GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
27
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29                         u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31                         u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
33
34
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending;   /* = NULL */
37
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
40 {
41         /*
42          * XXX(hch): if someone is bored please convert all callers
43          * to call msleep_interruptible directly.  They really want
44          * to specify timeouts in natural units and spend a lot of
45          * effort converting them to jiffies..
46          */
47         msleep_interruptible(jiffies_to_msecs(delay));
48 }
49
50
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
54 {
55         int hp_slot;
56         u8 rc = 0;
57         u16 temp_word;
58         struct pci_func *func;
59         struct event_info *taskInfo;
60
61         if (!change)
62                 return 0;
63
64         /* Switch Change */
65         dbg("cpqsbd:  Switch interrupt received.\n");
66
67         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68                 if (change & (0x1L << hp_slot)) {
69                         /*
70                          * this one changed.
71                          */
72                         func = cpqhp_slot_find(ctrl->bus,
73                                 (hp_slot + ctrl->slot_device_offset), 0);
74
75                         /* this is the structure that tells the worker thread
76                          * what to do
77                          */
78                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79                         ctrl->next_event = (ctrl->next_event + 1) % 10;
80                         taskInfo->hp_slot = hp_slot;
81
82                         rc++;
83
84                         temp_word = ctrl->ctrl_int_comp >> 16;
85                         func->presence_save = (temp_word >> hp_slot) & 0x01;
86                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87
88                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89                                 /*
90                                  * Switch opened
91                                  */
92
93                                 func->switch_save = 0;
94
95                                 taskInfo->event_type = INT_SWITCH_OPEN;
96                         } else {
97                                 /*
98                                  * Switch closed
99                                  */
100
101                                 func->switch_save = 0x10;
102
103                                 taskInfo->event_type = INT_SWITCH_CLOSE;
104                         }
105                 }
106         }
107
108         return rc;
109 }
110
111 /**
112  * cpqhp_find_slot - find the struct slot of given device
113  * @ctrl: scan lots of this controller
114  * @device: the device id to find
115  */
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117 {
118         struct slot *slot = ctrl->slot;
119
120         while (slot && (slot->device != device))
121                 slot = slot->next;
122
123         return slot;
124 }
125
126
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
128 {
129         int hp_slot;
130         u8 rc = 0;
131         u8 temp_byte;
132         u16 temp_word;
133         struct pci_func *func;
134         struct event_info *taskInfo;
135         struct slot *p_slot;
136
137         if (!change)
138                 return 0;
139
140         /*
141          * Presence Change
142          */
143         dbg("cpqsbd:  Presence/Notify input change.\n");
144         dbg("         Changed bits are 0x%4.4x\n", change);
145
146         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147                 if (change & (0x0101 << hp_slot)) {
148                         /*
149                          * this one changed.
150                          */
151                         func = cpqhp_slot_find(ctrl->bus,
152                                 (hp_slot + ctrl->slot_device_offset), 0);
153
154                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155                         ctrl->next_event = (ctrl->next_event + 1) % 10;
156                         taskInfo->hp_slot = hp_slot;
157
158                         rc++;
159
160                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161                         if (!p_slot)
162                                 return 0;
163
164                         /* If the switch closed, must be a button
165                          * If not in button mode, nevermind
166                          */
167                         if (func->switch_save && (ctrl->push_button == 1)) {
168                                 temp_word = ctrl->ctrl_int_comp >> 16;
169                                 temp_byte = (temp_word >> hp_slot) & 0x01;
170                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171
172                                 if (temp_byte != func->presence_save) {
173                                         /*
174                                          * button Pressed (doesn't do anything)
175                                          */
176                                         dbg("hp_slot %d button pressed\n", hp_slot);
177                                         taskInfo->event_type = INT_BUTTON_PRESS;
178                                 } else {
179                                         /*
180                                          * button Released - TAKE ACTION!!!!
181                                          */
182                                         dbg("hp_slot %d button released\n", hp_slot);
183                                         taskInfo->event_type = INT_BUTTON_RELEASE;
184
185                                         /* Cancel if we are still blinking */
186                                         if ((p_slot->state == BLINKINGON_STATE)
187                                             || (p_slot->state == BLINKINGOFF_STATE)) {
188                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
189                                                 dbg("hp_slot %d button cancel\n", hp_slot);
190                                         } else if ((p_slot->state == POWERON_STATE)
191                                                    || (p_slot->state == POWEROFF_STATE)) {
192                                                 /* info(msg_button_ignore, p_slot->number); */
193                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
194                                                 dbg("hp_slot %d button ignore\n", hp_slot);
195                                         }
196                                 }
197                         } else {
198                                 /* Switch is open, assume a presence change
199                                  * Save the presence state
200                                  */
201                                 temp_word = ctrl->ctrl_int_comp >> 16;
202                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
203                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204
205                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207                                         /* Present */
208                                         taskInfo->event_type = INT_PRESENCE_ON;
209                                 } else {
210                                         /* Not Present */
211                                         taskInfo->event_type = INT_PRESENCE_OFF;
212                                 }
213                         }
214                 }
215         }
216
217         return rc;
218 }
219
220
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
222 {
223         int hp_slot;
224         u8 rc = 0;
225         struct pci_func *func;
226         struct event_info *taskInfo;
227
228         if (!change)
229                 return 0;
230
231         /*
232          * power fault
233          */
234
235         info("power fault interrupt\n");
236
237         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238                 if (change & (0x01 << hp_slot)) {
239                         /*
240                          * this one changed.
241                          */
242                         func = cpqhp_slot_find(ctrl->bus,
243                                 (hp_slot + ctrl->slot_device_offset), 0);
244
245                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246                         ctrl->next_event = (ctrl->next_event + 1) % 10;
247                         taskInfo->hp_slot = hp_slot;
248
249                         rc++;
250
251                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252                                 /*
253                                  * power fault Cleared
254                                  */
255                                 func->status = 0x00;
256
257                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258                         } else {
259                                 /*
260                                  * power fault
261                                  */
262                                 taskInfo->event_type = INT_POWER_FAULT;
263
264                                 if (ctrl->rev < 4) {
265                                         amber_LED_on(ctrl, hp_slot);
266                                         green_LED_off(ctrl, hp_slot);
267                                         set_SOGO(ctrl);
268
269                                         /* this is a fatal condition, we want
270                                          * to crash the machine to protect from
271                                          * data corruption. simulated_NMI
272                                          * shouldn't ever return */
273                                         /* FIXME
274                                         simulated_NMI(hp_slot, ctrl); */
275
276                                         /* The following code causes a software
277                                          * crash just in case simulated_NMI did
278                                          * return */
279                                         /*FIXME
280                                         panic(msg_power_fault); */
281                                 } else {
282                                         /* set power fault status for this board */
283                                         func->status = 0xFF;
284                                         info("power fault bit %x set\n", hp_slot);
285                                 }
286                         }
287                 }
288         }
289
290         return rc;
291 }
292
293
294 /**
295  * sort_by_size - sort nodes on the list by their length, smallest first.
296  * @head: list to sort
297  */
298 static int sort_by_size(struct pci_resource **head)
299 {
300         struct pci_resource *current_res;
301         struct pci_resource *next_res;
302         int out_of_order = 1;
303
304         if (!(*head))
305                 return 1;
306
307         if (!((*head)->next))
308                 return 0;
309
310         while (out_of_order) {
311                 out_of_order = 0;
312
313                 /* Special case for swapping list head */
314                 if (((*head)->next) &&
315                     ((*head)->length > (*head)->next->length)) {
316                         out_of_order++;
317                         current_res = *head;
318                         *head = (*head)->next;
319                         current_res->next = (*head)->next;
320                         (*head)->next = current_res;
321                 }
322
323                 current_res = *head;
324
325                 while (current_res->next && current_res->next->next) {
326                         if (current_res->next->length > current_res->next->next->length) {
327                                 out_of_order++;
328                                 next_res = current_res->next;
329                                 current_res->next = current_res->next->next;
330                                 current_res = current_res->next;
331                                 next_res->next = current_res->next;
332                                 current_res->next = next_res;
333                         } else
334                                 current_res = current_res->next;
335                 }
336         }  /* End of out_of_order loop */
337
338         return 0;
339 }
340
341
342 /**
343  * sort_by_max_size - sort nodes on the list by their length, largest first.
344  * @head: list to sort
345  */
346 static int sort_by_max_size(struct pci_resource **head)
347 {
348         struct pci_resource *current_res;
349         struct pci_resource *next_res;
350         int out_of_order = 1;
351
352         if (!(*head))
353                 return 1;
354
355         if (!((*head)->next))
356                 return 0;
357
358         while (out_of_order) {
359                 out_of_order = 0;
360
361                 /* Special case for swapping list head */
362                 if (((*head)->next) &&
363                     ((*head)->length < (*head)->next->length)) {
364                         out_of_order++;
365                         current_res = *head;
366                         *head = (*head)->next;
367                         current_res->next = (*head)->next;
368                         (*head)->next = current_res;
369                 }
370
371                 current_res = *head;
372
373                 while (current_res->next && current_res->next->next) {
374                         if (current_res->next->length < current_res->next->next->length) {
375                                 out_of_order++;
376                                 next_res = current_res->next;
377                                 current_res->next = current_res->next->next;
378                                 current_res = current_res->next;
379                                 next_res->next = current_res->next;
380                                 current_res->next = next_res;
381                         } else
382                                 current_res = current_res->next;
383                 }
384         }  /* End of out_of_order loop */
385
386         return 0;
387 }
388
389
390 /**
391  * do_pre_bridge_resource_split - find node of resources that are unused
392  * @head: new list head
393  * @orig_head: original list head
394  * @alignment: max node size (?)
395  */
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397                                 struct pci_resource **orig_head, u32 alignment)
398 {
399         struct pci_resource *prevnode = NULL;
400         struct pci_resource *node;
401         struct pci_resource *split_node;
402         u32 rc;
403         u32 temp_dword;
404         dbg("do_pre_bridge_resource_split\n");
405
406         if (!(*head) || !(*orig_head))
407                 return NULL;
408
409         rc = cpqhp_resource_sort_and_combine(head);
410
411         if (rc)
412                 return NULL;
413
414         if ((*head)->base != (*orig_head)->base)
415                 return NULL;
416
417         if ((*head)->length == (*orig_head)->length)
418                 return NULL;
419
420
421         /* If we got here, there the bridge requires some of the resource, but
422          * we may be able to split some off of the front
423          */
424
425         node = *head;
426
427         if (node->length & (alignment - 1)) {
428                 /* this one isn't an aligned length, so we'll make a new entry
429                  * and split it up.
