GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34         NVME_FC_Q_CONNECTED = 0,
35         NVME_FC_Q_LIVE,
36 };
37
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
39
40 struct nvme_fc_queue {
41         struct nvme_fc_ctrl     *ctrl;
42         struct device           *dev;
43         struct blk_mq_hw_ctx    *hctx;
44         void                    *lldd_handle;
45         size_t                  cmnd_capsule_len;
46         u32                     qnum;
47         u32                     rqcnt;
48         u32                     seqno;
49
50         u64                     connection_id;
51         atomic_t                csn;
52
53         unsigned long           flags;
54 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
55
56 enum nvme_fcop_flags {
57         FCOP_FLAGS_TERMIO       = (1 << 0),
58         FCOP_FLAGS_AEN          = (1 << 1),
59 };
60
61 struct nvmefc_ls_req_op {
62         struct nvmefc_ls_req    ls_req;
63
64         struct nvme_fc_rport    *rport;
65         struct nvme_fc_queue    *queue;
66         struct request          *rq;
67         u32                     flags;
68
69         int                     ls_error;
70         struct completion       ls_done;
71         struct list_head        lsreq_list;     /* rport->ls_req_list */
72         bool                    req_queued;
73 };
74
75 enum nvme_fcpop_state {
76         FCPOP_STATE_UNINIT      = 0,
77         FCPOP_STATE_IDLE        = 1,
78         FCPOP_STATE_ACTIVE      = 2,
79         FCPOP_STATE_ABORTED     = 3,
80         FCPOP_STATE_COMPLETE    = 4,
81 };
82
83 struct nvme_fc_fcp_op {
84         struct nvme_request     nreq;           /*
85                                                  * nvme/host/core.c
86                                                  * requires this to be
87                                                  * the 1st element in the
88                                                  * private structure
89                                                  * associated with the
90                                                  * request.
91                                                  */
92         struct nvmefc_fcp_req   fcp_req;
93
94         struct nvme_fc_ctrl     *ctrl;
95         struct nvme_fc_queue    *queue;
96         struct request          *rq;
97
98         atomic_t                state;
99         u32                     flags;
100         u32                     rqno;
101         u32                     nents;
102
103         struct nvme_fc_cmd_iu   cmd_iu;
104         struct nvme_fc_ersp_iu  rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108         struct nvme_fc_local_port       localport;
109
110         struct ida                      endp_cnt;
111         struct list_head                port_list;      /* nvme_fc_port_list */
112         struct list_head                endp_list;
113         struct device                   *dev;   /* physical device for dma */
114         struct nvme_fc_port_template    *ops;
115         struct kref                     ref;
116         atomic_t                        act_rport_cnt;
117 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
118
119 struct nvme_fc_rport {
120         struct nvme_fc_remote_port      remoteport;
121
122         struct list_head                endp_list; /* for lport->endp_list */
123         struct list_head                ctrl_list;
124         struct list_head                ls_req_list;
125         struct device                   *dev;   /* physical device for dma */
126         struct nvme_fc_lport            *lport;
127         spinlock_t                      lock;
128         struct kref                     ref;
129         atomic_t                        act_ctrl_cnt;
130         unsigned long                   dev_loss_end;
131 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
132
133 enum nvme_fcctrl_flags {
134         FCCTRL_TERMIO           = (1 << 0),
135 };
136
137 struct nvme_fc_ctrl {
138         spinlock_t              lock;
139         struct nvme_fc_queue    *queues;
140         struct device           *dev;
141         struct nvme_fc_lport    *lport;
142         struct nvme_fc_rport    *rport;
143         u32                     cnum;
144
145         bool                    ioq_live;
146         bool                    assoc_active;
147         atomic_t                err_work_active;
148         u64                     association_id;
149
150         struct list_head        ctrl_list;      /* rport->ctrl_list */
151
152         struct blk_mq_tag_set   admin_tag_set;
153         struct blk_mq_tag_set   tag_set;
154
155         struct delayed_work     connect_work;
156         struct work_struct      err_work;
157
158         struct kref             ref;
159         u32                     flags;
160         u32                     iocnt;
161         wait_queue_head_t       ioabort_wait;
162
163         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
164
165         struct nvme_ctrl        ctrl;
166 };
167
168 static inline struct nvme_fc_ctrl *
169 to_fc_ctrl(struct nvme_ctrl *ctrl)
170 {
171         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
172 }
173
174 static inline struct nvme_fc_lport *
175 localport_to_lport(struct nvme_fc_local_port *portptr)
176 {
177         return container_of(portptr, struct nvme_fc_lport, localport);
178 }
179
180 static inline struct nvme_fc_rport *
181 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
182 {
183         return container_of(portptr, struct nvme_fc_rport, remoteport);
184 }
185
186 static inline struct nvmefc_ls_req_op *
187 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
188 {
189         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
190 }
191
192 static inline struct nvme_fc_fcp_op *
193 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
194 {
195         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
196 }
197
198
199
200 /* *************************** Globals **************************** */
201
202
203 static DEFINE_SPINLOCK(nvme_fc_lock);
204
205 static LIST_HEAD(nvme_fc_lport_list);
206 static DEFINE_IDA(nvme_fc_local_port_cnt);
207 static DEFINE_IDA(nvme_fc_ctrl_cnt);
208
209 static struct workqueue_struct *nvme_fc_wq;
210
211 /*
212  * These items are short-term. They will eventually be moved into
213  * a generic FC class. See comments in module init.
214  */
215 static struct class *fc_class;
216 static struct device *fc_udev_device;
217
218
219 /* *********************** FC-NVME Port Management ************************ */
220
221 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
222                         struct nvme_fc_queue *, unsigned int);
223
224 static void
225 nvme_fc_free_lport(struct kref *ref)
226 {
227         struct nvme_fc_lport *lport =
228                 container_of(ref, struct nvme_fc_lport, ref);
229         unsigned long flags;
230
231         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
232         WARN_ON(!list_empty(&lport->endp_list));
233
234         /* remove from transport list */
235         spin_lock_irqsave(&nvme_fc_lock, flags);
236         list_del(&lport->port_list);
237         spin_unlock_irqrestore(&nvme_fc_lock, flags);
238
239         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240         ida_destroy(&lport->endp_cnt);
241
242         put_device(lport->dev);
243
244         kfree(lport);
245 }
246
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250         kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256         return kref_get_unless_zero(&lport->ref);
257 }
258
259
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262                         struct nvme_fc_port_template *ops,
263                         struct device *dev)
264 {
265         struct nvme_fc_lport *lport;
266         unsigned long flags;
267
268         spin_lock_irqsave(&nvme_fc_lock, flags);
269
270         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271                 if (lport->localport.node_name != pinfo->node_name ||
272                     lport->localport.port_name != pinfo->port_name)
273                         continue;
274
275                 if (lport->dev != dev) {
276                         lport = ERR_PTR(-EXDEV);
277                         goto out_done;
278                 }
279
280                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281                         lport = ERR_PTR(-EEXIST);
282                         goto out_done;
283                 }
284
285                 if (!nvme_fc_lport_get(lport)) {
286                         /*
287                          * fails if ref cnt already 0. If so,
288                          * act as if lport already deleted
289                          */
290                         lport = NULL;
291                         goto out_done;
292                 }
293
294                 /* resume the lport */
295
296                 lport->ops = ops;
297                 lport->localport.port_role = pinfo->port_role;
298                 lport->localport.port_id = pinfo->port_id;
299                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
300
301                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
302
303                 return lport;
304         }
305
306         lport = NULL;
307
308 out_done:
309         spin_unlock_irqrestore(&nvme_fc_lock, flags);
310
311         return lport;
312 }
313
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @lport_p:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333                         struct nvme_fc_port_template *template,
334                         struct device *dev,
335                         struct nvme_fc_local_port **portptr)
336 {
337         struct nvme_fc_lport *newrec;
338         unsigned long flags;
339         int ret, idx;
340
341         if (!template->localport_delete || !template->remoteport_delete ||
342             !template->ls_req || !template->fcp_io ||
343             !template->ls_abort || !template->fcp_abort ||
344             !template->max_hw_queues || !template->max_sgl_segments ||
345             !template->max_dif_sgl_segments || !template->dma_boundary) {
346                 ret = -EINVAL;
347                 goto out_reghost_failed;
348         }
349
350         /*
351          * look to see if there is already a localport that had been
352          * deregistered and in the process of waiting for all the
353          * references to fully be removed.  If the references haven't
354          * expired, we can simply re-enable the localport. Remoteports
355          * and controller reconnections should resume naturally.
356          */
357         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358
359         /* found an lport, but something about its state is bad */
360         if (IS_ERR(newrec)) {
361                 ret = PTR_ERR(newrec);
362                 goto out_reghost_failed;
363
364         /* found existing lport, which was resumed */
365         } else if (newrec) {
366                 *portptr = &newrec->localport;
367                 return 0;
368         }
369
370         /* nothing found - allocate a new localport struct */
371
372         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373                          GFP_KERNEL);
374         if (!newrec) {
375                 ret = -ENOMEM;
376                 goto out_reghost_failed;
377         }
378
379         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380         if (idx < 0) {
381                 ret = -ENOSPC;
382                 goto out_fail_kfree;
383         }
384
385         if (!get_device(dev) && dev) {
386                 ret = -ENODEV;
387                 goto out_ida_put;
388         }
389
390         INIT_LIST_HEAD(&newrec->port_list);
391         INIT_LIST_HEAD(&newrec->endp_list);
392         kref_init(&newrec->ref);
393         atomic_set(&newrec->act_rport_cnt, 0);
394         newrec->ops = template;
395         newrec->dev = dev;
396         ida_init(&newrec->endp_cnt);
397         newrec->localport.private = &newrec[1];
398         newrec->localport.node_name = pinfo->node_name;
399         newrec->localport.port_name = pinfo->port_name;
400         newrec->localport.port_role = pinfo->port_role;
401         newrec->localport.port_id = pinfo->port_id;
402         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403         newrec->localport.port_num = idx;
404
405         spin_lock_irqsave(&nvme_fc_lock, flags);
406         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407         spin_unlock_irqrestore(&nvme_fc_lock, flags);
408
409         if (dev)
410                 dma_set_seg_boundary(dev, template->dma_boundary);
411
412         *portptr = &newrec->localport;
413         return 0;
414
415 out_ida_put:
416         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418         kfree(newrec);
419 out_reghost_failed:
420         *portptr = NULL;
421
422         return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @localport: pointer to the (registered) local port that is to be
431  *             deregistered.
432  *
433  * Returns:
434  * a completion status. Must be 0 upon success; a negative errno
435  * (ex: -ENXIO) upon failure.
436  */
437 int
438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 {
440         struct nvme_fc_lport *lport = localport_to_lport(portptr);
441         unsigned long flags;
442
443         if (!portptr)
444                 return -EINVAL;
445
446         spin_lock_irqsave(&nvme_fc_lock, flags);
447
448         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450                 return -EINVAL;
451         }
452         portptr->port_state = FC_OBJSTATE_DELETED;
453
454         spin_unlock_irqrestore(&nvme_fc_lock, flags);
455
456         if (atomic_read(&lport->act_rport_cnt) == 0)
457                 lport->ops->localport_delete(&lport->localport);
458
459         nvme_fc_lport_put(lport);
460
461         return 0;
462 }
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
464
465 /*
466  * TRADDR strings, per FC-NVME are fixed format:
467  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468  * udev event will only differ by prefix of what field is
469  * being specified:
470  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471  *  19 + 43 + null_fudge = 64 characters
472  */
473 #define FCNVME_TRADDR_LENGTH            64
474
475 static void
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477                 struct nvme_fc_rport *rport)
478 {
479         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
480         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
481         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482
483         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484                 return;
485
486         snprintf(hostaddr, sizeof(hostaddr),
487                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488                 lport->localport.node_name, lport->localport.port_name);
489         snprintf(tgtaddr, sizeof(tgtaddr),
490                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491                 rport->remoteport.node_name, rport->remoteport.port_name);
492         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
493 }
494
495 static void
496 nvme_fc_free_rport(struct kref *ref)
497 {
498         struct nvme_fc_rport *rport =
499                 container_of(ref, struct nvme_fc_rport, ref);
500         struct nvme_fc_lport *lport =
501                         localport_to_lport(rport->remoteport.localport);
502         unsigned long flags;
503
504         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505         WARN_ON(!list_empty(&rport->ctrl_list));
506
507         /* remove from lport list */
508         spin_lock_irqsave(&nvme_fc_lock, flags);
509         list_del(&rport->endp_list);
510         spin_unlock_irqrestore(&nvme_fc_lock, flags);
511
512         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513
514         kfree(rport);
515
516         nvme_fc_lport_put(lport);
517 }
518
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522         kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528         return kref_get_unless_zero(&rport->ref);
529 }
530
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534         switch (ctrl->ctrl.state) {
535         case NVME_CTRL_NEW:
536         case NVME_CTRL_CONNECTING:
537                 /*
538                  * As all reconnects were suppressed, schedule a
539                  * connect.
