GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / power / supply / cpcap-battery.c
1 /*
2  * Battery driver for CPCAP PMIC
3  *
4  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
5  *
6  * Some parts of the code based on earlie Motorola mapphone Linux kernel
7  * drivers:
8  *
9  * Copyright (C) 2009-2010 Motorola, Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14
15  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
16  * kind, whether express or implied; without even the implied warranty
17  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/power_supply.h>
29 #include <linux/reboot.h>
30 #include <linux/regmap.h>
31
32 #include <linux/iio/consumer.h>
33 #include <linux/iio/types.h>
34 #include <linux/mfd/motorola-cpcap.h>
35
36 #include <asm/div64.h>
37
38 /*
39  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
40  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
41  * to enable BATTDETEN, LOBAT and EOL features. We currently use
42  * LOBAT interrupts instead of EOL.
43  */
44 #define CPCAP_REG_BPEOL_BIT_EOL9        BIT(9)  /* Set for EOL irq */
45 #define CPCAP_REG_BPEOL_BIT_EOL8        BIT(8)  /* Set for EOL irq */
46 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7    BIT(7)
47 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6    BIT(6)
48 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5    BIT(5)
49 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI   BIT(4)  /* Set for multiple EOL irqs */
50 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3    BIT(3)
51 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2    BIT(2)
52 #define CPCAP_REG_BPEOL_BIT_BATTDETEN   BIT(1)  /* Enable battery detect */
53 #define CPCAP_REG_BPEOL_BIT_EOLSEL      BIT(0)  /* BPDET = 0, EOL = 1 */
54
55 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS       250
56
57 enum {
58         CPCAP_BATTERY_IIO_BATTDET,
59         CPCAP_BATTERY_IIO_VOLTAGE,
60         CPCAP_BATTERY_IIO_CHRG_CURRENT,
61         CPCAP_BATTERY_IIO_BATT_CURRENT,
62         CPCAP_BATTERY_IIO_NR,
63 };
64
65 enum cpcap_battery_irq_action {
66         CPCAP_BATTERY_IRQ_ACTION_NONE,
67         CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
68         CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
69 };
70
71 struct cpcap_interrupt_desc {
72         const char *name;
73         struct list_head node;
74         int irq;
75         enum cpcap_battery_irq_action action;
76 };
77
78 struct cpcap_battery_config {
79         int ccm;
80         int cd_factor;
81         struct power_supply_info info;
82 };
83
84 struct cpcap_coulomb_counter_data {
85         s32 sample;             /* 24 or 32 bits */
86         s32 accumulator;
87         s16 offset;             /* 10-bits */
88 };
89
90 enum cpcap_battery_state {
91         CPCAP_BATTERY_STATE_PREVIOUS,
92         CPCAP_BATTERY_STATE_LATEST,
93         CPCAP_BATTERY_STATE_NR,
94 };
95
96 struct cpcap_battery_state_data {
97         int voltage;
98         int current_ua;
99         int counter_uah;
100         int temperature;
101         ktime_t time;
102         struct cpcap_coulomb_counter_data cc;
103 };
104
105 struct cpcap_battery_ddata {
106         struct device *dev;
107         struct regmap *reg;
108         struct list_head irq_list;
109         struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
110         struct power_supply *psy;
111         struct cpcap_battery_config config;
112         struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
113         atomic_t active;
114         int status;
115         u16 vendor;
116 };
117
118 #define CPCAP_NO_BATTERY        -400
119
120 static struct cpcap_battery_state_data *
121 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
122                         enum cpcap_battery_state state)
123 {
124         if (state >= CPCAP_BATTERY_STATE_NR)
125                 return NULL;
126
127         return &ddata->state[state];
128 }
129
130 static struct cpcap_battery_state_data *
131 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
132 {
133         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
134 }
135
136 static struct cpcap_battery_state_data *
137 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
138 {
139         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
140 }
141
142 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
143                                              int *value)
144 {
145         struct iio_channel *channel;
146         int error;
147
148         channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
149         error = iio_read_channel_processed(channel, value);
150         if (error < 0) {
151                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
152                 *value = CPCAP_NO_BATTERY;
153