430                  */
431                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432
433                 if (!split_node)
434                         return NULL;
435
436                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437
438                 split_node->base = node->base;
439                 split_node->length = temp_dword;
440
441                 node->length -= temp_dword;
442                 node->base += split_node->length;
443
444                 /* Put it in the list */
445                 *head = split_node;
446                 split_node->next = node;
447         }
448
449         if (node->length < alignment)
450                 return NULL;
451
452         /* Now unlink it */
453         if (*head == node) {
454                 *head = node->next;
455         } else {
456                 prevnode = *head;
457                 while (prevnode->next != node)
458                         prevnode = prevnode->next;
459
460                 prevnode->next = node->next;
461         }
462         node->next = NULL;
463
464         return node;
465 }
466
467
468 /**
469  * do_bridge_resource_split - find one node of resources that aren't in use
470  * @head: list head
471  * @alignment: max node size (?)
472  */
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474 {
475         struct pci_resource *prevnode = NULL;
476         struct pci_resource *node;
477         u32 rc;
478         u32 temp_dword;
479
480         rc = cpqhp_resource_sort_and_combine(head);
481
482         if (rc)
483                 return NULL;
484
485         node = *head;
486
487         while (node->next) {
488                 prevnode = node;
489                 node = node->next;
490                 kfree(prevnode);
491         }
492
493         if (node->length < alignment)
494                 goto error;
495
496         if (node->base & (alignment - 1)) {
497                 /* Short circuit if adjusted size is too small */
498                 temp_dword = (node->base | (alignment-1)) + 1;
499                 if ((node->length - (temp_dword - node->base)) < alignment)
500                         goto error;
501
502                 node->length -= (temp_dword - node->base);
503                 node->base = temp_dword;
504         }
505
506         if (node->length & (alignment - 1))
507                 /* There's stuff in use after this node */
508                 goto error;
509
510         return node;
511 error:
512         kfree(node);
513         return NULL;
514 }
515
516
517 /**
518  * get_io_resource - find first node of given size not in ISA aliasing window.
519  * @head: list to search
520  * @size: size of node to find, must be a power of two.
521  *
522  * Description: This function sorts the resource list by size and then returns
523  * returns the first node of "size" length that is not in the ISA aliasing
524  * window.  If it finds a node larger than "size" it will split it up.
525  */
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527 {
528         struct pci_resource *prevnode;
529         struct pci_resource *node;
530         struct pci_resource *split_node;
531         u32 temp_dword;
532
533         if (!(*head))
534                 return NULL;
535
536         if (cpqhp_resource_sort_and_combine(head))
537                 return NULL;
538
539         if (sort_by_size(head))
540                 return NULL;
541
542         for (node = *head; node; node = node->next) {
543                 if (node->length < size)
544                         continue;
545
546                 if (node->base & (size - 1)) {
547                         /* this one isn't base aligned properly
548                          * so we'll make a new entry and split it up
549                          */
550                         temp_dword = (node->base | (size-1)) + 1;
551
552                         /* Short circuit if adjusted size is too small */
553                         if ((node->length - (temp_dword - node->base)) < size)
554                                 continue;
555
556                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557
558                         if (!split_node)
559                                 return NULL;
560
561                         split_node->base = node->base;
562                         split_node->length = temp_dword - node->base;
563                         node->base = temp_dword;
564                         node->length -= split_node->length;
565
566                         /* Put it in the list */
567                         split_node->next = node->next;
568                         node->next = split_node;
569                 } /* End of non-aligned base */
570
571                 /* Don't need to check if too small since we already did */
572                 if (node->length > size) {
573                         /* this one is longer than we need
574                          * so we'll make a new entry and split it up
575                          */
576                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577
578                         if (!split_node)
579                                 return NULL;
580
581                         split_node->base = node->base + size;
582                         split_node->length = node->length - size;
583                         node->length = size;
584
585                         /* Put it in the list */
586                         split_node->next = node->next;
587                         node->next = split_node;
588                 }  /* End of too big on top end */
589
590                 /* For IO make sure it's not in the ISA aliasing space */
591                 if (node->base & 0x300L)
592                         continue;
593
594                 /* If we got here, then it is the right size
595                  * Now take it out of the list and break
596                  */
597                 if (*head == node) {
598                         *head = node->next;
599                 } else {
600                         prevnode = *head;
601                         while (prevnode->next != node)
602                                 prevnode = prevnode->next;
603
604                         prevnode->next = node->next;
605                 }
606                 node->next = NULL;
607                 break;
608         }
609
610         return node;
611 }
612
613
614 /**
615  * get_max_resource - get largest node which has at least the given size.
616  * @head: the list to search the node in
617  * @size: the minimum size of the node to find
618  *
619  * Description: Gets the largest node that is at least "size" big from the
620  * list pointed to by head.  It aligns the node on top and bottom
621  * to "size" alignment before returning it.
622  */
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624 {
625         struct pci_resource *max;
626         struct pci_resource *temp;
627         struct pci_resource *split_node;
628         u32 temp_dword;
629
630         if (cpqhp_resource_sort_and_combine(head))
631                 return NULL;
632
633         if (sort_by_max_size(head))
634                 return NULL;
635
636         for (max = *head; max; max = max->next) {
637                 /* If not big enough we could probably just bail,
638                  * instead we'll continue to the next.
639                  */
640                 if (max->length < size)
641                         continue;
642
643                 if (max->base & (size - 1)) {
644                         /* this one isn't base aligned properly
645                          * so we'll make a new entry and split it up
646                          */
647                         temp_dword = (max->base | (size-1)) + 1;
648
649                         /* Short circuit if adjusted size is too small */
650                         if ((max->length - (temp_dword - max->base)) < size)
651                                 continue;
652
653                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654
655                         if (!split_node)
656                                 return NULL;
657
658                         split_node->base = max->base;
659                         split_node->length = temp_dword - max->base;
660                         max->base = temp_dword;
661                         max->length -= split_node->length;
662
663                         split_node->next = max->next;
664                         max->next = split_node;
665                 }
666
667                 if ((max->base + max->length) & (size - 1)) {
668                         /* this one isn't end aligned properly at the top
669                          * so we'll make a new entry and split it up
670                          */
671                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672
673                         if (!split_node)
674                                 return NULL;
675                         temp_dword = ((max->base + max->length) & ~(size - 1));
676                         split_node->base = temp_dword;
677                         split_node->length = max->length + max->base
678                                              - split_node->base;
679                         max->length -= split_node->length;
680
681                         split_node->next = max->next;
682                         max->next = split_node;
683                 }
684
685                 /* Make sure it didn't shrink too much when we aligned it */
686                 if (max->length < size)
687                         continue;
688
689                 /* Now take it out of the list */
690                 temp = *head;
691                 if (temp == max) {
692                         *head = max->next;
693                 } else {
694                         while (temp && temp->next != max)
695                                 temp = temp->next;
696
697                         if (temp)
698                                 temp->next = max->next;
699                 }
700
701                 max->next = NULL;
702                 break;
703         }
704
705         return max;
706 }
707
708
709 /**
710  * get_resource - find resource of given size and split up larger ones.
711  * @head: the list to search for resources
712  * @size: the size limit to use
713  *
714  * Description: This function sorts the resource list by size and then
715  * returns the first node of "size" length.  If it finds a node
716  * larger than "size" it will split it up.
717  *
718  * size must be a power of two.
719  */
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721 {
722         struct pci_resource *prevnode;
723         struct pci_resource *node;
724         struct pci_resource *split_node;
725         u32 temp_dword;
726
727         if (cpqhp_resource_sort_and_combine(head))
728                 return NULL;
729
730         if (sort_by_size(head))
731                 return NULL;
732
733         for (node = *head; node; node = node->next) {
734                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735                     __func__, size, node, node->base, node->length);
736                 if (node->length < size)
737                         continue;
738
739                 if (node->base & (size - 1)) {
740                         dbg("%s: not aligned\n", __func__);
741                         /* this one isn't base aligned properly
742                          * so we'll make a new entry and split it up
743                          */
744                         temp_dword = (node->base | (size-1)) + 1;
745
746                         /* Short circuit if adjusted size is too small */
747                         if ((node->length - (temp_dword - node->base)) < size)
748                                 continue;
749
750                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751
752                         if (!split_node)
753                                 return NULL;
754
755                         split_node->base = node->base;
756                         split_node->length = temp_dword - node->base;
757                         node->base = temp_dword;
758                         node->length -= split_node->length;
759
760                         split_node->next = node->next;
761                         node->next = split_node;
762                 } /* End of non-aligned base */
763
764                 /* Don't need to check if too small since we already did */
765                 if (node->length > size) {
766                         dbg("%s: too big\n", __func__);
767                         /* this one is longer than we need
768                          * so we'll make a new entry and split it up
769                          */
770                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771
772                         if (!split_node)
773                                 return NULL;
774
775                         split_node->base = node->base + size;
776                         split_node->length = node->length - size;
777                         node->length = size;
778
779                         /* Put it in the list */
780                         split_node->next = node->next;
781                         node->next = split_node;
782                 }  /* End of too big on top end */
783
784                 dbg("%s: got one!!!\n", __func__);
785                 /* If we got here, then it is the right size
786                  * Now take it out of the list */
787                 if (*head == node) {
788                         *head = node->next;
789                 } else {
790                         prevnode = *head;
791                         while (prevnode->next != node)
792                                 prevnode = prevnode->next;
793
794                         prevnode->next = node->next;
795                 }
796                 node->next = NULL;
797                 break;
798         }
799         return node;
800 }
801
802
803 /**
804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805  * @head: the list to sort and clean up
806  *
807  * Description: Sorts all of the nodes in the list in ascending order by
808  * their base addresses.  Also does garbage collection by
809  * combining adjacent nodes.
810  *
811  * Returns %0 if success.
