GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / nvdimm / region_devs.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32
33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34                 struct nd_region_data *ndrd)
35 {
36         int i, j;
37
38         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41                 struct resource *res = &nvdimm->flush_wpq[i];
42                 unsigned long pfn = PHYS_PFN(res->start);
43                 void __iomem *flush_page;
44
45                 /* check if flush hints share a page */
46                 for (j = 0; j < i; j++) {
47                         struct resource *res_j = &nvdimm->flush_wpq[j];
48                         unsigned long pfn_j = PHYS_PFN(res_j->start);
49
50                         if (pfn == pfn_j)
51                                 break;
52                 }
53
54                 if (j < i)
55                         flush_page = (void __iomem *) ((unsigned long)
56                                         ndrd_get_flush_wpq(ndrd, dimm, j)
57                                         & PAGE_MASK);
58                 else
59                         flush_page = devm_nvdimm_ioremap(dev,
60                                         PFN_PHYS(pfn), PAGE_SIZE);
61                 if (!flush_page)
62                         return -ENXIO;
63                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64                                 + (res->start & ~PAGE_MASK));
65         }
66
67         return 0;
68 }
69
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72         int i, j, num_flush = 0;
73         struct nd_region_data *ndrd;
74         struct device *dev = &nd_region->dev;
75         size_t flush_data_size = sizeof(void *);
76
77         nvdimm_bus_lock(&nd_region->dev);
78         for (i = 0; i < nd_region->ndr_mappings; i++) {
79                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
81
82                 /* at least one null hint slot per-dimm for the "no-hint" case */
83                 flush_data_size += sizeof(void *);
84                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85                 if (!nvdimm->num_flush)
86                         continue;
87                 flush_data_size += nvdimm->num_flush * sizeof(void *);
88         }
89         nvdimm_bus_unlock(&nd_region->dev);
90
91         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92         if (!ndrd)
93                 return -ENOMEM;
94         dev_set_drvdata(dev, ndrd);
95
96         if (!num_flush)
97                 return 0;
98
99         ndrd->hints_shift = ilog2(num_flush);
100         for (i = 0; i < nd_region->ndr_mappings; i++) {
101                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
102                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
103                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
104
105                 if (rc)
106                         return rc;
107         }
108
109         /*
110          * Clear out entries that are duplicates. This should prevent the
111          * extra flushings.
112          */
113         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
114                 /* ignore if NULL already */
115                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
116                         continue;
117
118                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
119                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
120                             ndrd_get_flush_wpq(ndrd, j, 0))
121                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
122         }
123
124         return 0;
125 }
126
127 static void nd_region_release(struct device *dev)
128 {
129         struct nd_region *nd_region = to_nd_region(dev);
130         u16 i;
131
132         for (i = 0; i < nd_region->ndr_mappings; i++) {
133                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
134                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
135
136                 put_device(&nvdimm->dev);
137         }
138         free_percpu(nd_region->lane);
139         ida_simple_remove(&region_ida, nd_region->id);
140         if (is_nd_blk(dev))
141                 kfree(to_nd_blk_region(dev));
142         else
143                 kfree(nd_region);
144 }
145
146 static struct device_type nd_blk_device_type = {
147         .name = "nd_blk",
148         .release = nd_region_release,
149 };
150
151 static struct device_type nd_pmem_device_type = {
152         .name = "nd_pmem",
153         .release = nd_region_release,
154 };
155
156 static struct device_type nd_volatile_device_type = {
157         .name = "nd_volatile",
158         .release = nd_region_release,
159 };
160
161 bool is_nd_pmem(struct device *dev)
162 {
163         return dev ? dev->type == &nd_pmem_device_type : false;
164 }
165
166 bool is_nd_blk(struct device *dev)
167 {
168         return dev ? dev->type == &nd_blk_device_type : false;
169 }
170
171 bool is_nd_volatile(struct device *dev)
172 {
173         return dev ? dev->type == &nd_volatile_device_type : false;
174 }
175
176 struct nd_region *to_nd_region(struct device *dev)
177 {
178         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
179
180         WARN_ON(dev->type->release != nd_region_release);
181         return nd_region;
182 }
183 EXPORT_SYMBOL_GPL(to_nd_region);
184
185 struct device *nd_region_dev(struct nd_region *nd_region)
186 {
187         if (!nd_region)
188                 return NULL;
189         return &nd_region->dev;
190 }
191 EXPORT_SYMBOL_GPL(nd_region_dev);
192
193 struct nd_blk_region *to_nd_blk_region(struct device *dev)
194 {
195         struct nd_region *nd_region = to_nd_region(dev);
196
197         WARN_ON(!is_nd_blk(dev));
198         return container_of(nd_region, struct nd_blk_region, nd_region);
199 }
200 EXPORT_SYMBOL_GPL(to_nd_blk_region);
201
202 void *nd_region_provider_data(struct nd_region *nd_region)
203 {
204         return nd_region->provider_data;
205 }
206 EXPORT_SYMBOL_GPL(nd_region_provider_data);
207
208 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
209 {
210         return ndbr->blk_provider_data;
211 }
212 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
213
214 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
215 {
216         ndbr->blk_provider_data = data;
217 }
218 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
219
220 /**
221  * nd_region_to_nstype() - region to an integer namespace type
222  * @nd_region: region-device to interrogate
223  *
224  * This is the 'nstype' attribute of a region as well, an input to the
225  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
226  * namespace devices with namespace drivers.