154                 return error;
155         }
156
157         *value /= 100;
158
159         return 0;
160 }
161
162 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
163 {
164         struct iio_channel *channel;
165         int error, value = 0;
166
167         channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
168         error = iio_read_channel_processed(channel, &value);
169         if (error < 0) {
170                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
171
172                 return 0;
173         }
174
175         return value * 1000;
176 }
177
178 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
179 {
180         struct iio_channel *channel;
181         int error, value = 0;
182
183         channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
184         error = iio_read_channel_processed(channel, &value);
185         if (error < 0) {
186                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
187
188                 return 0;
189         }
190
191         return value * 1000;
192 }
193
194 /**
195  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
196  * @ddata: device driver data
197  * @sample: coulomb counter sample value
198  * @accumulator: coulomb counter integrator value
199  * @offset: coulomb counter offset value
200  * @divider: conversion divider
201  *
202  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
203  * function data_get_avg_curr_ua() and seem to be based on measured test
204  * results. It also has the following comment:
205  *
206  * Adjustment factors are applied here as a temp solution per the test
207  * results. Need to work out a formal solution for this adjustment.
208  *
209  * A coulomb counter for similar hardware seems to be documented in
210  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
211  * "10 Calculating Accumulated Current". We however follow what the
212  * Motorola mapphone Linux kernel is doing as there may be either a
213  * TI or ST coulomb counter in the PMIC.
214  */
215 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
216                                     s32 sample, s32 accumulator,
217                                     s16 offset, u32 divider)
218 {
219         s64 acc;
220         u64 tmp;
221         int avg_current;
222         u32 cc_lsb;
223
224         if (!divider)
225                 return 0;
226
227         offset &= 0x7ff;                /* 10-bits, signed */
228
229         switch (ddata->vendor) {
230         case CPCAP_VENDOR_ST:
231                 cc_lsb = 95374;         /* μAms per LSB */
232                 break;
233         case CPCAP_VENDOR_TI:
234                 cc_lsb = 91501;         /* μAms per LSB */
235                 break;
236         default:
237                 return -EINVAL;
238         }
239
240         acc = accumulator;
241         acc = acc - ((s64)sample * offset);
242         cc_lsb = (cc_lsb * ddata->config.cd_factor) / 1000;
243
244         if (acc >=  0)
245                 tmp = acc;
246         else
247                 tmp = acc * -1;
248
249         tmp = tmp * cc_lsb;
250         do_div(tmp, divider);
251         avg_current = tmp;
252
253         if (acc >= 0)
254                 return -avg_current;
255         else
256                 return avg_current;
257 }
258
259 /* 3600000μAms = 1μAh */
260 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
261                                    s32 sample, s32 accumulator,
262                                    s16 offset)
263 {
264         return cpcap_battery_cc_raw_div(ddata, sample,
265                                         accumulator, offset,
266                                         3600000);
267 }
268
269 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
270                                   s32 sample, s32 accumulator,
271                                   s16 offset)
272 {
273         return cpcap_battery_cc_raw_div(ddata, sample,
274                                         accumulator, offset,
275                                         sample *
276                                         CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
277 }
278
279 /**
280  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
281  * @ddata: device driver data
282  * @regs: coulomb counter values
283  *
284  * Based on Motorola mapphone kernel function data_read_regs().
285  * Looking at the registers, the coulomb counter seems similar to
286  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
287  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
288  *
289  * Note that swca095a.pdf instructs to stop the coulomb counter
290  * before reading to avoid values changing. Motorola mapphone
291  * Linux kernel does not do it, so let's assume they've verified
292  * the data produced is correct.
