GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298         switch (*mode) {
299         case REGULATOR_MODE_FAST:
300         case REGULATOR_MODE_NORMAL:
301         case REGULATOR_MODE_IDLE:
302         case REGULATOR_MODE_STANDBY:
303                 break;
304         default:
305                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306                 return -EINVAL;
307         }
308
309         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310                 rdev_err(rdev, "mode operation not allowed\n");
311                 return -EPERM;
312         }
313
314         /* The modes are bitmasks, the most power hungry modes having
315          * the lowest values. If the requested mode isn't supported
316          * try higher modes. */
317         while (*mode) {
318                 if (rdev->constraints->valid_modes_mask & *mode)
319                         return 0;
320                 *mode /= 2;
321         }
322
323         return -EINVAL;
324 }
325
326 static ssize_t regulator_uV_show(struct device *dev,
327                                 struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330         ssize_t ret;
331
332         mutex_lock(&rdev->mutex);
333         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334         mutex_unlock(&rdev->mutex);
335
336         return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339
340 static ssize_t regulator_uA_show(struct device *dev,
341                                 struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350                          char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360         switch (mode) {
361         case REGULATOR_MODE_FAST:
362                 return sprintf(buf, "fast\n");
363         case REGULATOR_MODE_NORMAL:
364                 return sprintf(buf, "normal\n");
365         case REGULATOR_MODE_IDLE:
366                 return sprintf(buf, "idle\n");
367         case REGULATOR_MODE_STANDBY:
368                 return sprintf(buf, "standby\n");
369         }
370         return sprintf(buf, "unknown\n");
371 }
372
373 static ssize_t regulator_opmode_show(struct device *dev,
374                                     struct device_attribute *attr, char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384         if (state > 0)
385                 return sprintf(buf, "enabled\n");
386         else if (state == 0)
387                 return sprintf(buf, "disabled\n");
388         else
389                 return sprintf(buf, "unknown\n");
390 }
391
392 static ssize_t regulator_state_show(struct device *dev,
393                                    struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         ssize_t ret;
397
398         mutex_lock(&rdev->mutex);
399         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400         mutex_unlock(&rdev->mutex);
401
402         return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405
406 static ssize_t regulator_status_show(struct device *dev,
407                                    struct device_attribute *attr, char *buf)
408 {
409         struct regulator_dev *rdev = dev_get_drvdata(dev);
410         int status;
411         char *label;
412
413         status = rdev->desc->ops->get_status(rdev);
414         if (status < 0)
415                 return status;
416
417         switch (status) {
418         case REGULATOR_STATUS_OFF:
419                 label = "off";
420                 break;
421         case REGULATOR_STATUS_ON:
422                 label = "on";
423                 break;
424         case REGULATOR_STATUS_ERROR:
425                 label = "error";
426                 break;
427         case REGULATOR_STATUS_FAST:
428                 label = "fast";
429                 break;
430         case REGULATOR_STATUS_NORMAL:
431                 label = "normal";
432                 break;
433         case REGULATOR_STATUS_IDLE:
434                 label = "idle";
435                 break;
436         case REGULATOR_STATUS_STANDBY:
437                 label = "standby";
438                 break;
439         case REGULATOR_STATUS_BYPASS:
440                 label = "bypass";
441                 break;
442         case REGULATOR_STATUS_UNDEFINED:
443                 label = "undefined";
444                 break;
445         default:
446                 return -ERANGE;
447         }
448
449         return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452
453 static ssize_t regulator_min_uA_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464
465 static ssize_t regulator_max_uA_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476
477 static ssize_t regulator_min_uV_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488
489 static ssize_t regulator_max_uV_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500
501 static ssize_t regulator_total_uA_show(struct device *dev,
502                                       struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505         struct regulator *regulator;
506         int uA = 0;
507
508         mutex_lock(&rdev->mutex);
509         list_for_each_entry(regulator, &rdev->consumer_list, list)
510                 uA += regulator->uA_load;
511         mutex_unlock(&rdev->mutex);
512         return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517                               char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520         return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525                          char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         switch (rdev->desc->type) {
530         case REGULATOR_VOLTAGE:
531                 return sprintf(buf, "voltage\n");
532         case REGULATOR_CURRENT:
533                 return sprintf(buf, "current\n");
534         }
535         return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540                                 struct device_attribute *attr, char *buf)
541 {
542         struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547                 regulator_suspend_mem_uV_show, NULL);
548
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550                                 struct device_attribute *attr, char *buf)
551 {
552         struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557                 regulator_suspend_disk_uV_show, NULL);
558
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560                                 struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567                 regulator_suspend_standby_uV_show, NULL);
568
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578                 regulator_suspend_mem_mode_show, NULL);
579
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581                                 struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_opmode(buf,
586                 rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589                 regulator_suspend_disk_mode_show, NULL);
590
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592                                 struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_opmode(buf,
597                 rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600                 regulator_suspend_standby_mode_show, NULL);
601
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611                 regulator_suspend_mem_state_show, NULL);
612
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614                                    struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617
618         return regulator_print_state(buf,
619                         rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622                 regulator_suspend_disk_state_show, NULL);
623
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625                                    struct device_attribute *attr, char *buf)
626 {
627         struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629         return regulator_print_state(buf,
630                         rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633                 regulator_suspend_standby_state_show, NULL);
634
635 static ssize_t regulator_bypass_show(struct device *dev,
636                                      struct device_attribute *attr, char *buf)
637 {
638         struct regulator_dev *rdev = dev_get_drvdata(dev);
639         const char *report;
640         bool bypass;
641         int ret;
642
643         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644
645         if (ret != 0)
646                 report = "unknown";
647         else if (bypass)
648                 report = "enabled";
649         else
650                 report = "disabled";
651
652         return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655                    regulator_bypass_show, NULL);
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661         struct regulator *sibling;
662         int current_uA = 0, output_uV, input_uV, err;
663         unsigned int mode;
664
665         lockdep_assert_held_once(&rdev->mutex);
666
667         /*
668          * first check to see if we can set modes at all, otherwise just
669          * tell the consumer everything is OK.
670          */
671         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672                 return 0;
673
674         if (!rdev->desc->ops->get_optimum_mode &&
675             !rdev->desc->ops->set_load)
676                 return 0;
677
678         if (!rdev->desc->ops->set_mode &&
679             !rdev->desc->ops->set_load)
680                 return -EINVAL;
681
682         /* calc total requested load */
683         list_for_each_entry(sibling, &rdev->consumer_list, list)
684                 current_uA += sibling->uA_load;
685
686         current_uA += rdev->constraints->system_load;
687
688         if (rdev->desc->ops->set_load) {
689                 /* set the optimum mode for our new total regulator load */
690                 err = rdev->desc->ops->set_load(rdev, current_uA);
691                 if (err < 0)
692                         rdev_err(rdev, "failed to set load %d\n", current_uA);
693         } else {
694                 /* get output voltage */
695                 output_uV = _regulator_get_voltage(rdev);
696                 if (output_uV <= 0) {
697                         rdev_err(rdev, "invalid output voltage found\n");
698                         return -EINVAL;
699                 }
700
701                 /* get input voltage */
702                 input_uV = 0;
703                 if (rdev->supply)
704                         input_uV = regulator_get_voltage(rdev->supply);
705                 if (input_uV <= 0)
706                         input_uV = rdev->constraints->input_uV;
707                 if (input_uV <= 0) {
708                         rdev_err(rdev, "invalid input voltage found\n");
709                         return -EINVAL;
710                 }
711
712                 /* now get the optimum mode for our new total regulator load */
713                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714                                                          output_uV, current_uA);
715
716                 /* check the new mode is allowed */
717                 err = regulator_mode_constrain(rdev, &mode);
718                 if (err < 0) {
719                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720                                  current_uA, input_uV, output_uV);
721                         return err;
722                 }
723
724                 err = rdev->desc->ops->set_mode(rdev, mode);
725                 if (err < 0)
726                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727         }
728
729         return err;
730 }
731
732 static int suspend_set_state(struct regulator_dev *rdev,
733         struct regulator_state *rstate)
734 {
735         int ret = 0;
736
737         /* If we have no suspend mode configration don't set anything;
738          * only warn if the driver implements set_suspend_voltage or
739          * set_suspend_mode callback.
740          */
741         if (!rstate->enabled && !rstate->disabled) {
742                 if (rdev->desc->ops->set_suspend_voltage ||
743                     rdev->desc->ops->set_suspend_mode)
744                         rdev_warn(rdev, "No configuration\n");
745                 return 0;
746         }
747
748         if (rstate->enabled && rstate->disabled) {
749                 rdev_err(rdev, "invalid configuration\n");
750                 return -EINVAL;
751         }
752
753         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754                 ret = rdev->desc->ops->set_suspend_enable(rdev);
755         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756                 ret = rdev->desc->ops->set_suspend_disable(rdev);
757         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758                 ret = 0;
759
760         if (ret < 0) {
761                 rdev_err(rdev, "failed to enabled/disable\n");
762                 return ret;
763         }
764
765         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767                 if (ret < 0) {
768                         rdev_err(rdev, "failed to set voltage\n");
769                         return ret;
770                 }
771         }
772
773         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775                 if (ret < 0) {
776                         rdev_err(rdev, "failed to set mode\n");
777                         return ret;
778                 }
779         }
780         return ret;
781 }
782
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786         if (!rdev->constraints)
787                 return -EINVAL;
788
789         switch (state) {
790         case PM_SUSPEND_STANDBY:
791                 return suspend_set_state(rdev,
792                         &rdev->constraints->state_standby);
793         case PM_SUSPEND_MEM:
794                 return suspend_set_state(rdev,
795                         &rdev->constraints->state_mem);
796         case PM_SUSPEND_MAX:
797                 return suspend_set_state(rdev,
798                         &rdev->constraints->state_disk);
799         default:
800                 return -EINVAL;
801         }
802 }
803
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806         struct regulation_constraints *constraints = rdev->constraints;
807         char buf[160] = "";
808         size_t len = sizeof(buf) - 1;
809         int count = 0;
810         int ret;
811
812         if (constraints->min_uV && constraints->max_uV) {
813                 if (constraints->min_uV == constraints->max_uV)
814                         count += scnprintf(buf + count, len - count, "%d mV ",
815                                            constraints->min_uV / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mV ",
819                                            constraints->min_uV / 1000,
820                                            constraints->max_uV / 1000);
821         }
822
823         if (!constraints->min_uV ||
824             constraints->min_uV != constraints->max_uV) {
825                 ret = _regulator_get_voltage(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mV ", ret / 1000);
829         }
830
831         if (constraints->uV_offset)
832                 count += scnprintf(buf + count, len - count, "%dmV offset ",
833                                    constraints->uV_offset / 1000);
834
835         if (constraints->min_uA && constraints->max_uA) {
836                 if (constraints->min_uA == constraints->max_uA)
837                         count += scnprintf(buf + count, len - count, "%d mA ",
838                                            constraints->min_uA / 1000);
839                 else
840                         count += scnprintf(buf + count, len - count,
841                                            "%d <--> %d mA ",
842                                            constraints->min_uA / 1000,
843                                            constraints->max_uA / 1000);
844         }
845
846         if (!constraints->min_uA ||
847             constraints->min_uA != constraints->max_uA) {
848                 ret = _regulator_get_current_limit(rdev);
849                 if (ret > 0)
850                         count += scnprintf(buf + count, len - count,
851                                            "at %d mA ", ret / 1000);
852         }
853
854         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855                 count += scnprintf(buf + count, len - count, "fast ");
856         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857                 count += scnprintf(buf + count, len - count, "normal ");
858         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859                 count += scnprintf(buf + count, len - count, "idle ");
860         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861                 count += scnprintf(buf + count, len - count, "standby");
862
863         if (!count)
864                 scnprintf(buf, len, "no parameters");
865
866         rdev_dbg(rdev, "%s\n", buf);
867
868         if ((constraints->min_uV != constraints->max_uV) &&
869             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870                 rdev_warn(rdev,
871                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875         struct regulation_constraints *constraints)
876 {
877         const struct regulator_ops *ops = rdev->desc->ops;
878         int ret;
879
880         /* do we need to apply the constraint voltage */
881         if (rdev->constraints->apply_uV &&
882             rdev->constraints->min_uV && rdev->constraints->max_uV) {
883                 int target_min, target_max;
884                 int current_uV = _regulator_get_voltage(rdev);
885                 if (current_uV < 0) {
886                         rdev_err(rdev,
887                                  "failed to get the current voltage(%d)\n",
888                                  current_uV);
889                         return current_uV;
890                 }
891
892                 /*
893                  * If we're below the minimum voltage move up to the
894                  * minimum voltage, if we're above the maximum voltage
895                  * then move down to the maximum.
896                  */
897                 target_min = current_uV;
898                 target_max = current_uV;
899
900                 if (current_uV < rdev->constraints->min_uV) {
901                         target_min = rdev->constraints->min_uV;
902                         target_max = rdev->constraints->min_uV;
903                 }
904
905                 if (current_uV > rdev->constraints->max_uV) {
906                         target_min = rdev->constraints->max_uV;
907                         target_max = rdev->constraints->max_uV;
908                 }
909
910                 if (target_min != current_uV || target_max != current_uV) {
911                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912                                   current_uV, target_min, target_max);
913                         ret = _regulator_do_set_voltage(
914                                 rdev, target_min, target_max);
915                         if (ret < 0) {
916                                 rdev_err(rdev,
917                                         "failed to apply %d-%duV constraint(%d)\n",
918                                         target_min, target_max, ret);
919                                 return ret;
920                         }
921                 }
922         }
923
924         /* constrain machine-level voltage specs to fit
925          * the actual range supported by this regulator.
926          */
927         if (ops->list_voltage && rdev->desc->n_voltages) {
928                 int     count = rdev->desc->n_voltages;
929                 int     i;
930                 int     min_uV = INT_MAX;
931                 int     max_uV = INT_MIN;
932                 int     cmin = constraints->min_uV;
933                 int     cmax = constraints->max_uV;
934
935                 /* it's safe to autoconfigure fixed-voltage supplies
936                    and the constraints are used by list_voltage. */
937                 if (count == 1 && !cmin) {
938                         cmin = 1;
939                         cmax = INT_MAX;
940                         constraints->min_uV = cmin;
941                         constraints->max_uV = cmax;
942                 }
943
944                 /* voltage constraints are optional */
945                 if ((cmin == 0) && (cmax == 0))
946                         return 0;
947
948                 /* else require explicit machine-level constraints */
949                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950                         rdev_err(rdev, "invalid voltage constraints\n");
951                         return -EINVAL;
952                 }
953
954                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955                 for (i = 0; i < count; i++) {
956                         int     value;
957
958                         value = ops->list_voltage(rdev, i);
959                         if (value <= 0)
960                                 continue;
961
962                         /* maybe adjust [min_uV..max_uV] */
963                         if (value >= cmin && value < min_uV)
964                                 min_uV = value;
965                         if (value <= cmax && value > max_uV)
966                                 max_uV = value;
967                 }
968
969                 /* final: [min_uV..max_uV] valid iff constraints valid */
970                 if (max_uV < min_uV) {
971                         rdev_err(rdev,
972                                  "unsupportable voltage constraints %u-%uuV\n",
973                                  min_uV, max_uV);
974                         return -EINVAL;
975                 }
976
977                 /* use regulator's subset of machine constraints */
978                 if (constraints->min_uV < min_uV) {
979                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980                                  constraints->min_uV, min_uV);
981                         constraints->min_uV = min_uV;
982                 }
983                 if (constraints->max_uV > max_uV) {
984                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985                                  constraints->max_uV, max_uV);
986                         constraints->max_uV = max_uV;
987                 }
988         }
989
990         return 0;
991 }
992
993 static int machine_constraints_current(struct regulator_dev *rdev,
994         struct regulation_constraints *constraints)
995 {
996         const struct regulator_ops *ops = rdev->desc->ops;
997         int ret;
998
999         if (!constraints->min_uA && !constraints->max_uA)
1000                 return 0;
1001
1002         if (constraints->min_uA > constraints->max_uA) {
1003                 rdev_err(rdev, "Invalid current constraints\n");
1004                 return -EINVAL;
1005         }
1006
1007         if (!ops->set_current_limit || !ops->get_current_limit) {
1008                 rdev_warn(rdev, "Operation of current configuration missing\n");
1009                 return 0;
1010         }
1011
1012         /* Set regulator current in constraints range */
1013         ret = ops->set_current_limit(rdev, constraints->min_uA,
1014                         constraints->max_uA);
1015         if (ret < 0) {
1016                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017                 return ret;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024
1025 /**
1026  * set_machine_constraints - sets regulator constraints
1027  * @rdev: regulator source
1028  *
1029  * Allows platform initialisation code to define and constrain
1030  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1031  * Constraints *must* be set by platform code in order for some
1032  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1033  * set_mode.