812  */
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814 {
815         struct pci_resource *node1;
816         struct pci_resource *node2;
817         int out_of_order = 1;
818
819         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820
821         if (!(*head))
822                 return 1;
823
824         dbg("*head->next = %p\n", (*head)->next);
825
826         if (!(*head)->next)
827                 return 0;       /* only one item on the list, already sorted! */
828
829         dbg("*head->base = 0x%x\n", (*head)->base);
830         dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831         while (out_of_order) {
832                 out_of_order = 0;
833
834                 /* Special case for swapping list head */
835                 if (((*head)->next) &&
836                     ((*head)->base > (*head)->next->base)) {
837                         node1 = *head;
838                         (*head) = (*head)->next;
839                         node1->next = (*head)->next;
840                         (*head)->next = node1;
841                         out_of_order++;
842                 }
843
844                 node1 = (*head);
845
846                 while (node1->next && node1->next->next) {
847                         if (node1->next->base > node1->next->next->base) {
848                                 out_of_order++;
849                                 node2 = node1->next;
850                                 node1->next = node1->next->next;
851                                 node1 = node1->next;
852                                 node2->next = node1->next;
853                                 node1->next = node2;
854                         } else
855                                 node1 = node1->next;
856                 }
857         }  /* End of out_of_order loop */
858
859         node1 = *head;
860
861         while (node1 && node1->next) {
862                 if ((node1->base + node1->length) == node1->next->base) {
863                         /* Combine */
864                         dbg("8..\n");
865                         node1->length += node1->next->length;
866                         node2 = node1->next;
867                         node1->next = node1->next->next;
868                         kfree(node2);
869                 } else
870                         node1 = node1->next;
871         }
872
873         return 0;
874 }
875
876
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878 {
879         struct controller *ctrl = data;
880         u8 schedule_flag = 0;
881         u8 reset;
882         u16 misc;
883         u32 Diff;
884         u32 temp_dword;
885
886
887         misc = readw(ctrl->hpc_reg + MISC);
888         /*
889          * Check to see if it was our interrupt
890          */
891         if (!(misc & 0x000C))
892                 return IRQ_NONE;
893
894         if (misc & 0x0004) {
895                 /*
896                  * Serial Output interrupt Pending
897                  */
898
899                 /* Clear the interrupt */
900                 misc |= 0x0004;
901                 writew(misc, ctrl->hpc_reg + MISC);
902
903                 /* Read to clear posted writes */
904                 misc = readw(ctrl->hpc_reg + MISC);
905
906                 dbg("%s - waking up\n", __func__);
907                 wake_up_interruptible(&ctrl->queue);
908         }
909
910         if (misc & 0x0008) {
911                 /* General-interrupt-input interrupt Pending */
912                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
913
914                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
915
916                 /* Clear the interrupt */
917                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
918
919                 /* Read it back to clear any posted writes */
920                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
921
922                 if (!Diff)
923                         /* Clear all interrupts */
924                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
925
926                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
929         }
930
931         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932         if (reset & 0x40) {
933                 /* Bus reset has completed */
934                 reset &= 0xCF;
935                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937                 wake_up_interruptible(&ctrl->queue);
938         }
939
940         if (schedule_flag) {
941                 wake_up_process(cpqhp_event_thread);
942                 dbg("Waking even thread");
943         }
944         return IRQ_HANDLED;
945 }
946
947
948 /**
949  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950  * @busnumber: bus where new node is to be located
951  *
952  * Returns pointer to the new node or %NULL if unsuccessful.
953  */
954 struct pci_func *cpqhp_slot_create(u8 busnumber)
955 {
956         struct pci_func *new_slot;
957         struct pci_func *next;
958
959         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960         if (new_slot == NULL)
961                 return new_slot;
962
963         new_slot->next = NULL;
964         new_slot->configured = 1;
965
966         if (cpqhp_slot_list[busnumber] == NULL) {
967                 cpqhp_slot_list[busnumber] = new_slot;
968         } else {
969                 next = cpqhp_slot_list[busnumber];
970                 while (next->next != NULL)
971                         next = next->next;
972                 next->next = new_slot;
973         }
974         return new_slot;
975 }
976
977
978 /**
979  * slot_remove - Removes a node from the linked list of slots.
980  * @old_slot: slot to remove
981  *
982  * Returns %0 if successful, !0 otherwise.
983  */
984 static int slot_remove(struct pci_func *old_slot)
985 {
986         struct pci_func *next;
987
988         if (old_slot == NULL)
989                 return 1;
990
991         next = cpqhp_slot_list[old_slot->bus];
992         if (next == NULL)
993                 return 1;
994
995         if (next == old_slot) {
996                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
997                 cpqhp_destroy_board_resources(old_slot);
998                 kfree(old_slot);
999                 return 0;
1000         }
1001
1002         while ((next->next != old_slot) && (next->next != NULL))
1003                 next = next->next;
1004
1005         if (next->next == old_slot) {
1006                 next->next = old_slot->next;
1007                 cpqhp_destroy_board_resources(old_slot);
1008                 kfree(old_slot);
1009                 return 0;
1010         } else
1011                 return 2;
1012 }
1013
1014
1015 /**
1016  * bridge_slot_remove - Removes a node from the linked list of slots.
1017  * @bridge: bridge to remove
1018  *
1019  * Returns %0 if successful, !0 otherwise.
1020  */
1021 static int bridge_slot_remove(struct pci_func *bridge)
1022 {
1023         u8 subordinateBus, secondaryBus;
1024         u8 tempBus;
1025         struct pci_func *next;
1026
1027         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031                 next = cpqhp_slot_list[tempBus];
1032
1033                 while (!slot_remove(next))
1034                         next = cpqhp_slot_list[tempBus];
1035         }
1036
1037         next = cpqhp_slot_list[bridge->bus];
1038
1039         if (next == NULL)
1040                 return 1;
1041
1042         if (next == bridge) {
1043                 cpqhp_slot_list[bridge->bus] = bridge->next;
1044                 goto out;
1045         }
1046
1047         while ((next->next != bridge) && (next->next != NULL))
1048                 next = next->next;
1049
1050         if (next->next != bridge)
1051                 return 2;
1052         next->next = bridge->next;
1053 out:
1054         kfree(bridge);
1055         return 0;
1056 }
1057
1058
1059 /**
1060  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061  * @bus: bus to find
1062  * @device: device to find
1063  * @index: is %0 for first function found, %1 for the second...
1064  *
1065  * Returns pointer to the node if successful, %NULL otherwise.
1066  */
1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068 {
1069         int found = -1;
1070         struct pci_func *func;
1071
1072         func = cpqhp_slot_list[bus];
1073
1074         if ((func == NULL) || ((func->device == device) && (index == 0)))
1075                 return func;
1076
1077         if (func->device == device)
1078                 found++;
1079
1080         while (func->next != NULL) {
1081                 func = func->next;
1082
1083                 if (func->device == device)
1084                         found++;
1085
1086                 if (found == index)
1087                         return func;
1088         }
1089
1090         return NULL;
1091 }
1092
1093
1094 /* DJZ: I don't think is_bridge will work as is.
1095  * FIXME */
1096 static int is_bridge(struct pci_func *func)
1097 {
1098         /* Check the header type */
1099         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100                 return 1;
1101         else
1102                 return 0;
1103 }
1104
1105
1106 /**
1107  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108  * @ctrl: controller to change frequency/mode for.
1109  * @adapter_speed: the speed of the adapter we want to match.
1110  * @hp_slot: the slot number where the adapter is installed.
1111  *
1112  * Returns %0 if we successfully change frequency and/or mode to match the
1113  * adapter speed.
1114  */
1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116 {
1117         struct slot *slot;
1118         struct pci_bus *bus = ctrl->pci_bus;
1119         u8 reg;
1120         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121         u16 reg16;
1122         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124         if (bus->cur_bus_speed == adapter_speed)
1125                 return 0;
1126
1127         /* We don't allow freq/mode changes if we find another adapter running
1128          * in another slot on this controller
1129          */
1130         for (slot = ctrl->slot; slot; slot = slot->next) {
1131                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132                         continue;
1133                 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1134                         continue;
1135                 if (slot->hotplug_slot->info->adapter_status == 0)
1136                         continue;
1137                 /* If another adapter is running on the same segment but at a
1138                  * lower speed/mode, we allow the new adapter to function at
1139                  * this rate if supported
1140                  */
1141                 if (bus->cur_bus_speed < adapter_speed)
1142                         return 0;
1143
1144                 return 1;
1145         }
1146
1147         /* If the controller doesn't support freq/mode changes and the
1148          * controller is running at a higher mode, we bail
1149          */
1150         if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1151                 return 1;
1152
1153         /* But we allow the adapter to run at a lower rate if possible */
1154         if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1155                 return 0;
1156
1157         /* We try to set the max speed supported by both the adapter and
1158          * controller
1159          */
1160         if (bus->max_bus_speed < adapter_speed) {
1161                 if (bus->cur_bus_speed == bus->max_bus_speed)
1162                         return 0;
1163                 adapter_speed = bus->max_bus_speed;
1164         }
1165
1166         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1167         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1168
1169         set_SOGO(ctrl);
1170         wait_for_ctrl_irq(ctrl);
1171
1172         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1173                 reg = 0xF5;
1174         else
1175                 reg = 0xF4;
1176         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1177
1178         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1179         reg16 &= ~0x000F;
1180         switch (adapter_speed) {
1181                 case(PCI_SPEED_133MHz_PCIX):
1182                         reg = 0x75;
1183                         reg16 |= 0xB;
1184                         break;
1185                 case(PCI_SPEED_100MHz_PCIX):
1186                         reg = 0x74;
1187                         reg16 |= 0xA;
1188                         break;
1189                 case(PCI_SPEED_66MHz_PCIX):
1190                         reg = 0x73;
1191                         reg16 |= 0x9;
1192                         break;
1193                 case(PCI_SPEED_66MHz):
1194                         reg = 0x73;
1195                         reg16 |= 0x1;
1196                         break;
1197                 default: /* 33MHz PCI 2.2 */
1198                         reg = 0x71;
1199                         break;
1200
1201         }
1202         reg16 |= 0xB << 12;
1203         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1204
1205         mdelay(5);
1206
1207         /* Reenable interrupts */
1208         writel(0, ctrl->hpc_reg + INT_MASK);
1209
1210         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1211
1212         /* Restart state machine */
1213         reg = ~0xF;
1214         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1215         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1216
1217         /* Only if mode change...*/
1218         if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1219                 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1220                         set_SOGO(ctrl);
1221
1222         wait_for_ctrl_irq(ctrl);
1223         mdelay(1100);
1224
1225         /* Restore LED/Slot state */
1226         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1227         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1228
1229         set_SOGO(ctrl);
1230         wait_for_ctrl_irq(ctrl);
1231
1232         bus->cur_bus_speed = adapter_speed;
1233         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1234
1235         info("Successfully changed frequency/mode for adapter in slot %d\n",
1236                         slot->number);
1237         return 0;
1238 }
1239
1240 /* the following routines constitute the bulk of the
1241  * hotplug controller logic
1242  */
1243
1244
1245 /**
1246  * board_replaced - Called after a board has been replaced in the system.
1247  * @func: PCI device/function information
1248  * @ctrl: hotplug controller
1249  *
1250  * This is only used if we don't have resources for hot add.
1251  * Turns power on for the board.
1252  * Checks to see if board is the same.
1253  * If board is same, reconfigures it.
1254  * If board isn't same, turns it back off.
1255  */
1256 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1257 {
1258         struct pci_bus *bus = ctrl->pci_bus;
1259         u8 hp_slot;
1260         u8 temp_byte;
1261         u8 adapter_speed;
1262         u32 rc = 0;
1263
1264         hp_slot = func->device - ctrl->slot_device_offset;
1265
1266         /*
1267          * The switch is open.