293  */
294 static int
295 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
296                                struct cpcap_coulomb_counter_data *ccd)
297 {
298         u16 buf[7];     /* CPCAP_REG_CC1 to CCI */
299         int error;
300
301         ccd->sample = 0;
302         ccd->accumulator = 0;
303         ccd->offset = 0;
304
305         /* Read coulomb counter register range */
306         error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
307                                  buf, ARRAY_SIZE(buf));
308         if (error)
309                 return 0;
310
311         /* Sample value CPCAP_REG_CCS1 & 2 */
312         ccd->sample = (buf[1] & 0x0fff) << 16;
313         ccd->sample |= buf[0];
314         if (ddata->vendor == CPCAP_VENDOR_TI)
315                 ccd->sample = sign_extend32(24, ccd->sample);
316
317         /* Accumulator value CPCAP_REG_CCA1 & 2 */
318         ccd->accumulator = ((s16)buf[3]) << 16;
319         ccd->accumulator |= buf[2];
320
321         /* Offset value CPCAP_REG_CCO */
322         ccd->offset = buf[5];
323
324         /* Adjust offset based on mode value CPCAP_REG_CCM? */
325         if (buf[4] >= 0x200)
326                 ccd->offset |= 0xfc00;
327
328         return cpcap_battery_cc_to_uah(ddata,
329                                        ccd->sample,
330                                        ccd->accumulator,
331                                        ccd->offset);
332 }
333
334 /**
335  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
336  * @ddata: cpcap battery driver device data
337  */
338 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
339 {
340         int value, acc, error;
341         s32 sample = 1;
342         s16 offset;
343
344         if (ddata->vendor == CPCAP_VENDOR_ST)
345                 sample = 4;
346
347         /* Coulomb counter integrator */
348         error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
349         if (error)
350                 return error;
351
352         if ((ddata->vendor == CPCAP_VENDOR_TI) && (value > 0x2000))
353                 value = value | 0xc000;
354
355         acc = (s16)value;
356
357         /* Coulomb counter sample time */
358         error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
359         if (error)
360                 return error;
361
362         if (value < 0x200)
363                 offset = value;
364         else
365                 offset = value | 0xfc00;
366
367         return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
368 }
369
370 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
371 {
372         struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
373
374         /* Basically anything that measures above 4347000 is full */
375         if (state->voltage >= (ddata->config.info.voltage_max_design - 4000))
376                 return true;
377
378         return false;
379 }
380
381 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
382 {
383         struct cpcap_battery_state_data state, *latest, *previous;
384         ktime_t now;
385         int error;
386
387         memset(&state, 0, sizeof(state));
388         now = ktime_get();
389
390         latest = cpcap_battery_latest(ddata);
391         if (latest) {
392                 s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
393
394                 if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
395                         return delta_ms;
396         }
397
398         state.time = now;
399         state.voltage = cpcap_battery_get_voltage(ddata);
400         state.current_ua = cpcap_battery_get_current(ddata);
401         state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
402
403         error = cpcap_charger_battery_temperature(ddata,
404                                                   &state.temperature);
405         if (error)
406                 return error;
407
408         previous = cpcap_battery_previous(ddata);
409         memcpy(previous, latest, sizeof(*previous));
410         memcpy(latest, &state, sizeof(*latest));
411
412         return 0;
413 }
414
415 static enum power_supply_property cpcap_battery_props[] = {
416         POWER_SUPPLY_PROP_STATUS,
417         POWER_SUPPLY_PROP_PRESENT,
418         POWER_SUPPLY_PROP_TECHNOLOGY,
419         POWER_SUPPLY_PROP_VOLTAGE_NOW,
420         POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
421         POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
422         POWER_SUPPLY_PROP_CURRENT_AVG,
423         POWER_SUPPLY_PROP_CURRENT_NOW,
424         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
425         POWER_SUPPLY_PROP_CHARGE_COUNTER,
426         POWER_SUPPLY_PROP_POWER_NOW,
427         POWER_SUPPLY_PROP_POWER_AVG,
428         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
429         POWER_SUPPLY_PROP_SCOPE,
430         POWER_SUPPLY_PROP_TEMP,
431 };
432
433 static int cpcap_battery_get_property(struct power_supply *psy,
434                                       enum power_supply_property psp,
435                                       union power_supply_propval *val)