1034  */
1035 static int set_machine_constraints(struct regulator_dev *rdev)
1036 {
1037         int ret = 0;
1038         const struct regulator_ops *ops = rdev->desc->ops;
1039
1040         ret = machine_constraints_voltage(rdev, rdev->constraints);
1041         if (ret != 0)
1042                 return ret;
1043
1044         ret = machine_constraints_current(rdev, rdev->constraints);
1045         if (ret != 0)
1046                 return ret;
1047
1048         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1049                 ret = ops->set_input_current_limit(rdev,
1050                                                    rdev->constraints->ilim_uA);
1051                 if (ret < 0) {
1052                         rdev_err(rdev, "failed to set input limit\n");
1053                         return ret;
1054                 }
1055         }
1056
1057         /* do we need to setup our suspend state */
1058         if (rdev->constraints->initial_state) {
1059                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1060                 if (ret < 0) {
1061                         rdev_err(rdev, "failed to set suspend state\n");
1062                         return ret;
1063                 }
1064         }
1065
1066         if (rdev->constraints->initial_mode) {
1067                 if (!ops->set_mode) {
1068                         rdev_err(rdev, "no set_mode operation\n");
1069                         return -EINVAL;
1070                 }
1071
1072                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1073                 if (ret < 0) {
1074                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1075                         return ret;
1076                 }
1077         }
1078
1079         /* If the constraints say the regulator should be on at this point
1080          * and we have control then make sure it is enabled.
1081          */
1082         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1083                 ret = _regulator_do_enable(rdev);
1084                 if (ret < 0 && ret != -EINVAL) {
1085                         rdev_err(rdev, "failed to enable\n");
1086                         return ret;
1087                 }
1088         }
1089
1090         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1091                 && ops->set_ramp_delay) {
1092                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1093                 if (ret < 0) {
1094                         rdev_err(rdev, "failed to set ramp_delay\n");
1095                         return ret;
1096                 }
1097         }
1098
1099         if (rdev->constraints->pull_down && ops->set_pull_down) {
1100                 ret = ops->set_pull_down(rdev);
1101                 if (ret < 0) {
1102                         rdev_err(rdev, "failed to set pull down\n");
1103                         return ret;
1104                 }
1105         }
1106
1107         if (rdev->constraints->soft_start && ops->set_soft_start) {
1108                 ret = ops->set_soft_start(rdev);
1109                 if (ret < 0) {
1110                         rdev_err(rdev, "failed to set soft start\n");
1111                         return ret;
1112                 }
1113         }
1114
1115         if (rdev->constraints->over_current_protection
1116                 && ops->set_over_current_protection) {
1117                 ret = ops->set_over_current_protection(rdev);
1118                 if (ret < 0) {
1119                         rdev_err(rdev, "failed to set over current protection\n");
1120                         return ret;
1121                 }
1122         }
1123
1124         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1125                 bool ad_state = (rdev->constraints->active_discharge ==
1126                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1127
1128                 ret = ops->set_active_discharge(rdev, ad_state);
1129                 if (ret < 0) {
1130                         rdev_err(rdev, "failed to set active discharge\n");
1131                         return ret;
1132                 }
1133         }
1134
1135         print_constraints(rdev);
1136         return 0;
1137 }
1138
1139 /**
1140  * set_supply - set regulator supply regulator
1141  * @rdev: regulator name
1142  * @supply_rdev: supply regulator name
1143  *
1144  * Called by platform initialisation code to set the supply regulator for this
1145  * regulator. This ensures that a regulators supply will also be enabled by the
1146  * core if it's child is enabled.
1147  */
1148 static int set_supply(struct regulator_dev *rdev,
1149                       struct regulator_dev *supply_rdev)
1150 {
1151         int err;
1152
1153         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1154
1155         if (!try_module_get(supply_rdev->owner))
1156                 return -ENODEV;
1157
1158         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1159         if (rdev->supply == NULL) {
1160                 module_put(supply_rdev->owner);
1161                 err = -ENOMEM;
1162                 return err;
1163         }
1164         supply_rdev->open_count++;
1165
1166         return 0;
1167 }
1168
1169 /**
1170  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1171  * @rdev:         regulator source
1172  * @consumer_dev_name: dev_name() string for device supply applies to
1173  * @supply:       symbolic name for supply
1174  *
1175  * Allows platform initialisation code to map physical regulator
1176  * sources to symbolic names for supplies for use by devices.  Devices
1177  * should use these symbolic names to request regulators, avoiding the
1178  * need to provide board-specific regulator names as platform data.
1179  */
1180 static int set_consumer_device_supply(struct regulator_dev *rdev,
1181                                       const char *consumer_dev_name,
1182                                       const char *supply)
1183 {
1184         struct regulator_map *node, *new_node;
1185         int has_dev;
1186
1187         if (supply == NULL)
1188                 return -EINVAL;
1189
1190         if (consumer_dev_name != NULL)
1191                 has_dev = 1;
1192         else
1193                 has_dev = 0;
1194
1195         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1196         if (new_node == NULL)
1197                 return -ENOMEM;
1198
1199         new_node->regulator = rdev;
1200         new_node->supply = supply;
1201
1202         if (has_dev) {
1203                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1204                 if (new_node->dev_name == NULL) {
1205                         kfree(new_node);
1206                         return -ENOMEM;
1207                 }
1208         }
1209
1210         mutex_lock(&regulator_list_mutex);
1211         list_for_each_entry(node, &regulator_map_list, list) {
1212                 if (node->dev_name && consumer_dev_name) {
1213                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1214                                 continue;
1215                 } else if (node->dev_name || consumer_dev_name) {
1216                         continue;
1217                 }
1218
1219                 if (strcmp(node->supply, supply) != 0)
1220                         continue;
1221
1222                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1223                          consumer_dev_name,
1224                          dev_name(&node->regulator->dev),
1225                          node->regulator->desc->name,
1226                          supply,
1227                          dev_name(&rdev->dev), rdev_get_name(rdev));
1228                 goto fail;
1229         }
1230
1231         list_add(&new_node->list, &regulator_map_list);
1232         mutex_unlock(&regulator_list_mutex);
1233
1234         return 0;
1235
1236 fail:
1237         mutex_unlock(&regulator_list_mutex);
1238         kfree(new_node->dev_name);
1239         kfree(new_node);
1240         return -EBUSY;
1241 }
1242
1243 static void unset_regulator_supplies(struct regulator_dev *rdev)
1244 {
1245         struct regulator_map *node, *n;
1246
1247         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1248                 if (rdev == node->regulator) {
1249                         list_del(&node->list);
1250                         kfree(node->dev_name);
1251                         kfree(node);
1252                 }
1253         }
1254 }
1255
1256 #ifdef CONFIG_DEBUG_FS
1257 static ssize_t constraint_flags_read_file(struct file *file,
1258                                           char __user *user_buf,
1259                                           size_t count, loff_t *ppos)
1260 {
1261         const struct regulator *regulator = file->private_data;
1262         const struct regulation_constraints *c = regulator->rdev->constraints;
1263         char *buf;
1264         ssize_t ret;
1265
1266         if (!c)
1267                 return 0;
1268
1269         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1270         if (!buf)
1271                 return -ENOMEM;
1272
1273         ret = snprintf(buf, PAGE_SIZE,
1274                         "always_on: %u\n"
1275                         "boot_on: %u\n"
1276                         "apply_uV: %u\n"
1277                         "ramp_disable: %u\n"
1278                         "soft_start: %u\n"
1279                         "pull_down: %u\n"
1280                         "over_current_protection: %u\n",
1281                         c->always_on,
1282                         c->boot_on,
1283                         c->apply_uV,
1284                         c->ramp_disable,
1285                         c->soft_start,
1286                         c->pull_down,
1287                         c->over_current_protection);
1288
1289         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1290         kfree(buf);
1291
1292         return ret;
1293 }
1294
1295 #endif
1296
1297 static const struct file_operations constraint_flags_fops = {
1298 #ifdef CONFIG_DEBUG_FS
1299         .open = simple_open,
1300         .read = constraint_flags_read_file,
1301         .llseek = default_llseek,
1302 #endif
1303 };
1304
1305 #define REG_STR_SIZE    64
1306
1307 static struct regulator *create_regulator(struct regulator_dev *rdev,
1308                                           struct device *dev,
1309                                           const char *supply_name)
1310 {
1311         struct regulator *regulator;
1312         char buf[REG_STR_SIZE];
1313         int err, size;
1314
1315         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1316         if (regulator == NULL)
1317                 return NULL;
1318
1319         mutex_lock(&rdev->mutex);
1320         regulator->rdev = rdev;
1321         list_add(&regulator->list, &rdev->consumer_list);
1322
1323         if (dev) {
1324                 regulator->dev = dev;
1325
1326                 /* Add a link to the device sysfs entry */
1327                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1328                                  dev->kobj.name, supply_name);
1329                 if (size >= REG_STR_SIZE)
1330                         goto overflow_err;
1331
1332                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1333                 if (regulator->supply_name == NULL)
1334                         goto overflow_err;
1335
1336                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1337                                         buf);
1338                 if (err) {
1339                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1340                                   dev->kobj.name, err);
1341                         /* non-fatal */
1342                 }
1343         } else {
1344                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1345                 if (regulator->supply_name == NULL)
1346                         goto overflow_err;
1347         }
1348
1349         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1350                                                 rdev->debugfs);
1351         if (!regulator->debugfs) {
1352                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1353         } else {
1354                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1355                                    &regulator->uA_load);
1356                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1357                                    &regulator->min_uV);
1358                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1359                                    &regulator->max_uV);
1360                 debugfs_create_file("constraint_flags", 0444,
1361                                     regulator->debugfs, regulator,
1362                                     &constraint_flags_fops);
1363         }
1364
1365         /*
1366          * Check now if the regulator is an always on regulator - if
1367          * it is then we don't need to do nearly so much work for
1368          * enable/disable calls.
1369          */
1370         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1371             _regulator_is_enabled(rdev))
1372                 regulator->always_on = true;
1373
1374         mutex_unlock(&rdev->mutex);
1375         return regulator;
1376 overflow_err:
1377         list_del(&regulator->list);
1378         kfree(regulator);
1379         mutex_unlock(&rdev->mutex);
1380         return NULL;
1381 }
1382
1383 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1384 {
1385         if (rdev->constraints && rdev->constraints->enable_time)
1386                 return rdev->constraints->enable_time;
1387         if (!rdev->desc->ops->enable_time)
1388                 return rdev->desc->enable_time;
1389         return rdev->desc->ops->enable_time(rdev);
1390 }
1391
1392 static struct regulator_supply_alias *regulator_find_supply_alias(
1393                 struct device *dev, const char *supply)
1394 {
1395         struct regulator_supply_alias *map;
1396
1397         list_for_each_entry(map, &regulator_supply_alias_list, list)
1398                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1399                         return map;
1400
1401         return NULL;
1402 }
1403
1404 static void regulator_supply_alias(struct device **dev, const char **supply)
1405 {
1406         struct regulator_supply_alias *map;
1407
1408         map = regulator_find_supply_alias(*dev, *supply);
1409         if (map) {
1410                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1411                                 *supply, map->alias_supply,
1412                                 dev_name(map->alias_dev));
1413                 *dev = map->alias_dev;
1414                 *supply = map->alias_supply;
1415         }
1416 }
1417
1418 static int of_node_match(struct device *dev, const void *data)
1419 {
1420         return dev->of_node == data;
1421 }
1422
1423 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1424 {
1425         struct device *dev;
1426
1427         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1428
1429         return dev ? dev_to_rdev(dev) : NULL;
1430 }
1431
1432 static int regulator_match(struct device *dev, const void *data)
1433 {
1434         struct regulator_dev *r = dev_to_rdev(dev);
1435
1436         return strcmp(rdev_get_name(r), data) == 0;
1437 }
1438
1439 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1440 {
1441         struct device *dev;
1442
1443         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1444
1445         return dev ? dev_to_rdev(dev) : NULL;
1446 }
1447
1448 /**
1449  * regulator_dev_lookup - lookup a regulator device.
1450  * @dev: device for regulator "consumer".
1451  * @supply: Supply name or regulator ID.
1452  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1453  * lookup could succeed in the future.
1454  *
1455  * If successful, returns a struct regulator_dev that corresponds to the name
1456  * @supply and with the embedded struct device refcount incremented by one,
1457  * or NULL on failure. The refcount must be dropped by calling put_device().
1458  */
1459 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1460                                                   const char *supply,
1461                                                   int *ret)
1462 {
1463         struct regulator_dev *r;
1464         struct device_node *node;
1465         struct regulator_map *map;
1466         const char *devname = NULL;
1467
1468         regulator_supply_alias(&dev, &supply);
1469
1470         /* first do a dt based lookup */
1471         if (dev && dev->of_node) {
1472                 node = of_get_regulator(dev, supply);
1473                 if (node) {
1474                         r = of_find_regulator_by_node(node);
1475                         of_node_put(node);
1476                         if (r)
1477                                 return r;
1478                         *ret = -EPROBE_DEFER;
1479                         return NULL;
1480                 } else {
1481                         /*
1482                          * If we couldn't even get the node then it's
1483                          * not just that the device didn't register
1484                          * yet, there's no node and we'll never
1485                          * succeed.
1486                          */
1487                         *ret = -ENODEV;
1488                 }
1489         }
1490
1491         /* if not found, try doing it non-dt way */
1492         if (dev)
1493                 devname = dev_name(dev);
1494
1495         r = regulator_lookup_by_name(supply);
1496         if (r)
1497                 return r;
1498
1499         mutex_lock(&regulator_list_mutex);
1500         list_for_each_entry(map, &regulator_map_list, list) {
1501                 /* If the mapping has a device set up it must match */
1502                 if (map->dev_name &&
1503                     (!devname || strcmp(map->dev_name, devname)))
1504                         continue;
1505
1506                 if (strcmp(map->supply, supply) == 0 &&
1507                     get_device(&map->regulator->dev)) {
1508                         mutex_unlock(&regulator_list_mutex);
1509                         return map->regulator;
1510                 }
1511         }
1512         mutex_unlock(&regulator_list_mutex);
1513
1514         return NULL;
1515 }
1516
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519         struct regulator_dev *r;
1520         struct device *dev = rdev->dev.parent;
1521         int ret;
1522
1523         /* No supply to resovle? */
1524         if (!rdev->supply_name)
1525                 return 0;
1526
1527         /* Supply already resolved? */
1528         if (rdev->supply)
1529                 return 0;
1530
1531         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532         if (!r) {
1533                 if (ret == -ENODEV) {
1534                         /*
1535                          * No supply was specified for this regulator and
1536                          * there will never be one.