1268          */
1269         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1270                 rc = INTERLOCK_OPEN;
1271         /*
1272          * The board is already on
1273          */
1274         else if (is_slot_enabled(ctrl, hp_slot))
1275                 rc = CARD_FUNCTIONING;
1276         else {
1277                 mutex_lock(&ctrl->crit_sect);
1278
1279                 /* turn on board without attaching to the bus */
1280                 enable_slot_power(ctrl, hp_slot);
1281
1282                 set_SOGO(ctrl);
1283
1284                 /* Wait for SOBS to be unset */
1285                 wait_for_ctrl_irq(ctrl);
1286
1287                 /* Change bits in slot power register to force another shift out
1288                  * NOTE: this is to work around the timer bug */
1289                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1290                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1291                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1292
1293                 set_SOGO(ctrl);
1294
1295                 /* Wait for SOBS to be unset */
1296                 wait_for_ctrl_irq(ctrl);
1297
1298                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1299                 if (bus->cur_bus_speed != adapter_speed)
1300                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1301                                 rc = WRONG_BUS_FREQUENCY;
1302
1303                 /* turn off board without attaching to the bus */
1304                 disable_slot_power(ctrl, hp_slot);
1305
1306                 set_SOGO(ctrl);
1307
1308                 /* Wait for SOBS to be unset */
1309                 wait_for_ctrl_irq(ctrl);
1310
1311                 mutex_unlock(&ctrl->crit_sect);
1312
1313                 if (rc)
1314                         return rc;
1315
1316                 mutex_lock(&ctrl->crit_sect);
1317
1318                 slot_enable(ctrl, hp_slot);
1319                 green_LED_blink(ctrl, hp_slot);
1320
1321                 amber_LED_off(ctrl, hp_slot);
1322
1323                 set_SOGO(ctrl);
1324
1325                 /* Wait for SOBS to be unset */
1326                 wait_for_ctrl_irq(ctrl);
1327
1328                 mutex_unlock(&ctrl->crit_sect);
1329
1330                 /* Wait for ~1 second because of hot plug spec */
1331                 long_delay(1*HZ);
1332
1333                 /* Check for a power fault */
1334                 if (func->status == 0xFF) {
1335                         /* power fault occurred, but it was benign */
1336                         rc = POWER_FAILURE;
1337                         func->status = 0;
1338                 } else
1339                         rc = cpqhp_valid_replace(ctrl, func);
1340
1341                 if (!rc) {
1342                         /* It must be the same board */
1343
1344                         rc = cpqhp_configure_board(ctrl, func);
1345
1346                         /* If configuration fails, turn it off
1347                          * Get slot won't work for devices behind
1348                          * bridges, but in this case it will always be
1349                          * called for the "base" bus/dev/func of an
1350                          * adapter.
1351                          */
1352
1353                         mutex_lock(&ctrl->crit_sect);
1354
1355                         amber_LED_on(ctrl, hp_slot);
1356                         green_LED_off(ctrl, hp_slot);
1357                         slot_disable(ctrl, hp_slot);
1358
1359                         set_SOGO(ctrl);
1360
1361                         /* Wait for SOBS to be unset */
1362                         wait_for_ctrl_irq(ctrl);
1363
1364                         mutex_unlock(&ctrl->crit_sect);
1365
1366                         if (rc)
1367                                 return rc;
1368                         else
1369                                 return 1;
1370
1371                 } else {
1372                         /* Something is wrong
1373
1374                          * Get slot won't work for devices behind bridges, but
1375                          * in this case it will always be called for the "base"
1376                          * bus/dev/func of an adapter.
1377                          */
1378
1379                         mutex_lock(&ctrl->crit_sect);
1380
1381                         amber_LED_on(ctrl, hp_slot);
1382                         green_LED_off(ctrl, hp_slot);
1383                         slot_disable(ctrl, hp_slot);
1384
1385                         set_SOGO(ctrl);
1386
1387                         /* Wait for SOBS to be unset */
1388                         wait_for_ctrl_irq(ctrl);
1389
1390                         mutex_unlock(&ctrl->crit_sect);
1391                 }
1392
1393         }
1394         return rc;
1395
1396 }
1397
1398
1399 /**
1400  * board_added - Called after a board has been added to the system.
1401  * @func: PCI device/function info
1402  * @ctrl: hotplug controller
1403  *
1404  * Turns power on for the board.
1405  * Configures board.
1406  */
1407 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1408 {
1409         u8 hp_slot;
1410         u8 temp_byte;
1411         u8 adapter_speed;
1412         int index;
1413         u32 temp_register = 0xFFFFFFFF;
1414         u32 rc = 0;
1415         struct pci_func *new_slot = NULL;
1416         struct pci_bus *bus = ctrl->pci_bus;
1417         struct slot *p_slot;
1418         struct resource_lists res_lists;
1419
1420         hp_slot = func->device - ctrl->slot_device_offset;
1421         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1422             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1423
1424         mutex_lock(&ctrl->crit_sect);
1425
1426         /* turn on board without attaching to the bus */
1427         enable_slot_power(ctrl, hp_slot);
1428
1429         set_SOGO(ctrl);
1430
1431         /* Wait for SOBS to be unset */
1432         wait_for_ctrl_irq(ctrl);
1433
1434         /* Change bits in slot power register to force another shift out
1435          * NOTE: this is to work around the timer bug
1436          */
1437         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1438         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1439         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1440
1441         set_SOGO(ctrl);
1442
1443         /* Wait for SOBS to be unset */
1444         wait_for_ctrl_irq(ctrl);
1445
1446         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1447         if (bus->cur_bus_speed != adapter_speed)
1448                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1449                         rc = WRONG_BUS_FREQUENCY;
1450
1451         /* turn off board without attaching to the bus */
1452         disable_slot_power(ctrl, hp_slot);
1453
1454         set_SOGO(ctrl);
1455
1456         /* Wait for SOBS to be unset */
1457         wait_for_ctrl_irq(ctrl);
1458
1459         mutex_unlock(&ctrl->crit_sect);
1460
1461         if (rc)
1462                 return rc;
1463
1464         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1465
1466         /* turn on board and blink green LED */
1467
1468         dbg("%s: before down\n", __func__);
1469         mutex_lock(&ctrl->crit_sect);
1470         dbg("%s: after down\n", __func__);
1471
1472         dbg("%s: before slot_enable\n", __func__);
1473         slot_enable(ctrl, hp_slot);
1474
1475         dbg("%s: before green_LED_blink\n", __func__);
1476         green_LED_blink(ctrl, hp_slot);
1477
1478         dbg("%s: before amber_LED_blink\n", __func__);
1479         amber_LED_off(ctrl, hp_slot);
1480
1481         dbg("%s: before set_SOGO\n", __func__);
1482         set_SOGO(ctrl);
1483
1484         /* Wait for SOBS to be unset */
1485         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1486         wait_for_ctrl_irq(ctrl);
1487         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1488
1489         dbg("%s: before up\n", __func__);
1490         mutex_unlock(&ctrl->crit_sect);
1491         dbg("%s: after up\n", __func__);
1492
1493         /* Wait for ~1 second because of hot plug spec */
1494         dbg("%s: before long_delay\n", __func__);
1495         long_delay(1*HZ);
1496         dbg("%s: after long_delay\n", __func__);
1497
1498         dbg("%s: func status = %x\n", __func__, func->status);
1499         /* Check for a power fault */
1500         if (func->status == 0xFF) {
1501                 /* power fault occurred, but it was benign */
1502                 temp_register = 0xFFFFFFFF;
1503                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1504                 rc = POWER_FAILURE;
1505                 func->status = 0;
1506         } else {
1507                 /* Get vendor/device ID u32 */
1508                 ctrl->pci_bus->number = func->bus;
1509                 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1510                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1511                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1512
1513                 if (rc != 0) {
1514                         /* Something's wrong here */
1515                         temp_register = 0xFFFFFFFF;
1516                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1517                 }
1518                 /* Preset return code.  It will be changed later if things go okay. */
1519                 rc = NO_ADAPTER_PRESENT;
1520         }
1521
1522         /* All F's is an empty slot or an invalid board */
1523         if (temp_register != 0xFFFFFFFF) {
1524                 res_lists.io_head = ctrl->io_head;
1525                 res_lists.mem_head = ctrl->mem_head;
1526                 res_lists.p_mem_head = ctrl->p_mem_head;
1527                 res_lists.bus_head = ctrl->bus_head;
1528                 res_lists.irqs = NULL;
1529
1530                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1531
1532                 dbg("%s: back from configure_new_device\n", __func__);
1533                 ctrl->io_head = res_lists.io_head;
1534                 ctrl->mem_head = res_lists.mem_head;
1535                 ctrl->p_mem_head = res_lists.p_mem_head;
1536                 ctrl->bus_head = res_lists.bus_head;
1537
1538                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1539                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1540                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1541                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1542
1543                 if (rc) {
1544                         mutex_lock(&ctrl->crit_sect);
1545
1546                         amber_LED_on(ctrl, hp_slot);
1547                         green_LED_off(ctrl, hp_slot);
1548                         slot_disable(ctrl, hp_slot);
1549
1550                         set_SOGO(ctrl);
1551
1552                         /* Wait for SOBS to be unset */
1553                         wait_for_ctrl_irq(ctrl);
1554
1555                         mutex_unlock(&ctrl->crit_sect);
1556                         return rc;
1557                 } else {
1558                         cpqhp_save_slot_config(ctrl, func);
1559                 }
1560
1561
1562                 func->status = 0;
1563                 func->switch_save = 0x10;
1564                 func->is_a_board = 0x01;
1565
1566                 /* next, we will instantiate the linux pci_dev structures (with
1567                  * appropriate driver notification, if already present) */
1568                 dbg("%s: configure linux pci_dev structure\n", __func__);
1569                 index = 0;
1570                 do {
1571                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1572                         if (new_slot && !new_slot->pci_dev)
1573                                 cpqhp_configure_device(ctrl, new_slot);
1574                 } while (new_slot);
1575
1576                 mutex_lock(&ctrl->crit_sect);
1577
1578                 green_LED_on(ctrl, hp_slot);
1579
1580                 set_SOGO(ctrl);
1581
1582                 /* Wait for SOBS to be unset */
1583                 wait_for_ctrl_irq(ctrl);
1584
1585                 mutex_unlock(&ctrl->crit_sect);
1586         } else {
1587                 mutex_lock(&ctrl->crit_sect);
1588
1589                 amber_LED_on(ctrl, hp_slot);
1590                 green_LED_off(ctrl, hp_slot);
1591                 slot_disable(ctrl, hp_slot);
1592
1593                 set_SOGO(ctrl);
1594
1595                 /* Wait for SOBS to be unset */
1596                 wait_for_ctrl_irq(ctrl);
1597
1598                 mutex_unlock(&ctrl->crit_sect);
1599
1600                 return rc;
1601         }
1602         return 0;
1603 }
1604
1605
1606 /**
1607  * remove_board - Turns off slot and LEDs
1608  * @func: PCI device/function info
1609  * @replace_flag: whether replacing or adding a new device
1610  * @ctrl: target controller
1611  */
1612 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1613 {
1614         int index;
1615         u8 skip = 0;
1616         u8 device;
1617         u8 hp_slot;
1618         u8 temp_byte;
1619         u32 rc;
1620         struct resource_lists res_lists;
1621         struct pci_func *temp_func;
1622
1623         if (cpqhp_unconfigure_device(func))
1624                 return 1;
1625
1626         device = func->device;
1627
1628         hp_slot = func->device - ctrl->slot_device_offset;
1629         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1630
1631         /* When we get here, it is safe to change base address registers.
