GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
208                                 prop_name, dev->of_node);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  *
1030  * Allows platform initialisation code to define and constrain
1031  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1032  * Constraints *must* be set by platform code in order for some
1033  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034  * set_mode.
1035  */
1036 static int set_machine_constraints(struct regulator_dev *rdev)
1037 {
1038         int ret = 0;
1039         const struct regulator_ops *ops = rdev->desc->ops;
1040
1041         ret = machine_constraints_voltage(rdev, rdev->constraints);
1042         if (ret != 0)
1043                 return ret;
1044
1045         ret = machine_constraints_current(rdev, rdev->constraints);
1046         if (ret != 0)
1047                 return ret;
1048
1049         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1050                 ret = ops->set_input_current_limit(rdev,
1051                                                    rdev->constraints->ilim_uA);
1052                 if (ret < 0) {
1053                         rdev_err(rdev, "failed to set input limit\n");
1054                         return ret;
1055                 }
1056         }
1057
1058         /* do we need to setup our suspend state */
1059         if (rdev->constraints->initial_state) {
1060                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1061                 if (ret < 0) {
1062                         rdev_err(rdev, "failed to set suspend state\n");
1063                         return ret;
1064                 }
1065         }
1066
1067         if (rdev->constraints->initial_mode) {
1068                 if (!ops->set_mode) {
1069                         rdev_err(rdev, "no set_mode operation\n");
1070                         return -EINVAL;
1071                 }
1072
1073                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1074                 if (ret < 0) {
1075                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1076                         return ret;
1077                 }
1078         }
1079
1080         /* If the constraints say the regulator should be on at this point
1081          * and we have control then make sure it is enabled.
1082          */
1083         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1084                 /* If we want to enable this regulator, make sure that we know
1085                  * the supplying regulator.
1086                  */
1087                 if (rdev->supply_name && !rdev->supply)
1088                         return -EPROBE_DEFER;
1089
1090                 ret = _regulator_do_enable(rdev);
1091                 if (ret < 0 && ret != -EINVAL) {
1092                         rdev_err(rdev, "failed to enable\n");
1093                         return ret;
1094                 }
1095         }
1096
1097         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1098                 && ops->set_ramp_delay) {
1099                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1100                 if (ret < 0) {
1101                         rdev_err(rdev, "failed to set ramp_delay\n");
1102                         return ret;
1103                 }
1104         }
1105
1106         if (rdev->constraints->pull_down && ops->set_pull_down) {
1107                 ret = ops->set_pull_down(rdev);
1108                 if (ret < 0) {
1109                         rdev_err(rdev, "failed to set pull down\n");
1110                         return ret;
1111                 }
1112         }
1113
1114         if (rdev->constraints->soft_start && ops->set_soft_start) {
1115                 ret = ops->set_soft_start(rdev);
1116                 if (ret < 0) {
1117                         rdev_err(rdev, "failed to set soft start\n");
1118                         return ret;
1119                 }
1120         }
1121
1122         if (rdev->constraints->over_current_protection
1123                 && ops->set_over_current_protection) {
1124                 ret = ops->set_over_current_protection(rdev);
1125                 if (ret < 0) {
1126                         rdev_err(rdev, "failed to set over current protection\n");
1127                         return ret;
1128                 }
1129         }
1130
1131         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1132                 bool ad_state = (rdev->constraints->active_discharge ==
1133                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1134
1135                 ret = ops->set_active_discharge(rdev, ad_state);
1136                 if (ret < 0) {
1137                         rdev_err(rdev, "failed to set active discharge\n");
1138                         return ret;
1139                 }
1140         }
1141
1142         print_constraints(rdev);
1143         return 0;
1144 }
1145
1146 /**
1147  * set_supply - set regulator supply regulator
1148  * @rdev: regulator name
1149  * @supply_rdev: supply regulator name
1150  *
1151  * Called by platform initialisation code to set the supply regulator for this
1152  * regulator. This ensures that a regulators supply will also be enabled by the
1153  * core if it's child is enabled.