1537                          */
1538                         return 0;
1539                 }
1540
1541                 /* Did the lookup explicitly defer for us? */
1542                 if (ret == -EPROBE_DEFER)
1543                         return ret;
1544
1545                 if (have_full_constraints()) {
1546                         r = dummy_regulator_rdev;
1547                         get_device(&r->dev);
1548                 } else {
1549                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550                                 rdev->supply_name, rdev->desc->name);
1551                         return -EPROBE_DEFER;
1552                 }
1553         }
1554
1555         if (r == rdev) {
1556                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1557                         rdev->desc->name, rdev->supply_name);
1558                 if (!have_full_constraints())
1559                         return -EINVAL;
1560                 r = dummy_regulator_rdev;
1561                 get_device(&r->dev);
1562         }
1563
1564         /* Recursively resolve the supply of the supply */
1565         ret = regulator_resolve_supply(r);
1566         if (ret < 0) {
1567                 put_device(&r->dev);
1568                 return ret;
1569         }
1570
1571         ret = set_supply(rdev, r);
1572         if (ret < 0) {
1573                 put_device(&r->dev);
1574                 return ret;
1575         }
1576
1577         /* Cascade always-on state to supply */
1578         if (_regulator_is_enabled(rdev)) {
1579                 ret = regulator_enable(rdev->supply);
1580                 if (ret < 0) {
1581                         _regulator_put(rdev->supply);
1582                         rdev->supply = NULL;
1583                         return ret;
1584                 }
1585         }
1586
1587         return 0;
1588 }
1589
1590 /* Internal regulator request function */
1591 static struct regulator *_regulator_get(struct device *dev, const char *id,
1592                                         bool exclusive, bool allow_dummy)
1593 {
1594         struct regulator_dev *rdev;
1595         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1596         const char *devname = NULL;
1597         int ret;
1598
1599         if (id == NULL) {
1600                 pr_err("get() with no identifier\n");
1601                 return ERR_PTR(-EINVAL);
1602         }
1603
1604         if (dev)
1605                 devname = dev_name(dev);
1606
1607         if (have_full_constraints())
1608                 ret = -ENODEV;
1609         else
1610                 ret = -EPROBE_DEFER;
1611
1612         rdev = regulator_dev_lookup(dev, id, &ret);
1613         if (rdev)
1614                 goto found;
1615
1616         regulator = ERR_PTR(ret);
1617
1618         /*
1619          * If we have return value from dev_lookup fail, we do not expect to
1620          * succeed, so, quit with appropriate error value
1621          */
1622         if (ret && ret != -ENODEV)
1623                 return regulator;
1624
1625         if (!devname)
1626                 devname = "deviceless";
1627
1628         /*
1629          * Assume that a regulator is physically present and enabled
1630          * even if it isn't hooked up and just provide a dummy.
1631          */
1632         if (have_full_constraints() && allow_dummy) {
1633                 pr_warn("%s supply %s not found, using dummy regulator\n",
1634                         devname, id);
1635
1636                 rdev = dummy_regulator_rdev;
1637                 get_device(&rdev->dev);
1638                 goto found;
1639         /* Don't log an error when called from regulator_get_optional() */
1640         } else if (!have_full_constraints() || exclusive) {
1641                 dev_warn(dev, "dummy supplies not allowed\n");
1642         }
1643
1644         return regulator;
1645
1646 found:
1647         if (rdev->exclusive) {
1648                 regulator = ERR_PTR(-EPERM);
1649                 put_device(&rdev->dev);
1650                 return regulator;
1651         }
1652
1653         if (exclusive && rdev->open_count) {
1654                 regulator = ERR_PTR(-EBUSY);
1655                 put_device(&rdev->dev);
1656                 return regulator;
1657         }
1658
1659         ret = regulator_resolve_supply(rdev);
1660         if (ret < 0) {
1661                 regulator = ERR_PTR(ret);
1662                 put_device(&rdev->dev);
1663                 return regulator;
1664         }
1665
1666         if (!try_module_get(rdev->owner)) {
1667                 put_device(&rdev->dev);
1668                 return regulator;
1669         }
1670
1671         regulator = create_regulator(rdev, dev, id);
1672         if (regulator == NULL) {
1673                 regulator = ERR_PTR(-ENOMEM);
1674                 put_device(&rdev->dev);
1675                 module_put(rdev->owner);
1676                 return regulator;
1677         }
1678
1679         rdev->open_count++;
1680         if (exclusive) {
1681                 rdev->exclusive = 1;
1682
1683                 ret = _regulator_is_enabled(rdev);
1684                 if (ret > 0)
1685                         rdev->use_count = 1;
1686                 else
1687                         rdev->use_count = 0;
1688         }
1689
1690         return regulator;
1691 }
1692
1693 /**
1694  * regulator_get - lookup and obtain a reference to a regulator.
1695  * @dev: device for regulator "consumer"
1696  * @id: Supply name or regulator ID.
1697  *
1698  * Returns a struct regulator corresponding to the regulator producer,
1699  * or IS_ERR() condition containing errno.
1700  *
1701  * Use of supply names configured via regulator_set_device_supply() is
1702  * strongly encouraged.  It is recommended that the supply name used
1703  * should match the name used for the supply and/or the relevant
1704  * device pins in the datasheet.
1705  */
1706 struct regulator *regulator_get(struct device *dev, const char *id)
1707 {
1708         return _regulator_get(dev, id, false, true);
1709 }
1710 EXPORT_SYMBOL_GPL(regulator_get);
1711
1712 /**
1713  * regulator_get_exclusive - obtain exclusive access to a regulator.
1714  * @dev: device for regulator "consumer"
1715  * @id: Supply name or regulator ID.
1716  *
1717  * Returns a struct regulator corresponding to the regulator producer,
1718  * or IS_ERR() condition containing errno.  Other consumers will be
1719  * unable to obtain this regulator while this reference is held and the
1720  * use count for the regulator will be initialised to reflect the current
1721  * state of the regulator.
1722  *
1723  * This is intended for use by consumers which cannot tolerate shared
1724  * use of the regulator such as those which need to force the
1725  * regulator off for correct operation of the hardware they are
1726  * controlling.
1727  *
1728  * Use of supply names configured via regulator_set_device_supply() is
1729  * strongly encouraged.  It is recommended that the supply name used
1730  * should match the name used for the supply and/or the relevant
1731  * device pins in the datasheet.
1732  */
1733 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1734 {
1735         return _regulator_get(dev, id, true, false);
1736 }
1737 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1738
1739 /**
1740  * regulator_get_optional - obtain optional access to a regulator.
1741  * @dev: device for regulator "consumer"
1742  * @id: Supply name or regulator ID.
1743  *
1744  * Returns a struct regulator corresponding to the regulator producer,
1745  * or IS_ERR() condition containing errno.
1746  *
1747  * This is intended for use by consumers for devices which can have
1748  * some supplies unconnected in normal use, such as some MMC devices.
1749  * It can allow the regulator core to provide stub supplies for other
1750  * supplies requested using normal regulator_get() calls without
1751  * disrupting the operation of drivers that can handle absent
1752  * supplies.
1753  *
1754  * Use of supply names configured via regulator_set_device_supply() is
1755  * strongly encouraged.  It is recommended that the supply name used
1756  * should match the name used for the supply and/or the relevant
1757  * device pins in the datasheet.
1758  */
1759 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1760 {
1761         return _regulator_get(dev, id, false, false);
1762 }
1763 EXPORT_SYMBOL_GPL(regulator_get_optional);
1764
1765 /* regulator_list_mutex lock held by regulator_put() */
1766 static void _regulator_put(struct regulator *regulator)
1767 {
1768         struct regulator_dev *rdev;
1769
1770         if (IS_ERR_OR_NULL(regulator))
1771                 return;
1772
1773         lockdep_assert_held_once(&regulator_list_mutex);
1774
1775         rdev = regulator->rdev;
1776
1777         debugfs_remove_recursive(regulator->debugfs);
1778
1779         /* remove any sysfs entries */
1780         if (regulator->dev)
1781                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1782         mutex_lock(&rdev->mutex);
1783         list_del(&regulator->list);
1784
1785         rdev->open_count--;
1786         rdev->exclusive = 0;
1787         put_device(&rdev->dev);
1788         mutex_unlock(&rdev->mutex);
1789
1790         kfree(regulator->supply_name);
1791         kfree(regulator);
1792
1793         module_put(rdev->owner);
1794 }
1795
1796 /**
1797  * regulator_put - "free" the regulator source
1798  * @regulator: regulator source
1799  *
1800  * Note: drivers must ensure that all regulator_enable calls made on this
1801  * regulator source are balanced by regulator_disable calls prior to calling
1802  * this function.
1803  */
1804 void regulator_put(struct regulator *regulator)
1805 {
1806         mutex_lock(&regulator_list_mutex);
1807         _regulator_put(regulator);
1808         mutex_unlock(&regulator_list_mutex);
1809 }
1810 EXPORT_SYMBOL_GPL(regulator_put);
1811
1812 /**
1813  * regulator_register_supply_alias - Provide device alias for supply lookup
1814  *
1815  * @dev: device that will be given as the regulator "consumer"
1816  * @id: Supply name or regulator ID
1817  * @alias_dev: device that should be used to lookup the supply
1818  * @alias_id: Supply name or regulator ID that should be used to lookup the
1819  * supply
1820  *
1821  * All lookups for id on dev will instead be conducted for alias_id on
1822  * alias_dev.
1823  */
1824 int regulator_register_supply_alias(struct device *dev, const char *id,
1825                                     struct device *alias_dev,
1826                                     const char *alias_id)
1827 {
1828         struct regulator_supply_alias *map;
1829
1830         map = regulator_find_supply_alias(dev, id);
1831         if (map)
1832                 return -EEXIST;
1833
1834         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1835         if (!map)
1836                 return -ENOMEM;
1837
1838         map->src_dev = dev;
1839         map->src_supply = id;
1840         map->alias_dev = alias_dev;
1841         map->alias_supply = alias_id;
1842
1843         list_add(&map->list, &regulator_supply_alias_list);
1844
1845         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1846                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1847
1848         return 0;
1849 }
1850 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1851
1852 /**
1853  * regulator_unregister_supply_alias - Remove device alias
1854  *
1855  * @dev: device that will be given as the regulator "consumer"
1856  * @id: Supply name or regulator ID
1857  *
1858  * Remove a lookup alias if one exists for id on dev.
1859  */
1860 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1861 {
1862         struct regulator_supply_alias *map;
1863
1864         map = regulator_find_supply_alias(dev, id);
1865         if (map) {
1866                 list_del(&map->list);
1867                 kfree(map);
1868         }
1869 }
1870 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1871
1872 /**
1873  * regulator_bulk_register_supply_alias - register multiple aliases
1874  *
1875  * @dev: device that will be given as the regulator "consumer"
1876  * @id: List of supply names or regulator IDs
1877  * @alias_dev: device that should be used to lookup the supply
1878  * @alias_id: List of supply names or regulator IDs that should be used to
1879  * lookup the supply
1880  * @num_id: Number of aliases to register
1881  *
1882  * @return 0 on success, an errno on failure.
1883  *
1884  * This helper function allows drivers to register several supply
1885  * aliases in one operation.  If any of the aliases cannot be
1886  * registered any aliases that were registered will be removed
1887  * before returning to the caller.
1888  */
1889 int regulator_bulk_register_supply_alias(struct device *dev,
1890                                          const char *const *id,
1891                                          struct device *alias_dev,
1892                                          const char *const *alias_id,
1893                                          int num_id)
1894 {
1895         int i;
1896         int ret;
1897
1898         for (i = 0; i < num_id; ++i) {
1899                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1900                                                       alias_id[i]);
1901                 if (ret < 0)
1902                         goto err;
1903         }
1904
1905         return 0;
1906
1907 err:
1908         dev_err(dev,
1909                 "Failed to create supply alias %s,%s -> %s,%s\n",
1910                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1911
1912         while (--i >= 0)
1913                 regulator_unregister_supply_alias(dev, id[i]);
1914
1915         return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1918
1919 /**
1920  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1921  *
1922  * @dev: device that will be given as the regulator "consumer"
1923  * @id: List of supply names or regulator IDs
1924  * @num_id: Number of aliases to unregister
1925  *
1926  * This helper function allows drivers to unregister several supply
1927  * aliases in one operation.
1928  */
1929 void regulator_bulk_unregister_supply_alias(struct device *dev,
1930                                             const char *const *id,
1931                                             int num_id)
1932 {
1933         int i;
1934
1935         for (i = 0; i < num_id; ++i)
1936                 regulator_unregister_supply_alias(dev, id[i]);
1937 }
1938 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1939
1940
1941 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1942 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1943                                 const struct regulator_config *config)
1944 {
1945         struct regulator_enable_gpio *pin;
1946         struct gpio_desc *gpiod;
1947         int ret;
1948
1949         gpiod = gpio_to_desc(config->ena_gpio);
1950
1951         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1952                 if (pin->gpiod == gpiod) {
1953                         rdev_dbg(rdev, "GPIO %d is already used\n",
1954                                 config->ena_gpio);
1955                         goto update_ena_gpio_to_rdev;
1956                 }
1957         }
1958
1959         ret = gpio_request_one(config->ena_gpio,
1960                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1961                                 rdev_get_name(rdev));
1962         if (ret)
1963                 return ret;
1964
1965         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1966         if (pin == NULL) {
1967                 gpio_free(config->ena_gpio);
1968                 return -ENOMEM;
1969         }
1970
1971         pin->gpiod = gpiod;
1972         pin->ena_gpio_invert = config->ena_gpio_invert;
1973         list_add(&pin->list, &regulator_ena_gpio_list);
1974
1975 update_ena_gpio_to_rdev:
1976         pin->request_count++;
1977         rdev->ena_pin = pin;
1978         return 0;
1979 }
1980
1981 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1982 {
1983         struct regulator_enable_gpio *pin, *n;
1984
1985         if (!rdev->ena_pin)
1986                 return;
1987
1988         /* Free the GPIO only in case of no use */
1989         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1990                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1991                         if (pin->request_count <= 1) {
1992                                 pin->request_count = 0;
1993                                 gpiod_put(pin->gpiod);
1994                                 list_del(&pin->list);
1995                                 kfree(pin);
1996                                 rdev->ena_pin = NULL;
1997                                 return;
1998                         } else {
1999                                 pin->request_count--;
2000                         }
2001                 }
2002         }
2003 }
2004
2005 /**
2006  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2007  * @rdev: regulator_dev structure
2008  * @enable: enable GPIO at initial use?
2009  *
2010  * GPIO is enabled in case of initial use. (enable_count is 0)
2011  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2012  */
2013 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2014 {
2015         struct regulator_enable_gpio *pin = rdev->ena_pin;
2016
2017         if (!pin)
2018                 return -EINVAL;
2019
2020         if (enable) {
2021                 /* Enable GPIO at initial use */
2022                 if (pin->enable_count == 0)
2023                         gpiod_set_value_cansleep(pin->gpiod,
2024                                                  !pin->ena_gpio_invert);
2025
2026                 pin->enable_count++;
2027         } else {
2028                 if (pin->enable_count > 1) {
2029                         pin->enable_count--;
2030                         return 0;
2031                 }
2032
2033                 /* Disable GPIO if not used */
2034                 if (pin->enable_count <= 1) {
2035                         gpiod_set_value_cansleep(pin->gpiod,
2036                                                  pin->ena_gpio_invert);
2037                         pin->enable_count = 0;
2038                 }
2039         }
2040
2041         return 0;
2042 }
2043
2044 /**
2045  * _regulator_enable_delay - a delay helper function
2046  * @delay: time to delay in microseconds
2047  *
2048  * Delay for the requested amount of time as per the guidelines in:
2049  *
2050  *     Documentation/timers/timers-howto.txt
2051  *
2052  * The assumption here is that regulators will never be enabled in
2053  * atomic context and therefore sleeping functions can be used.