1632          * We will attempt to save the base address register lengths */
1633         if (replace_flag || !ctrl->add_support)
1634                 rc = cpqhp_save_base_addr_length(ctrl, func);
1635         else if (!func->bus_head && !func->mem_head &&
1636                  !func->p_mem_head && !func->io_head) {
1637                 /* Here we check to see if we've saved any of the board's
1638                  * resources already.  If so, we'll skip the attempt to
1639                  * determine what's being used. */
1640                 index = 0;
1641                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1642                 while (temp_func) {
1643                         if (temp_func->bus_head || temp_func->mem_head
1644                             || temp_func->p_mem_head || temp_func->io_head) {
1645                                 skip = 1;
1646                                 break;
1647                         }
1648                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1649                 }
1650
1651                 if (!skip)
1652                         rc = cpqhp_save_used_resources(ctrl, func);
1653         }
1654         /* Change status to shutdown */
1655         if (func->is_a_board)
1656                 func->status = 0x01;
1657         func->configured = 0;
1658
1659         mutex_lock(&ctrl->crit_sect);
1660
1661         green_LED_off(ctrl, hp_slot);
1662         slot_disable(ctrl, hp_slot);
1663
1664         set_SOGO(ctrl);
1665
1666         /* turn off SERR for slot */
1667         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1668         temp_byte &= ~(0x01 << hp_slot);
1669         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1670
1671         /* Wait for SOBS to be unset */
1672         wait_for_ctrl_irq(ctrl);
1673
1674         mutex_unlock(&ctrl->crit_sect);
1675
1676         if (!replace_flag && ctrl->add_support) {
1677                 while (func) {
1678                         res_lists.io_head = ctrl->io_head;
1679                         res_lists.mem_head = ctrl->mem_head;
1680                         res_lists.p_mem_head = ctrl->p_mem_head;
1681                         res_lists.bus_head = ctrl->bus_head;
1682
1683                         cpqhp_return_board_resources(func, &res_lists);
1684
1685                         ctrl->io_head = res_lists.io_head;
1686                         ctrl->mem_head = res_lists.mem_head;
1687                         ctrl->p_mem_head = res_lists.p_mem_head;
1688                         ctrl->bus_head = res_lists.bus_head;
1689
1690                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1691                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1692                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1693                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1694
1695                         if (is_bridge(func)) {
1696                                 bridge_slot_remove(func);
1697                         } else
1698                                 slot_remove(func);
1699
1700                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1701                 }
1702
1703                 /* Setup slot structure with entry for empty slot */
1704                 func = cpqhp_slot_create(ctrl->bus);
1705
1706                 if (func == NULL)
1707                         return 1;
1708
1709                 func->bus = ctrl->bus;
1710                 func->device = device;
1711                 func->function = 0;
1712                 func->configured = 0;
1713                 func->switch_save = 0x10;
1714                 func->is_a_board = 0;
1715                 func->p_task_event = NULL;
1716         }
1717
1718         return 0;
1719 }
1720
1721 static void pushbutton_helper_thread(struct timer_list *t)
1722 {
1723         pushbutton_pending = t;
1724
1725         wake_up_process(cpqhp_event_thread);
1726 }
1727
1728
1729 /* this is the main worker thread */
1730 static int event_thread(void *data)
1731 {
1732         struct controller *ctrl;
1733
1734         while (1) {
1735                 dbg("!!!!event_thread sleeping\n");
1736                 set_current_state(TASK_INTERRUPTIBLE);
1737                 schedule();
1738
1739                 if (kthread_should_stop())
1740                         break;
1741                 /* Do stuff here */
1742                 if (pushbutton_pending)
1743                         cpqhp_pushbutton_thread(pushbutton_pending);
1744                 else
1745                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1746                                 interrupt_event_handler(ctrl);
1747         }
1748         dbg("event_thread signals exit\n");
1749         return 0;
1750 }
1751
1752 int cpqhp_event_start_thread(void)
1753 {
1754         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1755         if (IS_ERR(cpqhp_event_thread)) {
1756                 err("Can't start up our event thread\n");
1757                 return PTR_ERR(cpqhp_event_thread);
1758         }
1759
1760         return 0;
1761 }
1762
1763
1764 void cpqhp_event_stop_thread(void)
1765 {
1766         kthread_stop(cpqhp_event_thread);
1767 }
1768
1769
1770 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1771 {
1772         struct hotplug_slot_info *info;
1773         int result;
1774
1775         info = kmalloc(sizeof(*info), GFP_KERNEL);
1776         if (!info)
1777                 return -ENOMEM;
1778
1779         info->power_status = get_slot_enabled(ctrl, slot);
1780         info->attention_status = cpq_get_attention_status(ctrl, slot);
1781         info->latch_status = cpq_get_latch_status(ctrl, slot);
1782         info->adapter_status = get_presence_status(ctrl, slot);
1783         result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1784         kfree(info);
1785         return result;
1786 }
1787
1788 static void interrupt_event_handler(struct controller *ctrl)
1789 {
1790         int loop = 0;
1791         int change = 1;
1792         struct pci_func *func;
1793         u8 hp_slot;
1794         struct slot *p_slot;
1795
1796         while (change) {
1797                 change = 0;
1798
1799                 for (loop = 0; loop < 10; loop++) {
1800                         /* dbg("loop %d\n", loop); */
1801                         if (ctrl->event_queue[loop].event_type != 0) {
1802                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1803
1804                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1805                                 if (!func)
1806                                         return;
1807
1808                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1809                                 if (!p_slot)
1810                                         return;
1811
1812                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1813                                     hp_slot, func, p_slot);
1814
1815                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1816                                         dbg("button pressed\n");
1817                                 } else if (ctrl->event_queue[loop].event_type ==
1818                                            INT_BUTTON_CANCEL) {
1819                                         dbg("button cancel\n");
1820                                         del_timer(&p_slot->task_event);
1821
1822                                         mutex_lock(&ctrl->crit_sect);
1823
1824                                         if (p_slot->state == BLINKINGOFF_STATE) {
1825                                                 /* slot is on */
1826                                                 dbg("turn on green LED\n");
1827                                                 green_LED_on(ctrl, hp_slot);
1828                                         } else if (p_slot->state == BLINKINGON_STATE) {
1829                                                 /* slot is off */
1830                                                 dbg("turn off green LED\n");
1831                                                 green_LED_off(ctrl, hp_slot);
1832                                         }
1833
1834                                         info(msg_button_cancel, p_slot->number);
1835
1836                                         p_slot->state = STATIC_STATE;
1837
1838                                         amber_LED_off(ctrl, hp_slot);
1839
1840                                         set_SOGO(ctrl);
1841
1842                                         /* Wait for SOBS to be unset */
1843                                         wait_for_ctrl_irq(ctrl);
1844
1845                                         mutex_unlock(&ctrl->crit_sect);
1846                                 }
1847                                 /*** button Released (No action on press...) */
1848                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1849                                         dbg("button release\n");
1850
1851                                         if (is_slot_enabled(ctrl, hp_slot)) {
1852                                                 dbg("slot is on\n");
1853                                                 p_slot->state = BLINKINGOFF_STATE;
1854                                                 info(msg_button_off, p_slot->number);
1855                                         } else {
1856                                                 dbg("slot is off\n");
1857                                                 p_slot->state = BLINKINGON_STATE;
1858                                                 info(msg_button_on, p_slot->number);
1859                                         }
1860                                         mutex_lock(&ctrl->crit_sect);
1861
1862                                         dbg("blink green LED and turn off amber\n");
1863
1864                                         amber_LED_off(ctrl, hp_slot);
1865                                         green_LED_blink(ctrl, hp_slot);
1866
1867                                         set_SOGO(ctrl);
1868
1869                                         /* Wait for SOBS to be unset */
1870                                         wait_for_ctrl_irq(ctrl);
1871
1872                                         mutex_unlock(&ctrl->crit_sect);
1873                                         timer_setup(&p_slot->task_event,
1874                                                     pushbutton_helper_thread,
1875                                                     0);
1876                                         p_slot->hp_slot = hp_slot;
1877                                         p_slot->ctrl = ctrl;
1878 /*                                      p_slot->physical_slot = physical_slot; */
1879                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1880
1881                                         dbg("add_timer p_slot = %p\n", p_slot);
1882                                         add_timer(&p_slot->task_event);
1883                                 }
1884                                 /***********POWER FAULT */
1885                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1886                                         dbg("power fault\n");
1887                                 } else {
1888                                         /* refresh notification */
1889                                         update_slot_info(ctrl, p_slot);
1890                                 }
1891
1892                                 ctrl->event_queue[loop].event_type = 0;
1893
1894                                 change = 1;
1895                         }
1896                 }               /* End of FOR loop */
1897         }
1898
1899         return;
1900 }
1901
1902
1903 /**
1904  * cpqhp_pushbutton_thread - handle pushbutton events
1905  * @slot: target slot (struct)
1906  *
1907  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1908  * Handles all pending events and exits.