540                  */
541                 dev_info(ctrl->ctrl.device,
542                         "NVME-FC{%d}: connectivity re-established. "
543                         "Attempting reconnect\n", ctrl->cnum);
544
545                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546                 break;
547
548         case NVME_CTRL_RESETTING:
549                 /*
550                  * Controller is already in the process of terminating the
551                  * association. No need to do anything further. The reconnect
552                  * step will naturally occur after the reset completes.
553                  */
554                 break;
555
556         default:
557                 /* no action to take - let it delete */
558                 break;
559         }
560 }
561
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564                                 struct nvme_fc_port_info *pinfo)
565 {
566         struct nvme_fc_rport *rport;
567         struct nvme_fc_ctrl *ctrl;
568         unsigned long flags;
569
570         spin_lock_irqsave(&nvme_fc_lock, flags);
571
572         list_for_each_entry(rport, &lport->endp_list, endp_list) {
573                 if (rport->remoteport.node_name != pinfo->node_name ||
574                     rport->remoteport.port_name != pinfo->port_name)
575                         continue;
576
577                 if (!nvme_fc_rport_get(rport)) {
578                         rport = ERR_PTR(-ENOLCK);
579                         goto out_done;
580                 }
581
582                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
583
584                 spin_lock_irqsave(&rport->lock, flags);
585
586                 /* has it been unregistered */
587                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588                         /* means lldd called us twice */
589                         spin_unlock_irqrestore(&rport->lock, flags);
590                         nvme_fc_rport_put(rport);
591                         return ERR_PTR(-ESTALE);
592                 }
593
594                 rport->remoteport.port_role = pinfo->port_role;
595                 rport->remoteport.port_id = pinfo->port_id;
596                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597                 rport->dev_loss_end = 0;
598
599                 /*
600                  * kick off a reconnect attempt on all associations to the
601                  * remote port. A successful reconnects will resume i/o.
602                  */
603                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604                         nvme_fc_resume_controller(ctrl);
605
606                 spin_unlock_irqrestore(&rport->lock, flags);
607
608                 return rport;
609         }
610
611         rport = NULL;
612
613 out_done:
614         spin_unlock_irqrestore(&nvme_fc_lock, flags);
615
616         return rport;
617 }
618
619 static inline void
620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621                         struct nvme_fc_port_info *pinfo)
622 {
623         if (pinfo->dev_loss_tmo)
624                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625         else
626                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
627 }
628
629 /**
630  * nvme_fc_register_remoteport - transport entry point called by an
631  *                              LLDD to register the existence of a NVME
632  *                              subsystem FC port on its fabric.
633  * @localport: pointer to the (registered) local port that the remote
634  *             subsystem port is connected to.
635  * @pinfo:     pointer to information about the port to be registered
636  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
637  *             will allocate a nvme_fc_remote_port structure and place its
638  *             address in the remote port pointer. Upon failure, remote port
639  *             pointer will be set to 0.
640  *
641  * Returns:
642  * a completion status. Must be 0 upon success; a negative errno
643  * (ex: -ENXIO) upon failure.
644  */
645 int
646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647                                 struct nvme_fc_port_info *pinfo,
648                                 struct nvme_fc_remote_port **portptr)
649 {
650         struct nvme_fc_lport *lport = localport_to_lport(localport);
651         struct nvme_fc_rport *newrec;
652         unsigned long flags;
653         int ret, idx;
654
655         if (!nvme_fc_lport_get(lport)) {
656                 ret = -ESHUTDOWN;
657                 goto out_reghost_failed;
658         }
659
660         /*
661          * look to see if there is already a remoteport that is waiting
662          * for a reconnect (within dev_loss_tmo) with the same WWN's.
663          * If so, transition to it and reconnect.
664          */
665         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666
667         /* found an rport, but something about its state is bad */
668         if (IS_ERR(newrec)) {
669                 ret = PTR_ERR(newrec);
670                 goto out_lport_put;
671
672         /* found existing rport, which was resumed */
673         } else if (newrec) {
674                 nvme_fc_lport_put(lport);
675                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676                 nvme_fc_signal_discovery_scan(lport, newrec);
677                 *portptr = &newrec->remoteport;
678                 return 0;
679         }
680
681         /* nothing found - allocate a new remoteport struct */
682
683         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684                          GFP_KERNEL);
685         if (!newrec) {
686                 ret = -ENOMEM;
687                 goto out_lport_put;
688         }
689
690         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691         if (idx < 0) {
692                 ret = -ENOSPC;
693                 goto out_kfree_rport;
694         }
695
696         INIT_LIST_HEAD(&newrec->endp_list);
697         INIT_LIST_HEAD(&newrec->ctrl_list);
698         INIT_LIST_HEAD(&newrec->ls_req_list);
699         kref_init(&newrec->ref);
700         atomic_set(&newrec->act_ctrl_cnt, 0);
701         spin_lock_init(&newrec->lock);
702         newrec->remoteport.localport = &lport->localport;
703         newrec->dev = lport->dev;
704         newrec->lport = lport;
705         newrec->remoteport.private = &newrec[1];
706         newrec->remoteport.port_role = pinfo->port_role;
707         newrec->remoteport.node_name = pinfo->node_name;
708         newrec->remoteport.port_name = pinfo->port_name;
709         newrec->remoteport.port_id = pinfo->port_id;
710         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
711         newrec->remoteport.port_num = idx;
712         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
713
714         spin_lock_irqsave(&nvme_fc_lock, flags);
715         list_add_tail(&newrec->endp_list, &lport->endp_list);
716         spin_unlock_irqrestore(&nvme_fc_lock, flags);
717
718         nvme_fc_signal_discovery_scan(lport, newrec);
719
720         *portptr = &newrec->remoteport;
721         return 0;
722
723 out_kfree_rport:
724         kfree(newrec);
725 out_lport_put:
726         nvme_fc_lport_put(lport);
727 out_reghost_failed:
728         *portptr = NULL;
729         return ret;
730 }
731 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
732
733 static int
734 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
735 {
736         struct nvmefc_ls_req_op *lsop;
737         unsigned long flags;
738
739 restart:
740         spin_lock_irqsave(&rport->lock, flags);
741
742         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
743                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
744                         lsop->flags |= FCOP_FLAGS_TERMIO;
745                         spin_unlock_irqrestore(&rport->lock, flags);
746                         rport->lport->ops->ls_abort(&rport->lport->localport,
747                                                 &rport->remoteport,
748                                                 &lsop->ls_req);
749                         goto restart;
750                 }
751         }
752         spin_unlock_irqrestore(&rport->lock, flags);
753
754         return 0;
755 }
756
757 static void
758 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
759 {
760         dev_info(ctrl->ctrl.device,
761                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
762                 "Reconnect", ctrl->cnum);
763
764         switch (ctrl->ctrl.state) {
765         case NVME_CTRL_NEW:
766         case NVME_CTRL_LIVE:
767                 /*
768                  * Schedule a controller reset. The reset will terminate the
769                  * association and schedule the reconnect timer.  Reconnects
770                  * will be attempted until either the ctlr_loss_tmo
771                  * (max_retries * connect_delay) expires or the remoteport's
772                  * dev_loss_tmo expires.
773                  */
774                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
775                         dev_warn(ctrl->ctrl.device,
776                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
777                                 ctrl->cnum);
778                         nvme_delete_ctrl(&ctrl->ctrl);
779                 }
780                 break;
781
782         case NVME_CTRL_CONNECTING:
783                 /*
784                  * The association has already been terminated and the
785                  * controller is attempting reconnects.  No need to do anything
786                  * futher.  Reconnects will be attempted until either the
787                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
788                  * remoteport's dev_loss_tmo expires.
789                  */
790                 break;
791
792         case NVME_CTRL_RESETTING:
793                 /*
794                  * Controller is already in the process of terminating the
795                  * association.  No need to do anything further. The reconnect
796                  * step will kick in naturally after the association is
797                  * terminated.
798                  */
799                 break;
800
801         case NVME_CTRL_DELETING:
802         default:
803                 /* no action to take - let it delete */
804                 break;
805         }
806 }
807
808 /**
809  * nvme_fc_unregister_remoteport - transport entry point called by an
810  *                              LLDD to deregister/remove a previously
811  *                              registered a NVME subsystem FC port.
812  * @remoteport: pointer to the (registered) remote port that is to be
813  *              deregistered.
814  *
815  * Returns:
816  * a completion status. Must be 0 upon success; a negative errno
817  * (ex: -ENXIO) upon failure.
818  */
819 int
820 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
821 {
822         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
823         struct nvme_fc_ctrl *ctrl;
824         unsigned long flags;
825
826         if (!portptr)
827                 return -EINVAL;
828
829         spin_lock_irqsave(&rport->lock, flags);
830
831         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
832                 spin_unlock_irqrestore(&rport->lock, flags);
833                 return -EINVAL;
834         }
835         portptr->port_state = FC_OBJSTATE_DELETED;
836
837         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
838
839         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
840                 /* if dev_loss_tmo==0, dev loss is immediate */
841                 if (!portptr->dev_loss_tmo) {
842                         dev_warn(ctrl->ctrl.device,
843                                 "NVME-FC{%d}: controller connectivity lost.\n",
844                                 ctrl->cnum);
845                         nvme_delete_ctrl(&ctrl->ctrl);
846                 } else
847                         nvme_fc_ctrl_connectivity_loss(ctrl);
848         }
849
850         spin_unlock_irqrestore(&rport->lock, flags);
851
852         nvme_fc_abort_lsops(rport);
853
854         if (atomic_read(&rport->act_ctrl_cnt) == 0)
855                 rport->lport->ops->remoteport_delete(portptr);
856
857         /*
858          * release the reference, which will allow, if all controllers
859          * go away, which should only occur after dev_loss_tmo occurs,
860          * for the rport to be torn down.
861          */
862         nvme_fc_rport_put(rport);
863
864         return 0;
865 }
866 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
867
868 /**
869  * nvme_fc_rescan_remoteport - transport entry point called by an
870  *                              LLDD to request a nvme device rescan.
871  * @remoteport: pointer to the (registered) remote port that is to be
872  *              rescanned.
873  *
874  * Returns: N/A
875  */
876 void
877 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
878 {
879         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
880
881         nvme_fc_signal_discovery_scan(rport->lport, rport);
882 }
883 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
884
885 int
886 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
887                         u32 dev_loss_tmo)
888 {
889         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
890         unsigned long flags;
891
892         spin_lock_irqsave(&rport->lock, flags);
893
894         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
895                 spin_unlock_irqrestore(&rport->lock, flags);
896                 return -EINVAL;
897         }
898
899         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
900         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
901
902         spin_unlock_irqrestore(&rport->lock, flags);
903
904         return 0;
905 }
906 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
907
908
909 /* *********************** FC-NVME DMA Handling **************************** */
910
911 /*
912  * The fcloop device passes in a NULL device pointer. Real LLD's will
913  * pass in a valid device pointer. If NULL is passed to the dma mapping
914  * routines, depending on the platform, it may or may not succeed, and
915  * may crash.
916  *
917  * As such:
918  * Wrapper all the dma routines and check the dev pointer.
