         nd_synchronize();
413         device_for_each_child(dev, NULL, flush_regions_dimms);
414         return sprintf(buf, "1\n");
415 }
416 static DEVICE_ATTR_RO(wait_probe);
417
418 static struct attribute *nvdimm_bus_attributes[] = {
419         &dev_attr_commands.attr,
420         &dev_attr_wait_probe.attr,
421         &dev_attr_provider.attr,
422         NULL,
423 };
424
425 struct attribute_group nvdimm_bus_attribute_group = {
426         .attrs = nvdimm_bus_attributes,
427 };
428 EXPORT_SYMBOL_GPL(nvdimm_bus_attribute_group);
429
430 static void set_badblock(struct badblocks *bb, sector_t s, int num)
431 {
432         dev_dbg(bb->dev, "Found a poison range (0x%llx, 0x%llx)\n",
433                         (u64) s * 512, (u64) num * 512);
434         /* this isn't an error as the hardware will still throw an exception */
435         if (badblocks_set(bb, s, num, 1))
436                 dev_info_once(bb->dev, "%s: failed for sector %llx\n",
437                                 __func__, (u64) s);
438 }
439
440 /**
441  * __add_badblock_range() - Convert a physical address range to bad sectors
442  * @bb:         badblocks instance to populate
443  * @ns_offset:  namespace offset where the error range begins (in bytes)
444  * @len:        number of bytes of poison to be added
445  *
446  * This assumes that the range provided with (ns_offset, len) is within
447  * the bounds of physical addresses for this namespace, i.e. lies in the
448  * interval [ns_start, ns_start + ns_size)
449  */
450 static void __add_badblock_range(struct badblocks *bb, u64 ns_offset, u64 len)
451 {
452         const unsigned int sector_size = 512;
453         sector_t start_sector, end_sector;
454         u64 num_sectors;
455         u32 rem;
456
457         start_sector = div_u64(ns_offset, sector_size);
458         end_sector = div_u64_rem(ns_offset + len, sector_size, &rem);
459         if (rem)
460                 end_sector++;
461         num_sectors = end_sector - start_sector;
462
463         if (unlikely(num_sectors > (u64)INT_MAX)) {
464                 u64 remaining = num_sectors;
465                 sector_t s = start_sector;
466
467                 while (remaining) {
468                         int done = min_t(u64, remaining, INT_MAX);
469
470                         set_badblock(bb, s, done);
471                         remaining -= done;
472                         s += done;
473                 }
474         } else
475                 set_badblock(bb, start_sector, num_sectors);
476 }
477
478 static void badblocks_populate(struct list_head *poison_list,
479                 struct badblocks *bb, const struct resource *res)
480 {
481         struct nd_poison *pl;
482
483         if (list_empty(poison_list))
484                 return;
485
486         list_for_each_entry(pl, poison_list, list) {
487                 u64 pl_end = pl->start + pl->length - 1;
488
489                 /* Discard intervals with no intersection */
490                 if (pl_end < res->start)
491                         continue;
492                 if (pl->start >  res->end)
493                         continue;
494                 /* Deal with any overlap after start of the namespace */
495                 if (pl->start >= res->start) {
496                         u64 start = pl->start;
497                         u64 len;
498
499                         if (pl_end <= res->end)
500                                 len = pl->length;
501                         else
502                                 len = res->start + resource_size(res)
503                                         - pl->start;
504                         __add_badblock_range(bb, start - res->start, len);
505                         continue;
506                 }
507                 /* Deal with overlap for poison starting before the namespace */
508                 if (pl->start < res->start) {
509                         u64 len;
510
511                         if (pl_end < res->end)
512                                 len = pl->start + pl->length - res->start;
513                         else
514                                 len = resource_size(res);
515                         __add_badblock_range(bb, 0, len);
516                 }
517         }
518 }
519
520 /**
521  * nvdimm_badblocks_populate() - Convert a list of poison ranges to badblocks
522  * @region: parent region of the range to interrogate
523  * @bb: badblocks instance to populate
524  * @res: resource range to consider
525  *
526  * The poison list generated during bus initialization may contain
527  * multiple, possibly overlapping physical address ranges.  Compare each
528  * of these ranges to the resource range currently being initialized,
529  * and add badblocks entries for all matching sub-ranges
530  */
531 void nvdimm_badblocks_populate(struct nd_region *nd_region,
532                 struct badblocks *bb, const struct resource *res)
533 {
534         struct nvdimm_bus *nvdimm_bus;
535         struct list_head *poison_list;
536
537         if (!is_nd_pmem(&nd_region->dev)) {
538                 dev_WARN_ONCE(&nd_region->dev, 1,
539                                 "%s only valid for pmem regions\n", __func__);
540                 return;
541         }
542         nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
543         poison_list = &nvdimm_bus->poison_list;
544
545         nvdimm_bus_lock(&nvdimm_bus->dev);
546         badblocks_populate(poison_list, bb, res);
547         nvdimm_bus_unlock(&nvdimm_bus->dev);
548 }
549 EXPORT_SYMBOL_GPL(nvdimm_badblocks_populate);
550
551 static int add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length,
552                         gfp_t flags)
553 {
554         struct nd_poison *pl;
555
556         pl = kzalloc(sizeof(*pl), flags);
557         if (!pl)
558                 return -ENOMEM;
559
560         pl->start = addr;
561         pl->length = length;
562         list_add_tail(&pl->list, &nvdimm_bus->poison_list);
563
564         return 0;
565 }
566
567 static int bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length)
568 {
569         struct nd_poison *pl;
570
571         if (list_empty(&nvdimm_bus->poison_list))
572                 return add_poison(nvdimm_bus, addr, length, GFP_KERNEL);
573
574         /*
575          * There is a chance this is a duplicate, check for those first.