1154  */
1155 static int set_supply(struct regulator_dev *rdev,
1156                       struct regulator_dev *supply_rdev)
1157 {
1158         int err;
1159
1160         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1161
1162         if (!try_module_get(supply_rdev->owner))
1163                 return -ENODEV;
1164
1165         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1166         if (rdev->supply == NULL) {
1167                 err = -ENOMEM;
1168                 return err;
1169         }
1170         supply_rdev->open_count++;
1171
1172         return 0;
1173 }
1174
1175 /**
1176  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1177  * @rdev:         regulator source
1178  * @consumer_dev_name: dev_name() string for device supply applies to
1179  * @supply:       symbolic name for supply
1180  *
1181  * Allows platform initialisation code to map physical regulator
1182  * sources to symbolic names for supplies for use by devices.  Devices
1183  * should use these symbolic names to request regulators, avoiding the
1184  * need to provide board-specific regulator names as platform data.
1185  */
1186 static int set_consumer_device_supply(struct regulator_dev *rdev,
1187                                       const char *consumer_dev_name,
1188                                       const char *supply)
1189 {
1190         struct regulator_map *node, *new_node;
1191         int has_dev;
1192
1193         if (supply == NULL)
1194                 return -EINVAL;
1195
1196         if (consumer_dev_name != NULL)
1197                 has_dev = 1;
1198         else
1199                 has_dev = 0;
1200
1201         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1202         if (new_node == NULL)
1203                 return -ENOMEM;
1204
1205         new_node->regulator = rdev;
1206         new_node->supply = supply;
1207
1208         if (has_dev) {
1209                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1210                 if (new_node->dev_name == NULL) {
1211                         kfree(new_node);
1212                         return -ENOMEM;
1213                 }
1214         }
1215
1216         mutex_lock(&regulator_list_mutex);
1217         list_for_each_entry(node, &regulator_map_list, list) {
1218                 if (node->dev_name && consumer_dev_name) {
1219                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1220                                 continue;
1221                 } else if (node->dev_name || consumer_dev_name) {
1222                         continue;
1223                 }
1224
1225                 if (strcmp(node->supply, supply) != 0)
1226                         continue;
1227
1228                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1229                          consumer_dev_name,
1230                          dev_name(&node->regulator->dev),
1231                          node->regulator->desc->name,
1232                          supply,
1233                          dev_name(&rdev->dev), rdev_get_name(rdev));
1234                 goto fail;
1235         }
1236
1237         list_add(&new_node->list, &regulator_map_list);
1238         mutex_unlock(&regulator_list_mutex);
1239
1240         return 0;
1241
1242 fail:
1243         mutex_unlock(&regulator_list_mutex);
1244         kfree(new_node->dev_name);
1245         kfree(new_node);
1246         return -EBUSY;
1247 }
1248
1249 static void unset_regulator_supplies(struct regulator_dev *rdev)
1250 {
1251         struct regulator_map *node, *n;
1252
1253         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1254                 if (rdev == node->regulator) {
1255                         list_del(&node->list);
1256                         kfree(node->dev_name);
1257                         kfree(node);
1258                 }
1259         }
1260 }
1261
1262 #ifdef CONFIG_DEBUG_FS
1263 static ssize_t constraint_flags_read_file(struct file *file,
1264                                           char __user *user_buf,
1265                                           size_t count, loff_t *ppos)
1266 {
1267         const struct regulator *regulator = file->private_data;
1268         const struct regulation_constraints *c = regulator->rdev->constraints;
1269         char *buf;
1270         ssize_t ret;
1271
1272         if (!c)
1273                 return 0;
1274
1275         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1276         if (!buf)
1277                 return -ENOMEM;
1278
1279         ret = snprintf(buf, PAGE_SIZE,
1280                         "always_on: %u\n"
1281                         "boot_on: %u\n"
1282                         "apply_uV: %u\n"
1283                         "ramp_disable: %u\n"
1284                         "soft_start: %u\n"
1285                         "pull_down: %u\n"
1286                         "over_current_protection: %u\n",
1287                         c->always_on,
1288                         c->boot_on,
1289                         c->apply_uV,
1290                         c->ramp_disable,
1291                         c->soft_start,
1292                         c->pull_down,
1293                         c->over_current_protection);
1294
1295         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1296         kfree(buf);
1297
1298         return ret;
1299 }
1300
1301 #endif
1302
1303 static const struct file_operations constraint_flags_fops = {
1304 #ifdef CONFIG_DEBUG_FS
1305         .open = simple_open,
1306         .read = constraint_flags_read_file,
1307         .llseek = default_llseek,