919  *
920  * If simple mappings (return just a dma address, we'll noop them,
921  * returning a dma address of 0.
922  *
923  * On more complex mappings (dma_map_sg), a pseudo routine fills
924  * in the scatter list, setting all dma addresses to 0.
925  */
926
927 static inline dma_addr_t
928 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
929                 enum dma_data_direction dir)
930 {
931         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
932 }
933
934 static inline int
935 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
936 {
937         return dev ? dma_mapping_error(dev, dma_addr) : 0;
938 }
939
940 static inline void
941 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
942         enum dma_data_direction dir)
943 {
944         if (dev)
945                 dma_unmap_single(dev, addr, size, dir);
946 }
947
948 static inline void
949 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
950                 enum dma_data_direction dir)
951 {
952         if (dev)
953                 dma_sync_single_for_cpu(dev, addr, size, dir);
954 }
955
956 static inline void
957 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
958                 enum dma_data_direction dir)
959 {
960         if (dev)
961                 dma_sync_single_for_device(dev, addr, size, dir);
962 }
963
964 /* pseudo dma_map_sg call */
965 static int
966 fc_map_sg(struct scatterlist *sg, int nents)
967 {
968         struct scatterlist *s;
969         int i;
970
971         WARN_ON(nents == 0 || sg[0].length == 0);
972
973         for_each_sg(sg, s, nents, i) {
974                 s->dma_address = 0L;
975 #ifdef CONFIG_NEED_SG_DMA_LENGTH
976                 s->dma_length = s->length;
977 #endif
978         }
979         return nents;
980 }
981
982 static inline int
983 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
984                 enum dma_data_direction dir)
985 {
986         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
987 }
988
989 static inline void
990 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
991                 enum dma_data_direction dir)
992 {
993         if (dev)
994                 dma_unmap_sg(dev, sg, nents, dir);
995 }
996
997 /* *********************** FC-NVME LS Handling **************************** */
998
999 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1000 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1001
1002
1003 static void
1004 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1005 {
1006         struct nvme_fc_rport *rport = lsop->rport;
1007         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1008         unsigned long flags;
1009
1010         spin_lock_irqsave(&rport->lock, flags);
1011
1012         if (!lsop->req_queued) {
1013                 spin_unlock_irqrestore(&rport->lock, flags);
1014                 return;
1015         }
1016
1017         list_del(&lsop->lsreq_list);
1018
1019         lsop->req_queued = false;
1020
1021         spin_unlock_irqrestore(&rport->lock, flags);
1022
1023         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1024                                   (lsreq->rqstlen + lsreq->rsplen),
1025                                   DMA_BIDIRECTIONAL);
1026
1027         nvme_fc_rport_put(rport);
1028 }
1029
1030 static int
1031 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1032                 struct nvmefc_ls_req_op *lsop,
1033                 void (*done)(struct nvmefc_ls_req *req, int status))
1034 {
1035         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1036         unsigned long flags;
1037         int ret = 0;
1038
1039         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1040                 return -ECONNREFUSED;
1041
1042         if (!nvme_fc_rport_get(rport))
1043                 return -ESHUTDOWN;
1044
1045         lsreq->done = done;
1046         lsop->rport = rport;
1047         lsop->req_queued = false;
1048         INIT_LIST_HEAD(&lsop->lsreq_list);
1049         init_completion(&lsop->ls_done);
1050
1051         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1052                                   lsreq->rqstlen + lsreq->rsplen,
1053                                   DMA_BIDIRECTIONAL);
1054         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1055                 ret = -EFAULT;
1056                 goto out_putrport;
1057         }
1058         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1059
1060         spin_lock_irqsave(&rport->lock, flags);
1061
1062         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1063
1064         lsop->req_queued = true;
1065
1066         spin_unlock_irqrestore(&rport->lock, flags);
1067
1068         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1069                                         &rport->remoteport, lsreq);
1070         if (ret)
1071                 goto out_unlink;
1072
1073         return 0;
1074
1075 out_unlink:
1076         lsop->ls_error = ret;
1077         spin_lock_irqsave(&rport->lock, flags);
1078         lsop->req_queued = false;
1079         list_del(&lsop->lsreq_list);
1080         spin_unlock_irqrestore(&rport->lock, flags);
1081         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1082                                   (lsreq->rqstlen + lsreq->rsplen),
1083                                   DMA_BIDIRECTIONAL);
1084 out_putrport:
1085         nvme_fc_rport_put(rport);
1086
1087         return ret;
1088 }
1089
1090 static void
1091 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1092 {
1093         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1094
1095         lsop->ls_error = status;
1096         complete(&lsop->ls_done);
1097 }
1098
1099 static int
1100 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1101 {
1102         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1103         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1104         int ret;
1105
1106         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1107
1108         if (!ret) {
1109                 /*
1110                  * No timeout/not interruptible as we need the struct
1111                  * to exist until the lldd calls us back. Thus mandate
1112                  * wait until driver calls back. lldd responsible for
1113                  * the timeout action
1114                  */
1115                 wait_for_completion(&lsop->ls_done);
1116
1117                 __nvme_fc_finish_ls_req(lsop);
1118
1119                 ret = lsop->ls_error;
1120         }
1121
1122         if (ret)
1123                 return ret;
1124
1125         /* ACC or RJT payload ? */
1126         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1127                 return -ENXIO;
1128
1129         return 0;
1130 }
1131
1132 static int
1133 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1134                 struct nvmefc_ls_req_op *lsop,
1135                 void (*done)(struct nvmefc_ls_req *req, int status))
1136 {
1137         /* don't wait for completion */
1138
1139         return __nvme_fc_send_ls_req(rport, lsop, done);
1140 }
1141
1142 /* Validation Error indexes into the string table below */
1143 enum {
1144         VERR_NO_ERROR           = 0,
1145         VERR_LSACC              = 1,
1146         VERR_LSDESC_RQST        = 2,
1147         VERR_LSDESC_RQST_LEN    = 3,
1148         VERR_ASSOC_ID           = 4,
1149         VERR_ASSOC_ID_LEN       = 5,
1150         VERR_CONN_ID            = 6,
1151         VERR_CONN_ID_LEN        = 7,
1152         VERR_CR_ASSOC           = 8,
1153         VERR_CR_ASSOC_ACC_LEN   = 9,
1154         VERR_CR_CONN            = 10,
1155         VERR_CR_CONN_ACC_LEN    = 11,
1156         VERR_DISCONN            = 12,
1157         VERR_DISCONN_ACC_LEN    = 13,
1158 };
1159
1160 static char *validation_errors[] = {
1161         "OK",
1162         "Not LS_ACC",
1163         "Not LSDESC_RQST",
1164         "Bad LSDESC_RQST Length",
1165         "Not Association ID",
1166         "Bad Association ID Length",
1167         "Not Connection ID",
1168         "Bad Connection ID Length",
1169         "Not CR_ASSOC Rqst",
1170         "Bad CR_ASSOC ACC Length",
1171         "Not CR_CONN Rqst",
1172         "Bad CR_CONN ACC Length",
1173         "Not Disconnect Rqst",
1174         "Bad Disconnect ACC Length",
1175 };
1176
1177 static int
1178 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1179         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1180 {
1181         struct nvmefc_ls_req_op *lsop;
1182         struct nvmefc_ls_req *lsreq;
1183         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1184         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1185         int ret, fcret = 0;
1186
1187         lsop = kzalloc((sizeof(*lsop) +
1188                          ctrl->lport->ops->lsrqst_priv_sz +
1189                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1190         if (!lsop) {
1191                 ret = -ENOMEM;
1192                 goto out_no_memory;
1193         }
1194         lsreq = &lsop->ls_req;
1195
1196         lsreq->private = (void *)&lsop[1];
1197         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1198                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1199         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200
1201         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1202         assoc_rqst->desc_list_len =
1203                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1204
1205         assoc_rqst->assoc_cmd.desc_tag =
1206                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1207         assoc_rqst->assoc_cmd.desc_len =
1208                         fcnvme_lsdesc_len(
1209                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1210
1211         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1212         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1213         /* Linux supports only Dynamic controllers */
1214         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1215         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1216         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1217                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1218         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1219                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1220
1221         lsop->queue = queue;
1222         lsreq->rqstaddr = assoc_rqst;
1223         lsreq->rqstlen = sizeof(*assoc_rqst);
1224         lsreq->rspaddr = assoc_acc;
1225         lsreq->rsplen = sizeof(*assoc_acc);
1226         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1227
1228         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1229         if (ret)
1230                 goto out_free_buffer;
1231
1232         /* process connect LS completion */
1233
1234         /* validate the ACC response */
1235         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1236                 fcret = VERR_LSACC;
1237         else if (assoc_acc->hdr.desc_list_len !=
1238                         fcnvme_lsdesc_len(
1239                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1240                 fcret = VERR_CR_ASSOC_ACC_LEN;
1241         else if (assoc_acc->hdr.rqst.desc_tag !=
1242                         cpu_to_be32(FCNVME_LSDESC_RQST))
1243                 fcret = VERR_LSDESC_RQST;
1244         else if (assoc_acc->hdr.rqst.desc_len !=
1245                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1246                 fcret = VERR_LSDESC_RQST_LEN;
1247         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1248                 fcret = VERR_CR_ASSOC;
1249         else if (assoc_acc->associd.desc_tag !=
1250                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1251                 fcret = VERR_ASSOC_ID;
1252         else if (assoc_acc->associd.desc_len !=
1253                         fcnvme_lsdesc_len(
1254                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1255                 fcret = VERR_ASSOC_ID_LEN;
1256         else if (assoc_acc->connectid.desc_tag !=
1257                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1258                 fcret = VERR_CONN_ID;
1259         else if (assoc_acc->connectid.desc_len !=
1260                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1261                 fcret = VERR_CONN_ID_LEN;
1262
1263         if (fcret) {
1264                 ret = -EBADF;
1265                 dev_err(ctrl->dev,
1266                         "q %d connect failed: %s\n",
1267                         queue->qnum, validation_errors[fcret]);
1268         } else {
1269                 ctrl->association_id =
1270                         be64_to_cpu(assoc_acc->associd.association_id);
1271                 queue->connection_id =
1272                         be64_to_cpu(assoc_acc->connectid.connection_id);
1273                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1274         }
1275
1276 out_free_buffer:
1277         kfree(lsop);
1278 out_no_memory:
1279         if (ret)
1280                 dev_err(ctrl->dev,
1281                         "queue %d connect admin queue failed (%d).\n",
1282                         queue->qnum, ret);
1283         return ret;
1284 }
1285
1286 static int
1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1288                         u16 qsize, u16 ersp_ratio)
1289 {
1290         struct nvmefc_ls_req_op *lsop;
1291         struct nvmefc_ls_req *lsreq;
1292         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1293         struct fcnvme_ls_cr_conn_acc *conn_acc;
1294         int ret, fcret = 0;
1295
1296         lsop = kzalloc((sizeof(*lsop) +
1297                          ctrl->lport->ops->lsrqst_priv_sz +
1298                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1299         if (!lsop) {
1300                 ret = -ENOMEM;
1301                 goto out_no_memory;
1302         }
1303         lsreq = &lsop->ls_req;
1304
1305         lsreq->private = (void *)&lsop[1];
1306         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1307                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1308         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1309
1310         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1311         conn_rqst->desc_list_len = cpu_to_be32(
1312                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1313                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1314
1315         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1316         conn_rqst->associd.desc_len =
1317                         fcnvme_lsdesc_len(
1318                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1319         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1320         conn_rqst->connect_cmd.desc_tag =
1321                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1322         conn_rqst->connect_cmd.desc_len =
1323                         fcnvme_lsdesc_len(
1324                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1326         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1327         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1328
1329         lsop->queue = queue;
1330         lsreq->rqstaddr = conn_rqst;
1331         lsreq->rqstlen = sizeof(*conn_rqst);
1332         lsreq->rspaddr = conn_acc;
1333         lsreq->rsplen = sizeof(*conn_acc);
1334         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1335
1336         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1337         if (ret)
1338                 goto out_free_buffer;
1339
1340         /* process connect LS completion */
1341
1342         /* validate the ACC response */
1343         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1344                 fcret = VERR_LSACC;
1345         else if (conn_acc->hdr.desc_list_len !=
1346                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1347                 fcret = VERR_CR_CONN_ACC_LEN;
1348         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1349                 fcret = VERR_LSDESC_RQST;
1350         else if (conn_acc->hdr.rqst.desc_len !=
1351                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1352                 fcret = VERR_LSDESC_RQST_LEN;
1353         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1354                 fcret = VERR_CR_CONN;
1355         else if (conn_acc->connectid.desc_tag !=
1356                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1357                 fcret = VERR_CONN_ID;
1358         else if (conn_acc->connectid.desc_len !=
1359                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1360                 fcret = VERR_CONN_ID_LEN;
1361
1362         if (fcret) {
1363                 ret = -EBADF;
1364                 dev_err(ctrl->dev,
1365                         "q %d connect failed: %s\n",
1366                         queue->qnum, validation_errors[fcret]);
1367         } else {
1368                 queue->connection_id =
1369                         be64_to_cpu(conn_acc->connectid.connection_id);
1370                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1371         }
1372
1373 out_free_buffer:
1374         kfree(lsop);
1375 out_no_memory:
1376         if (ret)
1377                 dev_err(ctrl->dev,
1378                         "queue %d connect command failed (%d).\n",
1379                         queue->qnum, ret);
1380         return ret;
1381 }
1382
1383 static void
1384 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1385 {
1386         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1387
1388         __nvme_fc_finish_ls_req(lsop);
1389
1390         /* fc-nvme iniator doesn't care about success or failure of cmd */
1391
1392         kfree(lsop);
1393 }
1394
1395 /*
1396  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1397  * the FC-NVME Association.  Terminating the association also
1398  * terminates the FC-NVME connections (per queue, both admin and io
1399  * queues) that are part of the association. E.g. things are torn
1400  * down, and the related FC-NVME Association ID and Connection IDs
1401  * become invalid.