227  */
228 int nd_region_to_nstype(struct nd_region *nd_region)
229 {
230         if (is_memory(&nd_region->dev)) {
231                 u16 i, alias;
232
233                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
234                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
235                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
236
237                         if (test_bit(NDD_ALIASING, &nvdimm->flags))
238                                 alias++;
239                 }
240                 if (alias)
241                         return ND_DEVICE_NAMESPACE_PMEM;
242                 else
243                         return ND_DEVICE_NAMESPACE_IO;
244         } else if (is_nd_blk(&nd_region->dev)) {
245                 return ND_DEVICE_NAMESPACE_BLK;
246         }
247
248         return 0;
249 }
250 EXPORT_SYMBOL(nd_region_to_nstype);
251
252 static ssize_t size_show(struct device *dev,
253                 struct device_attribute *attr, char *buf)
254 {
255         struct nd_region *nd_region = to_nd_region(dev);
256         unsigned long long size = 0;
257
258         if (is_memory(dev)) {
259                 size = nd_region->ndr_size;
260         } else if (nd_region->ndr_mappings == 1) {
261                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
262
263                 size = nd_mapping->size;
264         }
265
266         return sprintf(buf, "%llu\n", size);
267 }
268 static DEVICE_ATTR_RO(size);
269
270 static ssize_t deep_flush_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         struct nd_region *nd_region = to_nd_region(dev);
274
275         /*
276          * NOTE: in the nvdimm_has_flush() error case this attribute is
277          * not visible.
278          */
279         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
280 }
281
282 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
283                 const char *buf, size_t len)
284 {
285         bool flush;
286         int rc = strtobool(buf, &flush);
287         struct nd_region *nd_region = to_nd_region(dev);
288
289         if (rc)
290                 return rc;
291         if (!flush)
292                 return -EINVAL;
293         nvdimm_flush(nd_region);
294
295         return len;
296 }
297 static DEVICE_ATTR_RW(deep_flush);
298
299 static ssize_t mappings_show(struct device *dev,
300                 struct device_attribute *attr, char *buf)
301 {
302         struct nd_region *nd_region = to_nd_region(dev);
303
304         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
305 }
306 static DEVICE_ATTR_RO(mappings);
307
308 static ssize_t nstype_show(struct device *dev,
309                 struct device_attribute *attr, char *buf)
310 {
311         struct nd_region *nd_region = to_nd_region(dev);
312
313         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
314 }
315 static DEVICE_ATTR_RO(nstype);
316
317 static ssize_t set_cookie_show(struct device *dev,
318                 struct device_attribute *attr, char *buf)
319 {
320         struct nd_region *nd_region = to_nd_region(dev);
321         struct nd_interleave_set *nd_set = nd_region->nd_set;
322         ssize_t rc = 0;
323
324         if (is_memory(dev) && nd_set)
325                 /* pass, should be precluded by region_visible */;
326         else
327                 return -ENXIO;
328
329         /*
330          * The cookie to show depends on which specification of the
331          * labels we are using. If there are not labels then default to
332          * the v1.1 namespace label cookie definition. To read all this
333          * data we need to wait for probing to settle.
