GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW      = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS   = (1 << 1),
50 };
51
52 /*
53  * Lock for manipulating VMD IRQ lists.
54  */
55 static DEFINE_RAW_SPINLOCK(list_lock);
56
57 /**
58  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59  * @node:       list item for parent traversal.
60  * @irq:        back pointer to parent.
61  * @enabled:    true if driver enabled IRQ
62  * @virq:       the virtual IRQ value provided to the requesting driver.
63  *
64  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65  * a VMD IRQ using this structure.
66  */
67 struct vmd_irq {
68         struct list_head        node;
69         struct vmd_irq_list     *irq;
70         bool                    enabled;
71         unsigned int            virq;
72 };
73
74 /**
75  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76  * @irq_list:   the list of irq's the VMD one demuxes to.
77  * @srcu:       SRCU struct for local synchronization.
78  * @count:      number of child IRQs assigned to this vector; used to track
79  *              sharing.
80  */
81 struct vmd_irq_list {
82         struct list_head        irq_list;
83         struct srcu_struct      srcu;
84         unsigned int            count;
85 };
86
87 struct vmd_dev {
88         struct pci_dev          *dev;
89
90         spinlock_t              cfg_lock;
91         char __iomem            *cfgbar;
92
93         int msix_count;
94         struct vmd_irq_list     *irqs;
95
96         struct pci_sysdata      sysdata;
97         struct resource         resources[3];
98         struct irq_domain       *irq_domain;
99         struct pci_bus          *bus;
100         u8                      busn_start;
101
102 #ifdef CONFIG_X86_DEV_DMA_OPS
103         struct dma_map_ops      dma_ops;
104         struct dma_domain       dma_domain;
105 #endif
106 };
107
108 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
109 {
110         return container_of(bus->sysdata, struct vmd_dev, sysdata);
111 }
112
113 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
114                                            struct vmd_irq_list *irqs)
115 {
116         return irqs - vmd->irqs;
117 }
118
119 /*
120  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
121  * but the MSI entry for the hardware it's driving will be programmed with a
122  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
123  * domain into one of its own, and the VMD driver de-muxes these for the
124  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
125  * and irq_chip to set this up.
126  */
127 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
128 {
129         struct vmd_irq *vmdirq = data->chip_data;
130         struct vmd_irq_list *irq = vmdirq->irq;
131         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
132
133         msg->address_hi = MSI_ADDR_BASE_HI;
134         msg->address_lo = MSI_ADDR_BASE_LO |
135                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
136         msg->data = 0;
137 }
138
139 /*
140  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
141  */
142 static void vmd_irq_enable(struct irq_data *data)
143 {
144         struct vmd_irq *vmdirq = data->chip_data;
145         unsigned long flags;
146
147         raw_spin_lock_irqsave(&list_lock, flags);
148         WARN_ON(vmdirq->enabled);
149         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
150         vmdirq->enabled = true;
151         raw_spin_unlock_irqrestore(&list_lock, flags);
152
153         data->chip->irq_unmask(data);
154 }
155
156 static void vmd_irq_disable(struct irq_data *data)
157 {
158         struct vmd_irq *vmdirq = data->chip_data;
159         unsigned long flags;
160
161         data->chip->irq_mask(data);
162
163         raw_spin_lock_irqsave(&list_lock, flags);
164         if (vmdirq->enabled) {
165                 list_del_rcu(&vmdirq->node);
166                 vmdirq->enabled = false;
167         }
168         raw_spin_unlock_irqrestore(&list_lock, flags);
169 }
170
171 /*
172  * XXX: Stubbed until we develop acceptable way to not create conflicts with
173  * other devices sharing the same vector.
174  */
175 static int vmd_irq_set_affinity(struct irq_data *data,
176                                 const struct cpumask *dest, bool force)
177 {
178         return -EINVAL;
179 }
180
181 static struct irq_chip vmd_msi_controller = {
182         .name                   = "VMD-MSI",
183         .irq_enable             = vmd_irq_enable,
184         .irq_disable            = vmd_irq_disable,
185         .irq_compose_msi_msg    = vmd_compose_msi_msg,
186         .irq_set_affinity       = vmd_irq_set_affinity,
187 };
188
189 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
190                                      msi_alloc_info_t *arg)
191 {
192         return 0;
193 }
194
195 /*
196  * XXX: We can be even smarter selecting the best IRQ once we solve the
197  * affinity problem.
198  */
199 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
200 {
201         int i, best = 1;
202         unsigned long flags;
203
204         if (vmd->msix_count == 1)
205                 return &vmd->irqs[0];
206
207         /*
208          * White list for fast-interrupt handlers. All others will share the
209          * "slow" interrupt vector.