1402  *
1403  * The behavior of the fc-nvme initiator is such that it's
1404  * understanding of the association and connections will implicitly
1405  * be torn down. The action is implicit as it may be due to a loss of
1406  * connectivity with the fc-nvme target, so you may never get a
1407  * response even if you tried.  As such, the action of this routine
1408  * is to asynchronously send the LS, ignore any results of the LS, and
1409  * continue on with terminating the association. If the fc-nvme target
1410  * is present and receives the LS, it too can tear down.
1411  */
1412 static void
1413 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1414 {
1415         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1416         struct fcnvme_ls_disconnect_acc *discon_acc;
1417         struct nvmefc_ls_req_op *lsop;
1418         struct nvmefc_ls_req *lsreq;
1419         int ret;
1420
1421         lsop = kzalloc((sizeof(*lsop) +
1422                          ctrl->lport->ops->lsrqst_priv_sz +
1423                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1424                         GFP_KERNEL);
1425         if (!lsop)
1426                 /* couldn't sent it... too bad */
1427                 return;
1428
1429         lsreq = &lsop->ls_req;
1430
1431         lsreq->private = (void *)&lsop[1];
1432         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1433                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1434         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1435
1436         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1437         discon_rqst->desc_list_len = cpu_to_be32(
1438                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1439                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1440
1441         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1442         discon_rqst->associd.desc_len =
1443                         fcnvme_lsdesc_len(
1444                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1445
1446         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1447
1448         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1449                                                 FCNVME_LSDESC_DISCONN_CMD);
1450         discon_rqst->discon_cmd.desc_len =
1451                         fcnvme_lsdesc_len(
1452                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1453         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1454         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1455
1456         lsreq->rqstaddr = discon_rqst;
1457         lsreq->rqstlen = sizeof(*discon_rqst);
1458         lsreq->rspaddr = discon_acc;
1459         lsreq->rsplen = sizeof(*discon_acc);
1460         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1461
1462         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1463                                 nvme_fc_disconnect_assoc_done);
1464         if (ret)
1465                 kfree(lsop);
1466
1467         /* only meaningful part to terminating the association */
1468         ctrl->association_id = 0;
1469 }
1470
1471
1472 /* *********************** NVME Ctrl Routines **************************** */
1473
1474 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1475
1476 static void
1477 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1478                 struct nvme_fc_fcp_op *op)
1479 {
1480         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1481                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1482         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1483                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1484
1485         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1486 }
1487
1488 static void
1489 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1490                 unsigned int hctx_idx)
1491 {
1492         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1493
1494         return __nvme_fc_exit_request(set->driver_data, op);
1495 }
1496
1497 static int
1498 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1499 {
1500         unsigned long flags;
1501         int opstate;
1502
1503         spin_lock_irqsave(&ctrl->lock, flags);
1504         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1505         if (opstate != FCPOP_STATE_ACTIVE)
1506                 atomic_set(&op->state, opstate);
1507         else if (ctrl->flags & FCCTRL_TERMIO)
1508                 ctrl->iocnt++;
1509         spin_unlock_irqrestore(&ctrl->lock, flags);
1510
1511         if (opstate != FCPOP_STATE_ACTIVE)
1512                 return -ECANCELED;
1513
1514         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1515                                         &ctrl->rport->remoteport,
1516                                         op->queue->lldd_handle,
1517                                         &op->fcp_req);
1518
1519         return 0;
1520 }
1521
1522 static void
1523 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1524 {
1525         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1526         int i;
1527
1528         /* ensure we've initialized the ops once */
1529         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1530                 return;
1531
1532         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1533                 __nvme_fc_abort_op(ctrl, aen_op);
1534 }
1535
1536 static inline void
1537 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1538                 struct nvme_fc_fcp_op *op, int opstate)
1539 {
1540         unsigned long flags;
1541
1542         if (opstate == FCPOP_STATE_ABORTED) {
1543                 spin_lock_irqsave(&ctrl->lock, flags);
1544                 if (ctrl->flags & FCCTRL_TERMIO) {
1545                         if (!--ctrl->iocnt)
1546                                 wake_up(&ctrl->ioabort_wait);
1547                 }
1548                 spin_unlock_irqrestore(&ctrl->lock, flags);
1549         }
1550 }
1551
1552 static void
1553 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1554 {
1555         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1556         struct request *rq = op->rq;
1557         struct nvmefc_fcp_req *freq = &op->fcp_req;
1558         struct nvme_fc_ctrl *ctrl = op->ctrl;
1559         struct nvme_fc_queue *queue = op->queue;
1560         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1561         struct nvme_command *sqe = &op->cmd_iu.sqe;
1562         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1563         union nvme_result result;
1564         bool terminate_assoc = true;
1565         int opstate;
1566
1567         /*
1568          * WARNING:
1569          * The current linux implementation of a nvme controller
1570          * allocates a single tag set for all io queues and sizes
1571          * the io queues to fully hold all possible tags. Thus, the
1572          * implementation does not reference or care about the sqhd
1573          * value as it never needs to use the sqhd/sqtail pointers
1574          * for submission pacing.
1575          *
1576          * This affects the FC-NVME implementation in two ways:
1577          * 1) As the value doesn't matter, we don't need to waste
1578          *    cycles extracting it from ERSPs and stamping it in the
1579          *    cases where the transport fabricates CQEs on successful
1580          *    completions.
1581          * 2) The FC-NVME implementation requires that delivery of
1582          *    ERSP completions are to go back to the nvme layer in order
1583          *    relative to the rsn, such that the sqhd value will always
1584          *    be "in order" for the nvme layer. As the nvme layer in
1585          *    linux doesn't care about sqhd, there's no need to return
1586          *    them in order.
1587          *
1588          * Additionally:
1589          * As the core nvme layer in linux currently does not look at
1590          * every field in the cqe - in cases where the FC transport must
1591          * fabricate a CQE, the following fields will not be set as they
1592          * are not referenced:
1593          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1594          *
1595          * Failure or error of an individual i/o, in a transport
1596          * detected fashion unrelated to the nvme completion status,
1597          * potentially cause the initiator and target sides to get out
1598          * of sync on SQ head/tail (aka outstanding io count allowed).
1599          * Per FC-NVME spec, failure of an individual command requires
1600          * the connection to be terminated, which in turn requires the
1601          * association to be terminated.
1602          */
1603
1604         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1605
1606         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1607                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1608
1609         if (opstate == FCPOP_STATE_ABORTED)
1610                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1611         else if (freq->status)
1612                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1613
1614         /*
1615          * For the linux implementation, if we have an unsuccesful
1616          * status, they blk-mq layer can typically be called with the
1617          * non-zero status and the content of the cqe isn't important.
1618          */
1619         if (status)
1620                 goto done;
1621
1622         /*
1623          * command completed successfully relative to the wire
1624          * protocol. However, validate anything received and
1625          * extract the status and result from the cqe (create it
1626          * where necessary).
1627          */
1628
1629         switch (freq->rcv_rsplen) {
1630
1631         case 0:
1632         case NVME_FC_SIZEOF_ZEROS_RSP:
1633                 /*
1634                  * No response payload or 12 bytes of payload (which
1635                  * should all be zeros) are considered successful and
1636                  * no payload in the CQE by the transport.
1637                  */
1638                 if (freq->transferred_length !=
1639                         be32_to_cpu(op->cmd_iu.data_len)) {
1640                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1641                         goto done;
1642                 }
1643                 result.u64 = 0;
1644                 break;
1645
1646         case sizeof(struct nvme_fc_ersp_iu):
1647                 /*
1648                  * The ERSP IU contains a full completion with CQE.
1649                  * Validate ERSP IU and look at cqe.