436 {
437         struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
438         struct cpcap_battery_state_data *latest, *previous;
439         u32 sample;
440         s32 accumulator;
441         int cached;
442         s64 tmp;
443
444         cached = cpcap_battery_update_status(ddata);
445         if (cached < 0)
446                 return cached;
447
448         latest = cpcap_battery_latest(ddata);
449         previous = cpcap_battery_previous(ddata);
450
451         switch (psp) {
452         case POWER_SUPPLY_PROP_PRESENT:
453                 if (latest->temperature > CPCAP_NO_BATTERY)
454                         val->intval = 1;
455                 else
456                         val->intval = 0;
457                 break;
458         case POWER_SUPPLY_PROP_STATUS:
459                 if (cpcap_battery_full(ddata)) {
460                         val->intval = POWER_SUPPLY_STATUS_FULL;
461                         break;
462                 }
463                 if (cpcap_battery_cc_get_avg_current(ddata) < 0)
464                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
465                 else
466                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
467                 break;
468         case POWER_SUPPLY_PROP_TECHNOLOGY:
469                 val->intval = ddata->config.info.technology;
470                 break;
471         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
472                 val->intval = cpcap_battery_get_voltage(ddata);
473                 break;
474         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
475                 val->intval = ddata->config.info.voltage_max_design;
476                 break;
477         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
478                 val->intval = ddata->config.info.voltage_min_design;
479                 break;
480         case POWER_SUPPLY_PROP_CURRENT_AVG:
481                 if (cached) {
482                         val->intval = cpcap_battery_cc_get_avg_current(ddata);
483                         break;
484                 }
485                 sample = latest->cc.sample - previous->cc.sample;
486                 accumulator = latest->cc.accumulator - previous->cc.accumulator;
487                 val->intval = cpcap_battery_cc_to_ua(ddata, sample,
488                                                      accumulator,
489                                                      latest->cc.offset);
490                 break;
491         case POWER_SUPPLY_PROP_CURRENT_NOW:
492                 val->intval = latest->current_ua;
493                 break;
494         case POWER_SUPPLY_PROP_CHARGE_COUNTER:
495                 val->intval = latest->counter_uah;
496                 break;
497         case POWER_SUPPLY_PROP_POWER_NOW:
498                 tmp = (latest->voltage / 10000) * latest->current_ua;
499                 val->intval = div64_s64(tmp, 100);
500                 break;
501         case POWER_SUPPLY_PROP_POWER_AVG:
502                 if (cached) {
503                         tmp = cpcap_battery_cc_get_avg_current(ddata);
504                         tmp *= (latest->voltage / 10000);
505                         val->intval = div64_s64(tmp, 100);
506                         break;
507                 }
508                 sample = latest->cc.sample - previous->cc.sample;
509                 accumulator = latest->cc.accumulator - previous->cc.accumulator;
510                 tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
511                                              latest->cc.offset);
512                 tmp *= ((latest->voltage + previous->voltage) / 20000);
513                 val->intval = div64_s64(tmp, 100);
514                 break;
515         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
516                 if (cpcap_battery_full(ddata))
517                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
518                 else if (latest->voltage >= 3750000)
519                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
520                 else if (latest->voltage >= 3300000)
521                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
522                 else if (latest->voltage > 3100000)
523                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
524                 else if (latest->voltage <= 3100000)
525                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
526                 else
527                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
528                 break;
529         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
530                 val->intval = ddata->config.info.charge_full_design;
531                 break;
532         case POWER_SUPPLY_PROP_SCOPE:
533                 val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
534                 break;
535         case POWER_SUPPLY_PROP_TEMP:
536                 val->intval = latest->temperature;
537                 break;
538         default:
539                 return -EINVAL;
540         }
541
542         return 0;
543 }
544
545 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
546 {
547         struct cpcap_battery_ddata *ddata = data;
548         struct cpcap_battery_state_data *latest;
549         struct cpcap_interrupt_desc *d;
550
551         if (!atomic_read(&ddata->active))
552                 return IRQ_NONE;
553
554         list_for_each_entry(d, &ddata->irq_list, node) {
555                 if (irq == d->irq)
556                         break;
557         }
558
559         if (!d)
560                 return IRQ_NONE;
561
562         latest = cpcap_battery_latest(ddata);
563
564         switch (d->action) {
565         case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
566                 if (latest->counter_uah >= 0)
567                         dev_warn(ddata->dev, "Battery low at 3.3V!\n");
568                 break;
569         case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
570                 if (latest->counter_uah >= 0) {
571                         dev_emerg(ddata->dev,
572                                   "Battery empty at 3.1V, powering off\n");
573                         orderly_poweroff(true);
574                 }
575                 break;
576         default:
577                 break;
578         }
579
580         power_supply_changed(ddata->psy);
581
582         return IRQ_HANDLED;
583 }
584
585 static int cpcap_battery_init_irq(struct platform_device *pdev,
586                                   struct cpcap_battery_ddata *ddata,
587                                   const char *name)
588 {
589         struct cpcap_interrupt_desc *d;
590         int irq, error;
591
592         irq = platform_get_irq_byname(pdev, name);
593         if (irq < 0)
594                 return irq;
595
596         error = devm_request_threaded_irq(ddata->dev, irq, NULL,
597                                           cpcap_battery_irq_thread,
598                                           IRQF_SHARED,
599                                           name, ddata);
600         if (error) {
601                 dev_err(ddata->dev, "could not get irq %s: %i\n",
602                         name, error);
603
604                 return error;
605         }
606
607         d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
608         if (!d)
609                 return -ENOMEM;
610
611         d->name = name;
612         d->irq = irq;
613
614         if (!strncmp(name, "lowbph", 6))
615                 d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
616         else if (!strncmp(name, "lowbpl", 6))
617                 d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
618
619         list_add(&d->node, &ddata->irq_list);
620
621         return 0;
622 }
623
624 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
625                                          struct cpcap_battery_ddata *ddata)
626 {
627         const char * const cpcap_battery_irqs[] = {
628                 "eol", "lowbph", "lowbpl",
629                 "chrgcurr1", "battdetb"
630         };
631         int i, error;
632
633         for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
634                 error = cpcap_battery_init_irq(pdev, ddata,
635                                                cpcap_battery_irqs[i]);
636                 if (error)
637                         return error;
638         }
639
640         /* Enable low battery interrupts for 3.3V high and 3.1V low */
641         error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
642                                    0xffff,
643                                    CPCAP_REG_BPEOL_BIT_BATTDETEN);
644         if (error)
645                 return error;
646
647         return 0;
648 }
649
650 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
651 {
652         const char * const names[CPCAP_BATTERY_IIO_NR] = {
653                 "battdetb", "battp", "chg_isense", "batti",
654         };
655         int error, i;
656
657         for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
658                 ddata->channels[i] = devm_iio_channel_get(ddata->dev,
659                                                           names[i]);
660                 if (IS_ERR(ddata->channels[i])) {
661                         error = PTR_ERR(ddata->channels[i]);
662                         goto out_err;
663                 }
664
665                 if (!ddata->channels[i]->indio_dev) {
666                         error = -ENXIO;
667                         goto out_err;
668                 }
669         }
670
671         return 0;
672
673 out_err:
674         dev_err(ddata->dev, "could not initialize VBUS or ID IIO: %i\n",
675                 error);
676
677         return error;
678 }
679
680 /*
681  * Based on the values from Motorola mapphone Linux kernel. In the
682  * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
683  * is passed to the kernel via device tree. If it turns out to be
684  * something device specific we can consider that too later.