576          * This will be the common case as ARS_STATUS returns all known
577          * errors in the SPA space, and we can't query it per region
578          */
579         list_for_each_entry(pl, &nvdimm_bus->poison_list, list)
580                 if (pl->start == addr) {
581                         /* If length has changed, update this list entry */
582                         if (pl->length != length)
583                                 pl->length = length;
584                         return 0;
585                 }
586
587         /*
588          * If not a duplicate or a simple length update, add the entry as is,
589          * as any overlapping ranges will get resolved when the list is consumed
590          * and converted to badblocks
591          */
592         return add_poison(nvdimm_bus, addr, length, GFP_KERNEL);
593 }
594
595 int nvdimm_bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length)
596 {
597         int rc;
598
599         nvdimm_bus_lock(&nvdimm_bus->dev);
600         rc = bus_add_poison(nvdimm_bus, addr, length);
601         nvdimm_bus_unlock(&nvdimm_bus->dev);
602
603         return rc;
604 }
605 EXPORT_SYMBOL_GPL(nvdimm_bus_add_poison);
606
607 void nvdimm_clear_from_poison_list(struct nvdimm_bus *nvdimm_bus,
608                 phys_addr_t start, unsigned int len)
609 {
610         struct list_head *poison_list = &nvdimm_bus->poison_list;
611         u64 clr_end = start + len - 1;
612         struct nd_poison *pl, *next;
613
614         nvdimm_bus_lock(&nvdimm_bus->dev);
615         WARN_ON_ONCE(list_empty(poison_list));
616
617         /*
618          * [start, clr_end] is the poison interval being cleared.
619          * [pl->start, pl_end] is the poison_list entry we're comparing
620          * the above interval against. The poison list entry may need
621          * to be modified (update either start or length), deleted, or
622          * split into two based on the overlap characteristics
623          */
624
625         list_for_each_entry_safe(pl, next, poison_list, list) {
626                 u64 pl_end = pl->start + pl->length - 1;
627
628                 /* Skip intervals with no intersection */
629                 if (pl_end < start)
630                         continue;
631                 if (pl->start >  clr_end)
632                         continue;
633                 /* Delete completely overlapped poison entries */
634                 if ((pl->start >= start) && (pl_end <= clr_end)) {
635                         list_del(&pl->list);
636                         kfree(pl);
637                         continue;
638                 }
639                 /* Adjust start point of partially cleared entries */
640                 if ((start <= pl->start) && (clr_end > pl->start)) {
641                         pl->length -= clr_end - pl->start + 1;
642                         pl->start = clr_end + 1;
643                         continue;
644                 }
645                 /* Adjust pl->length for partial clearing at the tail end */
646                 if ((pl->start < start) && (pl_end <= clr_end)) {
647                         /* pl->start remains the same */
648                         pl->length = start - pl->start;
649                         continue;
650                 }
651                 /*
652                  * If clearing in the middle of an entry, we split it into
653                  * two by modifying the current entry to represent one half of
654                  * the split, and adding a new entry for the second half.
655                  */
656                 if ((pl->start < start) && (pl_end > clr_end)) {
657                         u64 new_start = clr_end + 1;
658                         u64 new_len = pl_end - new_start + 1;
659
660                         /* Add new entry covering the right half */
661                         add_poison(nvdimm_bus, new_start, new_len, GFP_NOIO);
662                         /* Adjust this entry to cover the left half */
663                         pl->length = start - pl->start;
664                         continue;
665                 }
666         }
667         nvdimm_bus_unlock(&nvdimm_bus->dev);
668 }
669 EXPORT_SYMBOL_GPL(nvdimm_clear_from_poison_list);
670
671 #ifdef CONFIG_BLK_DEV_INTEGRITY
672 int nd_integrity_init(struct gendisk *disk, unsigned long meta_size)
673 {
674         struct blk_integrity bi;
675
676         if (meta_size == 0)
677                 return 0;
678
679         memset(&bi, 0, sizeof(bi));
680
681         bi.tuple_size = meta_size;
682         bi.tag_size = meta_size;
683
684         blk_integrity_register(disk, &bi);
685         blk_queue_max_integrity_segments(disk->queue, 1);
686
687         return 0;
688 }
689 EXPORT_SYMBOL(nd_integrity_init);
690
691 #else /* CONFIG_BLK_DEV_INTEGRITY */
692 int nd_integrity_init(struct gendisk *disk, unsigned long meta_size)
693 {
694         return 0;
695 }
696 EXPORT_SYMBOL(nd_integrity_init);
697
698 #endif
699
700 static __init int libnvdimm_init(void)
701 {
702         int rc;
703
704         rc = nvdimm_bus_init();
705         if (rc)
706                 return rc;
707         rc = nvdimm_init();
708         if (rc)
709                 goto err_dimm;
710         rc = nd_region_init();
711         if (rc)
712                 goto err_region;
713         return 0;
714  err_region:
715         nvdimm_exit();
716  err_dimm:
717         nvdimm_bus_exit();
718         return rc;
719 }
720
721 static __exit void libnvdimm_exit(void)
722 {
723         WARN_ON(!list_empty(&nvdimm_bus_list));
724         nd_region_exit();
725         nvdimm_exit();
726         nvdimm_bus_exit();
727         nd_region_devs_exit();
728         nvdimm_devs_exit();
729 }
730
731 MODULE_LICENSE("GPL v2");
732 MODULE_AUTHOR("Intel Corporation");
733 subsys_initcall(libnvdimm_init);
734 module_exit(libnvdimm_exit);