334          */
335         device_lock(dev);
336         nvdimm_bus_lock(dev);
337         wait_nvdimm_bus_probe_idle(dev);
338         if (nd_region->ndr_mappings) {
339                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
340                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
341
342                 if (ndd) {
343                         struct nd_namespace_index *nsindex;
344
345                         nsindex = to_namespace_index(ndd, ndd->ns_current);
346                         rc = sprintf(buf, "%#llx\n",
347                                         nd_region_interleave_set_cookie(nd_region,
348                                                 nsindex));
349                 }
350         }
351         nvdimm_bus_unlock(dev);
352         device_unlock(dev);
353
354         if (rc)
355                 return rc;
356         return sprintf(buf, "%#llx\n", nd_set->cookie1);
357 }
358 static DEVICE_ATTR_RO(set_cookie);
359
360 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
361 {
362         resource_size_t blk_max_overlap = 0, available, overlap;
363         int i;
364
365         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
366
367  retry:
368         available = 0;
369         overlap = blk_max_overlap;
370         for (i = 0; i < nd_region->ndr_mappings; i++) {
371                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
372                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
373
374                 /* if a dimm is disabled the available capacity is zero */
375                 if (!ndd)
376                         return 0;
377
378                 if (is_memory(&nd_region->dev)) {
379                         available += nd_pmem_available_dpa(nd_region,
380                                         nd_mapping, &overlap);
381                         if (overlap > blk_max_overlap) {
382                                 blk_max_overlap = overlap;
383                                 goto retry;
384                         }
385                 } else if (is_nd_blk(&nd_region->dev))
386                         available += nd_blk_available_dpa(nd_region);
387         }
388
389         return available;
390 }
391
392 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
393 {
394         resource_size_t available = 0;
395         int i;
396
397         if (is_memory(&nd_region->dev))
398                 available = PHYS_ADDR_MAX;
399
400         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
401         for (i = 0; i < nd_region->ndr_mappings; i++) {
402                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
403
404                 if (is_memory(&nd_region->dev))
405                         available = min(available,
406                                         nd_pmem_max_contiguous_dpa(nd_region,
407                                                                    nd_mapping));
408                 else if (is_nd_blk(&nd_region->dev))
409                         available += nd_blk_available_dpa(nd_region);
410         }
411         if (is_memory(&nd_region->dev))
412                 return available * nd_region->ndr_mappings;
413         return available;
414 }
415
416 static ssize_t available_size_show(struct device *dev,
417                 struct device_attribute *attr, char *buf)
418 {
419         struct nd_region *nd_region = to_nd_region(dev);
420         unsigned long long available = 0;
421
422         /*
423          * Flush in-flight updates and grab a snapshot of the available
424          * size.  Of course, this value is potentially invalidated the
425          * memory nvdimm_bus_lock() is dropped, but that's userspace's
426          * problem to not race itself.
427          */
428         device_lock(dev);
429         nvdimm_bus_lock(dev);
430         wait_nvdimm_bus_probe_idle(dev);
431         available = nd_region_available_dpa(nd_region);
432         nvdimm_bus_unlock(dev);
433         device_unlock(dev);
434
435         return sprintf(buf, "%llu\n", available);
436 }
437 static DEVICE_ATTR_RO(available_size);
438
439 static ssize_t max_available_extent_show(struct device *dev,
440                 struct device_attribute *attr, char *buf)
441 {
442         struct nd_region *nd_region = to_nd_region(dev);
443         unsigned long long available = 0;
444
445         device_lock(dev);
446         nvdimm_bus_lock(dev);
447         wait_nvdimm_bus_probe_idle(dev);
448         available = nd_region_allocatable_dpa(nd_region);
449         nvdimm_bus_unlock(dev);
450         device_unlock(dev);
451
452         return sprintf(buf, "%llu\n", available);
453 }
454 static DEVICE_ATTR_RO(max_available_extent);
455
456 static ssize_t init_namespaces_show(struct device *dev,
457                 struct device_attribute *attr, char *buf)
458 {
459         struct nd_region_data *ndrd = dev_get_drvdata(dev);
460         ssize_t rc;
461
462         nvdimm_bus_lock(dev);
463         if (ndrd)
464                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
465         else
466                 rc = -ENXIO;
467         nvdimm_bus_unlock(dev);
468
469         return rc;
470 }
471 static DEVICE_ATTR_RO(init_namespaces);
472
473 static ssize_t namespace_seed_show(struct device *dev,
474                 struct device_attribute *attr, char *buf)
475 {
476         struct nd_region *nd_region = to_nd_region(dev);
477         ssize_t rc;
478
479         nvdimm_bus_lock(dev);
480         if (nd_region->ns_seed)
481                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
482         else
483                 rc = sprintf(buf, "\n");
484         nvdimm_bus_unlock(dev);
485         return rc;
486 }
487 static DEVICE_ATTR_RO(namespace_seed);
488
489 static ssize_t btt_seed_show(struct device *dev,
490                 struct device_attribute *attr, char *buf)
491 {
492         struct nd_region *nd_region = to_nd_region(dev);
493         ssize_t rc;
494
495         nvdimm_bus_lock(dev);