1909  */
1910 void cpqhp_pushbutton_thread(struct timer_list *t)
1911 {
1912         u8 hp_slot;
1913         u8 device;
1914         struct pci_func *func;
1915         struct slot *p_slot = from_timer(p_slot, t, task_event);
1916         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1917
1918         pushbutton_pending = NULL;
1919         hp_slot = p_slot->hp_slot;
1920
1921         device = p_slot->device;
1922
1923         if (is_slot_enabled(ctrl, hp_slot)) {
1924                 p_slot->state = POWEROFF_STATE;
1925                 /* power Down board */
1926                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1927                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1928                 if (!func) {
1929                         dbg("Error! func NULL in %s\n", __func__);
1930                         return;
1931                 }
1932
1933                 if (cpqhp_process_SS(ctrl, func) != 0) {
1934                         amber_LED_on(ctrl, hp_slot);
1935                         green_LED_on(ctrl, hp_slot);
1936
1937                         set_SOGO(ctrl);
1938
1939                         /* Wait for SOBS to be unset */
1940                         wait_for_ctrl_irq(ctrl);
1941                 }
1942
1943                 p_slot->state = STATIC_STATE;
1944         } else {
1945                 p_slot->state = POWERON_STATE;
1946                 /* slot is off */
1947
1948                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1949                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1950                 if (!func) {
1951                         dbg("Error! func NULL in %s\n", __func__);
1952                         return;
1953                 }
1954
1955                 if (ctrl != NULL) {
1956                         if (cpqhp_process_SI(ctrl, func) != 0) {
1957                                 amber_LED_on(ctrl, hp_slot);
1958                                 green_LED_off(ctrl, hp_slot);
1959
1960                                 set_SOGO(ctrl);
1961
1962                                 /* Wait for SOBS to be unset */
1963                                 wait_for_ctrl_irq(ctrl);
1964                         }
1965                 }
1966
1967                 p_slot->state = STATIC_STATE;
1968         }
1969
1970         return;
1971 }
1972
1973
1974 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1975 {
1976         u8 device, hp_slot;
1977         u16 temp_word;
1978         u32 tempdword;
1979         int rc;
1980         struct slot *p_slot;
1981         int physical_slot = 0;
1982
1983         tempdword = 0;
1984
1985         device = func->device;
1986         hp_slot = device - ctrl->slot_device_offset;
1987         p_slot = cpqhp_find_slot(ctrl, device);
1988         if (p_slot)
1989                 physical_slot = p_slot->number;
1990
1991         /* Check to see if the interlock is closed */
1992         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1993
1994         if (tempdword & (0x01 << hp_slot))
1995                 return 1;
1996
1997         if (func->is_a_board) {
1998                 rc = board_replaced(func, ctrl);
1999         } else {
2000                 /* add board */
2001                 slot_remove(func);
2002
2003                 func = cpqhp_slot_create(ctrl->bus);
2004                 if (func == NULL)
2005                         return 1;
2006
2007                 func->bus = ctrl->bus;
2008                 func->device = device;
2009                 func->function = 0;
2010                 func->configured = 0;
2011                 func->is_a_board = 1;
2012
2013                 /* We have to save the presence info for these slots */
2014                 temp_word = ctrl->ctrl_int_comp >> 16;
2015                 func->presence_save = (temp_word >> hp_slot) & 0x01;
2016                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2017
2018                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2019                         func->switch_save = 0;
2020                 } else {
2021                         func->switch_save = 0x10;
2022                 }
2023
2024                 rc = board_added(func, ctrl);
2025                 if (rc) {
2026                         if (is_bridge(func)) {
2027                                 bridge_slot_remove(func);
2028                         } else
2029                                 slot_remove(func);
2030
2031                         /* Setup slot structure with entry for empty slot */
2032                         func = cpqhp_slot_create(ctrl->bus);
2033
2034                         if (func == NULL)
2035                                 return 1;
2036
2037                         func->bus = ctrl->bus;
2038                         func->device = device;
2039                         func->function = 0;
2040                         func->configured = 0;
2041                         func->is_a_board = 0;
2042
2043                         /* We have to save the presence info for these slots */
2044                         temp_word = ctrl->ctrl_int_comp >> 16;
2045                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2046                         func->presence_save |=
2047                         (temp_word >> (hp_slot + 7)) & 0x02;
2048
2049                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2050                                 func->switch_save = 0;
2051                         } else {
2052                                 func->switch_save = 0x10;
2053                         }
2054                 }
2055         }
2056
2057         if (rc)
2058                 dbg("%s: rc = %d\n", __func__, rc);
2059
2060         if (p_slot)
2061                 update_slot_info(ctrl, p_slot);
2062
2063         return rc;
2064 }
2065
2066
2067 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2068 {
2069         u8 device, class_code, header_type, BCR;
2070         u8 index = 0;
2071         u8 replace_flag;
2072         u32 rc = 0;
2073         unsigned int devfn;
2074         struct slot *p_slot;
2075         struct pci_bus *pci_bus = ctrl->pci_bus;
2076         int physical_slot = 0;
2077
2078         device = func->device;
2079         func = cpqhp_slot_find(ctrl->bus, device, index++);
2080         p_slot = cpqhp_find_slot(ctrl, device);
2081         if (p_slot)
2082                 physical_slot = p_slot->number;
2083
2084         /* Make sure there are no video controllers here */
2085         while (func && !rc) {
2086                 pci_bus->number = func->bus;
2087                 devfn = PCI_DEVFN(func->device, func->function);
2088
2089                 /* Check the Class Code */
2090                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2091                 if (rc)
2092                         return rc;
2093
2094                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2095                         /* Display/Video adapter (not supported) */
2096                         rc = REMOVE_NOT_SUPPORTED;
2097                 } else {
2098                         /* See if it's a bridge */
2099                         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2100                         if (rc)
2101                                 return rc;
2102
2103                         /* If it's a bridge, check the VGA Enable bit */
2104                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2105                                 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2106                                 if (rc)
2107                                         return rc;
2108
2109                                 /* If the VGA Enable bit is set, remove isn't
2110                                  * supported */
2111                                 if (BCR & PCI_BRIDGE_CTL_VGA)
2112                                         rc = REMOVE_NOT_SUPPORTED;
2113                         }
2114                 }
2115
2116                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2117         }
2118
2119         func = cpqhp_slot_find(ctrl->bus, device, 0);
2120         if ((func != NULL) && !rc) {
2121                 /* FIXME: Replace flag should be passed into process_SS */
2122                 replace_flag = !(ctrl->add_support);
2123                 rc = remove_board(func, replace_flag, ctrl);
2124         } else if (!rc) {
2125                 rc = 1;
2126         }
2127
2128         if (p_slot)
2129                 update_slot_info(ctrl, p_slot);
2130
2131         return rc;
2132 }
2133
2134 /**
2135  * switch_leds - switch the leds, go from one site to the other.
2136  * @ctrl: controller to use
2137  * @num_of_slots: number of slots to use
2138  * @work_LED: LED control value
2139  * @direction: 1 to start from the left side, 0 to start right.
2140  */
2141 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2142                         u32 *work_LED, const int direction)
2143 {
2144         int loop;
2145
2146         for (loop = 0; loop < num_of_slots; loop++) {
2147                 if (direction)
2148                         *work_LED = *work_LED >> 1;
2149                 else
2150                         *work_LED = *work_LED << 1;
2151                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2152
2153                 set_SOGO(ctrl);
2154
2155                 /* Wait for SOGO interrupt */
2156                 wait_for_ctrl_irq(ctrl);
2157
2158                 /* Get ready for next iteration */
2159                 long_delay((2*HZ)/10);
2160         }
2161 }
2162
2163 /**
2164  * cpqhp_hardware_test - runs hardware tests
2165  * @ctrl: target controller
2166  * @test_num: the number written to the "test" file in sysfs.
2167  *
2168  * For hot plug ctrl folks to play with.
2169  */
2170 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2171 {
2172         u32 save_LED;
2173         u32 work_LED;
2174         int loop;
2175         int num_of_slots;
2176
2177         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2178
2179         switch (test_num) {
2180         case 1:
2181                 /* Do stuff here! */
2182
2183                 /* Do that funky LED thing */
2184                 /* so we can restore them later */
2185                 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2186                 work_LED = 0x01010101;
2187                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2188                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2189                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2190                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2191
2192                 work_LED = 0x01010000;
2193                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2194                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2195                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2196                 work_LED = 0x00000101;
2197                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2198                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2199                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2200
2201                 work_LED = 0x01010000;
2202                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2203                 for (loop = 0; loop < num_of_slots; loop++) {
2204                         set_SOGO(ctrl);
2205
2206                         /* Wait for SOGO interrupt */
2207                         wait_for_ctrl_irq(ctrl);
2208
2209                         /* Get ready for next iteration */
2210                         long_delay((3*HZ)/10);
2211                         work_LED = work_LED >> 16;
2212                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2213
2214                         set_SOGO(ctrl);
2215
2216                         /* Wait for SOGO interrupt */
2217                         wait_for_ctrl_irq(ctrl);
2218
2219                         /* Get ready for next iteration */
2220                         long_delay((3*HZ)/10);
2221                         work_LED = work_LED << 16;
2222                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2223                         work_LED = work_LED << 1;
2224                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2225                 }
2226
2227                 /* put it back the way it was */
2228                 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2229
2230                 set_SOGO(ctrl);
2231
2232                 /* Wait for SOBS to be unset */
2233                 wait_for_ctrl_irq(ctrl);
2234                 break;
2235         case 2:
2236                 /* Do other stuff here! */
2237                 break;
2238         case 3:
2239                 /* and more... */
2240                 break;
2241         }
2242         return 0;
2243 }
2244
2245
2246 /**
2247  * configure_new_device - Configures the PCI header information of one board.
2248  * @ctrl: pointer to controller structure
2249  * @func: pointer to function structure
2250  * @behind_bridge: 1 if this is a recursive call, 0 if not
2251  * @resources: pointer to set of resource lists
2252  *
2253  * Returns 0 if success.
2254  */
2255 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2256                                  u8 behind_bridge, struct resource_lists  *resources)
2257 {
2258         u8 temp_byte, function, max_functions, stop_it;
2259         int rc;
2260         u32 ID;
2261         struct pci_func *new_slot;
2262         int index;
2263
2264         new_slot = func;
2265
2266         dbg("%s\n", __func__);
2267         /* Check for Multi-function device */
2268         ctrl->pci_bus->number = func->bus;
2269         rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2270         if (rc) {
2271                 dbg("%s: rc = %d\n", __func__, rc);
2272                 return rc;
2273         }
2274
2275         if (temp_byte & 0x80)   /* Multi-function device */
2276                 max_functions = 8;
2277         else
2278                 max_functions = 1;
2279
2280         function = 0;
2281
2282         do {
2283                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2284
2285                 if (rc) {
2286                         dbg("configure_new_function failed %d\n", rc);
2287                         index = 0;
2288
2289                         while (new_slot) {
2290                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2291
2292                                 if (new_slot)
2293                                         cpqhp_return_board_resources(new_slot, resources);
2294                         }
2295
2296                         return rc;
2297                 }
2298
2299                 function++;
2300
2301                 stop_it = 0;
2302
2303                 /* The following loop skips to the next present function
2304                  * and creates a board structure */
2305
2306                 while ((function < max_functions) && (!stop_it)) {
2307                         pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2308
2309                         if (ID == 0xFFFFFFFF) {
2310                                 function++;
2311                         } else {
2312                                 /* Setup slot structure. */
2313                                 new_slot = cpqhp_slot_create(func->bus);
2314
2315                                 if (new_slot == NULL)
2316                                         return 1;
2317
2318                                 new_slot->bus = func->bus;
2319                                 new_slot->device = func->device;
2320                                 new_slot->function = function;
2321                                 new_slot->is_a_board = 1;
2322                                 new_slot->status = 0;
2323
2324                                 stop_it++;
2325                         }
2326                 }
2327
2328         } while (function < max_functions);
2329         dbg("returning from configure_new_device\n");
2330
2331         return 0;
2332 }
2333
2334
2335 /*
2336  * Configuration logic that involves the hotplug data structures and
2337  * their bookkeeping
2338  */
2339
2340
2341 /**
2342  * configure_new_function - Configures the PCI header information of one device
2343  * @ctrl: pointer to controller structure
2344  * @func: pointer to function structure
2345  * @behind_bridge: 1 if this is a recursive call, 0 if not
2346  * @resources: pointer to set of resource lists
2347  *
2348  * Calls itself recursively for bridged devices.