1308 #endif
1309 };
1310
1311 #define REG_STR_SIZE    64
1312
1313 static struct regulator *create_regulator(struct regulator_dev *rdev,
1314                                           struct device *dev,
1315                                           const char *supply_name)
1316 {
1317         struct regulator *regulator;
1318         char buf[REG_STR_SIZE];
1319         int err, size;
1320
1321         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1322         if (regulator == NULL)
1323                 return NULL;
1324
1325         mutex_lock(&rdev->mutex);
1326         regulator->rdev = rdev;
1327         list_add(&regulator->list, &rdev->consumer_list);
1328
1329         if (dev) {
1330                 regulator->dev = dev;
1331
1332                 /* Add a link to the device sysfs entry */
1333                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1334                                 dev->kobj.name, supply_name);
1335                 if (size >= REG_STR_SIZE)
1336                         goto overflow_err;
1337
1338                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1339                 if (regulator->supply_name == NULL)
1340                         goto overflow_err;
1341
1342                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1343                                         buf);
1344                 if (err) {
1345                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1346                                   dev->kobj.name, err);
1347                         /* non-fatal */
1348                 }
1349         } else {
1350                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1351                 if (regulator->supply_name == NULL)
1352                         goto overflow_err;
1353         }
1354
1355         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1356                                                 rdev->debugfs);
1357         if (!regulator->debugfs) {
1358                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1359         } else {
1360                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1361                                    &regulator->uA_load);
1362                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1363                                    &regulator->min_uV);
1364                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1365                                    &regulator->max_uV);
1366                 debugfs_create_file("constraint_flags", 0444,
1367                                     regulator->debugfs, regulator,
1368                                     &constraint_flags_fops);
1369         }
1370
1371         /*
1372          * Check now if the regulator is an always on regulator - if
1373          * it is then we don't need to do nearly so much work for
1374          * enable/disable calls.
1375          */
1376         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1377             _regulator_is_enabled(rdev))
1378                 regulator->always_on = true;
1379
1380         mutex_unlock(&rdev->mutex);
1381         return regulator;
1382 overflow_err:
1383         list_del(&regulator->list);
1384         kfree(regulator);
1385         mutex_unlock(&rdev->mutex);
1386         return NULL;
1387 }
1388
1389 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1390 {
1391         if (rdev->constraints && rdev->constraints->enable_time)
1392                 return rdev->constraints->enable_time;
1393         if (!rdev->desc->ops->enable_time)
1394                 return rdev->desc->enable_time;
1395         return rdev->desc->ops->enable_time(rdev);
1396 }
1397
1398 static struct regulator_supply_alias *regulator_find_supply_alias(
1399                 struct device *dev, const char *supply)
1400 {
1401         struct regulator_supply_alias *map;
1402
1403         list_for_each_entry(map, &regulator_supply_alias_list, list)
1404                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1405                         return map;
1406
1407         return NULL;
1408 }
1409
1410 static void regulator_supply_alias(struct device **dev, const char **supply)
1411 {
1412         struct regulator_supply_alias *map;
1413
1414         map = regulator_find_supply_alias(*dev, *supply);
1415         if (map) {
1416                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1417                                 *supply, map->alias_supply,
1418                                 dev_name(map->alias_dev));
1419                 *dev = map->alias_dev;
1420                 *supply = map->alias_supply;
1421         }
1422 }
1423
1424 static int of_node_match(struct device *dev, const void *data)
1425 {
1426         return dev->of_node == data;
1427 }
1428
1429 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1430 {
1431         struct device *dev;
1432
1433         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1434
1435         return dev ? dev_to_rdev(dev) : NULL;
1436 }
1437
1438 static int regulator_match(struct device *dev, const void *data)
1439 {
1440         struct regulator_dev *r = dev_to_rdev(dev);
1441
1442         return strcmp(rdev_get_name(r), data) == 0;
1443 }
1444
1445 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1446 {
1447         struct device *dev;
1448
1449         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1450
1451         return dev ? dev_to_rdev(dev) : NULL;
1452 }
1453
1454 /**
1455  * regulator_dev_lookup - lookup a regulator device.