496         if (nd_region->btt_seed)
497                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
498         else
499                 rc = sprintf(buf, "\n");
500         nvdimm_bus_unlock(dev);
501
502         return rc;
503 }
504 static DEVICE_ATTR_RO(btt_seed);
505
506 static ssize_t pfn_seed_show(struct device *dev,
507                 struct device_attribute *attr, char *buf)
508 {
509         struct nd_region *nd_region = to_nd_region(dev);
510         ssize_t rc;
511
512         nvdimm_bus_lock(dev);
513         if (nd_region->pfn_seed)
514                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
515         else
516                 rc = sprintf(buf, "\n");
517         nvdimm_bus_unlock(dev);
518
519         return rc;
520 }
521 static DEVICE_ATTR_RO(pfn_seed);
522
523 static ssize_t dax_seed_show(struct device *dev,
524                 struct device_attribute *attr, char *buf)
525 {
526         struct nd_region *nd_region = to_nd_region(dev);
527         ssize_t rc;
528
529         nvdimm_bus_lock(dev);
530         if (nd_region->dax_seed)
531                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
532         else
533                 rc = sprintf(buf, "\n");
534         nvdimm_bus_unlock(dev);
535
536         return rc;
537 }
538 static DEVICE_ATTR_RO(dax_seed);
539
540 static ssize_t read_only_show(struct device *dev,
541                 struct device_attribute *attr, char *buf)
542 {
543         struct nd_region *nd_region = to_nd_region(dev);
544
545         return sprintf(buf, "%d\n", nd_region->ro);
546 }
547
548 static ssize_t read_only_store(struct device *dev,
549                 struct device_attribute *attr, const char *buf, size_t len)
550 {
551         bool ro;
552         int rc = strtobool(buf, &ro);
553         struct nd_region *nd_region = to_nd_region(dev);
554
555         if (rc)
556                 return rc;
557
558         nd_region->ro = ro;
559         return len;
560 }
561 static DEVICE_ATTR_RW(read_only);
562
563 static ssize_t region_badblocks_show(struct device *dev,
564                 struct device_attribute *attr, char *buf)
565 {
566         struct nd_region *nd_region = to_nd_region(dev);
567         ssize_t rc;
568
569         device_lock(dev);
570         if (dev->driver)
571                 rc = badblocks_show(&nd_region->bb, buf, 0);
572         else
573                 rc = -ENXIO;
574         device_unlock(dev);
575
576         return rc;
577 }
578 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
579
580 static ssize_t resource_show(struct device *dev,
581                 struct device_attribute *attr, char *buf)
582 {
583         struct nd_region *nd_region = to_nd_region(dev);
584
585         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
586 }
587 static DEVICE_ATTR_RO(resource);
588
589 static ssize_t persistence_domain_show(struct device *dev,
590                 struct device_attribute *attr, char *buf)
591 {
592         struct nd_region *nd_region = to_nd_region(dev);
593
594         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
595                 return sprintf(buf, "cpu_cache\n");
596         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
597                 return sprintf(buf, "memory_controller\n");
598         else
599                 return sprintf(buf, "\n");
600 }
601 static DEVICE_ATTR_RO(persistence_domain);
602
603 static struct attribute *nd_region_attributes[] = {
604         &dev_attr_size.attr,
605         &dev_attr_nstype.attr,
606         &dev_attr_mappings.attr,
607         &dev_attr_btt_seed.attr,
608         &dev_attr_pfn_seed.attr,
609         &dev_attr_dax_seed.attr,
610         &dev_attr_deep_flush.attr,
611         &dev_attr_read_only.attr,
612         &dev_attr_set_cookie.attr,
613         &dev_attr_available_size.attr,
614         &dev_attr_max_available_extent.attr,
615         &dev_attr_namespace_seed.attr,
616         &dev_attr_init_namespaces.attr,
617         &dev_attr_badblocks.attr,
618         &dev_attr_resource.attr,
619         &dev_attr_persistence_domain.attr,
620         NULL,
621 };
622
623 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
624 {
625         struct device *dev = container_of(kobj, typeof(*dev), kobj);
626         struct nd_region *nd_region = to_nd_region(dev);
627         struct nd_interleave_set *nd_set = nd_region->nd_set;
628         int type = nd_region_to_nstype(nd_region);
629
630         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
631                 return 0;
632
633         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
634                 return 0;
635
636         if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
637                 return 0;
638
639         if (a == &dev_attr_resource.attr) {
640                 if (is_memory(dev))
641                         return 0400;
642                 else
643                         return 0;
644         }
645
646         if (a == &dev_attr_deep_flush.attr) {
647                 int has_flush = nvdimm_has_flush(nd_region);
648
649                 if (has_flush == 1)
650                         return a->mode;
651                 else if (has_flush == 0)
652                         return 0444;
653                 else
654                         return 0;
655         }
656
657         if (a == &dev_attr_persistence_domain.attr) {
658                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
659                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
660                         return 0;
661                 return a->mode;
662         }
663
664         if (a != &dev_attr_set_cookie.attr
665                         && a != &dev_attr_available_size.attr)
666                 return a->mode;
667
668         if ((type == ND_DEVICE_NAMESPACE_PMEM
669                                 || type == ND_DEVICE_NAMESPACE_BLK)
670                         && a == &dev_attr_available_size.attr)
671                 return a->mode;
