GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38         /*
39          * nvdimm bus services need a 'dev' parameter, and we record the device
40          * at init in bb.dev.
41          */
42         return pmem->bb.dev;
43 }
44
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47         return to_nd_region(to_dev(pmem)->parent);
48 }
49
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51                 unsigned int len)
52 {
53         struct device *dev = to_dev(pmem);
54         sector_t sector;
55         long cleared;
56
57         sector = (offset - pmem->data_offset) / 512;
58         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
59
60         if (cleared > 0 && cleared / 512) {
61                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62                                 __func__, (unsigned long long) sector,
63                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
64                 badblocks_clear(&pmem->bb, sector, cleared / 512);
65         } else {
66                 return -EIO;
67         }
68
69         invalidate_pmem(pmem->virt_addr + offset, len);
70         return 0;
71 }
72
73 static void write_pmem(void *pmem_addr, struct page *page,
74                 unsigned int off, unsigned int len)
75 {
76         void *mem = kmap_atomic(page);
77
78         memcpy_to_pmem(pmem_addr, mem + off, len);
79         kunmap_atomic(mem);
80 }
81
82 static int read_pmem(struct page *page, unsigned int off,
83                 void *pmem_addr, unsigned int len)
84 {
85         int rc;
86         void *mem = kmap_atomic(page);
87
88         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
89         kunmap_atomic(mem);
90         if (rc)
91                 return -EIO;
92         return 0;
93 }
94
95 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
96                         unsigned int len, unsigned int off, bool is_write,
97                         sector_t sector)
98 {
99         int rc = 0;
100         bool bad_pmem = false;
101         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
102         void *pmem_addr = pmem->virt_addr + pmem_off;
103
104         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
105                 bad_pmem = true;
106
107         if (!is_write) {
108                 if (unlikely(bad_pmem))
109                         rc = -EIO;
110                 else {
111                         rc = read_pmem(page, off, pmem_addr, len);
112                         flush_dcache_page(page);
113                 }
114         } else {
115                 /*
116                  * Note that we write the data both before and after
117                  * clearing poison.  The write before clear poison
118                  * handles situations where the latest written data is
119                  * preserved and the clear poison operation simply marks
120                  * the address range as valid without changing the data.
121                  * In this case application software can assume that an
122                  * interrupted write will either return the new good
123                  * data or an error.
124                  *
125                  * However, if pmem_clear_poison() leaves the data in an
126                  * indeterminate state we need to perform the write
127                  * after clear poison.
128                  */
129                 flush_dcache_page(page);
130                 write_pmem(pmem_addr, page, off, len);
131                 if (unlikely(bad_pmem)) {
132                         rc = pmem_clear_poison(pmem, pmem_off, len);
133                         write_pmem(pmem_addr, page, off, len);
134                 }
135         }
136
137         return rc;
138 }
139
140 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
141 #ifndef REQ_FLUSH
142 #define REQ_FLUSH REQ_PREFLUSH
143 #endif
144
145 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
146 {
147         int rc = 0;
148         bool do_acct;
149         unsigned long start;
150         struct bio_vec bvec;
151         struct bvec_iter iter;
152         struct pmem_device *pmem = q->queuedata;
153         struct nd_region *nd_region = to_region(pmem);
154
155         if (bio->bi_opf & REQ_FLUSH)
156                 nvdimm_flush(nd_region);
157
158         do_acct = nd_iostat_start(bio, &start);
159         bio_for_each_segment(bvec, bio, iter) {
160                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
161                                 bvec.bv_offset, op_is_write(bio_op(bio)),
162                                 iter.bi_sector);
163                 if (rc) {
164                         bio->bi_error = rc;
165                         break;
166                 }
167         }
168         if (do_acct)
169                 nd_iostat_end(bio, start);
170
171         if (bio->bi_opf & REQ_FUA)
172                 nvdimm_flush(nd_region);
173
174         bio_endio(bio);
175         return BLK_QC_T_NONE;
176 }
177
178 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
179                        struct page *page, bool is_write)
180 {
181         struct pmem_device *pmem = bdev->bd_queue->queuedata;
182         int rc;
183
184         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
185
186         /*
187          * The ->rw_page interface is subtle and tricky.  The core
188          * retries on any error, so we can only invoke page_endio() in
189          * the successful completion case.  Otherwise, we'll see crashes
190          * caused by double completion.