2054  */
2055 static void _regulator_enable_delay(unsigned int delay)
2056 {
2057         unsigned int ms = delay / 1000;
2058         unsigned int us = delay % 1000;
2059
2060         if (ms > 0) {
2061                 /*
2062                  * For small enough values, handle super-millisecond
2063                  * delays in the usleep_range() call below.
2064                  */
2065                 if (ms < 20)
2066                         us += ms * 1000;
2067                 else
2068                         msleep(ms);
2069         }
2070
2071         /*
2072          * Give the scheduler some room to coalesce with any other
2073          * wakeup sources. For delays shorter than 10 us, don't even
2074          * bother setting up high-resolution timers and just busy-
2075          * loop.
2076          */
2077         if (us >= 10)
2078                 usleep_range(us, us + 100);
2079         else
2080                 udelay(us);
2081 }
2082
2083 static int _regulator_do_enable(struct regulator_dev *rdev)
2084 {
2085         int ret, delay;
2086
2087         /* Query before enabling in case configuration dependent.  */
2088         ret = _regulator_get_enable_time(rdev);
2089         if (ret >= 0) {
2090                 delay = ret;
2091         } else {
2092                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2093                 delay = 0;
2094         }
2095
2096         trace_regulator_enable(rdev_get_name(rdev));
2097
2098         if (rdev->desc->off_on_delay) {
2099                 /* if needed, keep a distance of off_on_delay from last time
2100                  * this regulator was disabled.
2101                  */
2102                 unsigned long start_jiffy = jiffies;
2103                 unsigned long intended, max_delay, remaining;
2104
2105                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2106                 intended = rdev->last_off_jiffy + max_delay;
2107
2108                 if (time_before(start_jiffy, intended)) {
2109                         /* calc remaining jiffies to deal with one-time
2110                          * timer wrapping.
2111                          * in case of multiple timer wrapping, either it can be
2112                          * detected by out-of-range remaining, or it cannot be
2113                          * detected and we gets a panelty of
2114                          * _regulator_enable_delay().
2115                          */
2116                         remaining = intended - start_jiffy;
2117                         if (remaining <= max_delay)
2118                                 _regulator_enable_delay(
2119                                                 jiffies_to_usecs(remaining));
2120                 }
2121         }
2122
2123         if (rdev->ena_pin) {
2124                 if (!rdev->ena_gpio_state) {
2125                         ret = regulator_ena_gpio_ctrl(rdev, true);
2126                         if (ret < 0)
2127                                 return ret;
2128                         rdev->ena_gpio_state = 1;
2129                 }
2130         } else if (rdev->desc->ops->enable) {
2131                 ret = rdev->desc->ops->enable(rdev);
2132                 if (ret < 0)
2133                         return ret;
2134         } else {
2135                 return -EINVAL;
2136         }
2137
2138         /* Allow the regulator to ramp; it would be useful to extend
2139          * this for bulk operations so that the regulators can ramp
2140          * together.  */
2141         trace_regulator_enable_delay(rdev_get_name(rdev));
2142
2143         _regulator_enable_delay(delay);
2144
2145         trace_regulator_enable_complete(rdev_get_name(rdev));
2146
2147         return 0;
2148 }
2149
2150 /* locks held by regulator_enable() */
2151 static int _regulator_enable(struct regulator_dev *rdev)
2152 {
2153         int ret;
2154
2155         lockdep_assert_held_once(&rdev->mutex);
2156
2157         /* check voltage and requested load before enabling */
2158         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2159                 drms_uA_update(rdev);
2160
2161         if (rdev->use_count == 0) {
2162                 /* The regulator may on if it's not switchable or left on */
2163                 ret = _regulator_is_enabled(rdev);
2164                 if (ret == -EINVAL || ret == 0) {
2165                         if (!regulator_ops_is_valid(rdev,
2166                                         REGULATOR_CHANGE_STATUS))
2167                                 return -EPERM;
2168
2169                         ret = _regulator_do_enable(rdev);
2170                         if (ret < 0)
2171                                 return ret;
2172
2173                 } else if (ret < 0) {
2174                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2175                         return ret;
2176                 }
2177                 /* Fallthrough on positive return values - already enabled */
2178         }
2179
2180         rdev->use_count++;
2181
2182         return 0;
2183 }
2184
2185 /**
2186  * regulator_enable - enable regulator output
2187  * @regulator: regulator source
2188  *
2189  * Request that the regulator be enabled with the regulator output at
2190  * the predefined voltage or current value.  Calls to regulator_enable()
2191  * must be balanced with calls to regulator_disable().
2192  *
2193  * NOTE: the output value can be set by other drivers, boot loader or may be
2194  * hardwired in the regulator.
2195  */
2196 int regulator_enable(struct regulator *regulator)
2197 {
2198         struct regulator_dev *rdev = regulator->rdev;
2199         int ret = 0;
2200
2201         if (regulator->always_on)
2202                 return 0;
2203
2204         if (rdev->supply) {
2205                 ret = regulator_enable(rdev->supply);
2206                 if (ret != 0)
2207                         return ret;
2208         }
2209
2210         mutex_lock(&rdev->mutex);
2211         ret = _regulator_enable(rdev);
2212         mutex_unlock(&rdev->mutex);
2213
2214         if (ret != 0 && rdev->supply)
2215                 regulator_disable(rdev->supply);
2216
2217         return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(regulator_enable);
2220
2221 static int _regulator_do_disable(struct regulator_dev *rdev)
2222 {
2223         int ret;
2224
2225         trace_regulator_disable(rdev_get_name(rdev));
2226
2227         if (rdev->ena_pin) {
2228                 if (rdev->ena_gpio_state) {
2229                         ret = regulator_ena_gpio_ctrl(rdev, false);
2230                         if (ret < 0)
2231                                 return ret;
2232                         rdev->ena_gpio_state = 0;
2233                 }
2234
2235         } else if (rdev->desc->ops->disable) {
2236                 ret = rdev->desc->ops->disable(rdev);
2237                 if (ret != 0)
2238                         return ret;
2239         }
2240
2241         /* cares about last_off_jiffy only if off_on_delay is required by
2242          * device.
2243          */
2244         if (rdev->desc->off_on_delay)
2245                 rdev->last_off_jiffy = jiffies;
2246
2247         trace_regulator_disable_complete(rdev_get_name(rdev));
2248
2249         return 0;
2250 }
2251
2252 /* locks held by regulator_disable() */
2253 static int _regulator_disable(struct regulator_dev *rdev)
2254 {
2255         int ret = 0;
2256
2257         lockdep_assert_held_once(&rdev->mutex);
2258
2259         if (WARN(rdev->use_count <= 0,
2260                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2261                 return -EIO;
2262
2263         /* are we the last user and permitted to disable ? */
2264         if (rdev->use_count == 1 &&
2265             (rdev->constraints && !rdev->constraints->always_on)) {
2266
2267                 /* we are last user */
2268                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2269                         ret = _notifier_call_chain(rdev,
2270                                                    REGULATOR_EVENT_PRE_DISABLE,
2271                                                    NULL);
2272                         if (ret & NOTIFY_STOP_MASK)
2273                                 return -EINVAL;
2274
2275                         ret = _regulator_do_disable(rdev);
2276                         if (ret < 0) {
2277                                 rdev_err(rdev, "failed to disable\n");
2278                                 _notifier_call_chain(rdev,
2279                                                 REGULATOR_EVENT_ABORT_DISABLE,
2280                                                 NULL);
2281                                 return ret;
2282                         }
2283                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2284                                         NULL);
2285                 }
2286
2287                 rdev->use_count = 0;
2288         } else if (rdev->use_count > 1) {
2289                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2290                         drms_uA_update(rdev);
2291
2292                 rdev->use_count--;
2293         }
2294
2295         return ret;
2296 }
2297
2298 /**
2299  * regulator_disable - disable regulator output
2300  * @regulator: regulator source
2301  *
2302  * Disable the regulator output voltage or current.  Calls to
2303  * regulator_enable() must be balanced with calls to
2304  * regulator_disable().
2305  *
2306  * NOTE: this will only disable the regulator output if no other consumer
2307  * devices have it enabled, the regulator device supports disabling and
2308  * machine constraints permit this operation.
2309  */
2310 int regulator_disable(struct regulator *regulator)
2311 {
2312         struct regulator_dev *rdev = regulator->rdev;
2313         int ret = 0;
2314
2315         if (regulator->always_on)
2316                 return 0;
2317
2318         mutex_lock(&rdev->mutex);
2319         ret = _regulator_disable(rdev);
2320         mutex_unlock(&rdev->mutex);
2321
2322         if (ret == 0 && rdev->supply)
2323                 regulator_disable(rdev->supply);
2324
2325         return ret;
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_disable);
2328
2329 /* locks held by regulator_force_disable() */
2330 static int _regulator_force_disable(struct regulator_dev *rdev)
2331 {
2332         int ret = 0;
2333
2334         lockdep_assert_held_once(&rdev->mutex);
2335
2336         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2338         if (ret & NOTIFY_STOP_MASK)
2339                 return -EINVAL;
2340
2341         ret = _regulator_do_disable(rdev);
2342         if (ret < 0) {
2343                 rdev_err(rdev, "failed to force disable\n");
2344                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2345                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2346                 return ret;
2347         }
2348
2349         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2350                         REGULATOR_EVENT_DISABLE, NULL);
2351
2352         return 0;
2353 }
2354
2355 /**
2356  * regulator_force_disable - force disable regulator output
2357  * @regulator: regulator source
2358  *
2359  * Forcibly disable the regulator output voltage or current.
2360  * NOTE: this *will* disable the regulator output even if other consumer
2361  * devices have it enabled. This should be used for situations when device
2362  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2363  */
2364 int regulator_force_disable(struct regulator *regulator)
2365 {
2366         struct regulator_dev *rdev = regulator->rdev;
2367         int ret;
2368
2369         mutex_lock(&rdev->mutex);
2370         regulator->uA_load = 0;
2371         ret = _regulator_force_disable(regulator->rdev);
2372         mutex_unlock(&rdev->mutex);
2373
2374         if (rdev->supply)
2375                 while (rdev->open_count--)
2376                         regulator_disable(rdev->supply);
2377
2378         return ret;
2379 }
2380 EXPORT_SYMBOL_GPL(regulator_force_disable);
2381
2382 static void regulator_disable_work(struct work_struct *work)
2383 {
2384         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2385                                                   disable_work.work);
2386         int count, i, ret;
2387
2388         mutex_lock(&rdev->mutex);
2389
2390         BUG_ON(!rdev->deferred_disables);
2391
2392         count = rdev->deferred_disables;
2393         rdev->deferred_disables = 0;
2394
2395         for (i = 0; i < count; i++) {
2396                 ret = _regulator_disable(rdev);
2397                 if (ret != 0)
2398                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2399         }
2400
2401         mutex_unlock(&rdev->mutex);
2402
2403         if (rdev->supply) {
2404                 for (i = 0; i < count; i++) {
2405                         ret = regulator_disable(rdev->supply);
2406                         if (ret != 0) {
2407                                 rdev_err(rdev,
2408                                          "Supply disable failed: %d\n", ret);
2409                         }
2410                 }
2411         }
2412 }
2413
2414 /**
2415  * regulator_disable_deferred - disable regulator output with delay
2416  * @regulator: regulator source
2417  * @ms: miliseconds until the regulator is disabled
2418  *
2419  * Execute regulator_disable() on the regulator after a delay.  This
2420  * is intended for use with devices that require some time to quiesce.
2421  *
2422  * NOTE: this will only disable the regulator output if no other consumer
2423  * devices have it enabled, the regulator device supports disabling and
2424  * machine constraints permit this operation.
2425  */
2426 int regulator_disable_deferred(struct regulator *regulator, int ms)
2427 {
2428         struct regulator_dev *rdev = regulator->rdev;
2429
2430         if (regulator->always_on)
2431                 return 0;
2432
2433         if (!ms)
2434                 return regulator_disable(regulator);
2435
2436         mutex_lock(&rdev->mutex);
2437         rdev->deferred_disables++;
2438         mutex_unlock(&rdev->mutex);
2439
2440         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2441                            msecs_to_jiffies(ms));
2442         return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2445
2446 static int _regulator_is_enabled(struct regulator_dev *rdev)
2447 {
2448         /* A GPIO control always takes precedence */
2449         if (rdev->ena_pin)
2450                 return rdev->ena_gpio_state;
2451
2452         /* If we don't know then assume that the regulator is always on */
2453         if (!rdev->desc->ops->is_enabled)
2454                 return 1;
2455
2456         return rdev->desc->ops->is_enabled(rdev);
2457 }
2458
2459 static int _regulator_list_voltage(struct regulator *regulator,
2460                                     unsigned selector, int lock)
2461 {
2462         struct regulator_dev *rdev = regulator->rdev;
2463         const struct regulator_ops *ops = rdev->desc->ops;
2464         int ret;
2465
2466         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2467                 return rdev->desc->fixed_uV;
2468
2469         if (ops->list_voltage) {
2470                 if (selector >= rdev->desc->n_voltages)
2471                         return -EINVAL;
2472                 if (lock)
2473                         mutex_lock(&rdev->mutex);
2474                 ret = ops->list_voltage(rdev, selector);
2475                 if (lock)
2476                         mutex_unlock(&rdev->mutex);
2477         } else if (rdev->is_switch && rdev->supply) {
2478                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2479         } else {
2480                 return -EINVAL;
2481         }
2482
2483         if (ret > 0) {
2484                 if (ret < rdev->constraints->min_uV)
2485                         ret = 0;
2486                 else if (ret > rdev->constraints->max_uV)
2487                         ret = 0;
2488         }
2489
2490         return ret;
2491 }
2492
2493 /**
2494  * regulator_is_enabled - is the regulator output enabled
2495  * @regulator: regulator source
2496  *
2497  * Returns positive if the regulator driver backing the source/client
2498  * has requested that the device be enabled, zero if it hasn't, else a
2499  * negative errno code.
2500  *
2501  * Note that the device backing this regulator handle can have multiple
2502  * users, so it might be enabled even if regulator_enable() was never
2503  * called for this particular source.
2504  */
2505 int regulator_is_enabled(struct regulator *regulator)
2506 {
2507         int ret;
2508
2509         if (regulator->always_on)
2510                 return 1;
2511
2512         mutex_lock(&regulator->rdev->mutex);
2513         ret = _regulator_is_enabled(regulator->rdev);
2514         mutex_unlock(&regulator->rdev->mutex);
2515
2516         return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2519
2520 /**
2521  * regulator_count_voltages - count regulator_list_voltage() selectors
2522  * @regulator: regulator source
2523  *
2524  * Returns number of selectors, or negative errno.  Selectors are
2525  * numbered starting at zero, and typically correspond to bitfields
2526  * in hardware registers.