672         else if (is_memory(dev) && nd_set)
673                 return a->mode;
674
675         return 0;
676 }
677
678 struct attribute_group nd_region_attribute_group = {
679         .attrs = nd_region_attributes,
680         .is_visible = region_visible,
681 };
682 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
683
684 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
685                 struct nd_namespace_index *nsindex)
686 {
687         struct nd_interleave_set *nd_set = nd_region->nd_set;
688
689         if (!nd_set)
690                 return 0;
691
692         if (nsindex && __le16_to_cpu(nsindex->major) == 1
693                         && __le16_to_cpu(nsindex->minor) == 1)
694                 return nd_set->cookie1;
695         return nd_set->cookie2;
696 }
697
698 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
699 {
700         struct nd_interleave_set *nd_set = nd_region->nd_set;
701
702         if (nd_set)
703                 return nd_set->altcookie;
704         return 0;
705 }
706
707 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
708 {
709         struct nd_label_ent *label_ent, *e;
710
711         lockdep_assert_held(&nd_mapping->lock);
712         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
713                 list_del(&label_ent->list);
714                 kfree(label_ent);
715         }
716 }
717
718 /*
719  * Upon successful probe/remove, take/release a reference on the
720  * associated interleave set (if present), and plant new btt + namespace
721  * seeds.  Also, on the removal of a BLK region, notify the provider to
722  * disable the region.
723  */
724 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
725                 struct device *dev, bool probe)
726 {
727         struct nd_region *nd_region;
728
729         if (!probe && is_nd_region(dev)) {
730                 int i;
731
732                 nd_region = to_nd_region(dev);
733                 for (i = 0; i < nd_region->ndr_mappings; i++) {
734                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
735                         struct nvdimm_drvdata *ndd = nd_mapping->ndd;
736                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
737
738                         mutex_lock(&nd_mapping->lock);
739                         nd_mapping_free_labels(nd_mapping);
740                         mutex_unlock(&nd_mapping->lock);
741
742                         put_ndd(ndd);
743                         nd_mapping->ndd = NULL;
744                         if (ndd)
745                                 atomic_dec(&nvdimm->busy);
746                 }
747         }
748         if (dev->parent && is_nd_region(dev->parent) && probe) {
749                 nd_region = to_nd_region(dev->parent);
750                 nvdimm_bus_lock(dev);
751                 if (nd_region->ns_seed == dev)
752                         nd_region_create_ns_seed(nd_region);
753                 nvdimm_bus_unlock(dev);
754         }
755         if (is_nd_btt(dev) && probe) {
756                 struct nd_btt *nd_btt = to_nd_btt(dev);
757
758                 nd_region = to_nd_region(dev->parent);
759                 nvdimm_bus_lock(dev);
760                 if (nd_region->btt_seed == dev)
761                         nd_region_create_btt_seed(nd_region);
762                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
763                         nd_region_create_ns_seed(nd_region);
764                 nvdimm_bus_unlock(dev);
765         }
766         if (is_nd_pfn(dev) && probe) {
767                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
768
769                 nd_region = to_nd_region(dev->parent);
770                 nvdimm_bus_lock(dev);
771                 if (nd_region->pfn_seed == dev)
772                         nd_region_create_pfn_seed(nd_region);
773                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
774                         nd_region_create_ns_seed(nd_region);
775                 nvdimm_bus_unlock(dev);
776         }
777         if (is_nd_dax(dev) && probe) {
778                 struct nd_dax *nd_dax = to_nd_dax(dev);
779
780                 nd_region = to_nd_region(dev->parent);
781                 nvdimm_bus_lock(dev);
782                 if (nd_region->dax_seed == dev)
783                         nd_region_create_dax_seed(nd_region);
784                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
785                         nd_region_create_ns_seed(nd_region);
786                 nvdimm_bus_unlock(dev);
787         }
788 }
789
790 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
791 {
792         nd_region_notify_driver_action(nvdimm_bus, dev, true);
793 }
794
795 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
796 {
797         nd_region_notify_driver_action(nvdimm_bus, dev, false);
798 }
799
800 static ssize_t mappingN(struct device *dev, char *buf, int n)
801 {
802         struct nd_region *nd_region = to_nd_region(dev);
803         struct nd_mapping *nd_mapping;
804         struct nvdimm *nvdimm;
805
806         if (n >= nd_region->ndr_mappings)
807                 return -ENXIO;
808         nd_mapping = &nd_region->mapping[n];
809         nvdimm = nd_mapping->nvdimm;
810
811         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
812                         nd_mapping->start, nd_mapping->size,
813                         nd_mapping->position);
814 }
815
816 #define REGION_MAPPING(idx) \
817 static ssize_t mapping##idx##_show(struct device *dev,          \
818                 struct device_attribute *attr, char *buf)       \
819 {                                                               \
820         return mappingN(dev, buf, idx);                         \
821 }                                                               \
822 static DEVICE_ATTR_RO(mapping##idx)
823
824 /*
825  * 32 should be enough for a while, even in the presence of socket
826  * interleave a 32-way interleave set is a degenerate case.