210          */
211         switch (msi_desc_to_pci_dev(desc)->class) {
212         case PCI_CLASS_STORAGE_EXPRESS:
213                 break;
214         default:
215                 return &vmd->irqs[0];
216         }
217
218         raw_spin_lock_irqsave(&list_lock, flags);
219         for (i = 1; i < vmd->msix_count; i++)
220                 if (vmd->irqs[i].count < vmd->irqs[best].count)
221                         best = i;
222         vmd->irqs[best].count++;
223         raw_spin_unlock_irqrestore(&list_lock, flags);
224
225         return &vmd->irqs[best];
226 }
227
228 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
229                         unsigned int virq, irq_hw_number_t hwirq,
230                         msi_alloc_info_t *arg)
231 {
232         struct msi_desc *desc = arg->desc;
233         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
234         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
235         unsigned int index, vector;
236
237         if (!vmdirq)
238                 return -ENOMEM;
239
240         INIT_LIST_HEAD(&vmdirq->node);
241         vmdirq->irq = vmd_next_irq(vmd, desc);
242         vmdirq->virq = virq;
243         index = index_from_irqs(vmd, vmdirq->irq);
244         vector = pci_irq_vector(vmd->dev, index);
245
246         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
247                             handle_untracked_irq, vmd, NULL);
248         return 0;
249 }
250
251 static void vmd_msi_free(struct irq_domain *domain,
252                         struct msi_domain_info *info, unsigned int virq)
253 {
254         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
255         unsigned long flags;
256
257         synchronize_srcu(&vmdirq->irq->srcu);
258
259         /* XXX: Potential optimization to rebalance */
260         raw_spin_lock_irqsave(&list_lock, flags);
261         vmdirq->irq->count--;
262         raw_spin_unlock_irqrestore(&list_lock, flags);
263
264         kfree(vmdirq);
265 }
266
267 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
268                            int nvec, msi_alloc_info_t *arg)
269 {
270         struct pci_dev *pdev = to_pci_dev(dev);
271         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
272
273         if (nvec > vmd->msix_count)
274                 return vmd->msix_count;
275
276         memset(arg, 0, sizeof(*arg));
277         return 0;
278 }
279
280 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
281 {
282         arg->desc = desc;
283 }
284
285 static struct msi_domain_ops vmd_msi_domain_ops = {
286         .get_hwirq      = vmd_get_hwirq,
287         .msi_init       = vmd_msi_init,
288         .msi_free       = vmd_msi_free,
289         .msi_prepare    = vmd_msi_prepare,
290         .set_desc       = vmd_set_desc,
291 };
292
293 static struct msi_domain_info vmd_msi_domain_info = {
294         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
295                           MSI_FLAG_PCI_MSIX,
296         .ops            = &vmd_msi_domain_ops,
297         .chip           = &vmd_msi_controller,
298 };
299
300 #ifdef CONFIG_X86_DEV_DMA_OPS
301 /*
302  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
303  * VMD domain need to be mapped for the VMD, not the device requiring
304  * the mapping.
305  */
306 static struct device *to_vmd_dev(struct device *dev)
307 {
308         struct pci_dev *pdev = to_pci_dev(dev);
309         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
310
311         return &vmd->dev->dev;
312 }
313
314 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
315 {
316         return get_dma_ops(to_vmd_dev(dev));
317 }
318
319 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
320                        gfp_t flag, unsigned long attrs)
321 {
322         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
323                                        attrs);
324 }
325
326 static void vmd_free(struct device *dev, size_t size, void *vaddr,
327                      dma_addr_t addr, unsigned long attrs)
328 {
329         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
330                                       attrs);
331 }
332
333 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
334                     void *cpu_addr, dma_addr_t addr, size_t size,
335                     unsigned long attrs)
336 {
337         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
338                                       size, attrs);
339 }
340
341 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
342                            void *cpu_addr, dma_addr_t addr, size_t size,
343                            unsigned long attrs)
344 {
345         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
346                                              addr, size, attrs);
347 }
348
349 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
350                                unsigned long offset, size_t size,
351                                enum dma_data_direction dir,
352                                unsigned long attrs)
353 {
354         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
355                                           dir, attrs);
356 }
357
358 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
359                            enum dma_data_direction dir, unsigned long attrs)
360 {
361         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
362 }
363
364 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
365                       enum dma_data_direction dir, unsigned long attrs)
366 {
367         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
368 }
369
370 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
371                          enum dma_data_direction dir, unsigned long attrs)
372 {
373         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
374 }
375
376 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
377                                     size_t size, enum dma_data_direction dir)
378 {
379         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
380 }
381
382 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
383                                        size_t size, enum dma_data_direction dir)
384 {
385         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
386                                                  dir);
387 }
388
389 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
390                                 int nents, enum dma_data_direction dir)