1456  * @dev: device for regulator "consumer".
1457  * @supply: Supply name or regulator ID.
1458  *
1459  * If successful, returns a struct regulator_dev that corresponds to the name
1460  * @supply and with the embedded struct device refcount incremented by one.
1461  * The refcount must be dropped by calling put_device().
1462  * On failure one of the following ERR-PTR-encoded values is returned:
1463  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1464  * in the future.
1465  */
1466 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1467                                                   const char *supply)
1468 {
1469         struct regulator_dev *r = NULL;
1470         struct device_node *node;
1471         struct regulator_map *map;
1472         const char *devname = NULL;
1473
1474         regulator_supply_alias(&dev, &supply);
1475
1476         /* first do a dt based lookup */
1477         if (dev && dev->of_node) {
1478                 node = of_get_regulator(dev, supply);
1479                 if (node) {
1480                         r = of_find_regulator_by_node(node);
1481                         if (r)
1482                                 return r;
1483
1484                         /*
1485                          * We have a node, but there is no device.
1486                          * assume it has not registered yet.
1487                          */
1488                         return ERR_PTR(-EPROBE_DEFER);
1489                 }
1490         }
1491
1492         /* if not found, try doing it non-dt way */
1493         if (dev)
1494                 devname = dev_name(dev);
1495
1496         mutex_lock(&regulator_list_mutex);
1497         list_for_each_entry(map, &regulator_map_list, list) {
1498                 /* If the mapping has a device set up it must match */
1499                 if (map->dev_name &&
1500                     (!devname || strcmp(map->dev_name, devname)))
1501                         continue;
1502
1503                 if (strcmp(map->supply, supply) == 0 &&
1504                     get_device(&map->regulator->dev)) {
1505                         r = map->regulator;
1506                         break;
1507                 }
1508         }
1509         mutex_unlock(&regulator_list_mutex);
1510
1511         if (r)
1512                 return r;
1513
1514         r = regulator_lookup_by_name(supply);
1515         if (r)
1516                 return r;
1517
1518         return ERR_PTR(-ENODEV);
1519 }
1520
1521 static int regulator_resolve_supply(struct regulator_dev *rdev)
1522 {
1523         struct regulator_dev *r;
1524         struct device *dev = rdev->dev.parent;
1525         int ret;
1526
1527         /* No supply to resovle? */
1528         if (!rdev->supply_name)
1529                 return 0;
1530
1531         /* Supply already resolved? */
1532         if (rdev->supply)
1533                 return 0;
1534
1535         r = regulator_dev_lookup(dev, rdev->supply_name);
1536         if (IS_ERR(r)) {
1537                 ret = PTR_ERR(r);
1538
1539                 /* Did the lookup explicitly defer for us? */
1540                 if (ret == -EPROBE_DEFER)
1541                         return ret;
1542
1543                 if (have_full_constraints()) {
1544                         r = dummy_regulator_rdev;
1545                         get_device(&r->dev);
1546                 } else {
1547                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1548                                 rdev->supply_name, rdev->desc->name);
1549                         return -EPROBE_DEFER;
1550                 }
1551         }
1552
1553         if (r == rdev) {
1554                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1555                         rdev->desc->name, rdev->supply_name);
1556                 if (!have_full_constraints())
1557                         return -EINVAL;
1558                 r = dummy_regulator_rdev;
1559                 get_device(&r->dev);
1560         }
1561
1562         /*
1563          * If the supply's parent device is not the same as the
1564          * regulator's parent device, then ensure the parent device
1565          * is bound before we resolve the supply, in case the parent
1566          * device get probe deferred and unregisters the supply.