2349  * Returns 0 if success.
2350  */
2351 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2352                                    u8 behind_bridge,
2353                                    struct resource_lists *resources)
2354 {
2355         int cloop;
2356         u8 IRQ = 0;
2357         u8 temp_byte;
2358         u8 device;
2359         u8 class_code;
2360         u16 command;
2361         u16 temp_word;
2362         u32 temp_dword;
2363         u32 rc;
2364         u32 temp_register;
2365         u32 base;
2366         u32 ID;
2367         unsigned int devfn;
2368         struct pci_resource *mem_node;
2369         struct pci_resource *p_mem_node;
2370         struct pci_resource *io_node;
2371         struct pci_resource *bus_node;
2372         struct pci_resource *hold_mem_node;
2373         struct pci_resource *hold_p_mem_node;
2374         struct pci_resource *hold_IO_node;
2375         struct pci_resource *hold_bus_node;
2376         struct irq_mapping irqs;
2377         struct pci_func *new_slot;
2378         struct pci_bus *pci_bus;
2379         struct resource_lists temp_resources;
2380
2381         pci_bus = ctrl->pci_bus;
2382         pci_bus->number = func->bus;
2383         devfn = PCI_DEVFN(func->device, func->function);
2384
2385         /* Check for Bridge */
2386         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2387         if (rc)
2388                 return rc;
2389
2390         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2391                 /* set Primary bus */
2392                 dbg("set Primary bus = %d\n", func->bus);
2393                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2394                 if (rc)
2395                         return rc;
2396
2397                 /* find range of buses to use */
2398                 dbg("find ranges of buses to use\n");
2399                 bus_node = get_max_resource(&(resources->bus_head), 1);
2400
2401                 /* If we don't have any buses to allocate, we can't continue */
2402                 if (!bus_node)
2403                         return -ENOMEM;
2404
2405                 /* set Secondary bus */
2406                 temp_byte = bus_node->base;
2407                 dbg("set Secondary bus = %d\n", bus_node->base);
2408                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2409                 if (rc)
2410                         return rc;
2411
2412                 /* set subordinate bus */
2413                 temp_byte = bus_node->base + bus_node->length - 1;
2414                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2415                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2416                 if (rc)
2417                         return rc;
2418
2419                 /* set subordinate Latency Timer and base Latency Timer */
2420                 temp_byte = 0x40;
2421                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2422                 if (rc)
2423                         return rc;
2424                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2425                 if (rc)
2426                         return rc;
2427
2428                 /* set Cache Line size */
2429                 temp_byte = 0x08;
2430                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2431                 if (rc)
2432                         return rc;
2433
2434                 /* Setup the IO, memory, and prefetchable windows */
2435                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2436                 if (!io_node)
2437                         return -ENOMEM;
2438                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2439                 if (!mem_node)
2440                         return -ENOMEM;
2441                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2442                 if (!p_mem_node)
2443                         return -ENOMEM;
2444                 dbg("Setup the IO, memory, and prefetchable windows\n");
2445                 dbg("io_node\n");
2446                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2447                                         io_node->length, io_node->next);
2448                 dbg("mem_node\n");
2449                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2450                                         mem_node->length, mem_node->next);
2451                 dbg("p_mem_node\n");
2452                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2453                                         p_mem_node->length, p_mem_node->next);
2454
2455                 /* set up the IRQ info */
2456                 if (!resources->irqs) {
2457                         irqs.barber_pole = 0;
2458                         irqs.interrupt[0] = 0;
2459                         irqs.interrupt[1] = 0;
2460                         irqs.interrupt[2] = 0;
2461                         irqs.interrupt[3] = 0;
2462                         irqs.valid_INT = 0;
2463                 } else {
2464                         irqs.barber_pole = resources->irqs->barber_pole;
2465                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2466                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2467                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2468                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2469                         irqs.valid_INT = resources->irqs->valid_INT;
2470                 }
2471
2472                 /* set up resource lists that are now aligned on top and bottom
2473                  * for anything behind the bridge. */
2474                 temp_resources.bus_head = bus_node;
2475                 temp_resources.io_head = io_node;
2476                 temp_resources.mem_head = mem_node;
2477                 temp_resources.p_mem_head = p_mem_node;
2478                 temp_resources.irqs = &irqs;
2479
2480                 /* Make copies of the nodes we are going to pass down so that
2481                  * if there is a problem,we can just use these to free resources
2482                  */
2483                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2484                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2485                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2486                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2487
2488                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2489                         kfree(hold_bus_node);
2490                         kfree(hold_IO_node);
2491                         kfree(hold_mem_node);
2492                         kfree(hold_p_mem_node);
2493
2494                         return 1;
2495                 }
2496
2497                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2498
2499                 bus_node->base += 1;
2500                 bus_node->length -= 1;
2501                 bus_node->next = NULL;
2502
2503                 /* If we have IO resources copy them and fill in the bridge's
2504                  * IO range registers */
2505                 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2506                 io_node->next = NULL;
2507
2508                 /* set IO base and Limit registers */
2509                 temp_byte = io_node->base >> 8;
2510                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2511
2512                 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2513                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2514
2515                 /* Copy the memory resources and fill in the bridge's memory
2516                  * range registers.
2517                  */
2518                 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2519                 mem_node->next = NULL;
2520
2521                 /* set Mem base and Limit registers */
2522                 temp_word = mem_node->base >> 16;
2523                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2524
2525                 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2526                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2527
2528                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2529                 p_mem_node->next = NULL;
2530
2531                 /* set Pre Mem base and Limit registers */
2532                 temp_word = p_mem_node->base >> 16;
2533                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2534
2535                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2536                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2537
2538                 /* Adjust this to compensate for extra adjustment in first loop
2539                  */
2540                 irqs.barber_pole--;
2541
2542                 rc = 0;
2543
2544                 /* Here we actually find the devices and configure them */
2545                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2546                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2547
2548                         ID = 0xFFFFFFFF;
2549                         pci_bus->number = hold_bus_node->base;
2550                         pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2551                         pci_bus->number = func->bus;
2552
2553                         if (ID != 0xFFFFFFFF) {   /*  device present */
2554                                 /* Setup slot structure. */
2555                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2556
2557                                 if (new_slot == NULL) {
2558                                         rc = -ENOMEM;
2559                                         continue;
2560                                 }
2561
2562                                 new_slot->bus = hold_bus_node->base;
2563                                 new_slot->device = device;
2564                                 new_slot->function = 0;
2565                                 new_slot->is_a_board = 1;
2566                                 new_slot->status = 0;
2567
2568                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2569                                 dbg("configure_new_device rc=0x%x\n", rc);
2570                         }       /* End of IF (device in slot?) */
2571                 }               /* End of FOR loop */
2572
2573                 if (rc)
2574                         goto free_and_out;
2575                 /* save the interrupt routing information */
2576                 if (resources->irqs) {
2577                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2578                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2579                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2580                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2581                         resources->irqs->valid_INT = irqs.valid_INT;
2582                 } else if (!behind_bridge) {
2583                         /* We need to hook up the interrupts here */
2584                         for (cloop = 0; cloop < 4; cloop++) {
2585                                 if (irqs.valid_INT & (0x01 << cloop)) {
2586                                         rc = cpqhp_set_irq(func->bus, func->device,
2587                                                            cloop + 1, irqs.interrupt[cloop]);
2588                                         if (rc)
2589                                                 goto free_and_out;
2590                                 }
2591                         }       /* end of for loop */
2592                 }
2593                 /* Return unused bus resources
2594                  * First use the temporary node to store information for
2595                  * the board */
2596                 if (bus_node && temp_resources.bus_head) {
2597                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2598
2599                         hold_bus_node->next = func->bus_head;
2600                         func->bus_head = hold_bus_node;
2601
2602                         temp_byte = temp_resources.bus_head->base - 1;
2603
2604                         /* set subordinate bus */
2605                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2606
2607                         if (temp_resources.bus_head->length == 0) {
2608                                 kfree(temp_resources.bus_head);
2609                                 temp_resources.bus_head = NULL;
2610                         } else {
2611                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2612                         }
2613                 }
2614
2615                 /* If we have IO space available and there is some left,
2616                  * return the unused portion */
2617                 if (hold_IO_node && temp_resources.io_head) {
2618                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2619                                                                &hold_IO_node, 0x1000);
2620
2621                         /* Check if we were able to split something off */
2622                         if (io_node) {
2623                                 hold_IO_node->base = io_node->base + io_node->length;
2624
2625                                 temp_byte = (hold_IO_node->base) >> 8;
2626                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2627
2628                                 return_resource(&(resources->io_head), io_node);
2629                         }
2630
2631                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2632
2633                         /* Check if we were able to split something off */
2634                         if (io_node) {
2635                                 /* First use the temporary node to store
2636                                  * information for the board */
2637                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2638
2639                                 /* If we used any, add it to the board's list */
2640                                 if (hold_IO_node->length) {
2641                                         hold_IO_node->next = func->io_head;
2642                                         func->io_head = hold_IO_node;
2643
2644                                         temp_byte = (io_node->base - 1) >> 8;
2645                                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2646
2647                                         return_resource(&(resources->io_head), io_node);
2648                                 } else {
2649                                         /* it doesn't need any IO */
2650                                         temp_word = 0x0000;
2651                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2652
2653                                         return_resource(&(resources->io_head), io_node);
2654                                         kfree(hold_IO_node);
2655                                 }
2656                         } else {
2657                                 /* it used most of the range */
2658                                 hold_IO_node->next = func->io_head;
2659                                 func->io_head = hold_IO_node;
2660                         }
2661                 } else if (hold_IO_node) {
2662                         /* it used the whole range */
2663                         hold_IO_node->next = func->io_head;
2664                         func->io_head = hold_IO_node;
2665                 }
2666                 /* If we have memory space available and there is some left,
2667                  * return the unused portion */
2668                 if (hold_mem_node && temp_resources.mem_head) {
2669                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2670                                                                 &hold_mem_node, 0x100000);
2671
2672                         /* Check if we were able to split something off */