391 {
392         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
393 }
394
395 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
396                                    int nents, enum dma_data_direction dir)
397 {
398         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
399 }
400
401 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
402 {
403         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
404 }
405
406 static int vmd_dma_supported(struct device *dev, u64 mask)
407 {
408         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
409 }
410
411 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
412 static u64 vmd_get_required_mask(struct device *dev)
413 {
414         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
415 }
416 #endif
417
418 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
419 {
420         struct dma_domain *domain = &vmd->dma_domain;
421
422         if (get_dma_ops(&vmd->dev->dev))
423                 del_dma_domain(domain);
424 }
425
426 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
427         do {                                    \
428                 if (source->fn)                 \
429                         dest->fn = vmd_##fn;    \
430         } while (0)
431
432 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
433 {
434         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
435         struct dma_map_ops *dest = &vmd->dma_ops;
436         struct dma_domain *domain = &vmd->dma_domain;
437
438         domain->domain_nr = vmd->sysdata.domain;
439         domain->dma_ops = dest;
440
441         if (!source)
442                 return;
443         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
444         ASSIGN_VMD_DMA_OPS(source, dest, free);
445         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
446         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
447         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
448         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
449         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
450         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
451         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
452         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
453         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
454         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
455         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
456         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
457 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
458         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
459 #endif
460         add_dma_domain(domain);
461 }
462 #undef ASSIGN_VMD_DMA_OPS
463 #else
464 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
465 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
466 #endif
467
468 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
469                                   unsigned int devfn, int reg, int len)
470 {
471         char __iomem *addr = vmd->cfgbar +
472                              ((bus->number - vmd->busn_start) << 20) +
473                              (devfn << 12) + reg;
474
475         if ((addr - vmd->cfgbar) + len >=
476             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
477                 return NULL;
478
479         return addr;
480 }
481
482 /*
483  * CPU may deadlock if config space is not serialized on some versions of this
484  * hardware, so all config space access is done under a spinlock.
485  */
486 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
487                         int len, u32 *value)
488 {
489         struct vmd_dev *vmd = vmd_from_bus(bus);
490         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
491         unsigned long flags;
492         int ret = 0;
493
494         if (!addr)
495                 return -EFAULT;
496
497         spin_lock_irqsave(&vmd->cfg_lock, flags);
498         switch (len) {
499         case 1:
500                 *value = readb(addr);
501                 break;
502         case 2:
503                 *value = readw(addr);
504                 break;
505         case 4:
506                 *value = readl(addr);
507                 break;
508         default:
509                 ret = -EINVAL;
510                 break;
511         }
512         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
513         return ret;
514 }
515
516 /*
517  * VMD h/w converts non-posted config writes to posted memory writes. The
518  * read-back in this function forces the completion so it returns only after
519  * the config space was written, as expected.
520  */
521 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
522                          int len, u32 value)
523 {
524         struct vmd_dev *vmd = vmd_from_bus(bus);
525         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
526         unsigned long flags;
527         int ret = 0;
528
529         if (!addr)
530                 return -EFAULT;
531
532         spin_lock_irqsave(&vmd->cfg_lock, flags);
533         switch (len) {
534         case 1:
535                 writeb(value, addr);
536                 readb(addr);
537                 break;
538         case 2:
539                 writew(value, addr);
540                 readw(addr);
541                 break;
542         case 4:
543                 writel(value, addr);
544                 readl(addr);
545                 break;
546         default:
547                 ret = -EINVAL;
548                 break;
549         }
550         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
551         return ret;
552 }
553
554 static struct pci_ops vmd_ops = {
555         .read           = vmd_pci_read,
556         .write          = vmd_pci_write,
557 };
558
559 static void vmd_attach_resources(struct vmd_dev *vmd)
560 {
561         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
562         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
563 }
564
565 static void vmd_detach_resources(struct vmd_dev *vmd)
566 {
567         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
568         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
569 }
570
571 /*
572  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
573  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
574  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
575  * currently reserved.