685  *
686  * And looking at the battery full and shutdown values for the stock
687  * kernel on droid 4, full is 4351000 and software initiates shutdown
688  * at 3078000. The device will die around 2743000.
689  */
690 static const struct cpcap_battery_config cpcap_battery_default_data = {
691         .ccm = 0x3ff,
692         .cd_factor = 0x3cc,
693         .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
694         .info.voltage_max_design = 4351000,
695         .info.voltage_min_design = 3100000,
696         .info.charge_full_design = 1740000,
697 };
698
699 #ifdef CONFIG_OF
700 static const struct of_device_id cpcap_battery_id_table[] = {
701         {
702                 .compatible = "motorola,cpcap-battery",
703                 .data = &cpcap_battery_default_data,
704         },
705         {},
706 };
707 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
708 #endif
709
710 static int cpcap_battery_probe(struct platform_device *pdev)
711 {
712         struct power_supply_desc *psy_desc;
713         struct cpcap_battery_ddata *ddata;
714         const struct of_device_id *match;
715         struct power_supply_config psy_cfg = {};
716         int error;
717
718         match = of_match_device(of_match_ptr(cpcap_battery_id_table),
719                                 &pdev->dev);
720         if (!match)
721                 return -EINVAL;
722
723         if (!match->data) {
724                 dev_err(&pdev->dev, "no configuration data found\n");
725
726                 return -ENODEV;
727         }
728
729         ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
730         if (!ddata)
731                 return -ENOMEM;
732
733         INIT_LIST_HEAD(&ddata->irq_list);
734         ddata->dev = &pdev->dev;
735         memcpy(&ddata->config, match->data, sizeof(ddata->config));
736
737         ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
738         if (!ddata->reg)
739                 return -ENODEV;
740
741         error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
742         if (error)
743                 return error;
744
745         platform_set_drvdata(pdev, ddata);
746
747         error = regmap_update_bits(ddata->reg, CPCAP_REG_CCM,
748                                    0xffff, ddata->config.ccm);
749         if (error)
750                 return error;
751
752         error = cpcap_battery_init_interrupts(pdev, ddata);
753         if (error)
754                 return error;
755
756         error = cpcap_battery_init_iio(ddata);
757         if (error)
758                 return error;
759
760         psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
761         if (!psy_desc)
762                 return -ENOMEM;
763
764         psy_desc->name = "battery",
765         psy_desc->type = POWER_SUPPLY_TYPE_BATTERY,
766         psy_desc->properties = cpcap_battery_props,
767         psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props),
768         psy_desc->get_property = cpcap_battery_get_property,
769
770         psy_cfg.of_node = pdev->dev.of_node;
771         psy_cfg.drv_data = ddata;
772
773         ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
774                                                 &psy_cfg);
775         error = PTR_ERR_OR_ZERO(ddata->psy);
776         if (error) {
777                 dev_err(ddata->dev, "failed to register power supply\n");
778                 return error;
779         }
780
781         atomic_set(&ddata->active, 1);
782
783         return 0;
784 }
785
786 static int cpcap_battery_remove(struct platform_device *pdev)
787 {
788         struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
789         int error;
790
791         atomic_set(&ddata->active, 0);
792         error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
793                                    0xffff, 0);
794         if (error)
795                 dev_err(&pdev->dev, "could not disable: %i\n", error);
796
797         return 0;
798 }
799
800 static struct platform_driver cpcap_battery_driver = {
801         .driver = {
802                 .name           = "cpcap_battery",
803                 .of_match_table = of_match_ptr(cpcap_battery_id_table),
804         },
805         .probe  = cpcap_battery_probe,
806         .remove = cpcap_battery_remove,
807 };
808 module_platform_driver(cpcap_battery_driver);
809
810 MODULE_LICENSE("GPL v2");
811 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
812 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");