GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
17
18 #include <linux/err.h>
19 #include <linux/of.h>
20 #include <linux/of_fdt.h>
21 #include <linux/of_platform.h>
22 #include <linux/mm.h>
23 #include <linux/sizes.h>
24 #include <linux/of_reserved_mem.h>
25 #include <linux/sort.h>
26 #include <linux/slab.h>
27
28 #define MAX_RESERVED_REGIONS    32
29 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
30 static int reserved_mem_count;
31
32 #if defined(CONFIG_HAVE_MEMBLOCK)
33 #include <linux/memblock.h>
34 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
35         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
36         phys_addr_t *res_base)
37 {
38         phys_addr_t base;
39         /*
40          * We use __memblock_alloc_base() because memblock_alloc_base()
41          * panic()s on allocation failure.
42          */
43         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
44         base = __memblock_alloc_base(size, align, end);
45         if (!base)
46                 return -ENOMEM;
47
48         /*
49          * Check if the allocated region fits in to start..end window
50          */
51         if (base < start) {
52                 memblock_free(base, size);
53                 return -ENOMEM;
54         }
55
56         *res_base = base;
57         if (nomap)
58                 return memblock_remove(base, size);
59         return 0;
60 }
61 #else
62 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
63         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
64         phys_addr_t *res_base)
65 {
66         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
67                   size, nomap ? " (nomap)" : "");
68         return -ENOSYS;
69 }
70 #endif
71
72 /**
73  * res_mem_save_node() - save fdt node for second pass initialization
74  */
75 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
76                                       phys_addr_t base, phys_addr_t size)
77 {
78         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
79
80         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
81                 pr_err("not enough space all defined regions.\n");
82                 return;
83         }
84
85         rmem->fdt_node = node;
86         rmem->name = uname;
87         rmem->base = base;
88         rmem->size = size;
89
90         reserved_mem_count++;
91         return;
92 }
93
94 /**
95  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
96  *                        and 'alloc-ranges' properties
97  */
98 static int __init __reserved_mem_alloc_size(unsigned long node,
99         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
100 {
101         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
102         phys_addr_t start = 0, end = 0;
103         phys_addr_t base = 0, align = 0, size;
104         int len;
105         const __be32 *prop;
106         int nomap;
107         int ret;
108
109         prop = of_get_flat_dt_prop(node, "size", &len);
110         if (!prop)
111                 return -EINVAL;
112
113         if (len != dt_root_size_cells * sizeof(__be32)) {
114                 pr_err("invalid size property in '%s' node.\n", uname);
115                 return -EINVAL;
116         }
117         size = dt_mem_next_cell(dt_root_size_cells, &prop);
118
119         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
120
121         prop = of_get_flat_dt_prop(node, "alignment", &len);
122         if (prop) {
123                 if (len != dt_root_addr_cells * sizeof(__be32)) {
124                         pr_err("invalid alignment property in '%s' node.\n",
125                                 uname);
126                         return -EINVAL;
127                 }
128                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
129         }
130
131         /* Need adjust the alignment to satisfy the CMA requirement */
132         if (IS_ENABLED(CONFIG_CMA)
133             && of_flat_dt_is_compatible(node, "shared-dma-pool")
134             && of_get_flat_dt_prop(node, "reusable", NULL)
135             && !of_get_flat_dt_prop(node, "no-map", NULL)) {
136                 unsigned long order =
137                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
138
139                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
140         }
141
142         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
143         if (prop) {
144
145                 if (len % t_len != 0) {
146                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
147                                uname);
148                         return -EINVAL;
149                 }
150
151                 base = 0;
152
153                 while (len > 0) {
154                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
155                         end = start + dt_mem_next_cell(dt_root_size_cells,
156                                                        &prop);
157
158                         ret = early_init_dt_alloc_reserved_memory_arch(size,
159                                         align, start, end, nomap, &base);
160                         if (ret == 0) {
161                                 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
162                                         uname, &base,
163                                         (unsigned long)(size / SZ_1M));
164                                 break;
165                         }
166                         len -= t_len;
167                 }
168
169         } else {
170                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
171                                                         0, 0, nomap, &base);
172                 if (ret == 0)
173                         pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
174                                 uname, &base, (unsigned long)(size / SZ_1M));
175         }
176
177         if (base == 0) {
178                 pr_info("failed to allocate memory for node '%s'\n", uname);
179                 return -ENOMEM;
180         }
181
182         *res_base = base;
183         *res_size = size;
184
185         return 0;
186 }
187
188 static const struct of_device_id __rmem_of_table_sentinel
189         __used __section(__reservedmem_of_table_end);
190
191 /**
192  * res_mem_init_node() - call region specific reserved memory init code
193  */
194 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
195 {
196         extern const struct of_device_id __reservedmem_of_table[];
197         const struct of_device_id *i;
198
199         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
200                 reservedmem_of_init_fn initfn = i->data;
201                 const char *compat = i->compatible;
202
203                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
204                         continue;
205
206                 if (initfn(rmem) == 0) {
207                         pr_info("initialized node %s, compatible id %s\n",
208                                 rmem->name, compat);
209                         return 0;
210                 }
211         }
212         return -ENOENT;
213 }
214
215 static int __init __rmem_cmp(const void *a, const void *b)
216 {
217         const struct reserved_mem *ra = a, *rb = b;
218
219         if (ra->base < rb->base)
220                 return -1;
221
222         if (ra->base > rb->base)
223                 return 1;
224
225         /*
226          * Put the dynamic allocations (address == 0, size == 0) before static
227          * allocations at address 0x0 so that overlap detection works
228          * correctly.