576  */
577 static int vmd_find_free_domain(void)
578 {
579         int domain = 0xffff;
580         struct pci_bus *bus = NULL;
581
582         while ((bus = pci_find_next_bus(bus)) != NULL)
583                 domain = max_t(int, domain, pci_domain_nr(bus));
584         return domain + 1;
585 }
586
587 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
588 {
589         struct pci_sysdata *sd = &vmd->sysdata;
590         struct fwnode_handle *fn;
591         struct resource *res;
592         u32 upper_bits;
593         unsigned long flags;
594         LIST_HEAD(resources);
595         resource_size_t offset[2] = {0};
596         resource_size_t membar2_offset = 0x2000;
597
598         /*
599          * Shadow registers may exist in certain VMD device ids which allow
600          * guests to correctly assign host physical addresses to the root ports
601          * and child devices. These registers will either return the host value
602          * or 0, depending on an enable bit in the VMD device.
603          */
604         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
605                 u32 vmlock;
606                 int ret;
607
608                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
609                 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
610                 if (ret || vmlock == ~0)
611                         return -ENODEV;
612
613                 if (MB2_SHADOW_EN(vmlock)) {
614                         void __iomem *membar2;
615
616                         membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
617                         if (!membar2)
618                                 return -ENOMEM;
619                         offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
620                                         (readq(membar2 + MB2_SHADOW_OFFSET) &
621                                          PCI_BASE_ADDRESS_MEM_MASK);
622                         offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
623                                         (readq(membar2 + MB2_SHADOW_OFFSET + 8) &
624                                          PCI_BASE_ADDRESS_MEM_MASK);
625                         pci_iounmap(vmd->dev, membar2);
626                 }
627         }
628
629         /*
630          * Certain VMD devices may have a root port configuration option which
631          * limits the bus range to between 0-127 or 128-255
632          */
633         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
634                 u32 vmcap, vmconfig;
635
636                 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
637                 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
638                 if (BUS_RESTRICT_CAP(vmcap) &&
639                     (BUS_RESTRICT_CFG(vmconfig) == 0x1))
640                         vmd->busn_start = 128;
641         }
642
643         res = &vmd->dev->resource[VMD_CFGBAR];
644         vmd->resources[0] = (struct resource) {
645                 .name  = "VMD CFGBAR",
646                 .start = vmd->busn_start,
647                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
648                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
649         };
650
651         /*
652          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
653          * put 32-bit resources in the window.
654          *
655          * There's no hardware reason why a 64-bit window *couldn't*
656          * contain a 32-bit resource, but pbus_size_mem() computes the
657          * bridge window size assuming a 64-bit window will contain no
658          * 32-bit resources.  __pci_assign_resource() enforces that
659          * artificial restriction to make sure everything will fit.
660          *
661          * The only way we could use a 64-bit non-prefechable MEMBAR is
662          * if its address is <4GB so that we can convert it to a 32-bit
663          * resource.  To be visible to the host OS, all VMD endpoints must
664          * be initially configured by platform BIOS, which includes setting
665          * up these resources.  We can assume the device is configured
666          * according to the platform needs.
667          */
668         res = &vmd->dev->resource[VMD_MEMBAR1];
669         upper_bits = upper_32_bits(res->end);
670         flags = res->flags & ~IORESOURCE_SIZEALIGN;
671         if (!upper_bits)
672                 flags &= ~IORESOURCE_MEM_64;
673         vmd->resources[1] = (struct resource) {
674                 .name  = "VMD MEMBAR1",
675                 .start = res->start,
676                 .end   = res->end,
677                 .flags = flags,
678                 .parent = res,
679         };
680
681         res = &vmd->dev->resource[VMD_MEMBAR2];
682         upper_bits = upper_32_bits(res->end);
683         flags = res->flags & ~IORESOURCE_SIZEALIGN;
684         if (!upper_bits)
685                 flags &= ~IORESOURCE_MEM_64;
686         vmd->resources[2] = (struct resource) {
687                 .name  = "VMD MEMBAR2",
688                 .start = res->start + membar2_offset,
689                 .end   = res->end,
690                 .flags = flags,
691                 .parent = res,
692         };
693
694         sd->vmd_domain = true;
695         sd->domain = vmd_find_free_domain();
696         if (sd->domain < 0)
697                 return sd->domain;
698
699         sd->node = pcibus_to_node(vmd->dev->bus);
700
701         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
702         if (!fn)
703                 return -ENODEV;
704
705         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
706                                                     x86_vector_domain);
707         if (!vmd->irq_domain) {
708                 irq_domain_free_fwnode(fn);
709                 return -ENODEV;
710         }
711
712         pci_add_resource(&resources, &vmd->resources[0]);
713         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
714         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
715
716         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