1650                  */
1651                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1652                                         (freq->rcv_rsplen / 4) ||
1653                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1654                                         freq->transferred_length ||
1655                              op->rsp_iu.status_code ||
1656                              sqe->common.command_id != cqe->command_id)) {
1657                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1658                         goto done;
1659                 }
1660                 result = cqe->result;
1661                 status = cqe->status;
1662                 break;
1663
1664         default:
1665                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666                 goto done;
1667         }
1668
1669         terminate_assoc = false;
1670
1671 done:
1672         if (op->flags & FCOP_FLAGS_AEN) {
1673                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1674                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1675                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1676                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1677                 nvme_fc_ctrl_put(ctrl);
1678                 goto check_error;
1679         }
1680
1681         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1682         nvme_end_request(rq, status, result);
1683
1684 check_error:
1685         if (terminate_assoc)
1686                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1687 }
1688
1689 static int
1690 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1691                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1692                 struct request *rq, u32 rqno)
1693 {
1694         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1695         int ret = 0;
1696
1697         memset(op, 0, sizeof(*op));
1698         op->fcp_req.cmdaddr = &op->cmd_iu;
1699         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1700         op->fcp_req.rspaddr = &op->rsp_iu;
1701         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1702         op->fcp_req.done = nvme_fc_fcpio_done;
1703         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1704         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1705         op->ctrl = ctrl;
1706         op->queue = queue;
1707         op->rq = rq;
1708         op->rqno = rqno;
1709
1710         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1711         cmdiu->fc_id = NVME_CMD_FC_ID;
1712         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1713
1714         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1715                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1716         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1717                 dev_err(ctrl->dev,
1718                         "FCP Op failed - cmdiu dma mapping failed.\n");
1719                 ret = -EFAULT;
1720                 goto out_on_error;
1721         }
1722
1723         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1724                                 &op->rsp_iu, sizeof(op->rsp_iu),
1725                                 DMA_FROM_DEVICE);
1726         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1727                 dev_err(ctrl->dev,
1728                         "FCP Op failed - rspiu dma mapping failed.\n");
1729                 ret = -EFAULT;
1730         }
1731
1732         atomic_set(&op->state, FCPOP_STATE_IDLE);
1733 out_on_error:
1734         return ret;
1735 }
1736
1737 static int
1738 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1739                 unsigned int hctx_idx, unsigned int numa_node)
1740 {
1741         struct nvme_fc_ctrl *ctrl = set->driver_data;
1742         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1743         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1744         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1745
1746         nvme_req(rq)->ctrl = &ctrl->ctrl;
1747         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1748 }
1749
1750 static int
1751 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1752 {
1753         struct nvme_fc_fcp_op *aen_op;
1754         struct nvme_fc_cmd_iu *cmdiu;
1755         struct nvme_command *sqe;
1756         void *private;
1757         int i, ret;
1758
1759         aen_op = ctrl->aen_ops;
1760         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1761                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1762                                                 GFP_KERNEL);
1763                 if (!private)
1764                         return -ENOMEM;
1765
1766                 cmdiu = &aen_op->cmd_iu;
1767                 sqe = &cmdiu->sqe;
1768                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1769                                 aen_op, (struct request *)NULL,
1770                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1771                 if (ret) {
1772                         kfree(private);
1773                         return ret;
1774                 }
1775
1776                 aen_op->flags = FCOP_FLAGS_AEN;
1777                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1778                 aen_op->fcp_req.private = private;
1779
1780                 memset(sqe, 0, sizeof(*sqe));
1781                 sqe->common.opcode = nvme_admin_async_event;
1782                 /* Note: core layer may overwrite the sqe.command_id value */
1783                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1784         }
1785         return 0;
1786 }
1787
1788 static void
1789 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1790 {
1791         struct nvme_fc_fcp_op *aen_op;
1792         int i;
1793
1794         cancel_work_sync(&ctrl->ctrl.async_event_work);
1795         aen_op = ctrl->aen_ops;
1796         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1797                 if (!aen_op->fcp_req.private)
1798                         continue;
1799
1800                 __nvme_fc_exit_request(ctrl, aen_op);
1801
1802                 kfree(aen_op->fcp_req.private);
1803                 aen_op->fcp_req.private = NULL;
1804         }
1805 }
1806
1807 static inline void
1808 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1809                 unsigned int qidx)
1810 {
1811         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1812
1813         hctx->driver_data = queue;
1814         queue->hctx = hctx;
1815 }
1816
1817 static int
1818 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1819                 unsigned int hctx_idx)
1820 {
1821         struct nvme_fc_ctrl *ctrl = data;
1822
1823         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1824
1825         return 0;
1826 }
1827
1828 static int
1829 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1830                 unsigned int hctx_idx)
1831 {
1832         struct nvme_fc_ctrl *ctrl = data;
1833
1834         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1835
1836         return 0;
1837 }
1838
1839 static void
1840 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1841 {
1842         struct nvme_fc_queue *queue;
1843
1844         queue = &ctrl->queues[idx];
1845         memset(queue, 0, sizeof(*queue));
1846         queue->ctrl = ctrl;
1847         queue->qnum = idx;
1848         atomic_set(&queue->csn, 0);
1849         queue->dev = ctrl->dev;
1850
1851         if (idx > 0)
1852                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1853         else
1854                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1855
1856         /*
1857          * Considered whether we should allocate buffers for all SQEs
1858          * and CQEs and dma map them - mapping their respective entries
1859          * into the request structures (kernel vm addr and dma address)
1860          * thus the driver could use the buffers/mappings directly.
1861          * It only makes sense if the LLDD would use them for its
1862          * messaging api. It's very unlikely most adapter api's would use
1863          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1864          * structures were used instead.
1865          */
1866 }
1867
1868 /*
1869  * This routine terminates a queue at the transport level.
1870  * The transport has already ensured that all outstanding ios on
1871  * the queue have been terminated.
1872  * The transport will send a Disconnect LS request to terminate
1873  * the queue's connection. Termination of the admin queue will also
1874  * terminate the association at the target.
1875  */
1876 static void
1877 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1878 {
1879         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1880                 return;
1881
1882         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1883         /*
1884          * Current implementation never disconnects a single queue.
1885          * It always terminates a whole association. So there is never
1886          * a disconnect(queue) LS sent to the target.
1887          */
1888
1889         queue->connection_id = 0;
1890         atomic_set(&queue->csn, 0);
1891 }
1892
1893 static void
1894 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1895         struct nvme_fc_queue *queue, unsigned int qidx)
1896 {
1897         if (ctrl->lport->ops->delete_queue)
1898                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1899                                 queue->lldd_handle);
1900         queue->lldd_handle = NULL;
1901 }
1902
1903 static void
1904 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1905 {
1906         int i;
1907
1908         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1909                 nvme_fc_free_queue(&ctrl->queues[i]);
1910 }
1911
1912 static int
1913 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1914         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1915 {
1916         int ret = 0;
1917
1918         queue->lldd_handle = NULL;
1919         if (ctrl->lport->ops->create_queue)
1920                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1921                                 qidx, qsize, &queue->lldd_handle);
1922
1923         return ret;
1924 }
1925
1926 static void
1927 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1928 {
1929         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1930         int i;
1931
1932         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1933                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1934 }
1935
1936 static int
1937 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1938 {
1939         struct nvme_fc_queue *queue = &ctrl->queues[1];
1940         int i, ret;
1941
1942         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1943                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1944                 if (ret)
1945                         goto delete_queues;
1946         }
1947
1948         return 0;
1949
1950 delete_queues:
1951         for (; i >= 0; i--)
1952                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1953         return ret;
1954 }
1955
1956 static int
1957 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1958 {
1959         int i, ret = 0;
1960
1961         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1962                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1963                                         (qsize / 5));
1964                 if (ret)
1965                         break;
1966                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1967                 if (ret)
1968                         break;
1969
1970                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1971         }
1972
1973         return ret;
1974 }
1975
1976 static void
1977 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1978 {
1979         int i;
1980
1981         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1982                 nvme_fc_init_queue(ctrl, i);
1983 }
1984
1985 static void
1986 nvme_fc_ctrl_free(struct kref *ref)
1987 {
1988         struct nvme_fc_ctrl *ctrl =
1989                 container_of(ref, struct nvme_fc_ctrl, ref);
1990         unsigned long flags;
1991
1992         if (ctrl->ctrl.tagset) {
1993                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1994                 blk_mq_free_tag_set(&ctrl->tag_set);
1995         }
1996
1997         /* remove from rport list */
1998         spin_lock_irqsave(&ctrl->rport->lock, flags);
1999         list_del(&ctrl->ctrl_list);
2000         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2001
2002         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2003         blk_cleanup_queue(ctrl->ctrl.admin_q);
2004         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2005
2006         kfree(ctrl->queues);
2007
2008         put_device(ctrl->dev);
2009         nvme_fc_rport_put(ctrl->rport);
2010
2011         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2012         if (ctrl->ctrl.opts)
2013                 nvmf_free_options(ctrl->ctrl.opts);
2014         kfree(ctrl);
2015 }
2016
2017 static void
2018 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2019 {
2020         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2021 }
2022
2023 static int
2024 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2025 {
2026         return kref_get_unless_zero(&ctrl->ref);
2027 }
2028
2029 /*
2030  * All accesses from nvme core layer done - can now free the
2031  * controller. Called after last nvme_put_ctrl() call
2032  */
2033 static void
2034 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2035 {
2036         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2037
2038         WARN_ON(nctrl != &ctrl->ctrl);
2039
2040         nvme_fc_ctrl_put(ctrl);
2041 }
2042
2043 static void
2044 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2045 {
2046         int active;
2047
2048         /*
2049          * if an error (io timeout, etc) while (re)connecting,
2050          * it's an error on creating the new association.
2051          * Start the error recovery thread if it hasn't already
2052          * been started. It is expected there could be multiple
2053          * ios hitting this path before things are cleaned up.
2054          */
2055         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2056                 active = atomic_xchg(&ctrl->err_work_active, 1);
2057                 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2058                         atomic_set(&ctrl->err_work_active, 0);
2059                         WARN_ON(1);
2060                 }
2061                 return;
2062         }
2063
2064         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2065         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2066                 return;
2067
2068         dev_warn(ctrl->ctrl.device,
2069                 "NVME-FC{%d}: transport association error detected: %s\n",
2070                 ctrl->cnum, errmsg);
2071         dev_warn(ctrl->ctrl.device,
2072                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2073
2074         nvme_reset_ctrl(&ctrl->ctrl);
2075 }
2076
2077 static enum blk_eh_timer_return
2078 nvme_fc_timeout(struct request *rq, bool reserved)
2079 {
2080         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2081         struct nvme_fc_ctrl *ctrl = op->ctrl;
2082
2083         /*
2084          * we can't individually ABTS an io without affecting the queue,
2085          * thus killing the queue, and thus the association.
2086          * So resolve by performing a controller reset, which will stop
2087          * the host/io stack, terminate the association on the link,
2088          * and recreate an association on the link.
2089          */
2090         nvme_fc_error_recovery(ctrl, "io timeout error");
2091
2092         /*
2093          * the io abort has been initiated. Have the reset timer
2094          * restarted and the abort completion will complete the io
2095          * shortly. Avoids a synchronous wait while the abort finishes.
2096          */
2097         return BLK_EH_RESET_TIMER;
2098 }
2099
2100 static int
2101 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2102                 struct nvme_fc_fcp_op *op)
2103 {
2104         struct nvmefc_fcp_req *freq = &op->fcp_req;
2105         enum dma_data_direction dir;
2106         int ret;
2107
2108         freq->sg_cnt = 0;
2109
2110         if (!blk_rq_payload_bytes(rq))
2111                 return 0;
2112
2113         freq->sg_table.sgl = freq->first_sgl;
2114         ret = sg_alloc_table_chained(&freq->sg_table,
2115                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2116         if (ret)
2117                 return -ENOMEM;
2118
2119         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2120         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2121         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2122         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2123                                 op->nents, dir);
2124         if (unlikely(freq->sg_cnt <= 0)) {
2125                 sg_free_table_chained(&freq->sg_table, true);
2126                 freq->sg_cnt = 0;
2127                 return -EFAULT;
2128         }
2129
2130         /*
2131          * TODO: blk_integrity_rq(rq)  for DIF
2132          */
2133         return 0;
2134 }
2135
2136 static void
2137 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2138                 struct nvme_fc_fcp_op *op)
2139 {
2140         struct nvmefc_fcp_req *freq = &op->fcp_req;
2141
2142         if (!freq->sg_cnt)
2143                 return;
2144
2145         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2146                                 ((rq_data_dir(rq) == WRITE) ?
2147                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2148
2149         nvme_cleanup_cmd(rq);
2150
2151         sg_free_table_chained(&freq->sg_table, true);
2152
2153         freq->sg_cnt = 0;
2154 }
2155
2156 /*
2157  * In FC, the queue is a logical thing. At transport connect, the target
2158  * creates its "queue" and returns a handle that is to be given to the
2159  * target whenever it posts something to the corresponding SQ.  When an
2160  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2161  * command contained within the SQE, an io, and assigns a FC exchange
2162  * to it. The SQE and the associated SQ handle are sent in the initial
2163  * CMD IU sents on the exchange. All transfers relative to the io occur
2164  * as part of the exchange.  The CQE is the last thing for the io,
2165  * which is transferred (explicitly or implicitly) with the RSP IU
2166  * sent on the exchange. After the CQE is received, the FC exchange is
2167  * terminaed and the Exchange may be used on a different io.
2168  *
2169  * The transport to LLDD api has the transport making a request for a
2170  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2171  * resource and transfers the command. The LLDD will then process all
2172  * steps to complete the io. Upon completion, the transport done routine
2173  * is called.
2174  *
2175  * So - while the operation is outstanding to the LLDD, there is a link
2176  * level FC exchange resource that is also outstanding. This must be
2177  * considered in all cleanup operations.