2527  */
2528 int regulator_count_voltages(struct regulator *regulator)
2529 {
2530         struct regulator_dev    *rdev = regulator->rdev;
2531
2532         if (rdev->desc->n_voltages)
2533                 return rdev->desc->n_voltages;
2534
2535         if (!rdev->is_switch || !rdev->supply)
2536                 return -EINVAL;
2537
2538         return regulator_count_voltages(rdev->supply);
2539 }
2540 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2541
2542 /**
2543  * regulator_list_voltage - enumerate supported voltages
2544  * @regulator: regulator source
2545  * @selector: identify voltage to list
2546  * Context: can sleep
2547  *
2548  * Returns a voltage that can be passed to @regulator_set_voltage(),
2549  * zero if this selector code can't be used on this system, or a
2550  * negative errno.
2551  */
2552 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2553 {
2554         return _regulator_list_voltage(regulator, selector, 1);
2555 }
2556 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2557
2558 /**
2559  * regulator_get_regmap - get the regulator's register map
2560  * @regulator: regulator source
2561  *
2562  * Returns the register map for the given regulator, or an ERR_PTR value
2563  * if the regulator doesn't use regmap.
2564  */
2565 struct regmap *regulator_get_regmap(struct regulator *regulator)
2566 {
2567         struct regmap *map = regulator->rdev->regmap;
2568
2569         return map ? map : ERR_PTR(-EOPNOTSUPP);
2570 }
2571
2572 /**
2573  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2574  * @regulator: regulator source
2575  * @vsel_reg: voltage selector register, output parameter
2576  * @vsel_mask: mask for voltage selector bitfield, output parameter
2577  *
2578  * Returns the hardware register offset and bitmask used for setting the
2579  * regulator voltage. This might be useful when configuring voltage-scaling
2580  * hardware or firmware that can make I2C requests behind the kernel's back,
2581  * for example.
2582  *
2583  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2584  * and 0 is returned, otherwise a negative errno is returned.
2585  */
2586 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2587                                          unsigned *vsel_reg,
2588                                          unsigned *vsel_mask)
2589 {
2590         struct regulator_dev *rdev = regulator->rdev;
2591         const struct regulator_ops *ops = rdev->desc->ops;
2592
2593         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2594                 return -EOPNOTSUPP;
2595
2596          *vsel_reg = rdev->desc->vsel_reg;
2597          *vsel_mask = rdev->desc->vsel_mask;
2598
2599          return 0;
2600 }
2601 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2602
2603 /**
2604  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2605  * @regulator: regulator source
2606  * @selector: identify voltage to list
2607  *
2608  * Converts the selector to a hardware-specific voltage selector that can be
2609  * directly written to the regulator registers. The address of the voltage
2610  * register can be determined by calling @regulator_get_hardware_vsel_register.
2611  *
2612  * On error a negative errno is returned.
2613  */
2614 int regulator_list_hardware_vsel(struct regulator *regulator,
2615                                  unsigned selector)
2616 {
2617         struct regulator_dev *rdev = regulator->rdev;
2618         const struct regulator_ops *ops = rdev->desc->ops;
2619
2620         if (selector >= rdev->desc->n_voltages)
2621                 return -EINVAL;
2622         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2623                 return -EOPNOTSUPP;
2624
2625         return selector;
2626 }
2627 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2628
2629 /**
2630  * regulator_get_linear_step - return the voltage step size between VSEL values
2631  * @regulator: regulator source
2632  *
2633  * Returns the voltage step size between VSEL values for linear
2634  * regulators, or return 0 if the regulator isn't a linear regulator.
2635  */
2636 unsigned int regulator_get_linear_step(struct regulator *regulator)
2637 {
2638         struct regulator_dev *rdev = regulator->rdev;
2639
2640         return rdev->desc->uV_step;
2641 }
2642 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2643
2644 /**
2645  * regulator_is_supported_voltage - check if a voltage range can be supported
2646  *
2647  * @regulator: Regulator to check.
2648  * @min_uV: Minimum required voltage in uV.
2649  * @max_uV: Maximum required voltage in uV.
2650  *
2651  * Returns a boolean or a negative error code.
2652  */
2653 int regulator_is_supported_voltage(struct regulator *regulator,
2654                                    int min_uV, int max_uV)
2655 {
2656         struct regulator_dev *rdev = regulator->rdev;
2657         int i, voltages, ret;
2658
2659         /* If we can't change voltage check the current voltage */
2660         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2661                 ret = regulator_get_voltage(regulator);
2662                 if (ret >= 0)
2663                         return min_uV <= ret && ret <= max_uV;
2664                 else
2665                         return ret;
2666         }
2667
2668         /* Any voltage within constrains range is fine? */
2669         if (rdev->desc->continuous_voltage_range)
2670                 return min_uV >= rdev->constraints->min_uV &&
2671                                 max_uV <= rdev->constraints->max_uV;
2672
2673         ret = regulator_count_voltages(regulator);
2674         if (ret < 0)
2675                 return ret;
2676         voltages = ret;
2677
2678         for (i = 0; i < voltages; i++) {
2679                 ret = regulator_list_voltage(regulator, i);
2680
2681                 if (ret >= min_uV && ret <= max_uV)
2682                         return 1;
2683         }
2684
2685         return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2688
2689 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2690                                  int max_uV)
2691 {
2692         const struct regulator_desc *desc = rdev->desc;
2693
2694         if (desc->ops->map_voltage)
2695                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2696
2697         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2698                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2699
2700         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2701                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2702
2703         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2704 }
2705
2706 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2707                                        int min_uV, int max_uV,
2708                                        unsigned *selector)
2709 {
2710         struct pre_voltage_change_data data;
2711         int ret;
2712
2713         data.old_uV = _regulator_get_voltage(rdev);
2714         data.min_uV = min_uV;
2715         data.max_uV = max_uV;
2716         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2717                                    &data);
2718         if (ret & NOTIFY_STOP_MASK)
2719                 return -EINVAL;
2720
2721         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2722         if (ret >= 0)
2723                 return ret;
2724
2725         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2726                              (void *)data.old_uV);
2727
2728         return ret;
2729 }
2730
2731 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2732                                            int uV, unsigned selector)
2733 {
2734         struct pre_voltage_change_data data;
2735         int ret;
2736
2737         data.old_uV = _regulator_get_voltage(rdev);
2738         data.min_uV = uV;
2739         data.max_uV = uV;
2740         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2741                                    &data);
2742         if (ret & NOTIFY_STOP_MASK)
2743                 return -EINVAL;
2744
2745         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2746         if (ret >= 0)
2747                 return ret;
2748
2749         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2750                              (void *)data.old_uV);
2751
2752         return ret;
2753 }
2754
2755 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2756                                        int old_uV, int new_uV)
2757 {
2758         unsigned int ramp_delay = 0;
2759
2760         if (rdev->constraints->ramp_delay)
2761                 ramp_delay = rdev->constraints->ramp_delay;
2762         else if (rdev->desc->ramp_delay)
2763                 ramp_delay = rdev->desc->ramp_delay;
2764
2765         if (ramp_delay == 0) {
2766                 rdev_dbg(rdev, "ramp_delay not set\n");
2767                 return 0;
2768         }
2769
2770         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2771 }
2772
2773 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2774                                      int min_uV, int max_uV)
2775 {
2776         int ret;
2777         int delay = 0;
2778         int best_val = 0;
2779         unsigned int selector;
2780         int old_selector = -1;
2781         const struct regulator_ops *ops = rdev->desc->ops;
2782         int old_uV = _regulator_get_voltage(rdev);
2783
2784         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2785
2786         min_uV += rdev->constraints->uV_offset;
2787         max_uV += rdev->constraints->uV_offset;
2788
2789         /*
2790          * If we can't obtain the old selector there is not enough
2791          * info to call set_voltage_time_sel().
2792          */
2793         if (_regulator_is_enabled(rdev) &&
2794             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2795                 old_selector = ops->get_voltage_sel(rdev);
2796                 if (old_selector < 0)
2797                         return old_selector;
2798         }
2799
2800         if (ops->set_voltage) {
2801                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2802                                                   &selector);
2803
2804                 if (ret >= 0) {
2805                         if (ops->list_voltage)
2806                                 best_val = ops->list_voltage(rdev,
2807                                                              selector);
2808                         else
2809                                 best_val = _regulator_get_voltage(rdev);
2810                 }
2811
2812         } else if (ops->set_voltage_sel) {
2813                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2814                 if (ret >= 0) {
2815                         best_val = ops->list_voltage(rdev, ret);
2816                         if (min_uV <= best_val && max_uV >= best_val) {
2817                                 selector = ret;
2818                                 if (old_selector == selector)
2819                                         ret = 0;
2820                                 else
2821                                         ret = _regulator_call_set_voltage_sel(
2822                                                 rdev, best_val, selector);
2823                         } else {
2824                                 ret = -EINVAL;
2825                         }
2826                 }
2827         } else {
2828                 ret = -EINVAL;
2829         }
2830
2831         if (ret)
2832                 goto out;
2833
2834         if (ops->set_voltage_time_sel) {
2835                 /*
2836                  * Call set_voltage_time_sel if successfully obtained
2837                  * old_selector
2838                  */
2839                 if (old_selector >= 0 && old_selector != selector)
2840                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2841                                                           selector);
2842         } else {
2843                 if (old_uV != best_val) {
2844                         if (ops->set_voltage_time)
2845                                 delay = ops->set_voltage_time(rdev, old_uV,
2846                                                               best_val);
2847                         else
2848                                 delay = _regulator_set_voltage_time(rdev,
2849                                                                     old_uV,
2850                                                                     best_val);
2851                 }
2852         }
2853
2854         if (delay < 0) {
2855                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2856                 delay = 0;
2857         }
2858
2859         /* Insert any necessary delays */
2860         if (delay >= 1000) {
2861                 mdelay(delay / 1000);
2862                 udelay(delay % 1000);
2863         } else if (delay) {
2864                 udelay(delay);
2865         }
2866
2867         if (best_val >= 0) {
2868                 unsigned long data = best_val;
2869
2870                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2871                                      (void *)data);
2872         }
2873
2874 out:
2875         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2876
2877         return ret;
2878 }
2879
2880 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2881                                           int min_uV, int max_uV)
2882 {
2883         struct regulator_dev *rdev = regulator->rdev;
2884         int ret = 0;
2885         int old_min_uV, old_max_uV;
2886         int current_uV;
2887         int best_supply_uV = 0;
2888         int supply_change_uV = 0;
2889
2890         /* If we're setting the same range as last time the change
2891          * should be a noop (some cpufreq implementations use the same
2892          * voltage for multiple frequencies, for example).
2893          */
2894         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2895                 goto out;
2896
2897         /* If we're trying to set a range that overlaps the current voltage,
2898          * return successfully even though the regulator does not support
2899          * changing the voltage.
2900          */
2901         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2902                 current_uV = _regulator_get_voltage(rdev);
2903                 if (min_uV <= current_uV && current_uV <= max_uV) {
2904                         regulator->min_uV = min_uV;
2905                         regulator->max_uV = max_uV;
2906                         goto out;
2907                 }
2908         }
2909
2910         /* sanity check */
2911         if (!rdev->desc->ops->set_voltage &&
2912             !rdev->desc->ops->set_voltage_sel) {
2913                 ret = -EINVAL;
2914                 goto out;
2915         }
2916
2917         /* constraints check */
2918         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2919         if (ret < 0)
2920                 goto out;
2921
2922         /* restore original values in case of error */
2923         old_min_uV = regulator->min_uV;
2924         old_max_uV = regulator->max_uV;
2925         regulator->min_uV = min_uV;
2926         regulator->max_uV = max_uV;
2927
2928         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2929         if (ret < 0)
2930                 goto out2;
2931
2932         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2933                                 !rdev->desc->ops->get_voltage)) {
2934                 int current_supply_uV;
2935                 int selector;
2936
2937                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2938                 if (selector < 0) {
2939                         ret = selector;
2940                         goto out2;
2941                 }
2942
2943                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2944                 if (best_supply_uV < 0) {
2945                         ret = best_supply_uV;
2946                         goto out2;
2947                 }
2948
2949                 best_supply_uV += rdev->desc->min_dropout_uV;
2950
2951                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2952                 if (current_supply_uV < 0) {
2953                         ret = current_supply_uV;
2954                         goto out2;
2955                 }
2956
2957                 supply_change_uV = best_supply_uV - current_supply_uV;
2958         }
2959
2960         if (supply_change_uV > 0) {
2961                 ret = regulator_set_voltage_unlocked(rdev->supply,
2962                                 best_supply_uV, INT_MAX);
2963                 if (ret) {
2964                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2965                                         ret);
2966                         goto out2;
2967                 }
2968         }
2969
2970         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2971         if (ret < 0)
2972                 goto out2;
2973
2974         if (supply_change_uV < 0) {
2975                 ret = regulator_set_voltage_unlocked(rdev->supply,
2976                                 best_supply_uV, INT_MAX);
2977                 if (ret)
2978                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2979                                         ret);
2980                 /* No need to fail here */
2981                 ret = 0;
2982         }
2983
2984 out:
2985         return ret;
2986 out2:
2987         regulator->min_uV = old_min_uV;
2988         regulator->max_uV = old_max_uV;
2989
2990         return ret;
2991 }
2992
2993 /**
2994  * regulator_set_voltage - set regulator output voltage
2995  * @regulator: regulator source
2996  * @min_uV: Minimum required voltage in uV
2997  * @max_uV: Maximum acceptable voltage in uV
2998  *
2999  * Sets a voltage regulator to the desired output voltage. This can be set
3000  * during any regulator state. IOW, regulator can be disabled or enabled.
3001  *
3002  * If the regulator is enabled then the voltage will change to the new value
3003  * immediately otherwise if the regulator is disabled the regulator will
3004  * output at the new voltage when enabled.
3005  *
3006  * NOTE: If the regulator is shared between several devices then the lowest
3007  * request voltage that meets the system constraints will be used.
3008  * Regulator system constraints must be set for this regulator before
3009  * calling this function otherwise this call will fail.
3010  */
3011 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3012 {
3013         int ret = 0;
3014
3015         regulator_lock_supply(regulator->rdev);
3016
3017         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3018
3019         regulator_unlock_supply(regulator->rdev);
3020
3021         return ret;
3022 }
3023 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3024
3025 /**
3026  * regulator_set_voltage_time - get raise/fall time
3027  * @regulator: regulator source
3028  * @old_uV: starting voltage in microvolts
3029  * @new_uV: target voltage in microvolts
3030  *
3031  * Provided with the starting and ending voltage, this function attempts to
3032  * calculate the time in microseconds required to rise or fall to this new
3033  * voltage.
3034  */
3035 int regulator_set_voltage_time(struct regulator *regulator,
3036                                int old_uV, int new_uV)
3037 {
3038         struct regulator_dev *rdev = regulator->rdev;
3039         const struct regulator_ops *ops = rdev->desc->ops;
3040         int old_sel = -1;
3041         int new_sel = -1;
3042         int voltage;
3043         int i;
3044
3045         if (ops->set_voltage_time)
3046                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3047         else if (!ops->set_voltage_time_sel)
3048                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3049
3050         /* Currently requires operations to do this */
3051         if (!ops->list_voltage || !rdev->desc->n_voltages)
3052                 return -EINVAL;
3053
3054         for (i = 0; i < rdev->desc->n_voltages; i++) {
3055                 /* We only look for exact voltage matches here */
3056                 voltage = regulator_list_voltage(regulator, i);
3057                 if (voltage < 0)
3058                         return -EINVAL;
3059                 if (voltage == 0)
3060                         continue;
3061                 if (voltage == old_uV)
3062                         old_sel = i;
3063                 if (voltage == new_uV)
3064                         new_sel = i;
3065         }
3066
3067         if (old_sel < 0 || new_sel < 0)
3068                 return -EINVAL;
3069
3070         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3071 }
3072 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3073
3074 /**
3075  * regulator_set_voltage_time_sel - get raise/fall time
3076  * @rdev: regulator source device
3077  * @old_selector: selector for starting voltage
3078  * @new_selector: selector for target voltage
3079  *
3080  * Provided with the starting and target voltage selectors, this function
3081  * returns time in microseconds required to rise or fall to this new voltage
3082  *
3083  * Drivers providing ramp_delay in regulation_constraints can use this as their
3084  * set_voltage_time_sel() operation.