717                                         &vmd_ops, sd, &resources);
718         if (!vmd->bus) {
719                 pci_free_resource_list(&resources);
720                 irq_domain_remove(vmd->irq_domain);
721                 irq_domain_free_fwnode(fn);
722                 return -ENODEV;
723         }
724
725         vmd_attach_resources(vmd);
726         vmd_setup_dma_ops(vmd);
727         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
728         pci_rescan_bus(vmd->bus);
729
730         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
731                                "domain"), "Can't create symlink to domain\n");
732         return 0;
733 }
734
735 static irqreturn_t vmd_irq(int irq, void *data)
736 {
737         struct vmd_irq_list *irqs = data;
738         struct vmd_irq *vmdirq;
739         int idx;
740
741         idx = srcu_read_lock(&irqs->srcu);
742         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
743                 generic_handle_irq(vmdirq->virq);
744         srcu_read_unlock(&irqs->srcu, idx);
745
746         return IRQ_HANDLED;
747 }
748
749 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
750 {
751         struct vmd_dev *vmd;
752         int i, err;
753
754         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
755                 return -ENOMEM;
756
757         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
758         if (!vmd)
759                 return -ENOMEM;
760
761         vmd->dev = dev;
762         err = pcim_enable_device(dev);
763         if (err < 0)
764                 return err;
765
766         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
767         if (!vmd->cfgbar)
768                 return -ENOMEM;
769
770         pci_set_master(dev);
771         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
772             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
773                 return -ENODEV;
774
775         vmd->msix_count = pci_msix_vec_count(dev);
776         if (vmd->msix_count < 0)
777                 return -ENODEV;
778
779         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
780                                         PCI_IRQ_MSIX);
781         if (vmd->msix_count < 0)
782                 return vmd->msix_count;
783
784         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
785                                  GFP_KERNEL);
786         if (!vmd->irqs)
787                 return -ENOMEM;
788
789         for (i = 0; i < vmd->msix_count; i++) {
790                 err = init_srcu_struct(&vmd->irqs[i].srcu);
791                 if (err)
792                         return err;
793
794                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
795                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
796                                        vmd_irq, IRQF_NO_THREAD,
797                                        "vmd", &vmd->irqs[i]);
798                 if (err)
799                         return err;
800         }
801
802         spin_lock_init(&vmd->cfg_lock);
803         pci_set_drvdata(dev, vmd);
804         err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
805         if (err)
806                 return err;
807
808         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
809                  vmd->sysdata.domain);
810         return 0;
811 }
812
813 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
814 {
815         int i;
816
817         for (i = 0; i < vmd->msix_count; i++)
818                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
819 }
820
821 static void vmd_remove(struct pci_dev *dev)
822 {
823         struct vmd_dev *vmd = pci_get_drvdata(dev);
824         struct fwnode_handle *fn = vmd->irq_domain->fwnode;
825
826         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
827         pci_stop_root_bus(vmd->bus);
828         pci_remove_root_bus(vmd->bus);
829         vmd_cleanup_srcu(vmd);
830         vmd_teardown_dma_ops(vmd);
831         vmd_detach_resources(vmd);
832         irq_domain_remove(vmd->irq_domain);
833         irq_domain_free_fwnode(fn);
834 }
835
836 #ifdef CONFIG_PM_SLEEP
837 static int vmd_suspend(struct device *dev)
838 {
839         struct pci_dev *pdev = to_pci_dev(dev);
840         struct vmd_dev *vmd = pci_get_drvdata(pdev);
841         int i;
842
843         for (i = 0; i < vmd->msix_count; i++)
844                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
845
846         pci_save_state(pdev);
847         return 0;
848 }
849
850 static int vmd_resume(struct device *dev)
851 {
852         struct pci_dev *pdev = to_pci_dev(dev);
853         struct vmd_dev *vmd = pci_get_drvdata(pdev);
854         int err, i;
855
856         for (i = 0; i < vmd->msix_count; i++) {
857                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
858                                        vmd_irq, IRQF_NO_THREAD,
859                                        "vmd", &vmd->irqs[i]);
860                 if (err)
861                         return err;
862         }
863
864         pci_restore_state(pdev);
865         return 0;
866 }
867 #endif
868 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
869
870 static const struct pci_device_id vmd_ids[] = {
871         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
872         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
873                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
874                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
875         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
876                 .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,},
877         {0,}
878 };
879 MODULE_DEVICE_TABLE(pci, vmd_ids);
880
881 static struct pci_driver vmd_drv = {
882         .name           = "vmd",
883         .id_table       = vmd_ids,
884         .probe          = vmd_probe,
885         .remove         = vmd_remove,
886         .driver         = {
887                 .pm     = &vmd_dev_pm_ops,
888         },
889 };
890 module_pci_driver(vmd_drv);
891
892 MODULE_AUTHOR("Intel Corporation");
893 MODULE_LICENSE("GPL v2");
894 MODULE_VERSION("0.6");