2178  */
2179 static blk_status_t
2180 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2181         struct nvme_fc_fcp_op *op, u32 data_len,
2182         enum nvmefc_fcp_datadir io_dir)
2183 {
2184         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2185         struct nvme_command *sqe = &cmdiu->sqe;
2186         int ret, opstate;
2187
2188         /*
2189          * before attempting to send the io, check to see if we believe
2190          * the target device is present
2191          */
2192         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2193                 return BLK_STS_RESOURCE;
2194
2195         if (!nvme_fc_ctrl_get(ctrl))
2196                 return BLK_STS_IOERR;
2197
2198         /* format the FC-NVME CMD IU and fcp_req */
2199         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2200         cmdiu->data_len = cpu_to_be32(data_len);
2201         switch (io_dir) {
2202         case NVMEFC_FCP_WRITE:
2203                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204                 break;
2205         case NVMEFC_FCP_READ:
2206                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207                 break;
2208         case NVMEFC_FCP_NODATA:
2209                 cmdiu->flags = 0;
2210                 break;
2211         }
2212         op->fcp_req.payload_length = data_len;
2213         op->fcp_req.io_dir = io_dir;
2214         op->fcp_req.transferred_length = 0;
2215         op->fcp_req.rcv_rsplen = 0;
2216         op->fcp_req.status = NVME_SC_SUCCESS;
2217         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218
2219         /*
2220          * validate per fabric rules, set fields mandated by fabric spec
2221          * as well as those by FC-NVME spec.
2222          */
2223         WARN_ON_ONCE(sqe->common.metadata);
2224         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225
2226         /*
2227          * format SQE DPTR field per FC-NVME rules:
2228          *    type=0x5     Transport SGL Data Block Descriptor
2229          *    subtype=0xA  Transport-specific value
2230          *    address=0
2231          *    length=length of the data series
2232          */
2233         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234                                         NVME_SGL_FMT_TRANSPORT_A;
2235         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236         sqe->rw.dptr.sgl.addr = 0;
2237
2238         if (!(op->flags & FCOP_FLAGS_AEN)) {
2239                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2240                 if (ret < 0) {
2241                         nvme_cleanup_cmd(op->rq);
2242                         nvme_fc_ctrl_put(ctrl);
2243                         if (ret == -ENOMEM || ret == -EAGAIN)
2244                                 return BLK_STS_RESOURCE;
2245                         return BLK_STS_IOERR;
2246                 }
2247         }
2248
2249         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251
2252         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253
2254         if (!(op->flags & FCOP_FLAGS_AEN))
2255                 blk_mq_start_request(op->rq);
2256
2257         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2258         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2259                                         &ctrl->rport->remoteport,
2260                                         queue->lldd_handle, &op->fcp_req);
2261
2262         if (ret) {
2263                 /*
2264                  * If the lld fails to send the command is there an issue with
2265                  * the csn value?  If the command that fails is the Connect,
2266                  * no - as the connection won't be live.  If it is a command
2267                  * post-connect, it's possible a gap in csn may be created.
2268                  * Does this matter?  As Linux initiators don't send fused
2269                  * commands, no.  The gap would exist, but as there's nothing
2270                  * that depends on csn order to be delivered on the target
2271                  * side, it shouldn't hurt.  It would be difficult for a
2272                  * target to even detect the csn gap as it has no idea when the
2273                  * cmd with the csn was supposed to arrive.
2274                  */
2275                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2276                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2277
2278                 if (!(op->flags & FCOP_FLAGS_AEN))
2279                         nvme_fc_unmap_data(ctrl, op->rq, op);
2280
2281                 nvme_fc_ctrl_put(ctrl);
2282
2283                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2284                                 ret != -EBUSY)
2285                         return BLK_STS_IOERR;
2286
2287                 return BLK_STS_RESOURCE;
2288         }
2289
2290         return BLK_STS_OK;
2291 }
2292
2293 static blk_status_t
2294 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2295                         const struct blk_mq_queue_data *bd)
2296 {
2297         struct nvme_ns *ns = hctx->queue->queuedata;
2298         struct nvme_fc_queue *queue = hctx->driver_data;
2299         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2300         struct request *rq = bd->rq;
2301         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2302         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2303         struct nvme_command *sqe = &cmdiu->sqe;
2304         enum nvmefc_fcp_datadir io_dir;
2305         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2306         u32 data_len;
2307         blk_status_t ret;
2308
2309         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2310             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2311                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2312
2313         ret = nvme_setup_cmd(ns, rq, sqe);
2314         if (ret)
2315                 return ret;
2316
2317         data_len = blk_rq_payload_bytes(rq);
2318         if (data_len)
2319                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2320                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2321         else
2322                 io_dir = NVMEFC_FCP_NODATA;
2323
2324         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2325 }
2326
2327 static struct blk_mq_tags *
2328 nvme_fc_tagset(struct nvme_fc_queue *queue)
2329 {
2330         if (queue->qnum == 0)
2331                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2332
2333         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2334 }
2335
2336 static int
2337 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2338
2339 {
2340         struct nvme_fc_queue *queue = hctx->driver_data;
2341         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2342         struct request *req;
2343         struct nvme_fc_fcp_op *op;
2344
2345         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2346         if (!req)
2347                 return 0;
2348
2349         op = blk_mq_rq_to_pdu(req);
2350
2351         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2352                  (ctrl->lport->ops->poll_queue))
2353                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2354                                                  queue->lldd_handle);
2355
2356         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2357 }
2358
2359 static void
2360 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2361 {
2362         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2363         struct nvme_fc_fcp_op *aen_op;
2364         unsigned long flags;
2365         bool terminating = false;
2366         blk_status_t ret;
2367
2368         spin_lock_irqsave(&ctrl->lock, flags);
2369         if (ctrl->flags & FCCTRL_TERMIO)
2370                 terminating = true;
2371         spin_unlock_irqrestore(&ctrl->lock, flags);
2372
2373         if (terminating)
2374                 return;
2375
2376         aen_op = &ctrl->aen_ops[0];
2377
2378         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2379                                         NVMEFC_FCP_NODATA);
2380         if (ret)
2381                 dev_err(ctrl->ctrl.device,
2382                         "failed async event work\n");
2383 }
2384
2385 static void
2386 nvme_fc_complete_rq(struct request *rq)
2387 {
2388         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2389         struct nvme_fc_ctrl *ctrl = op->ctrl;
2390
2391         atomic_set(&op->state, FCPOP_STATE_IDLE);
2392
2393         nvme_fc_unmap_data(ctrl, rq, op);
2394         nvme_complete_rq(rq);
2395         nvme_fc_ctrl_put(ctrl);
2396 }
2397
2398 /*
2399  * This routine is used by the transport when it needs to find active
2400  * io on a queue that is to be terminated. The transport uses
2401  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2402  * this routine to kill them on a 1 by 1 basis.
2403  *
2404  * As FC allocates FC exchange for each io, the transport must contact
2405  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2406  * After terminating the exchange the LLDD will call the transport's
2407  * normal io done path for the request, but it will have an aborted
2408  * status. The done path will return the io request back to the block
2409  * layer with an error status.
2410  */
2411 static void
2412 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2413 {
2414         struct nvme_ctrl *nctrl = data;
2415         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2416         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2417
2418         __nvme_fc_abort_op(ctrl, op);
2419 }
2420
2421
2422 static const struct blk_mq_ops nvme_fc_mq_ops = {
2423         .queue_rq       = nvme_fc_queue_rq,
2424         .complete       = nvme_fc_complete_rq,
2425         .init_request   = nvme_fc_init_request,
2426         .exit_request   = nvme_fc_exit_request,
2427         .init_hctx      = nvme_fc_init_hctx,
2428         .poll           = nvme_fc_poll,
2429         .timeout        = nvme_fc_timeout,
2430 };
2431
2432 static int
2433 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2434 {
2435         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2436         unsigned int nr_io_queues;
2437         int ret;
2438
2439         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2440                                 ctrl->lport->ops->max_hw_queues);
2441         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2442         if (ret) {
2443                 dev_info(ctrl->ctrl.device,
2444                         "set_queue_count failed: %d\n", ret);
2445                 return ret;
2446         }
2447
2448         ctrl->ctrl.queue_count = nr_io_queues + 1;
2449         if (!nr_io_queues)
2450                 return 0;
2451
2452         nvme_fc_init_io_queues(ctrl);
2453
2454         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2455         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2456         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2457         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2458         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2459         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2460         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2461                                         (SG_CHUNK_SIZE *
2462                                                 sizeof(struct scatterlist)) +
2463                                         ctrl->lport->ops->fcprqst_priv_sz;
2464         ctrl->tag_set.driver_data = ctrl;
2465         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2466         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2467
2468         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2469         if (ret)
2470                 return ret;
2471
2472         ctrl->ctrl.tagset = &ctrl->tag_set;
2473
2474         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2475         if (IS_ERR(ctrl->ctrl.connect_q)) {
2476                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2477                 goto out_free_tag_set;
2478         }
2479
2480         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2481         if (ret)
2482                 goto out_cleanup_blk_queue;
2483
2484         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2485         if (ret)
2486                 goto out_delete_hw_queues;
2487
2488         ctrl->ioq_live = true;
2489
2490         return 0;
2491
2492 out_delete_hw_queues:
2493         nvme_fc_delete_hw_io_queues(ctrl);
2494 out_cleanup_blk_queue:
2495         blk_cleanup_queue(ctrl->ctrl.connect_q);
2496 out_free_tag_set:
2497         blk_mq_free_tag_set(&ctrl->tag_set);
2498         nvme_fc_free_io_queues(ctrl);
2499
2500         /* force put free routine to ignore io queues */
2501         ctrl->ctrl.tagset = NULL;
2502
2503         return ret;
2504 }
2505
2506 static int
2507 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2508 {
2509         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2510         unsigned int nr_io_queues;
2511         int ret;
2512
2513         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2514                                 ctrl->lport->ops->max_hw_queues);
2515         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2516         if (ret) {
2517                 dev_info(ctrl->ctrl.device,
2518                         "set_queue_count failed: %d\n", ret);
2519                 return ret;
2520         }
2521
2522         ctrl->ctrl.queue_count = nr_io_queues + 1;
2523         /* check for io queues existing */
2524         if (ctrl->ctrl.queue_count == 1)
2525                 return 0;
2526
2527         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2528         if (ret)
2529                 goto out_free_io_queues;
2530
2531         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2532         if (ret)
2533                 goto out_delete_hw_queues;
2534
2535         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2536
2537         return 0;
2538
2539 out_delete_hw_queues:
2540         nvme_fc_delete_hw_io_queues(ctrl);
2541 out_free_io_queues:
2542         nvme_fc_free_io_queues(ctrl);
2543         return ret;
2544 }
2545
2546 static void
2547 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2548 {
2549         struct nvme_fc_lport *lport = rport->lport;
2550
2551         atomic_inc(&lport->act_rport_cnt);
2552 }
2553
2554 static void
2555 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2556 {
2557         struct nvme_fc_lport *lport = rport->lport;
2558         u32 cnt;
2559
2560         cnt = atomic_dec_return(&lport->act_rport_cnt);
2561         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2562                 lport->ops->localport_delete(&lport->localport);
2563 }
2564
2565 static int
2566 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2567 {
2568         struct nvme_fc_rport *rport = ctrl->rport;
2569         u32 cnt;
2570
2571         if (ctrl->assoc_active)
2572                 return 1;
2573
2574         ctrl->assoc_active = true;
2575         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2576         if (cnt == 1)
2577                 nvme_fc_rport_active_on_lport(rport);
2578
2579         return 0;
2580 }
2581
2582 static int
2583 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2584 {
2585         struct nvme_fc_rport *rport = ctrl->rport;
2586         struct nvme_fc_lport *lport = rport->lport;
2587         u32 cnt;
2588
2589         /* ctrl->assoc_active=false will be set independently */
2590
2591         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2592         if (cnt == 0) {
2593                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2594                         lport->ops->remoteport_delete(&rport->remoteport);
2595                 nvme_fc_rport_inactive_on_lport(rport);
2596         }
2597
2598         return 0;
2599 }
2600
2601 /*
2602  * This routine restarts the controller on the host side, and
2603  * on the link side, recreates the controller association.