191          */
192         if (rc == 0)
193                 page_endio(page, is_write, 0);
194
195         return rc;
196 }
197
198 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
199 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
200                       void **kaddr, pfn_t *pfn, long size)
201 {
202         struct pmem_device *pmem = bdev->bd_queue->queuedata;
203         resource_size_t offset = sector * 512 + pmem->data_offset;
204
205         if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
206                 return -EIO;
207         *kaddr = pmem->virt_addr + offset;
208         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
209
210         /*
211          * If badblocks are present, limit known good range to the
212          * requested range.
213          */
214         if (unlikely(pmem->bb.count))
215                 return size;
216         return pmem->size - pmem->pfn_pad - offset;
217 }
218
219 static const struct block_device_operations pmem_fops = {
220         .owner =                THIS_MODULE,
221         .rw_page =              pmem_rw_page,
222         .direct_access =        pmem_direct_access,
223         .revalidate_disk =      nvdimm_revalidate_disk,
224 };
225
226 static void pmem_release_queue(void *q)
227 {
228         blk_cleanup_queue(q);
229 }
230
231 static void pmem_release_disk(void *disk)
232 {
233         del_gendisk(disk);
234         put_disk(disk);
235 }
236
237 static int pmem_attach_disk(struct device *dev,
238                 struct nd_namespace_common *ndns)
239 {
240         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
241         struct nd_region *nd_region = to_nd_region(dev->parent);
242         struct vmem_altmap __altmap, *altmap = NULL;
243         struct resource *res = &nsio->res;
244         struct nd_pfn *nd_pfn = NULL;
245         int nid = dev_to_node(dev);
246         struct nd_pfn_sb *pfn_sb;
247         struct pmem_device *pmem;
248         struct resource pfn_res;
249         struct request_queue *q;
250         struct gendisk *disk;
251         void *addr;
252
253         /* while nsio_rw_bytes is active, parse a pfn info block if present */
254         if (is_nd_pfn(dev)) {
255                 nd_pfn = to_nd_pfn(dev);
256                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
257                 if (IS_ERR(altmap))
258                         return PTR_ERR(altmap);
259         }
260
261         /* we're attaching a block device, disable raw namespace access */
262         devm_nsio_disable(dev, nsio);
263
264         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
265         if (!pmem)
266                 return -ENOMEM;
267
268         dev_set_drvdata(dev, pmem);
269         pmem->phys_addr = res->start;
270         pmem->size = resource_size(res);
271         if (nvdimm_has_flush(nd_region) < 0)
272                 dev_warn(dev, "unable to guarantee persistence of writes\n");
273
274         if (!devm_request_mem_region(dev, res->start, resource_size(res),
275                                 dev_name(dev))) {
276                 dev_warn(dev, "could not reserve region %pR\n", res);
277                 return -EBUSY;
278         }
279
280         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
281         if (!q)
282                 return -ENOMEM;
283
284         pmem->pfn_flags = PFN_DEV;
285         if (is_nd_pfn(dev)) {
286                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
287                                 altmap);
288                 pfn_sb = nd_pfn->pfn_sb;
289                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
290                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
291                 pmem->pfn_flags |= PFN_MAP;
292                 res = &pfn_res; /* for badblocks populate */
293                 res->start += pmem->data_offset;
294         } else if (pmem_should_map_pages(dev)) {
295                 addr = devm_memremap_pages(dev, &nsio->res,
296                                 &q->q_usage_counter, NULL);
297                 pmem->pfn_flags |= PFN_MAP;
298         } else
299                 addr = devm_memremap(dev, pmem->phys_addr,
300                                 pmem->size, ARCH_MEMREMAP_PMEM);
301
302         /*
303          * At release time the queue must be dead before
304          * devm_memremap_pages is unwound
305          */
306         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
307                 return -ENOMEM;
308
309         if (IS_ERR(addr))
310                 return PTR_ERR(addr);
311         pmem->virt_addr = addr;
312
313         blk_queue_write_cache(q, true, true);
314         blk_queue_make_request(q, pmem_make_request);
315         blk_queue_physical_block_size(q, PAGE_SIZE);
316         blk_queue_max_hw_sectors(q, UINT_MAX);