3085  */
3086 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3087                                    unsigned int old_selector,
3088                                    unsigned int new_selector)
3089 {
3090         int old_volt, new_volt;
3091
3092         /* sanity check */
3093         if (!rdev->desc->ops->list_voltage)
3094                 return -EINVAL;
3095
3096         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3097         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3098
3099         if (rdev->desc->ops->set_voltage_time)
3100                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3101                                                          new_volt);
3102         else
3103                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3104 }
3105 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3106
3107 /**
3108  * regulator_sync_voltage - re-apply last regulator output voltage
3109  * @regulator: regulator source
3110  *
3111  * Re-apply the last configured voltage.  This is intended to be used
3112  * where some external control source the consumer is cooperating with
3113  * has caused the configured voltage to change.
3114  */
3115 int regulator_sync_voltage(struct regulator *regulator)
3116 {
3117         struct regulator_dev *rdev = regulator->rdev;
3118         int ret, min_uV, max_uV;
3119
3120         mutex_lock(&rdev->mutex);
3121
3122         if (!rdev->desc->ops->set_voltage &&
3123             !rdev->desc->ops->set_voltage_sel) {
3124                 ret = -EINVAL;
3125                 goto out;
3126         }
3127
3128         /* This is only going to work if we've had a voltage configured. */
3129         if (!regulator->min_uV && !regulator->max_uV) {
3130                 ret = -EINVAL;
3131                 goto out;
3132         }
3133
3134         min_uV = regulator->min_uV;
3135         max_uV = regulator->max_uV;
3136
3137         /* This should be a paranoia check... */
3138         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3139         if (ret < 0)
3140                 goto out;
3141
3142         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3143         if (ret < 0)
3144                 goto out;
3145
3146         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3147
3148 out:
3149         mutex_unlock(&rdev->mutex);
3150         return ret;
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3153
3154 static int _regulator_get_voltage(struct regulator_dev *rdev)
3155 {
3156         int sel, ret;
3157         bool bypassed;
3158
3159         if (rdev->desc->ops->get_bypass) {
3160                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3161                 if (ret < 0)
3162                         return ret;
3163                 if (bypassed) {
3164                         /* if bypassed the regulator must have a supply */
3165                         if (!rdev->supply) {
3166                                 rdev_err(rdev,
3167                                          "bypassed regulator has no supply!\n");
3168                                 return -EPROBE_DEFER;
3169                         }
3170
3171                         return _regulator_get_voltage(rdev->supply->rdev);
3172                 }
3173         }
3174
3175         if (rdev->desc->ops->get_voltage_sel) {
3176                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3177                 if (sel < 0)
3178                         return sel;
3179                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3180         } else if (rdev->desc->ops->get_voltage) {
3181                 ret = rdev->desc->ops->get_voltage(rdev);
3182         } else if (rdev->desc->ops->list_voltage) {
3183                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3184         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3185                 ret = rdev->desc->fixed_uV;
3186         } else if (rdev->supply) {
3187                 ret = _regulator_get_voltage(rdev->supply->rdev);
3188         } else if (rdev->supply_name) {
3189                 return -EPROBE_DEFER;
3190         } else {
3191                 return -EINVAL;
3192         }
3193
3194         if (ret < 0)
3195                 return ret;
3196         return ret - rdev->constraints->uV_offset;
3197 }
3198
3199 /**
3200  * regulator_get_voltage - get regulator output voltage
3201  * @regulator: regulator source
3202  *
3203  * This returns the current regulator voltage in uV.
3204  *
3205  * NOTE: If the regulator is disabled it will return the voltage value. This
3206  * function should not be used to determine regulator state.
3207  */
3208 int regulator_get_voltage(struct regulator *regulator)
3209 {
3210         int ret;
3211
3212         regulator_lock_supply(regulator->rdev);
3213
3214         ret = _regulator_get_voltage(regulator->rdev);
3215
3216         regulator_unlock_supply(regulator->rdev);
3217
3218         return ret;
3219 }
3220 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3221
3222 /**
3223  * regulator_set_current_limit - set regulator output current limit
3224  * @regulator: regulator source
3225  * @min_uA: Minimum supported current in uA
3226  * @max_uA: Maximum supported current in uA
3227  *
3228  * Sets current sink to the desired output current. This can be set during
3229  * any regulator state. IOW, regulator can be disabled or enabled.
3230  *
3231  * If the regulator is enabled then the current will change to the new value
3232  * immediately otherwise if the regulator is disabled the regulator will
3233  * output at the new current when enabled.
3234  *
3235  * NOTE: Regulator system constraints must be set for this regulator before
3236  * calling this function otherwise this call will fail.
3237  */
3238 int regulator_set_current_limit(struct regulator *regulator,
3239                                int min_uA, int max_uA)
3240 {
3241         struct regulator_dev *rdev = regulator->rdev;
3242         int ret;
3243
3244         mutex_lock(&rdev->mutex);
3245
3246         /* sanity check */
3247         if (!rdev->desc->ops->set_current_limit) {
3248                 ret = -EINVAL;
3249                 goto out;
3250         }
3251
3252         /* constraints check */
3253         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3254         if (ret < 0)
3255                 goto out;
3256
3257         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3258 out:
3259         mutex_unlock(&rdev->mutex);
3260         return ret;
3261 }
3262 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3263
3264 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3265 {
3266         int ret;
3267
3268         mutex_lock(&rdev->mutex);
3269
3270         /* sanity check */
3271         if (!rdev->desc->ops->get_current_limit) {
3272                 ret = -EINVAL;
3273                 goto out;
3274         }
3275
3276         ret = rdev->desc->ops->get_current_limit(rdev);
3277 out:
3278         mutex_unlock(&rdev->mutex);
3279         return ret;
3280 }
3281
3282 /**
3283  * regulator_get_current_limit - get regulator output current
3284  * @regulator: regulator source
3285  *
3286  * This returns the current supplied by the specified current sink in uA.
3287  *
3288  * NOTE: If the regulator is disabled it will return the current value. This
3289  * function should not be used to determine regulator state.
3290  */
3291 int regulator_get_current_limit(struct regulator *regulator)
3292 {
3293         return _regulator_get_current_limit(regulator->rdev);
3294 }
3295 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3296
3297 /**
3298  * regulator_set_mode - set regulator operating mode
3299  * @regulator: regulator source
3300  * @mode: operating mode - one of the REGULATOR_MODE constants
3301  *
3302  * Set regulator operating mode to increase regulator efficiency or improve
3303  * regulation performance.
3304  *
3305  * NOTE: Regulator system constraints must be set for this regulator before
3306  * calling this function otherwise this call will fail.
3307  */
3308 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3309 {
3310         struct regulator_dev *rdev = regulator->rdev;
3311         int ret;
3312         int regulator_curr_mode;
3313
3314         mutex_lock(&rdev->mutex);
3315
3316         /* sanity check */
3317         if (!rdev->desc->ops->set_mode) {
3318                 ret = -EINVAL;
3319                 goto out;
3320         }
3321
3322         /* return if the same mode is requested */
3323         if (rdev->desc->ops->get_mode) {
3324                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3325                 if (regulator_curr_mode == mode) {
3326                         ret = 0;
3327                         goto out;
3328                 }
3329         }
3330
3331         /* constraints check */
3332         ret = regulator_mode_constrain(rdev, &mode);
3333         if (ret < 0)
3334                 goto out;
3335
3336         ret = rdev->desc->ops->set_mode(rdev, mode);
3337 out:
3338         mutex_unlock(&rdev->mutex);
3339         return ret;
3340 }
3341 EXPORT_SYMBOL_GPL(regulator_set_mode);
3342
3343 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3344 {
3345         int ret;
3346
3347         mutex_lock(&rdev->mutex);
3348
3349         /* sanity check */
3350         if (!rdev->desc->ops->get_mode) {
3351                 ret = -EINVAL;
3352                 goto out;
3353         }
3354
3355         ret = rdev->desc->ops->get_mode(rdev);
3356 out:
3357         mutex_unlock(&rdev->mutex);
3358         return ret;
3359 }
3360
3361 /**
3362  * regulator_get_mode - get regulator operating mode
3363  * @regulator: regulator source
3364  *
3365  * Get the current regulator operating mode.
3366  */
3367 unsigned int regulator_get_mode(struct regulator *regulator)
3368 {
3369         return _regulator_get_mode(regulator->rdev);
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_get_mode);
3372
3373 /**
3374  * regulator_set_load - set regulator load
3375  * @regulator: regulator source
3376  * @uA_load: load current
3377  *
3378  * Notifies the regulator core of a new device load. This is then used by
3379  * DRMS (if enabled by constraints) to set the most efficient regulator
3380  * operating mode for the new regulator loading.
3381  *
3382  * Consumer devices notify their supply regulator of the maximum power
3383  * they will require (can be taken from device datasheet in the power
3384  * consumption tables) when they change operational status and hence power
3385  * state. Examples of operational state changes that can affect power
3386  * consumption are :-
3387  *
3388  *    o Device is opened / closed.
3389  *    o Device I/O is about to begin or has just finished.
3390  *    o Device is idling in between work.
3391  *
3392  * This information is also exported via sysfs to userspace.
3393  *
3394  * DRMS will sum the total requested load on the regulator and change
3395  * to the most efficient operating mode if platform constraints allow.
3396  *
3397  * On error a negative errno is returned.
3398  */
3399 int regulator_set_load(struct regulator *regulator, int uA_load)
3400 {
3401         struct regulator_dev *rdev = regulator->rdev;
3402         int ret;
3403
3404         mutex_lock(&rdev->mutex);
3405         regulator->uA_load = uA_load;
3406         ret = drms_uA_update(rdev);
3407         mutex_unlock(&rdev->mutex);
3408
3409         return ret;
3410 }
3411 EXPORT_SYMBOL_GPL(regulator_set_load);
3412
3413 /**
3414  * regulator_allow_bypass - allow the regulator to go into bypass mode
3415  *
3416  * @regulator: Regulator to configure
3417  * @enable: enable or disable bypass mode
3418  *
3419  * Allow the regulator to go into bypass mode if all other consumers
3420  * for the regulator also enable bypass mode and the machine
3421  * constraints allow this.  Bypass mode means that the regulator is
3422  * simply passing the input directly to the output with no regulation.
3423  */
3424 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3425 {
3426         struct regulator_dev *rdev = regulator->rdev;
3427         int ret = 0;
3428
3429         if (!rdev->desc->ops->set_bypass)
3430                 return 0;
3431
3432         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3433                 return 0;
3434
3435         mutex_lock(&rdev->mutex);
3436
3437         if (enable && !regulator->bypass) {
3438                 rdev->bypass_count++;
3439
3440                 if (rdev->bypass_count == rdev->open_count) {
3441                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3442                         if (ret != 0)
3443                                 rdev->bypass_count--;
3444                 }
3445
3446         } else if (!enable && regulator->bypass) {
3447                 rdev->bypass_count--;
3448
3449                 if (rdev->bypass_count != rdev->open_count) {
3450                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3451                         if (ret != 0)
3452                                 rdev->bypass_count++;
3453                 }
3454         }
3455
3456         if (ret == 0)
3457                 regulator->bypass = enable;
3458
3459         mutex_unlock(&rdev->mutex);
3460
3461         return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3464
3465 /**
3466  * regulator_register_notifier - register regulator event notifier
3467  * @regulator: regulator source
3468  * @nb: notifier block
3469  *
3470  * Register notifier block to receive regulator events.
3471  */
3472 int regulator_register_notifier(struct regulator *regulator,
3473                               struct notifier_block *nb)
3474 {
3475         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3476                                                 nb);
3477 }
3478 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3479
3480 /**
3481  * regulator_unregister_notifier - unregister regulator event notifier
3482  * @regulator: regulator source
3483  * @nb: notifier block
3484  *
3485  * Unregister regulator event notifier block.
3486  */
3487 int regulator_unregister_notifier(struct regulator *regulator,
3488                                 struct notifier_block *nb)
3489 {
3490         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3491                                                   nb);
3492 }
3493 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3494
3495 /* notify regulator consumers and downstream regulator consumers.
3496  * Note mutex must be held by caller.
3497  */
3498 static int _notifier_call_chain(struct regulator_dev *rdev,
3499                                   unsigned long event, void *data)
3500 {
3501         /* call rdev chain first */
3502         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3503 }
3504
3505 /**
3506  * regulator_bulk_get - get multiple regulator consumers
3507  *
3508  * @dev:           Device to supply
3509  * @num_consumers: Number of consumers to register
3510  * @consumers:     Configuration of consumers; clients are stored here.
3511  *
3512  * @return 0 on success, an errno on failure.
3513  *
3514  * This helper function allows drivers to get several regulator
3515  * consumers in one operation.  If any of the regulators cannot be
3516  * acquired then any regulators that were allocated will be freed
3517  * before returning to the caller.
3518  */
3519 int regulator_bulk_get(struct device *dev, int num_consumers,
3520                        struct regulator_bulk_data *consumers)
3521 {
3522         int i;
3523         int ret;
3524
3525         for (i = 0; i < num_consumers; i++)
3526                 consumers[i].consumer = NULL;
3527
3528         for (i = 0; i < num_consumers; i++) {
3529                 consumers[i].consumer = regulator_get(dev,
3530                                                       consumers[i].supply);
3531                 if (IS_ERR(consumers[i].consumer)) {
3532                         ret = PTR_ERR(consumers[i].consumer);
3533                         dev_err(dev, "Failed to get supply '%s': %d\n",
3534                                 consumers[i].supply, ret);
3535                         consumers[i].consumer = NULL;
3536                         goto err;
3537                 }
3538         }
3539
3540         return 0;
3541
3542 err:
3543         while (--i >= 0)
3544                 regulator_put(consumers[i].consumer);
3545
3546         return ret;
3547 }
3548 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3549
3550 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3551 {
3552         struct regulator_bulk_data *bulk = data;
3553
3554         bulk->ret = regulator_enable(bulk->consumer);
3555 }
3556
3557 /**
3558  * regulator_bulk_enable - enable multiple regulator consumers
3559  *
3560  * @num_consumers: Number of consumers
3561  * @consumers:     Consumer data; clients are stored here.
3562  * @return         0 on success, an errno on failure
3563  *
3564  * This convenience API allows consumers to enable multiple regulator
3565  * clients in a single API call.  If any consumers cannot be enabled
3566  * then any others that were enabled will be disabled again prior to
3567  * return.
3568  */
3569 int regulator_bulk_enable(int num_consumers,
3570                           struct regulator_bulk_data *consumers)
3571 {
3572         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3573         int i;
3574         int ret = 0;
3575
3576         for (i = 0; i < num_consumers; i++) {
3577                 if (consumers[i].consumer->always_on)
3578                         consumers[i].ret = 0;
3579                 else
3580                         async_schedule_domain(regulator_bulk_enable_async,
3581                                               &consumers[i], &async_domain);
3582         }
3583
3584         async_synchronize_full_domain(&async_domain);
3585
3586         /* If any consumer failed we need to unwind any that succeeded */
3587         for (i = 0; i < num_consumers; i++) {
3588                 if (consumers[i].ret != 0) {
3589                         ret = consumers[i].ret;
3590                         goto err;
3591                 }
3592         }
3593
3594         return 0;
3595
3596 err:
3597         for (i = 0; i < num_consumers; i++) {
3598                 if (consumers[i].ret < 0)
3599                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3600                                consumers[i].ret);
3601                 else
3602                         regulator_disable(consumers[i].consumer);
3603         }
3604
3605         return ret;
3606 }
3607 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3608
3609 /**
3610  * regulator_bulk_disable - disable multiple regulator consumers
3611  *
3612  * @num_consumers: Number of consumers
3613  * @consumers:     Consumer data; clients are stored here.