2604  */
2605 static int
2606 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2607 {
2608         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2609         int ret;
2610         bool changed;
2611
2612         ++ctrl->ctrl.nr_reconnects;
2613
2614         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2615                 return -ENODEV;
2616
2617         if (nvme_fc_ctlr_active_on_rport(ctrl))
2618                 return -ENOTUNIQ;
2619
2620         /*
2621          * Create the admin queue
2622          */
2623
2624         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2625                                 NVME_AQ_DEPTH);
2626         if (ret)
2627                 goto out_free_queue;
2628
2629         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2630                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2631         if (ret)
2632                 goto out_delete_hw_queue;
2633
2634         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2635
2636         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2637         if (ret)
2638                 goto out_disconnect_admin_queue;
2639
2640         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2641
2642         /*
2643          * Check controller capabilities
2644          *
2645          * todo:- add code to check if ctrl attributes changed from
2646          * prior connection values
2647          */
2648
2649         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2650         if (ret) {
2651                 dev_err(ctrl->ctrl.device,
2652                         "prop_get NVME_REG_CAP failed\n");
2653                 goto out_disconnect_admin_queue;
2654         }
2655
2656         ctrl->ctrl.sqsize =
2657                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2658
2659         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2660         if (ret)
2661                 goto out_disconnect_admin_queue;
2662
2663         ctrl->ctrl.max_hw_sectors =
2664                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2665
2666         ret = nvme_init_identify(&ctrl->ctrl);
2667         if (ret)
2668                 goto out_disconnect_admin_queue;
2669
2670         /* sanity checks */
2671
2672         /* FC-NVME does not have other data in the capsule */
2673         if (ctrl->ctrl.icdoff) {
2674                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2675                                 ctrl->ctrl.icdoff);
2676                 goto out_disconnect_admin_queue;
2677         }
2678
2679         /* FC-NVME supports normal SGL Data Block Descriptors */
2680
2681         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2682                 /* warn if maxcmd is lower than queue_size */
2683                 dev_warn(ctrl->ctrl.device,
2684                         "queue_size %zu > ctrl maxcmd %u, reducing "
2685                         "to queue_size\n",
2686                         opts->queue_size, ctrl->ctrl.maxcmd);
2687                 opts->queue_size = ctrl->ctrl.maxcmd;
2688         }
2689
2690         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2691                 /* warn if sqsize is lower than queue_size */
2692                 dev_warn(ctrl->ctrl.device,
2693                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2694                         opts->queue_size, ctrl->ctrl.sqsize + 1);
2695                 opts->queue_size = ctrl->ctrl.sqsize + 1;
2696         }
2697
2698         ret = nvme_fc_init_aen_ops(ctrl);
2699         if (ret)
2700                 goto out_term_aen_ops;
2701
2702         /*
2703          * Create the io queues
2704          */
2705
2706         if (ctrl->ctrl.queue_count > 1) {
2707                 if (!ctrl->ioq_live)
2708                         ret = nvme_fc_create_io_queues(ctrl);
2709                 else
2710                         ret = nvme_fc_recreate_io_queues(ctrl);
2711                 if (ret)
2712                         goto out_term_aen_ops;
2713         }
2714
2715         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2716
2717         ctrl->ctrl.nr_reconnects = 0;
2718
2719         if (changed)
2720                 nvme_start_ctrl(&ctrl->ctrl);
2721
2722         return 0;       /* Success */
2723
2724 out_term_aen_ops:
2725         nvme_fc_term_aen_ops(ctrl);
2726 out_disconnect_admin_queue:
2727         /* send a Disconnect(association) LS to fc-nvme target */
2728         nvme_fc_xmt_disconnect_assoc(ctrl);
2729 out_delete_hw_queue:
2730         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2731 out_free_queue:
2732         nvme_fc_free_queue(&ctrl->queues[0]);
2733         ctrl->assoc_active = false;
2734         nvme_fc_ctlr_inactive_on_rport(ctrl);
2735
2736         return ret;
2737 }
2738
2739 /*
2740  * This routine stops operation of the controller on the host side.
2741  * On the host os stack side: Admin and IO queues are stopped,
2742  *   outstanding ios on them terminated via FC ABTS.
2743  * On the link side: the association is terminated.
2744  */
2745 static void
2746 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2747 {
2748         unsigned long flags;
2749
2750         if (!ctrl->assoc_active)
2751                 return;
2752         ctrl->assoc_active = false;
2753
2754         spin_lock_irqsave(&ctrl->lock, flags);
2755         ctrl->flags |= FCCTRL_TERMIO;
2756         ctrl->iocnt = 0;
2757         spin_unlock_irqrestore(&ctrl->lock, flags);
2758
2759         /*
2760          * If io queues are present, stop them and terminate all outstanding
2761          * ios on them. As FC allocates FC exchange for each io, the
2762          * transport must contact the LLDD to terminate the exchange,
2763          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2764          * to tell us what io's are busy and invoke a transport routine
2765          * to kill them with the LLDD.  After terminating the exchange
2766          * the LLDD will call the transport's normal io done path, but it
2767          * will have an aborted status. The done path will return the
2768          * io requests back to the block layer as part of normal completions
2769          * (but with error status).
2770          */
2771         if (ctrl->ctrl.queue_count > 1) {
2772                 nvme_stop_queues(&ctrl->ctrl);
2773                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2774                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2775         }
2776
2777         /*
2778          * Other transports, which don't have link-level contexts bound
2779          * to sqe's, would try to gracefully shutdown the controller by
2780          * writing the registers for shutdown and polling (call
2781          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2782          * just aborted and we will wait on those contexts, and given
2783          * there was no indication of how live the controlelr is on the
2784          * link, don't send more io to create more contexts for the
2785          * shutdown. Let the controller fail via keepalive failure if
2786          * its still present.
2787          */
2788
2789         /*
2790          * clean up the admin queue. Same thing as above.
2791          * use blk_mq_tagset_busy_itr() and the transport routine to
2792          * terminate the exchanges.
2793          */
2794         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2795         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2796                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2797
2798         /* kill the aens as they are a separate path */
2799         nvme_fc_abort_aen_ops(ctrl);
2800
2801         /* wait for all io that had to be aborted */
2802         spin_lock_irq(&ctrl->lock);
2803         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2804         ctrl->flags &= ~FCCTRL_TERMIO;
2805         spin_unlock_irq(&ctrl->lock);
2806
2807         nvme_fc_term_aen_ops(ctrl);
2808
2809         /*
2810          * send a Disconnect(association) LS to fc-nvme target
2811          * Note: could have been sent at top of process, but
2812          * cleaner on link traffic if after the aborts complete.
2813          * Note: if association doesn't exist, association_id will be 0
2814          */
2815         if (ctrl->association_id)
2816                 nvme_fc_xmt_disconnect_assoc(ctrl);
2817
2818         if (ctrl->ctrl.tagset) {
2819                 nvme_fc_delete_hw_io_queues(ctrl);
2820                 nvme_fc_free_io_queues(ctrl);
2821         }
2822
2823         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2824         nvme_fc_free_queue(&ctrl->queues[0]);
2825
2826         /* re-enable the admin_q so anything new can fast fail */
2827         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2828
2829         /* resume the io queues so that things will fast fail */
2830         nvme_start_queues(&ctrl->ctrl);
2831
2832         nvme_fc_ctlr_inactive_on_rport(ctrl);
2833 }
2834
2835 static void
2836 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2837 {
2838         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2839
2840         cancel_work_sync(&ctrl->err_work);
2841         cancel_delayed_work_sync(&ctrl->connect_work);
2842         /*
2843          * kill the association on the link side.  this will block
2844          * waiting for io to terminate
2845          */
2846         nvme_fc_delete_association(ctrl);
2847 }
2848
2849 static void
2850 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2851 {
2852         struct nvme_fc_rport *rport = ctrl->rport;
2853         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2854         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2855         bool recon = true;
2856
2857         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2858                 return;
2859
2860         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2861                 dev_info(ctrl->ctrl.device,
2862                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2863                         ctrl->cnum, status);
2864         else if (time_after_eq(jiffies, rport->dev_loss_end))
2865                 recon = false;
2866
2867         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2868                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2869                         dev_info(ctrl->ctrl.device,
2870                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2871                                 "seconds\n",
2872                                 ctrl->cnum, recon_delay / HZ);
2873                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2874                         recon_delay = rport->dev_loss_end - jiffies;
2875
2876                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2877         } else {
2878                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2879                         dev_warn(ctrl->ctrl.device,
2880                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2881                                 "reached.\n",
2882                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2883                 else
2884                         dev_warn(ctrl->ctrl.device,
2885                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2886                                 "while waiting for remoteport connectivity.\n",
2887                                 ctrl->cnum, portptr->dev_loss_tmo);
2888                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2889         }
2890 }
2891
2892 static void
2893 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2894 {
2895         /*
2896          * if state is connecting - the error occurred as part of a
2897          * reconnect attempt. The create_association error paths will
2898          * clean up any outstanding io.
2899          *
2900          * if it's a different state - ensure all pending io is
2901          * terminated. Given this can delay while waiting for the
2902          * aborted io to return, we recheck adapter state below
2903          * before changing state.
2904          */
2905         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
2906                 nvme_stop_keep_alive(&ctrl->ctrl);
2907
2908                 /* will block will waiting for io to terminate */
2909                 nvme_fc_delete_association(ctrl);
2910         }
2911
2912         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2913             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2914                 dev_err(ctrl->ctrl.device,
2915                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2916                         "to CONNECTING\n", ctrl->cnum);
2917 }
2918
2919 static void
2920 nvme_fc_reset_ctrl_work(struct work_struct *work)
2921 {
2922         struct nvme_fc_ctrl *ctrl =
2923                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2924         int ret;
2925
2926         __nvme_fc_terminate_io(ctrl);
2927
2928         nvme_stop_ctrl(&ctrl->ctrl);
2929
2930         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2931                 ret = nvme_fc_create_association(ctrl);
2932         else
2933                 ret = -ENOTCONN;
2934
2935         if (ret)
2936                 nvme_fc_reconnect_or_delete(ctrl, ret);
2937         else
2938                 dev_info(ctrl->ctrl.device,
2939                         "NVME-FC{%d}: controller reset complete\n",
2940                         ctrl->cnum);
2941 }
2942
2943 static void
2944 nvme_fc_connect_err_work(struct work_struct *work)
2945 {
2946         struct nvme_fc_ctrl *ctrl =
2947                         container_of(work, struct nvme_fc_ctrl, err_work);
2948
2949         __nvme_fc_terminate_io(ctrl);
2950
2951         atomic_set(&ctrl->err_work_active, 0);
2952
2953         /*
2954          * Rescheduling the connection after recovering
2955          * from the io error is left to the reconnect work
2956          * item, which is what should have stalled waiting on
2957          * the io that had the error that scheduled this work.
2958          */
2959 }
2960
2961 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2962         .name                   = "fc",
2963         .module                 = THIS_MODULE,
2964         .flags                  = NVME_F_FABRICS,
2965         .reg_read32             = nvmf_reg_read32,
2966         .reg_read64             = nvmf_reg_read64,
2967         .reg_write32            = nvmf_reg_write32,
2968         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2969         .submit_async_event     = nvme_fc_submit_async_event,
2970         .delete_ctrl            = nvme_fc_delete_ctrl,
2971         .get_address            = nvmf_get_address,
2972 };
2973
2974 static void
2975 nvme_fc_connect_ctrl_work(struct work_struct *work)
2976 {
2977         int ret;
2978
2979         struct nvme_fc_ctrl *ctrl =
2980                         container_of(to_delayed_work(work),
2981                                 struct nvme_fc_ctrl, connect_work);
2982
2983         ret = nvme_fc_create_association(ctrl);
2984         if (ret)
2985                 nvme_fc_reconnect_or_delete(ctrl, ret);
2986         else
2987                 dev_info(ctrl->ctrl.device,
2988                         "NVME-FC{%d}: controller connect complete\n",
2989                         ctrl->cnum);
2990 }
2991
2992
2993 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2994         .queue_rq       = nvme_fc_queue_rq,
2995         .complete       = nvme_fc_complete_rq,
2996         .init_request   = nvme_fc_init_request,
2997         .exit_request   = nvme_fc_exit_request,
2998         .init_hctx      = nvme_fc_init_admin_hctx,
2999         .timeout        = nvme_fc_timeout,
3000 };
3001
3002
3003 /*
3004  * Fails a controller request if it matches an existing controller
3005  * (association) with the same tuple:
3006  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3007  *
3008  * The ports don't need to be compared as they are intrinsically
3009  * already matched by the port pointers supplied.