827  */
828 REGION_MAPPING(0);
829 REGION_MAPPING(1);
830 REGION_MAPPING(2);
831 REGION_MAPPING(3);
832 REGION_MAPPING(4);
833 REGION_MAPPING(5);
834 REGION_MAPPING(6);
835 REGION_MAPPING(7);
836 REGION_MAPPING(8);
837 REGION_MAPPING(9);
838 REGION_MAPPING(10);
839 REGION_MAPPING(11);
840 REGION_MAPPING(12);
841 REGION_MAPPING(13);
842 REGION_MAPPING(14);
843 REGION_MAPPING(15);
844 REGION_MAPPING(16);
845 REGION_MAPPING(17);
846 REGION_MAPPING(18);
847 REGION_MAPPING(19);
848 REGION_MAPPING(20);
849 REGION_MAPPING(21);
850 REGION_MAPPING(22);
851 REGION_MAPPING(23);
852 REGION_MAPPING(24);
853 REGION_MAPPING(25);
854 REGION_MAPPING(26);
855 REGION_MAPPING(27);
856 REGION_MAPPING(28);
857 REGION_MAPPING(29);
858 REGION_MAPPING(30);
859 REGION_MAPPING(31);
860
861 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
862 {
863         struct device *dev = container_of(kobj, struct device, kobj);
864         struct nd_region *nd_region = to_nd_region(dev);
865
866         if (n < nd_region->ndr_mappings)
867                 return a->mode;
868         return 0;
869 }
870
871 static struct attribute *mapping_attributes[] = {
872         &dev_attr_mapping0.attr,
873         &dev_attr_mapping1.attr,
874         &dev_attr_mapping2.attr,
875         &dev_attr_mapping3.attr,
876         &dev_attr_mapping4.attr,
877         &dev_attr_mapping5.attr,
878         &dev_attr_mapping6.attr,
879         &dev_attr_mapping7.attr,
880         &dev_attr_mapping8.attr,
881         &dev_attr_mapping9.attr,
882         &dev_attr_mapping10.attr,
883         &dev_attr_mapping11.attr,
884         &dev_attr_mapping12.attr,
885         &dev_attr_mapping13.attr,
886         &dev_attr_mapping14.attr,
887         &dev_attr_mapping15.attr,
888         &dev_attr_mapping16.attr,
889         &dev_attr_mapping17.attr,
890         &dev_attr_mapping18.attr,
891         &dev_attr_mapping19.attr,
892         &dev_attr_mapping20.attr,
893         &dev_attr_mapping21.attr,
894         &dev_attr_mapping22.attr,
895         &dev_attr_mapping23.attr,
896         &dev_attr_mapping24.attr,
897         &dev_attr_mapping25.attr,
898         &dev_attr_mapping26.attr,
899         &dev_attr_mapping27.attr,
900         &dev_attr_mapping28.attr,
901         &dev_attr_mapping29.attr,
902         &dev_attr_mapping30.attr,
903         &dev_attr_mapping31.attr,
904         NULL,
905 };
906
907 struct attribute_group nd_mapping_attribute_group = {
908         .is_visible = mapping_visible,
909         .attrs = mapping_attributes,
910 };
911 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
912
913 int nd_blk_region_init(struct nd_region *nd_region)
914 {
915         struct device *dev = &nd_region->dev;
916         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
917
918         if (!is_nd_blk(dev))
919                 return 0;
920
921         if (nd_region->ndr_mappings < 1) {
922                 dev_dbg(dev, "invalid BLK region\n");
923                 return -ENXIO;
924         }
925
926         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
927 }
928
929 /**
930  * nd_region_acquire_lane - allocate and lock a lane
931  * @nd_region: region id and number of lanes possible
932  *
933  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
934  * We optimize for the common case where there are 256 lanes, one
935  * per-cpu.  For larger systems we need to lock to share lanes.  For now
936  * this implementation assumes the cost of maintaining an allocator for
937  * free lanes is on the order of the lock hold time, so it implements a
938  * static lane = cpu % num_lanes mapping.