3614  * @return         0 on success, an errno on failure
3615  *
3616  * This convenience API allows consumers to disable multiple regulator
3617  * clients in a single API call.  If any consumers cannot be disabled
3618  * then any others that were disabled will be enabled again prior to
3619  * return.
3620  */
3621 int regulator_bulk_disable(int num_consumers,
3622                            struct regulator_bulk_data *consumers)
3623 {
3624         int i;
3625         int ret, r;
3626
3627         for (i = num_consumers - 1; i >= 0; --i) {
3628                 ret = regulator_disable(consumers[i].consumer);
3629                 if (ret != 0)
3630                         goto err;
3631         }
3632
3633         return 0;
3634
3635 err:
3636         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3637         for (++i; i < num_consumers; ++i) {
3638                 r = regulator_enable(consumers[i].consumer);
3639                 if (r != 0)
3640                         pr_err("Failed to reename %s: %d\n",
3641                                consumers[i].supply, r);
3642         }
3643
3644         return ret;
3645 }
3646 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3647
3648 /**
3649  * regulator_bulk_force_disable - force disable multiple regulator consumers
3650  *
3651  * @num_consumers: Number of consumers
3652  * @consumers:     Consumer data; clients are stored here.
3653  * @return         0 on success, an errno on failure
3654  *
3655  * This convenience API allows consumers to forcibly disable multiple regulator
3656  * clients in a single API call.
3657  * NOTE: This should be used for situations when device damage will
3658  * likely occur if the regulators are not disabled (e.g. over temp).
3659  * Although regulator_force_disable function call for some consumers can
3660  * return error numbers, the function is called for all consumers.
3661  */
3662 int regulator_bulk_force_disable(int num_consumers,
3663                            struct regulator_bulk_data *consumers)
3664 {
3665         int i;
3666         int ret;
3667
3668         for (i = 0; i < num_consumers; i++)
3669                 consumers[i].ret =
3670                             regulator_force_disable(consumers[i].consumer);
3671
3672         for (i = 0; i < num_consumers; i++) {
3673                 if (consumers[i].ret != 0) {
3674                         ret = consumers[i].ret;
3675                         goto out;
3676                 }
3677         }
3678
3679         return 0;
3680 out:
3681         return ret;
3682 }
3683 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3684
3685 /**
3686  * regulator_bulk_free - free multiple regulator consumers
3687  *
3688  * @num_consumers: Number of consumers
3689  * @consumers:     Consumer data; clients are stored here.
3690  *
3691  * This convenience API allows consumers to free multiple regulator
3692  * clients in a single API call.
3693  */
3694 void regulator_bulk_free(int num_consumers,
3695                          struct regulator_bulk_data *consumers)
3696 {
3697         int i;
3698
3699         for (i = 0; i < num_consumers; i++) {
3700                 regulator_put(consumers[i].consumer);
3701                 consumers[i].consumer = NULL;
3702         }
3703 }
3704 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3705
3706 /**
3707  * regulator_notifier_call_chain - call regulator event notifier
3708  * @rdev: regulator source
3709  * @event: notifier block
3710  * @data: callback-specific data.
3711  *
3712  * Called by regulator drivers to notify clients a regulator event has
3713  * occurred. We also notify regulator clients downstream.
3714  * Note lock must be held by caller.
3715  */
3716 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3717                                   unsigned long event, void *data)
3718 {
3719         lockdep_assert_held_once(&rdev->mutex);
3720
3721         _notifier_call_chain(rdev, event, data);
3722         return NOTIFY_DONE;
3723
3724 }
3725 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3726
3727 /**
3728  * regulator_mode_to_status - convert a regulator mode into a status
3729  *
3730  * @mode: Mode to convert
3731  *
3732  * Convert a regulator mode into a status.
3733  */
3734 int regulator_mode_to_status(unsigned int mode)
3735 {
3736         switch (mode) {
3737         case REGULATOR_MODE_FAST:
3738                 return REGULATOR_STATUS_FAST;
3739         case REGULATOR_MODE_NORMAL:
3740                 return REGULATOR_STATUS_NORMAL;
3741         case REGULATOR_MODE_IDLE:
3742                 return REGULATOR_STATUS_IDLE;
3743         case REGULATOR_MODE_STANDBY:
3744                 return REGULATOR_STATUS_STANDBY;
3745         default:
3746                 return REGULATOR_STATUS_UNDEFINED;
3747         }
3748 }
3749 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3750
3751 static struct attribute *regulator_dev_attrs[] = {
3752         &dev_attr_name.attr,
3753         &dev_attr_num_users.attr,
3754         &dev_attr_type.attr,
3755         &dev_attr_microvolts.attr,
3756         &dev_attr_microamps.attr,
3757         &dev_attr_opmode.attr,
3758         &dev_attr_state.attr,
3759         &dev_attr_status.attr,
3760         &dev_attr_bypass.attr,
3761         &dev_attr_requested_microamps.attr,
3762         &dev_attr_min_microvolts.attr,
3763         &dev_attr_max_microvolts.attr,
3764         &dev_attr_min_microamps.attr,
3765         &dev_attr_max_microamps.attr,
3766         &dev_attr_suspend_standby_state.attr,
3767         &dev_attr_suspend_mem_state.attr,
3768         &dev_attr_suspend_disk_state.attr,
3769         &dev_attr_suspend_standby_microvolts.attr,
3770         &dev_attr_suspend_mem_microvolts.attr,
3771         &dev_attr_suspend_disk_microvolts.attr,
3772         &dev_attr_suspend_standby_mode.attr,
3773         &dev_attr_suspend_mem_mode.attr,
3774         &dev_attr_suspend_disk_mode.attr,
3775         NULL
3776 };
3777
3778 /*
3779  * To avoid cluttering sysfs (and memory) with useless state, only
3780  * create attributes that can be meaningfully displayed.
3781  */
3782 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3783                                          struct attribute *attr, int idx)
3784 {
3785         struct device *dev = kobj_to_dev(kobj);
3786         struct regulator_dev *rdev = dev_to_rdev(dev);
3787         const struct regulator_ops *ops = rdev->desc->ops;
3788         umode_t mode = attr->mode;
3789
3790         /* these three are always present */
3791         if (attr == &dev_attr_name.attr ||
3792             attr == &dev_attr_num_users.attr ||
3793             attr == &dev_attr_type.attr)
3794                 return mode;
3795
3796         /* some attributes need specific methods to be displayed */
3797         if (attr == &dev_attr_microvolts.attr) {
3798                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3799                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3800                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3801                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3802                         return mode;
3803                 return 0;
3804         }
3805
3806         if (attr == &dev_attr_microamps.attr)
3807                 return ops->get_current_limit ? mode : 0;
3808
3809         if (attr == &dev_attr_opmode.attr)
3810                 return ops->get_mode ? mode : 0;
3811
3812         if (attr == &dev_attr_state.attr)
3813                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3814
3815         if (attr == &dev_attr_status.attr)
3816                 return ops->get_status ? mode : 0;
3817
3818         if (attr == &dev_attr_bypass.attr)
3819                 return ops->get_bypass ? mode : 0;
3820
3821         /* some attributes are type-specific */
3822         if (attr == &dev_attr_requested_microamps.attr)
3823                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3824
3825         /* constraints need specific supporting methods */
3826         if (attr == &dev_attr_min_microvolts.attr ||
3827             attr == &dev_attr_max_microvolts.attr)
3828                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3829
3830         if (attr == &dev_attr_min_microamps.attr ||
3831             attr == &dev_attr_max_microamps.attr)
3832                 return ops->set_current_limit ? mode : 0;
3833
3834         if (attr == &dev_attr_suspend_standby_state.attr ||
3835             attr == &dev_attr_suspend_mem_state.attr ||
3836             attr == &dev_attr_suspend_disk_state.attr)
3837                 return mode;
3838
3839         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3840             attr == &dev_attr_suspend_mem_microvolts.attr ||
3841             attr == &dev_attr_suspend_disk_microvolts.attr)
3842                 return ops->set_suspend_voltage ? mode : 0;
3843
3844         if (attr == &dev_attr_suspend_standby_mode.attr ||
3845             attr == &dev_attr_suspend_mem_mode.attr ||
3846             attr == &dev_attr_suspend_disk_mode.attr)
3847                 return ops->set_suspend_mode ? mode : 0;
3848
3849         return mode;
3850 }
3851
3852 static const struct attribute_group regulator_dev_group = {
3853         .attrs = regulator_dev_attrs,
3854         .is_visible = regulator_attr_is_visible,
3855 };
3856
3857 static const struct attribute_group *regulator_dev_groups[] = {
3858         &regulator_dev_group,
3859         NULL
3860 };
3861
3862 static void regulator_dev_release(struct device *dev)
3863 {
3864         struct regulator_dev *rdev = dev_get_drvdata(dev);
3865
3866         kfree(rdev->constraints);
3867         of_node_put(rdev->dev.of_node);
3868         kfree(rdev);
3869 }
3870
3871 static struct class regulator_class = {
3872         .name = "regulator",
3873         .dev_release = regulator_dev_release,
3874         .dev_groups = regulator_dev_groups,
3875 };
3876
3877 static void rdev_init_debugfs(struct regulator_dev *rdev)
3878 {
3879         struct device *parent = rdev->dev.parent;
3880         const char *rname = rdev_get_name(rdev);
3881         char name[NAME_MAX];
3882
3883         /* Avoid duplicate debugfs directory names */
3884         if (parent && rname == rdev->desc->name) {
3885                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3886                          rname);
3887                 rname = name;
3888         }
3889
3890         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3891         if (!rdev->debugfs) {
3892                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3893                 return;
3894         }
3895
3896         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3897                            &rdev->use_count);
3898         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3899                            &rdev->open_count);
3900         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3901                            &rdev->bypass_count);
3902 }
3903
3904 static int regulator_register_resolve_supply(struct device *dev, void *data)
3905 {
3906         struct regulator_dev *rdev = dev_to_rdev(dev);
3907
3908         if (regulator_resolve_supply(rdev))
3909                 rdev_dbg(rdev, "unable to resolve supply\n");
3910
3911         return 0;
3912 }
3913
3914 /**
3915  * regulator_register - register regulator
3916  * @regulator_desc: regulator to register
3917  * @cfg: runtime configuration for regulator
3918  *
3919  * Called by regulator drivers to register a regulator.
3920  * Returns a valid pointer to struct regulator_dev on success
3921  * or an ERR_PTR() on error.
3922  */
3923 struct regulator_dev *
3924 regulator_register(const struct regulator_desc *regulator_desc,
3925                    const struct regulator_config *cfg)
3926 {
3927         const struct regulator_init_data *init_data;
3928         struct regulator_config *config = NULL;
3929         static atomic_t regulator_no = ATOMIC_INIT(-1);
3930         struct regulator_dev *rdev;
3931         struct device *dev;
3932         int ret, i;
3933
3934         if (regulator_desc == NULL || cfg == NULL)
3935                 return ERR_PTR(-EINVAL);
3936
3937         dev = cfg->dev;
3938         WARN_ON(!dev);
3939
3940         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3941                 return ERR_PTR(-EINVAL);
3942
3943         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3944             regulator_desc->type != REGULATOR_CURRENT)
3945                 return ERR_PTR(-EINVAL);
3946
3947         /* Only one of each should be implemented */
3948         WARN_ON(regulator_desc->ops->get_voltage &&
3949                 regulator_desc->ops->get_voltage_sel);
3950         WARN_ON(regulator_desc->ops->set_voltage &&
3951                 regulator_desc->ops->set_voltage_sel);
3952
3953         /* If we're using selectors we must implement list_voltage. */
3954         if (regulator_desc->ops->get_voltage_sel &&
3955             !regulator_desc->ops->list_voltage) {
3956                 return ERR_PTR(-EINVAL);
3957         }
3958         if (regulator_desc->ops->set_voltage_sel &&
3959             !regulator_desc->ops->list_voltage) {
3960                 return ERR_PTR(-EINVAL);
3961         }
3962
3963         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3964         if (rdev == NULL)
3965                 return ERR_PTR(-ENOMEM);
3966
3967         /*
3968          * Duplicate the config so the driver could override it after
3969          * parsing init data.
3970          */
3971         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3972         if (config == NULL) {
3973                 kfree(rdev);
3974                 return ERR_PTR(-ENOMEM);
3975         }
3976
3977         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3978                                                &rdev->dev.of_node);
3979         if (!init_data) {
3980                 init_data = config->init_data;
3981                 rdev->dev.of_node = of_node_get(config->of_node);
3982         }
3983
3984         mutex_init(&rdev->mutex);
3985         rdev->reg_data = config->driver_data;
3986         rdev->owner = regulator_desc->owner;
3987         rdev->desc = regulator_desc;
3988         if (config->regmap)
3989                 rdev->regmap = config->regmap;
3990         else if (dev_get_regmap(dev, NULL))
3991                 rdev->regmap = dev_get_regmap(dev, NULL);
3992         else if (dev->parent)
3993                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3994         INIT_LIST_HEAD(&rdev->consumer_list);
3995         INIT_LIST_HEAD(&rdev->list);
3996         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3997         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3998
3999         /* preform any regulator specific init */
4000         if (init_data && init_data->regulator_init) {
4001                 ret = init_data->regulator_init(rdev->reg_data);
4002                 if (ret < 0)
4003                         goto clean;
4004         }
4005
4006         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4007             gpio_is_valid(config->ena_gpio)) {
4008                 mutex_lock(&regulator_list_mutex);
4009                 ret = regulator_ena_gpio_request(rdev, config);
4010                 mutex_unlock(&regulator_list_mutex);
4011                 if (ret != 0) {
4012                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4013                                  config->ena_gpio, ret);
4014                         goto clean;
4015                 }
4016         }
4017
4018         /* register with sysfs */
4019         rdev->dev.class = &regulator_class;
4020         rdev->dev.parent = dev;
4021         dev_set_name(&rdev->dev, "regulator.%lu",
4022                     (unsigned long) atomic_inc_return(&regulator_no));
4023
4024         /* set regulator constraints */
4025         if (init_data)
4026                 rdev->constraints = kmemdup(&init_data->constraints,
4027                                             sizeof(*rdev->constraints),
4028                                             GFP_KERNEL);
4029         else
4030                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
4031                                             GFP_KERNEL);
4032         if (!rdev->constraints) {
4033                 ret = -ENOMEM;
4034                 goto wash;
4035         }
4036
4037         if (init_data && init_data->supply_regulator)
4038                 rdev->supply_name = init_data->supply_regulator;
4039         else if (regulator_desc->supply_name)
4040                 rdev->supply_name = regulator_desc->supply_name;
4041
4042         ret = set_machine_constraints(rdev);
4043         if (ret == -EPROBE_DEFER) {
4044                 /* Regulator might be in bypass mode and so needs its supply
4045                  * to set the constraints */
4046                 /* FIXME: this currently triggers a chicken-and-egg problem
4047                  * when creating -SUPPLY symlink in sysfs to a regulator
4048                  * that is just being created */
4049                 ret = regulator_resolve_supply(rdev);
4050                 if (!ret)
4051                         ret = set_machine_constraints(rdev);
4052                 else
4053                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
4054                                  ERR_PTR(ret));
4055         }
4056         if (ret < 0)
4057                 goto wash;
4058
4059         /* add consumers devices */
4060         if (init_data) {
4061                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4062                         ret = set_consumer_device_supply(rdev,
4063                                 init_data->consumer_supplies[i].dev_name,
4064                                 init_data->consumer_supplies[i].supply);
4065                         if (ret < 0) {
4066                                 dev_err(dev, "Failed to set supply %s\n",
4067                                         init_data->consumer_supplies[i].supply);
4068                                 goto unset_supplies;
4069                         }
4070                 }
4071         }
4072
4073         if (!rdev->desc->ops->get_voltage &&
4074             !rdev->desc->ops->list_voltage &&
4075             !rdev->desc->fixed_uV)
4076                 rdev->is_switch = true;
4077
4078         dev_set_drvdata(&rdev->dev, rdev);
4079         ret = device_register(&rdev->dev);
4080         if (ret != 0) {
4081                 put_device(&rdev->dev);
4082                 goto unset_supplies;
4083         }
4084
4085         rdev_init_debugfs(rdev);
4086
4087         /* try to resolve regulators supply since a new one was registered */
4088         class_for_each_device(&regulator_class, NULL, NULL,
4089                               regulator_register_resolve_supply);
4090         kfree(config);
4091         return rdev;
4092
4093 unset_supplies:
4094         mutex_lock(&regulator_list_mutex);
4095         unset_regulator_supplies(rdev);
4096         mutex_unlock(&regulator_list_mutex);
4097 wash:
4098         kfree(rdev->constraints);
4099         mutex_lock(&regulator_list_mutex);
4100         regulator_ena_gpio_free(rdev);
4101         mutex_unlock(&regulator_list_mutex);
4102 clean:
4103         kfree(rdev);
4104         kfree(config);
4105         return ERR_PTR(ret);
4106 }
4107 EXPORT_SYMBOL_GPL(regulator_register);
4108
4109 /**
4110  * regulator_unregister - unregister regulator
4111  * @rdev: regulator to unregister
4112  *
4113  * Called by regulator drivers to unregister a regulator.