2673                         if (mem_node) {
2674                                 hold_mem_node->base = mem_node->base + mem_node->length;
2675
2676                                 temp_word = (hold_mem_node->base) >> 16;
2677                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2678
2679                                 return_resource(&(resources->mem_head), mem_node);
2680                         }
2681
2682                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2683
2684                         /* Check if we were able to split something off */
2685                         if (mem_node) {
2686                                 /* First use the temporary node to store
2687                                  * information for the board */
2688                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2689
2690                                 if (hold_mem_node->length) {
2691                                         hold_mem_node->next = func->mem_head;
2692                                         func->mem_head = hold_mem_node;
2693
2694                                         /* configure end address */
2695                                         temp_word = (mem_node->base - 1) >> 16;
2696                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2697
2698                                         /* Return unused resources to the pool */
2699                                         return_resource(&(resources->mem_head), mem_node);
2700                                 } else {
2701                                         /* it doesn't need any Mem */
2702                                         temp_word = 0x0000;
2703                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2704
2705                                         return_resource(&(resources->mem_head), mem_node);
2706                                         kfree(hold_mem_node);
2707                                 }
2708                         } else {
2709                                 /* it used most of the range */
2710                                 hold_mem_node->next = func->mem_head;
2711                                 func->mem_head = hold_mem_node;
2712                         }
2713                 } else if (hold_mem_node) {
2714                         /* it used the whole range */
2715                         hold_mem_node->next = func->mem_head;
2716                         func->mem_head = hold_mem_node;
2717                 }
2718                 /* If we have prefetchable memory space available and there
2719                  * is some left at the end, return the unused portion */
2720                 if (temp_resources.p_mem_head) {
2721                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2722                                                                   &hold_p_mem_node, 0x100000);
2723
2724                         /* Check if we were able to split something off */
2725                         if (p_mem_node) {
2726                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2727
2728                                 temp_word = (hold_p_mem_node->base) >> 16;
2729                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2730
2731                                 return_resource(&(resources->p_mem_head), p_mem_node);
2732                         }
2733
2734                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2735
2736                         /* Check if we were able to split something off */
2737                         if (p_mem_node) {
2738                                 /* First use the temporary node to store
2739                                  * information for the board */
2740                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2741
2742                                 /* If we used any, add it to the board's list */
2743                                 if (hold_p_mem_node->length) {
2744                                         hold_p_mem_node->next = func->p_mem_head;
2745                                         func->p_mem_head = hold_p_mem_node;
2746
2747                                         temp_word = (p_mem_node->base - 1) >> 16;
2748                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2749
2750                                         return_resource(&(resources->p_mem_head), p_mem_node);
2751                                 } else {
2752                                         /* it doesn't need any PMem */
2753                                         temp_word = 0x0000;
2754                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2755
2756                                         return_resource(&(resources->p_mem_head), p_mem_node);
2757                                         kfree(hold_p_mem_node);
2758                                 }
2759                         } else {
2760                                 /* it used the most of the range */
2761                                 hold_p_mem_node->next = func->p_mem_head;
2762                                 func->p_mem_head = hold_p_mem_node;
2763                         }
2764                 } else if (hold_p_mem_node) {
2765                         /* it used the whole range */
2766                         hold_p_mem_node->next = func->p_mem_head;
2767                         func->p_mem_head = hold_p_mem_node;
2768                 }
2769                 /* We should be configuring an IRQ and the bridge's base address
2770                  * registers if it needs them.  Although we have never seen such
2771                  * a device */
2772
2773                 /* enable card */
2774                 command = 0x0157;       /* = PCI_COMMAND_IO |
2775                                          *   PCI_COMMAND_MEMORY |
2776                                          *   PCI_COMMAND_MASTER |
2777                                          *   PCI_COMMAND_INVALIDATE |
2778                                          *   PCI_COMMAND_PARITY |
2779                                          *   PCI_COMMAND_SERR */
2780                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2781
2782                 /* set Bridge Control Register */
2783                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2784                                          *   PCI_BRIDGE_CTL_SERR |
2785                                          *   PCI_BRIDGE_CTL_NO_ISA */
2786                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2787         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2788                 /* Standard device */
2789                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2790
2791                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2792                         /* Display (video) adapter (not supported) */
2793                         return DEVICE_TYPE_NOT_SUPPORTED;
2794                 }
2795                 /* Figure out IO and memory needs */
2796                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2797                         temp_register = 0xFFFFFFFF;
2798
2799                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2800                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2801
2802                         rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2803                         dbg("CND: base = 0x%x\n", temp_register);
2804
2805                         if (temp_register) {      /* If this register is implemented */
2806                                 if ((temp_register & 0x03L) == 0x01) {
2807                                         /* Map IO */
2808
2809                                         /* set base = amount of IO space */
2810                                         base = temp_register & 0xFFFFFFFC;
2811                                         base = ~base + 1;
2812
2813                                         dbg("CND:      length = 0x%x\n", base);
2814                                         io_node = get_io_resource(&(resources->io_head), base);
2815                                         if (!io_node)
2816                                                 return -ENOMEM;
2817                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2818                                             io_node->base, io_node->length, io_node->next);
2819                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2820
2821                                         /* allocate the resource to the board */
2822                                         base = io_node->base;
2823                                         io_node->next = func->io_head;
2824                                         func->io_head = io_node;
2825                                 } else if ((temp_register & 0x0BL) == 0x08) {
2826                                         /* Map prefetchable memory */
2827                                         base = temp_register & 0xFFFFFFF0;
2828                                         base = ~base + 1;
2829
2830                                         dbg("CND:      length = 0x%x\n", base);
2831                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2832
2833                                         /* allocate the resource to the board */
2834                                         if (p_mem_node) {
2835                                                 base = p_mem_node->base;
2836
2837                                                 p_mem_node->next = func->p_mem_head;
2838                                                 func->p_mem_head = p_mem_node;
2839                                         } else
2840                                                 return -ENOMEM;
2841                                 } else if ((temp_register & 0x0BL) == 0x00) {
2842                                         /* Map memory */
2843                                         base = temp_register & 0xFFFFFFF0;
2844                                         base = ~base + 1;
2845
2846                                         dbg("CND:      length = 0x%x\n", base);
2847                                         mem_node = get_resource(&(resources->mem_head), base);
2848
2849                                         /* allocate the resource to the board */
2850                                         if (mem_node) {
2851                                                 base = mem_node->base;
2852
2853                                                 mem_node->next = func->mem_head;
2854                                                 func->mem_head = mem_node;
2855                                         } else
2856                                                 return -ENOMEM;
2857                                 } else {
2858                                         /* Reserved bits or requesting space below 1M */
2859                                         return NOT_ENOUGH_RESOURCES;
2860                                 }
2861
2862                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2863
2864                                 /* Check for 64-bit base */
2865                                 if ((temp_register & 0x07L) == 0x04) {
2866                                         cloop += 4;
2867
2868                                         /* Upper 32 bits of address always zero
2869                                          * on today's systems */
2870                                         /* FIXME this is probably not true on
2871                                          * Alpha and ia64??? */
2872                                         base = 0;
2873                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2874                                 }
2875                         }
2876                 }               /* End of base register loop */
2877                 if (cpqhp_legacy_mode) {
2878                         /* Figure out which interrupt pin this function uses */
2879                         rc = pci_bus_read_config_byte(pci_bus, devfn,
2880                                 PCI_INTERRUPT_PIN, &temp_byte);
2881
2882                         /* If this function needs an interrupt and we are behind
2883                          * a bridge and the pin is tied to something that's
2884                          * already mapped, set this one the same */
2885                         if (temp_byte && resources->irqs &&
2886                             (resources->irqs->valid_INT &
2887                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2888                                 /* We have to share with something already set up */
2889                                 IRQ = resources->irqs->interrupt[(temp_byte +
2890                                         resources->irqs->barber_pole - 1) & 0x03];
2891                         } else {
2892                                 /* Program IRQ based on card type */
2893                                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2894
2895                                 if (class_code == PCI_BASE_CLASS_STORAGE)
2896                                         IRQ = cpqhp_disk_irq;
2897                                 else
2898                                         IRQ = cpqhp_nic_irq;
2899                         }
2900
2901                         /* IRQ Line */
2902                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2903                 }
2904
2905                 if (!behind_bridge) {
2906                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2907                         if (rc)
2908                                 return 1;
2909                 } else {
2910                         /* TBD - this code may also belong in the other clause
2911                          * of this If statement */
2912                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2913                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2914                 }
2915
2916                 /* Latency Timer */
2917                 temp_byte = 0x40;
2918                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2919                                         PCI_LATENCY_TIMER, temp_byte);
2920
2921                 /* Cache Line size */
2922                 temp_byte = 0x08;
2923                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2924                                         PCI_CACHE_LINE_SIZE, temp_byte);
2925
2926                 /* disable ROM base Address */
2927                 temp_dword = 0x00L;
2928                 rc = pci_bus_write_config_word(pci_bus, devfn,
2929                                         PCI_ROM_ADDRESS, temp_dword);
2930
2931                 /* enable card */
2932                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2933                                          *   PCI_COMMAND_MEMORY |
2934                                          *   PCI_COMMAND_MASTER |
2935                                          *   PCI_COMMAND_INVALIDATE |
2936                                          *   PCI_COMMAND_PARITY |
2937                                          *   PCI_COMMAND_SERR */
2938                 rc = pci_bus_write_config_word(pci_bus, devfn,
2939                                         PCI_COMMAND, temp_word);
2940         } else {                /* End of Not-A-Bridge else */
2941                 /* It's some strange type of PCI adapter (Cardbus?) */
2942                 return DEVICE_TYPE_NOT_SUPPORTED;
2943         }
2944
2945         func->configured = 1;
2946
2947         return 0;
2948 free_and_out:
2949         cpqhp_destroy_resource_list(&temp_resources);
2950
2951         return_resource(&(resources->bus_head), hold_bus_node);
2952         return_resource(&(resources->io_head), hold_IO_node);
2953         return_resource(&(resources->mem_head), hold_mem_node);
2954         return_resource(&(resources->p_mem_head), hold_p_mem_node);
2955         return rc;
2956 }