939  *
940  * In the case of a BTT instance on top of a BLK namespace a lane may be
941  * acquired recursively.  We lock on the first instance.
942  *
943  * In the case of a BTT instance on top of PMEM, we only acquire a lane
944  * for the BTT metadata updates.
945  */
946 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
947 {
948         unsigned int cpu, lane;
949
950         cpu = get_cpu();
951         if (nd_region->num_lanes < nr_cpu_ids) {
952                 struct nd_percpu_lane *ndl_lock, *ndl_count;
953
954                 lane = cpu % nd_region->num_lanes;
955                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
956                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
957                 if (ndl_count->count++ == 0)
958                         spin_lock(&ndl_lock->lock);
959         } else
960                 lane = cpu;
961
962         return lane;
963 }
964 EXPORT_SYMBOL(nd_region_acquire_lane);
965
966 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
967 {
968         if (nd_region->num_lanes < nr_cpu_ids) {
969                 unsigned int cpu = get_cpu();
970                 struct nd_percpu_lane *ndl_lock, *ndl_count;
971
972                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
973                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
974                 if (--ndl_count->count == 0)
975                         spin_unlock(&ndl_lock->lock);
976                 put_cpu();
977         }
978         put_cpu();
979 }
980 EXPORT_SYMBOL(nd_region_release_lane);
981
982 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
983                 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
984                 const char *caller)
985 {
986         struct nd_region *nd_region;
987         struct device *dev;
988         void *region_buf;
989         unsigned int i;
990         int ro = 0;
991
992         for (i = 0; i < ndr_desc->num_mappings; i++) {
993                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
994                 struct nvdimm *nvdimm = mapping->nvdimm;
995
996                 if ((mapping->start | mapping->size) % SZ_4K) {
997                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
998                                         caller, dev_name(&nvdimm->dev), i);
999
1000                         return NULL;
1001                 }
1002
1003                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1004                         ro = 1;
1005         }
1006
1007         if (dev_type == &nd_blk_device_type) {
1008                 struct nd_blk_region_desc *ndbr_desc;
1009                 struct nd_blk_region *ndbr;
1010
1011                 ndbr_desc = to_blk_region_desc(ndr_desc);
1012                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1013                                 * ndr_desc->num_mappings,
1014                                 GFP_KERNEL);
1015                 if (ndbr) {
1016                         nd_region = &ndbr->nd_region;
1017                         ndbr->enable = ndbr_desc->enable;
1018                         ndbr->do_io = ndbr_desc->do_io;
1019                 }
1020                 region_buf = ndbr;
1021         } else {
1022                 nd_region = kzalloc(sizeof(struct nd_region)
1023                                 + sizeof(struct nd_mapping)
1024                                 * ndr_desc->num_mappings,
1025                                 GFP_KERNEL);
1026                 region_buf = nd_region;
1027         }
1028
1029         if (!region_buf)
1030                 return NULL;
1031         nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1032         if (nd_region->id < 0)
1033                 goto err_id;
1034
1035         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1036         if (!nd_region->lane)
1037                 goto err_percpu;
1038
1039         for (i = 0; i < nr_cpu_ids; i++) {
1040                 struct nd_percpu_lane *ndl;
1041
1042                 ndl = per_cpu_ptr(nd_region->lane, i);
1043                 spin_lock_init(&ndl->lock);
1044                 ndl->count = 0;
1045         }
1046
1047         for (i = 0; i < ndr_desc->num_mappings; i++) {
1048                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1049                 struct nvdimm *nvdimm = mapping->nvdimm;
1050
1051                 nd_region->mapping[i].nvdimm = nvdimm;
1052                 nd_region->mapping[i].start = mapping->start;
1053                 nd_region->mapping[i].size = mapping->size;
1054                 nd_region->mapping[i].position = mapping->position;
1055                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1056                 mutex_init(&nd_region->mapping[i].lock);
1057
1058                 get_device(&nvdimm->dev);
1059         }
1060         nd_region->ndr_mappings = ndr_desc->num_mappings;
1061         nd_region->provider_data = ndr_desc->provider_data;
1062         nd_region->nd_set = ndr_desc->nd_set;
1063         nd_region->num_lanes = ndr_desc->num_lanes;
1064         nd_region->flags = ndr_desc->flags;
1065         nd_region->ro = ro;
1066         nd_region->numa_node = ndr_desc->numa_node;
1067         ida_init(&nd_region->ns_ida);
1068         ida_init(&nd_region->btt_ida);
1069         ida_init(&nd_region->pfn_ida);
1070         ida_init(&nd_region->dax_ida);
1071         dev = &nd_region->dev;
1072         dev_set_name(dev, "region%d", nd_region->id);
1073         dev->parent = &nvdimm_bus->dev;
1074         dev->type = dev_type;
1075         dev->groups = ndr_desc->attr_groups;
1076         dev->of_node = ndr_desc->of_node;
1077         nd_region->ndr_size = resource_size(ndr_desc->res);