3010  */
3011 static bool
3012 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3013                 struct nvmf_ctrl_options *opts)
3014 {
3015         struct nvme_fc_ctrl *ctrl;
3016         unsigned long flags;
3017         bool found = false;
3018
3019         spin_lock_irqsave(&rport->lock, flags);
3020         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3021                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3022                 if (found)
3023                         break;
3024         }
3025         spin_unlock_irqrestore(&rport->lock, flags);
3026
3027         return found;
3028 }
3029
3030 static struct nvme_ctrl *
3031 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3032         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3033 {
3034         struct nvme_fc_ctrl *ctrl;
3035         unsigned long flags;
3036         int ret, idx;
3037
3038         if (!(rport->remoteport.port_role &
3039             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3040                 ret = -EBADR;
3041                 goto out_fail;
3042         }
3043
3044         if (!opts->duplicate_connect &&
3045             nvme_fc_existing_controller(rport, opts)) {
3046                 ret = -EALREADY;
3047                 goto out_fail;
3048         }
3049
3050         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3051         if (!ctrl) {
3052                 ret = -ENOMEM;
3053                 goto out_fail;
3054         }
3055
3056         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3057         if (idx < 0) {
3058                 ret = -ENOSPC;
3059                 goto out_free_ctrl;
3060         }
3061
3062         ctrl->ctrl.opts = opts;
3063         ctrl->ctrl.nr_reconnects = 0;
3064         INIT_LIST_HEAD(&ctrl->ctrl_list);
3065         ctrl->lport = lport;
3066         ctrl->rport = rport;
3067         ctrl->dev = lport->dev;
3068         ctrl->cnum = idx;
3069         ctrl->ioq_live = false;
3070         ctrl->assoc_active = false;
3071         atomic_set(&ctrl->err_work_active, 0);
3072         init_waitqueue_head(&ctrl->ioabort_wait);
3073
3074         get_device(ctrl->dev);
3075         kref_init(&ctrl->ref);
3076
3077         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3078         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3079         INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3080         spin_lock_init(&ctrl->lock);
3081
3082         /* io queue count */
3083         ctrl->ctrl.queue_count = min_t(unsigned int,
3084                                 opts->nr_io_queues,
3085                                 lport->ops->max_hw_queues);
3086         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3087
3088         ctrl->ctrl.sqsize = opts->queue_size - 1;
3089         ctrl->ctrl.kato = opts->kato;
3090         ctrl->ctrl.cntlid = 0xffff;
3091
3092         ret = -ENOMEM;
3093         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3094                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3095         if (!ctrl->queues)
3096                 goto out_free_ida;
3097
3098         nvme_fc_init_queue(ctrl, 0);
3099
3100         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3101         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3102         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3103         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3104         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3105         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3106                                         (SG_CHUNK_SIZE *
3107                                                 sizeof(struct scatterlist)) +
3108                                         ctrl->lport->ops->fcprqst_priv_sz;
3109         ctrl->admin_tag_set.driver_data = ctrl;
3110         ctrl->admin_tag_set.nr_hw_queues = 1;
3111         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3112         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3113
3114         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3115         if (ret)
3116                 goto out_free_queues;
3117         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3118
3119         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3120         if (IS_ERR(ctrl->ctrl.admin_q)) {
3121                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3122                 goto out_free_admin_tag_set;
3123         }
3124
3125         /*
3126          * Would have been nice to init io queues tag set as well.
3127          * However, we require interaction from the controller
3128          * for max io queue count before we can do so.
3129          * Defer this to the connect path.
3130          */
3131
3132         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3133         if (ret)
3134                 goto out_cleanup_admin_q;
3135
3136         /* at this point, teardown path changes to ref counting on nvme ctrl */
3137
3138         spin_lock_irqsave(&rport->lock, flags);
3139         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3140         spin_unlock_irqrestore(&rport->lock, flags);
3141
3142         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3143             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3144                 dev_err(ctrl->ctrl.device,
3145                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3146                 goto fail_ctrl;
3147         }
3148
3149         nvme_get_ctrl(&ctrl->ctrl);
3150
3151         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3152                 nvme_put_ctrl(&ctrl->ctrl);
3153                 dev_err(ctrl->ctrl.device,
3154                         "NVME-FC{%d}: failed to schedule initial connect\n",
3155                         ctrl->cnum);
3156                 goto fail_ctrl;
3157         }
3158
3159         flush_delayed_work(&ctrl->connect_work);
3160
3161         dev_info(ctrl->ctrl.device,
3162                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3163                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3164
3165         return &ctrl->ctrl;
3166
3167 fail_ctrl:
3168         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3169         cancel_work_sync(&ctrl->ctrl.reset_work);
3170         cancel_work_sync(&ctrl->err_work);
3171         cancel_delayed_work_sync(&ctrl->connect_work);
3172
3173         ctrl->ctrl.opts = NULL;
3174
3175         /* initiate nvme ctrl ref counting teardown */
3176         nvme_uninit_ctrl(&ctrl->ctrl);
3177
3178         /* Remove core ctrl ref. */
3179         nvme_put_ctrl(&ctrl->ctrl);
3180
3181         /* as we're past the point where we transition to the ref
3182          * counting teardown path, if we return a bad pointer here,
3183          * the calling routine, thinking it's prior to the
3184          * transition, will do an rport put. Since the teardown
3185          * path also does a rport put, we do an extra get here to
3186          * so proper order/teardown happens.
3187          */
3188         nvme_fc_rport_get(rport);
3189
3190         return ERR_PTR(-EIO);
3191
3192 out_cleanup_admin_q:
3193         blk_cleanup_queue(ctrl->ctrl.admin_q);
3194 out_free_admin_tag_set:
3195         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3196 out_free_queues:
3197         kfree(ctrl->queues);
3198 out_free_ida:
3199         put_device(ctrl->dev);
3200         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3201 out_free_ctrl:
3202         kfree(ctrl);
3203 out_fail:
3204         /* exit via here doesn't follow ctlr ref points */
3205         return ERR_PTR(ret);
3206 }
3207
3208
3209 struct nvmet_fc_traddr {
3210         u64     nn;
3211         u64     pn;
3212 };
3213
3214 static int
3215 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3216 {
3217         u64 token64;
3218
3219         if (match_u64(sstr, &token64))
3220                 return -EINVAL;
3221         *val = token64;
3222
3223         return 0;
3224 }
3225
3226 /*
3227  * This routine validates and extracts the WWN's from the TRADDR string.
3228  * As kernel parsers need the 0x to determine number base, universally
3229  * build string to parse with 0x prefix before parsing name strings.
3230  */
3231 static int
3232 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3233 {
3234         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3235         substring_t wwn = { name, &name[sizeof(name)-1] };
3236         int nnoffset, pnoffset;
3237
3238         /* validate it string one of the 2 allowed formats */
3239         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3240                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3241                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3242                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3243                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3244                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3245                                                 NVME_FC_TRADDR_OXNNLEN;
3246         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3247                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3248                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3249                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3250                 nnoffset = NVME_FC_TRADDR_NNLEN;
3251                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3252         } else
3253                 goto out_einval;
3254
3255         name[0] = '0';
3256         name[1] = 'x';
3257         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3258
3259         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3260         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3261                 goto out_einval;
3262
3263         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3264         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3265                 goto out_einval;
3266
3267         return 0;
3268
3269 out_einval:
3270         pr_warn("%s: bad traddr string\n", __func__);
3271         return -EINVAL;
3272 }
3273
3274 static struct nvme_ctrl *
3275 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3276 {
3277         struct nvme_fc_lport *lport;
3278         struct nvme_fc_rport *rport;
3279         struct nvme_ctrl *ctrl;
3280         struct nvmet_fc_traddr laddr = { 0L, 0L };
3281         struct nvmet_fc_traddr raddr = { 0L, 0L };
3282         unsigned long flags;
3283         int ret;
3284
3285         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3286         if (ret || !raddr.nn || !raddr.pn)
3287                 return ERR_PTR(-EINVAL);
3288
3289         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3290         if (ret || !laddr.nn || !laddr.pn)
3291                 return ERR_PTR(-EINVAL);
3292
3293         /* find the host and remote ports to connect together */
3294         spin_lock_irqsave(&nvme_fc_lock, flags);
3295         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3296                 if (lport->localport.node_name != laddr.nn ||
3297                     lport->localport.port_name != laddr.pn ||
3298                     lport->localport.port_state != FC_OBJSTATE_ONLINE)
3299                         continue;
3300
3301                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3302                         if (rport->remoteport.node_name != raddr.nn ||
3303                             rport->remoteport.port_name != raddr.pn ||
3304                             rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3305                                 continue;
3306
3307                         /* if fail to get reference fall through. Will error */
3308                         if (!nvme_fc_rport_get(rport))
3309                                 break;
3310
3311                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3312
3313                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3314                         if (IS_ERR(ctrl))
3315                                 nvme_fc_rport_put(rport);
3316                         return ctrl;
3317                 }
3318         }
3319         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3320
3321         pr_warn("%s: %s - %s combination not found\n",
3322                 __func__, opts->traddr, opts->host_traddr);
3323         return ERR_PTR(-ENOENT);
3324 }
3325
3326
3327 static struct nvmf_transport_ops nvme_fc_transport = {
3328         .name           = "fc",
3329         .module         = THIS_MODULE,
3330         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3331         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3332         .create_ctrl    = nvme_fc_create_ctrl,
3333 };
3334
3335 static int __init nvme_fc_init_module(void)
3336 {
3337         int ret;
3338
3339         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3340         if (!nvme_fc_wq)
3341                 return -ENOMEM;
3342
3343         /*
3344          * NOTE:
3345          * It is expected that in the future the kernel will combine
3346          * the FC-isms that are currently under scsi and now being
3347          * added to by NVME into a new standalone FC class. The SCSI
3348          * and NVME protocols and their devices would be under this
3349          * new FC class.
3350          *
3351          * As we need something to post FC-specific udev events to,
3352          * specifically for nvme probe events, start by creating the
3353          * new device class.  When the new standalone FC class is
3354          * put in place, this code will move to a more generic
3355          * location for the class.
3356          */
3357         fc_class = class_create(THIS_MODULE, "fc");
3358         if (IS_ERR(fc_class)) {
3359                 pr_err("couldn't register class fc\n");
3360                 ret = PTR_ERR(fc_class);
3361                 goto out_destroy_wq;
3362         }
3363
3364         /*
3365          * Create a device for the FC-centric udev events
3366          */
3367         fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3368                                 "fc_udev_device");
3369         if (IS_ERR(fc_udev_device)) {
3370                 pr_err("couldn't create fc_udev device!\n");
3371                 ret = PTR_ERR(fc_udev_device);
3372                 goto out_destroy_class;
3373         }
3374
3375         ret = nvmf_register_transport(&nvme_fc_transport);
3376         if (ret)
3377                 goto out_destroy_device;
3378
3379         return 0;
3380
3381 out_destroy_device:
3382         device_destroy(fc_class, MKDEV(0, 0));
3383 out_destroy_class:
3384         class_destroy(fc_class);
3385 out_destroy_wq:
3386         destroy_workqueue(nvme_fc_wq);
3387
3388         return ret;
3389 }
3390
3391 static void __exit nvme_fc_exit_module(void)
3392 {
3393         /* sanity check - all lports should be removed */
3394         if (!list_empty(&nvme_fc_lport_list))
3395                 pr_warn("%s: localport list not empty\n", __func__);
3396
3397         nvmf_unregister_transport(&nvme_fc_transport);
3398
3399         ida_destroy(&nvme_fc_local_port_cnt);
3400         ida_destroy(&nvme_fc_ctrl_cnt);
3401
3402         device_destroy(fc_class, MKDEV(0, 0));
3403         class_destroy(fc_class);
3404         destroy_workqueue(nvme_fc_wq);
3405 }
3406
3407 module_init(nvme_fc_init_module);
3408 module_exit(nvme_fc_exit_module);
3409
3410 MODULE_LICENSE("GPL v2");