317         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
318         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
319         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
320         q->queuedata = pmem;
321
322         disk = alloc_disk_node(0, nid);
323         if (!disk)
324                 return -ENOMEM;
325
326         disk->fops              = &pmem_fops;
327         disk->queue             = q;
328         disk->flags             = GENHD_FL_EXT_DEVT;
329         nvdimm_namespace_disk_name(ndns, disk->disk_name);
330         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
331                         / 512);
332         if (devm_init_badblocks(dev, &pmem->bb))
333                 return -ENOMEM;
334         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
335         disk->bb = &pmem->bb;
336         device_add_disk(dev, disk);
337
338         if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
339                 return -ENOMEM;
340
341         revalidate_disk(disk);
342
343         return 0;
344 }
345
346 static int nd_pmem_probe(struct device *dev)
347 {
348         struct nd_namespace_common *ndns;
349
350         ndns = nvdimm_namespace_common_probe(dev);
351         if (IS_ERR(ndns))
352                 return PTR_ERR(ndns);
353
354         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
355                 return -ENXIO;
356
357         if (is_nd_btt(dev))
358                 return nvdimm_namespace_attach_btt(ndns);
359
360         if (is_nd_pfn(dev))
361                 return pmem_attach_disk(dev, ndns);
362
363         /* if we find a valid info-block we'll come back as that personality */
364         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
365                         || nd_dax_probe(dev, ndns) == 0)
366                 return -ENXIO;
367
368         /* ...otherwise we're just a raw pmem device */
369         return pmem_attach_disk(dev, ndns);
370 }
371
372 static int nd_pmem_remove(struct device *dev)
373 {
374         if (is_nd_btt(dev))
375                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
376         nvdimm_flush(to_nd_region(dev->parent));
377
378         return 0;
379 }
380
381 static void nd_pmem_shutdown(struct device *dev)
382 {
383         nvdimm_flush(to_nd_region(dev->parent));
384 }
385
386 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
387 {
388         struct nd_region *nd_region;
389         resource_size_t offset = 0, end_trunc = 0;
390         struct nd_namespace_common *ndns;
391         struct nd_namespace_io *nsio;
392         struct resource res;
393         struct badblocks *bb;
394
395         if (event != NVDIMM_REVALIDATE_POISON)
396                 return;
397
398         if (is_nd_btt(dev)) {
399                 struct nd_btt *nd_btt = to_nd_btt(dev);
400
401                 ndns = nd_btt->ndns;
402                 nd_region = to_nd_region(ndns->dev.parent);
403                 nsio = to_nd_namespace_io(&ndns->dev);
404                 bb = &nsio->bb;
405         } else {
406                 struct pmem_device *pmem = dev_get_drvdata(dev);
407
408                 nd_region = to_region(pmem);
409                 bb = &pmem->bb;
410
411                 if (is_nd_pfn(dev)) {
412                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
413                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
414
415                         ndns = nd_pfn->ndns;
416                         offset = pmem->data_offset +
417                                         __le32_to_cpu(pfn_sb->start_pad);
418                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
419                 } else {
420                         ndns = to_ndns(dev);
421                 }
422
423                 nsio = to_nd_namespace_io(&ndns->dev);
424         }
425
426         res.start = nsio->res.start + offset;
427         res.end = nsio->res.end - end_trunc;
428         nvdimm_badblocks_populate(nd_region, bb, &res);
429 }
430
431 MODULE_ALIAS("pmem");
432 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
433 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
434 static struct nd_device_driver nd_pmem_driver = {
435         .probe = nd_pmem_probe,
436         .remove = nd_pmem_remove,
437         .notify = nd_pmem_notify,
438         .shutdown = nd_pmem_shutdown,
439         .drv = {
440                 .name = "nd_pmem",
441         },
442         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
443 };
444
445 static int __init pmem_init(void)
446 {
447         return nd_driver_register(&nd_pmem_driver);
448 }
449 module_init(pmem_init);
450
451 static void pmem_exit(void)
452 {
453         driver_unregister(&nd_pmem_driver.drv);
454 }
455 module_exit(pmem_exit);
456
457 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
458 MODULE_LICENSE("GPL v2");