4114  */
4115 void regulator_unregister(struct regulator_dev *rdev)
4116 {
4117         if (rdev == NULL)
4118                 return;
4119
4120         if (rdev->supply) {
4121                 while (rdev->use_count--)
4122                         regulator_disable(rdev->supply);
4123                 regulator_put(rdev->supply);
4124         }
4125         mutex_lock(&regulator_list_mutex);
4126         debugfs_remove_recursive(rdev->debugfs);
4127         flush_work(&rdev->disable_work.work);
4128         WARN_ON(rdev->open_count);
4129         unset_regulator_supplies(rdev);
4130         list_del(&rdev->list);
4131         regulator_ena_gpio_free(rdev);
4132         mutex_unlock(&regulator_list_mutex);
4133         device_unregister(&rdev->dev);
4134 }
4135 EXPORT_SYMBOL_GPL(regulator_unregister);
4136
4137 static int _regulator_suspend_prepare(struct device *dev, void *data)
4138 {
4139         struct regulator_dev *rdev = dev_to_rdev(dev);
4140         const suspend_state_t *state = data;
4141         int ret;
4142
4143         mutex_lock(&rdev->mutex);
4144         ret = suspend_prepare(rdev, *state);
4145         mutex_unlock(&rdev->mutex);
4146
4147         return ret;
4148 }
4149
4150 /**
4151  * regulator_suspend_prepare - prepare regulators for system wide suspend
4152  * @state: system suspend state
4153  *
4154  * Configure each regulator with it's suspend operating parameters for state.
4155  * This will usually be called by machine suspend code prior to supending.
4156  */
4157 int regulator_suspend_prepare(suspend_state_t state)
4158 {
4159         /* ON is handled by regulator active state */
4160         if (state == PM_SUSPEND_ON)
4161                 return -EINVAL;
4162
4163         return class_for_each_device(&regulator_class, NULL, &state,
4164                                      _regulator_suspend_prepare);
4165 }
4166 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4167
4168 static int _regulator_suspend_finish(struct device *dev, void *data)
4169 {
4170         struct regulator_dev *rdev = dev_to_rdev(dev);
4171         int ret;
4172
4173         mutex_lock(&rdev->mutex);
4174         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4175                 if (!_regulator_is_enabled(rdev)) {
4176                         ret = _regulator_do_enable(rdev);
4177                         if (ret)
4178                                 dev_err(dev,
4179                                         "Failed to resume regulator %d\n",
4180                                         ret);
4181                 }
4182         } else {
4183                 if (!have_full_constraints())
4184                         goto unlock;
4185                 if (!_regulator_is_enabled(rdev))
4186                         goto unlock;
4187
4188                 ret = _regulator_do_disable(rdev);
4189                 if (ret)
4190                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4191         }
4192 unlock:
4193         mutex_unlock(&rdev->mutex);
4194
4195         /* Keep processing regulators in spite of any errors */
4196         return 0;
4197 }
4198
4199 /**
4200  * regulator_suspend_finish - resume regulators from system wide suspend
4201  *
4202  * Turn on regulators that might be turned off by regulator_suspend_prepare
4203  * and that should be turned on according to the regulators properties.
4204  */
4205 int regulator_suspend_finish(void)
4206 {
4207         return class_for_each_device(&regulator_class, NULL, NULL,
4208                                      _regulator_suspend_finish);
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4211
4212 /**
4213  * regulator_has_full_constraints - the system has fully specified constraints
4214  *
4215  * Calling this function will cause the regulator API to disable all
4216  * regulators which have a zero use count and don't have an always_on
4217  * constraint in a late_initcall.
4218  *
4219  * The intention is that this will become the default behaviour in a
4220  * future kernel release so users are encouraged to use this facility
4221  * now.
4222  */
4223 void regulator_has_full_constraints(void)
4224 {
4225         has_full_constraints = 1;
4226 }
4227 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4228
4229 /**
4230  * rdev_get_drvdata - get rdev regulator driver data
4231  * @rdev: regulator
4232  *
4233  * Get rdev regulator driver private data. This call can be used in the
4234  * regulator driver context.
4235  */
4236 void *rdev_get_drvdata(struct regulator_dev *rdev)
4237 {
4238         return rdev->reg_data;
4239 }
4240 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4241
4242 /**
4243  * regulator_get_drvdata - get regulator driver data
4244  * @regulator: regulator
4245  *
4246  * Get regulator driver private data. This call can be used in the consumer
4247  * driver context when non API regulator specific functions need to be called.
4248  */
4249 void *regulator_get_drvdata(struct regulator *regulator)
4250 {
4251         return regulator->rdev->reg_data;
4252 }
4253 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4254
4255 /**
4256  * regulator_set_drvdata - set regulator driver data
4257  * @regulator: regulator
4258  * @data: data
4259  */
4260 void regulator_set_drvdata(struct regulator *regulator, void *data)
4261 {
4262         regulator->rdev->reg_data = data;
4263 }
4264 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4265
4266 /**
4267  * regulator_get_id - get regulator ID
4268  * @rdev: regulator
4269  */
4270 int rdev_get_id(struct regulator_dev *rdev)
4271 {
4272         return rdev->desc->id;
4273 }
4274 EXPORT_SYMBOL_GPL(rdev_get_id);
4275
4276 struct device *rdev_get_dev(struct regulator_dev *rdev)
4277 {
4278         return &rdev->dev;
4279 }
4280 EXPORT_SYMBOL_GPL(rdev_get_dev);
4281
4282 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4283 {
4284         return reg_init_data->driver_data;
4285 }
4286 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4287
4288 #ifdef CONFIG_DEBUG_FS
4289 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4290                                     size_t count, loff_t *ppos)
4291 {
4292         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4293         ssize_t len, ret = 0;
4294         struct regulator_map *map;
4295
4296         if (!buf)
4297                 return -ENOMEM;
4298
4299         list_for_each_entry(map, &regulator_map_list, list) {
4300                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4301                                "%s -> %s.%s\n",
4302                                rdev_get_name(map->regulator), map->dev_name,
4303                                map->supply);
4304                 if (len >= 0)
4305                         ret += len;
4306                 if (ret > PAGE_SIZE) {
4307                         ret = PAGE_SIZE;
4308                         break;
4309                 }
4310         }
4311
4312         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4313
4314         kfree(buf);
4315
4316         return ret;
4317 }
4318 #endif
4319
4320 static const struct file_operations supply_map_fops = {
4321 #ifdef CONFIG_DEBUG_FS
4322         .read = supply_map_read_file,
4323         .llseek = default_llseek,
4324 #endif
4325 };
4326
4327 #ifdef CONFIG_DEBUG_FS
4328 struct summary_data {
4329         struct seq_file *s;
4330         struct regulator_dev *parent;
4331         int level;
4332 };
4333
4334 static void regulator_summary_show_subtree(struct seq_file *s,
4335                                            struct regulator_dev *rdev,
4336                                            int level);
4337
4338 static int regulator_summary_show_children(struct device *dev, void *data)
4339 {
4340         struct regulator_dev *rdev = dev_to_rdev(dev);
4341         struct summary_data *summary_data = data;
4342
4343         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4344                 regulator_summary_show_subtree(summary_data->s, rdev,
4345                                                summary_data->level + 1);
4346
4347         return 0;
4348 }
4349
4350 static void regulator_summary_show_subtree(struct seq_file *s,
4351                                            struct regulator_dev *rdev,
4352                                            int level)
4353 {
4354         struct regulation_constraints *c;
4355         struct regulator *consumer;
4356         struct summary_data summary_data;
4357
4358         if (!rdev)
4359                 return;
4360
4361         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4362                    level * 3 + 1, "",
4363                    30 - level * 3, rdev_get_name(rdev),
4364                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4365
4366         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4367         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4368
4369         c = rdev->constraints;
4370         if (c) {
4371                 switch (rdev->desc->type) {
4372                 case REGULATOR_VOLTAGE:
4373                         seq_printf(s, "%5dmV %5dmV ",
4374                                    c->min_uV / 1000, c->max_uV / 1000);
4375                         break;
4376                 case REGULATOR_CURRENT:
4377                         seq_printf(s, "%5dmA %5dmA ",
4378                                    c->min_uA / 1000, c->max_uA / 1000);
4379                         break;
4380                 }
4381         }
4382
4383         seq_puts(s, "\n");
4384
4385         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4386                 if (consumer->dev && consumer->dev->class == &regulator_class)
4387                         continue;
4388
4389                 seq_printf(s, "%*s%-*s ",
4390                            (level + 1) * 3 + 1, "",
4391                            30 - (level + 1) * 3,
4392                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4393
4394                 switch (rdev->desc->type) {
4395                 case REGULATOR_VOLTAGE:
4396                         seq_printf(s, "%37dmV %5dmV",
4397                                    consumer->min_uV / 1000,
4398                                    consumer->max_uV / 1000);
4399                         break;
4400                 case REGULATOR_CURRENT:
4401                         break;
4402                 }
4403
4404                 seq_puts(s, "\n");
4405         }
4406
4407         summary_data.s = s;
4408         summary_data.level = level;
4409         summary_data.parent = rdev;
4410
4411         class_for_each_device(&regulator_class, NULL, &summary_data,
4412                               regulator_summary_show_children);
4413 }
4414
4415 static int regulator_summary_show_roots(struct device *dev, void *data)
4416 {
4417         struct regulator_dev *rdev = dev_to_rdev(dev);
4418         struct seq_file *s = data;
4419
4420         if (!rdev->supply)
4421                 regulator_summary_show_subtree(s, rdev, 0);
4422
4423         return 0;
4424 }
4425
4426 static int regulator_summary_show(struct seq_file *s, void *data)
4427 {
4428         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4429         seq_puts(s, "-------------------------------------------------------------------------------\n");
4430
4431         class_for_each_device(&regulator_class, NULL, s,
4432                               regulator_summary_show_roots);
4433
4434         return 0;
4435 }
4436
4437 static int regulator_summary_open(struct inode *inode, struct file *file)
4438 {
4439         return single_open(file, regulator_summary_show, inode->i_private);
4440 }
4441 #endif
4442
4443 static const struct file_operations regulator_summary_fops = {
4444 #ifdef CONFIG_DEBUG_FS
4445         .open           = regulator_summary_open,
4446         .read           = seq_read,
4447         .llseek         = seq_lseek,
4448         .release        = single_release,
4449 #endif
4450 };
4451
4452 static int __init regulator_init(void)
4453 {
4454         int ret;
4455
4456         ret = class_register(&regulator_class);
4457
4458         debugfs_root = debugfs_create_dir("regulator", NULL);
4459         if (!debugfs_root)
4460                 pr_warn("regulator: Failed to create debugfs directory\n");
4461
4462         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4463                             &supply_map_fops);
4464
4465         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4466                             NULL, &regulator_summary_fops);
4467
4468         regulator_dummy_init();
4469
4470         return ret;
4471 }
4472
4473 /* init early to allow our consumers to complete system booting */
4474 core_initcall(regulator_init);
4475
4476 static int __init regulator_late_cleanup(struct device *dev, void *data)
4477 {
4478         struct regulator_dev *rdev = dev_to_rdev(dev);
4479         const struct regulator_ops *ops = rdev->desc->ops;
4480         struct regulation_constraints *c = rdev->constraints;
4481         int enabled, ret;
4482
4483         if (c && c->always_on)
4484                 return 0;
4485
4486         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4487                 return 0;
4488
4489         mutex_lock(&rdev->mutex);
4490
4491         if (rdev->use_count)
4492                 goto unlock;
4493
4494         /* If we can't read the status assume it's on. */
4495         if (ops->is_enabled)
4496                 enabled = ops->is_enabled(rdev);
4497         else
4498                 enabled = 1;
4499
4500         if (!enabled)
4501                 goto unlock;
4502
4503         if (have_full_constraints()) {
4504                 /* We log since this may kill the system if it goes
4505                  * wrong. */
4506                 rdev_info(rdev, "disabling\n");
4507                 ret = _regulator_do_disable(rdev);
4508                 if (ret != 0)
4509                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4510         } else {
4511                 /* The intention is that in future we will
4512                  * assume that full constraints are provided
4513                  * so warn even if we aren't going to do
4514                  * anything here.
4515                  */
4516                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4517         }
4518
4519 unlock:
4520         mutex_unlock(&rdev->mutex);
4521
4522         return 0;
4523 }
4524
4525 static int __init regulator_init_complete(void)
4526 {
4527         /*
4528          * Since DT doesn't provide an idiomatic mechanism for
4529          * enabling full constraints and since it's much more natural
4530          * with DT to provide them just assume that a DT enabled
4531          * system has full constraints.
4532          */
4533         if (of_have_populated_dt())
4534                 has_full_constraints = true;
4535
4536         /*
4537          * Regulators may had failed to resolve their input supplies
4538          * when were registered, either because the input supply was
4539          * not registered yet or because its parent device was not
4540          * bound yet. So attempt to resolve the input supplies for
4541          * pending regulators before trying to disable unused ones.
4542          */
4543         class_for_each_device(&regulator_class, NULL, NULL,
4544                               regulator_register_resolve_supply);
4545
4546         /* If we have a full configuration then disable any regulators
4547          * we have permission to change the status for and which are
4548          * not in use or always_on.  This is effectively the default
4549          * for DT and ACPI as they have full constraints.
4550          */
4551         class_for_each_device(&regulator_class, NULL, NULL,
4552                               regulator_late_cleanup);
4553
4554         return 0;
4555 }
4556 late_initcall_sync(regulator_init_complete);