229          */
230         if (ra->size < rb->size)
231                 return -1;
232         if (ra->size > rb->size)
233                 return 1;
234
235         return 0;
236 }
237
238 static void __init __rmem_check_for_overlap(void)
239 {
240         int i;
241
242         if (reserved_mem_count < 2)
243                 return;
244
245         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
246              __rmem_cmp, NULL);
247         for (i = 0; i < reserved_mem_count - 1; i++) {
248                 struct reserved_mem *this, *next;
249
250                 this = &reserved_mem[i];
251                 next = &reserved_mem[i + 1];
252
253                 if (this->base + this->size > next->base) {
254                         phys_addr_t this_end, next_end;
255
256                         this_end = this->base + this->size;
257                         next_end = next->base + next->size;
258                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
259                                this->name, &this->base, &this_end,
260                                next->name, &next->base, &next_end);
261                 }
262         }
263 }
264
265 /**
266  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
267  */
268 void __init fdt_init_reserved_mem(void)
269 {
270         int i;
271
272         /* check for overlapping reserved regions */
273         __rmem_check_for_overlap();
274
275         for (i = 0; i < reserved_mem_count; i++) {
276                 struct reserved_mem *rmem = &reserved_mem[i];
277                 unsigned long node = rmem->fdt_node;
278                 int len;
279                 const __be32 *prop;
280                 int err = 0;
281
282                 prop = of_get_flat_dt_prop(node, "phandle", &len);
283                 if (!prop)
284                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
285                 if (prop)
286                         rmem->phandle = of_read_number(prop, len/4);
287
288                 if (rmem->size == 0)
289                         err = __reserved_mem_alloc_size(node, rmem->name,
290                                                  &rmem->base, &rmem->size);
291                 if (err == 0)
292                         __reserved_mem_init_node(rmem);
293         }
294 }
295
296 static inline struct reserved_mem *__find_rmem(struct device_node *node)
297 {
298         unsigned int i;
299
300         if (!node->phandle)
301                 return NULL;
302
303         for (i = 0; i < reserved_mem_count; i++)
304                 if (reserved_mem[i].phandle == node->phandle)
305                         return &reserved_mem[i];
306         return NULL;
307 }
308
309 struct rmem_assigned_device {
310         struct device *dev;
311         struct reserved_mem *rmem;
312         struct list_head list;
313 };
314
315 static LIST_HEAD(of_rmem_assigned_device_list);
316 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
317
318 /**
319  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
320  *                                        given device
321  * @dev:        Pointer to the device to configure
322  * @np:         Pointer to the device_node with 'reserved-memory' property
323  * @idx:        Index of selected region
324  *
325  * This function assigns respective DMA-mapping operations based on reserved
326  * memory region specified by 'memory-region' property in @np node to the @dev
327  * device. When driver needs to use more than one reserved memory region, it
328  * should allocate child devices and initialize regions by name for each of
329  * child device.
330  *
331  * Returns error code or zero on success.
332  */
333 int of_reserved_mem_device_init_by_idx(struct device *dev,
334                                        struct device_node *np, int idx)
335 {
336         struct rmem_assigned_device *rd;
337         struct device_node *target;
338         struct reserved_mem *rmem;
339         int ret;
340
341         if (!np || !dev)
342                 return -EINVAL;
343
344         target = of_parse_phandle(np, "memory-region", idx);
345         if (!target)
346                 return -ENODEV;
347
348         rmem = __find_rmem(target);
349         of_node_put(target);
350
351         if (!rmem || !rmem->ops || !rmem->ops->device_init)
352                 return -EINVAL;
353
354         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
355         if (!rd)
356                 return -ENOMEM;
357
358         ret = rmem->ops->device_init(rmem, dev);
359         if (ret == 0) {
360                 rd->dev = dev;
361                 rd->rmem = rmem;
362
363                 mutex_lock(&of_rmem_assigned_device_mutex);
364                 list_add(&rd->list, &of_rmem_assigned_device_list);
365                 mutex_unlock(&of_rmem_assigned_device_mutex);
366                 /* ensure that dma_ops is set for virtual devices
367                  * using reserved memory
368                  */
369                 of_dma_configure(dev, np);
370
371                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
372         } else {
373                 kfree(rd);
374         }
375
376         return ret;
377 }
378 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
379
380 /**
381  * of_reserved_mem_device_release() - release reserved memory device structures
382  * @dev:        Pointer to the device to deconfigure
383  *
384  * This function releases structures allocated for memory region handling for
385  * the given device.
386  */
387 void of_reserved_mem_device_release(struct device *dev)
388 {
389         struct rmem_assigned_device *rd;
390         struct reserved_mem *rmem = NULL;
391
392         mutex_lock(&of_rmem_assigned_device_mutex);
393         list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
394                 if (rd->dev == dev) {
395                         rmem = rd->rmem;
396                         list_del(&rd->list);
397                         kfree(rd);
398                         break;
399                 }
400         }
401         mutex_unlock(&of_rmem_assigned_device_mutex);
402
403         if (!rmem || !rmem->ops || !rmem->ops->device_release)
404                 return;
405
406         rmem->ops->device_release(rmem, dev);
407 }
408 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);