1078         nd_region->ndr_start = ndr_desc->res->start;
1079         nd_device_register(dev);
1080
1081         return nd_region;
1082
1083  err_percpu:
1084         ida_simple_remove(&region_ida, nd_region->id);
1085  err_id:
1086         kfree(region_buf);
1087         return NULL;
1088 }
1089
1090 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1091                 struct nd_region_desc *ndr_desc)
1092 {
1093         ndr_desc->num_lanes = ND_MAX_LANES;
1094         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1095                         __func__);
1096 }
1097 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1098
1099 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1100                 struct nd_region_desc *ndr_desc)
1101 {
1102         if (ndr_desc->num_mappings > 1)
1103                 return NULL;
1104         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1105         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1106                         __func__);
1107 }
1108 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1109
1110 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1111                 struct nd_region_desc *ndr_desc)
1112 {
1113         ndr_desc->num_lanes = ND_MAX_LANES;
1114         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1115                         __func__);
1116 }
1117 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1118
1119 /**
1120  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1121  * @nd_region: blk or interleaved pmem region
1122  */
1123 void nvdimm_flush(struct nd_region *nd_region)
1124 {
1125         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1126         int i, idx;
1127
1128         /*
1129          * Try to encourage some diversity in flush hint addresses
1130          * across cpus assuming a limited number of flush hints.
1131          */
1132         idx = this_cpu_read(flush_idx);
1133         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1134
1135         /*
1136          * The first wmb() is needed to 'sfence' all previous writes
1137          * such that they are architecturally visible for the platform
1138          * buffer flush.  Note that we've already arranged for pmem
1139          * writes to avoid the cache via memcpy_flushcache().  The final
1140          * wmb() ensures ordering for the NVDIMM flush write.
1141          */
1142         wmb();
1143         for (i = 0; i < nd_region->ndr_mappings; i++)
1144                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1145                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1146         wmb();
1147 }
1148 EXPORT_SYMBOL_GPL(nvdimm_flush);
1149
1150 /**
1151  * nvdimm_has_flush - determine write flushing requirements
1152  * @nd_region: blk or interleaved pmem region
1153  *
1154  * Returns 1 if writes require flushing
1155  * Returns 0 if writes do not require flushing
1156  * Returns -ENXIO if flushing capability can not be determined
1157  */
1158 int nvdimm_has_flush(struct nd_region *nd_region)
1159 {
1160         int i;
1161
1162         /* no nvdimm or pmem api == flushing capability unknown */
1163         if (nd_region->ndr_mappings == 0
1164                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1165                 return -ENXIO;
1166
1167         for (i = 0; i < nd_region->ndr_mappings; i++) {
1168                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1169                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1170
1171                 /* flush hints present / available */
1172                 if (nvdimm->num_flush)
1173                         return 1;
1174         }
1175
1176         /*
1177          * The platform defines dimm devices without hints, assume
1178          * platform persistence mechanism like ADR
1179          */
1180         return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1183
1184 int nvdimm_has_cache(struct nd_region *nd_region)
1185 {
1186         return is_nd_pmem(&nd_region->dev) &&
1187                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1188 }
1189 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1190
1191 struct conflict_context {
1192         struct nd_region *nd_region;
1193         resource_size_t start, size;
1194 };
1195
1196 static int region_conflict(struct device *dev, void *data)
1197 {
1198         struct nd_region *nd_region;
1199         struct conflict_context *ctx = data;
1200         resource_size_t res_end, region_end, region_start;
1201
1202         if (!is_memory(dev))
1203                 return 0;
1204
1205         nd_region = to_nd_region(dev);
1206         if (nd_region == ctx->nd_region)
1207                 return 0;
1208
1209         res_end = ctx->start + ctx->size;
1210         region_start = nd_region->ndr_start;
1211         region_end = region_start + nd_region->ndr_size;
1212         if (ctx->start >= region_start && ctx->start < region_end)
1213                 return -EBUSY;
1214         if (res_end > region_start && res_end <= region_end)
1215                 return -EBUSY;
1216         return 0;
1217 }
1218
1219 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1220                 resource_size_t size)
1221 {
1222         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1223         struct conflict_context ctx = {
1224                 .nd_region = nd_region,
1225                 .start = start,
1226                 .size = size,
1227         };
1228
1229         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1230 }
1231
1232 void __exit nd_region_devs_exit(void)
1233 {
1234         ida_destroy(&region_ida);
1235 }