1567          */
1568         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1569                 if (!device_is_bound(r->dev.parent)) {
1570                         put_device(&r->dev);
1571                         return -EPROBE_DEFER;
1572                 }
1573         }
1574
1575         /* Recursively resolve the supply of the supply */
1576         ret = regulator_resolve_supply(r);
1577         if (ret < 0) {
1578                 put_device(&r->dev);
1579                 return ret;
1580         }
1581
1582         ret = set_supply(rdev, r);
1583         if (ret < 0) {
1584                 put_device(&r->dev);
1585                 return ret;
1586         }
1587
1588         /* Cascade always-on state to supply */
1589         if (_regulator_is_enabled(rdev)) {
1590                 ret = regulator_enable(rdev->supply);
1591                 if (ret < 0) {
1592                         _regulator_put(rdev->supply);
1593                         rdev->supply = NULL;
1594                         return ret;
1595                 }
1596         }
1597
1598         return 0;
1599 }
1600
1601 /* Internal regulator request function */
1602 struct regulator *_regulator_get(struct device *dev, const char *id,
1603                                  enum regulator_get_type get_type)
1604 {
1605         struct regulator_dev *rdev;
1606         struct regulator *regulator;
1607         const char *devname = dev ? dev_name(dev) : "deviceless";
1608         int ret;
1609
1610         if (get_type >= MAX_GET_TYPE) {
1611                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1612                 return ERR_PTR(-EINVAL);
1613         }
1614
1615         if (id == NULL) {
1616                 pr_err("get() with no identifier\n");
1617                 return ERR_PTR(-EINVAL);
1618         }
1619
1620         rdev = regulator_dev_lookup(dev, id);
1621         if (IS_ERR(rdev)) {
1622                 ret = PTR_ERR(rdev);
1623
1624                 /*
1625                  * If regulator_dev_lookup() fails with error other
1626                  * than -ENODEV our job here is done, we simply return it.
1627                  */
1628                 if (ret != -ENODEV)
1629                         return ERR_PTR(ret);
1630
1631                 if (!have_full_constraints()) {
1632                         dev_warn(dev,
1633                                  "incomplete constraints, dummy supplies not allowed\n");
1634                         return ERR_PTR(-ENODEV);
1635                 }
1636
1637                 switch (get_type) {
1638                 case NORMAL_GET:
1639                         /*
1640                          * Assume that a regulator is physically present and
1641                          * enabled, even if it isn't hooked up, and just
1642                          * provide a dummy.
1643                          */
1644                         dev_warn(dev,
1645                                  "%s supply %s not found, using dummy regulator\n",
1646                                  devname, id);
1647                         rdev = dummy_regulator_rdev;
1648                         get_device(&rdev->dev);
1649                         break;
1650
1651                 case EXCLUSIVE_GET:
1652                         dev_warn(dev,
1653                                  "dummy supplies not allowed for exclusive requests\n");
1654                         /* fall through */
1655
1656                 default:
1657                         return ERR_PTR(-ENODEV);
1658                 }
1659         }
1660
1661         if (rdev->exclusive) {
1662                 regulator = ERR_PTR(-EPERM);
1663                 put_device(&rdev->dev);
1664                 return regulator;
1665         }
1666
1667         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1668                 regulator = ERR_PTR(-EBUSY);
1669                 put_device(&rdev->dev);
1670                 return regulator;
1671         }
1672
1673         ret = regulator_resolve_supply(rdev);
1674         if (ret < 0) {
1675                 regulator = ERR_PTR(ret);
1676                 put_device(&rdev->dev);
1677                 return regulator;
1678         }
1679
1680         if (!try_module_get(rdev->owner)) {
1681                 regulator = ERR_PTR(-EPROBE_DEFER);
1682                 put_device(&rdev->dev);
1683                 return regulator;
1684         }
1685
1686         regulator = create_regulator(rdev, dev, id);
1687         if (regulator == NULL) {
1688                 regulator = ERR_PTR(-ENOMEM);
1689                 put_device(&rdev->dev);
1690                 module_put(rdev->owner);
1691                 return regulator;
1692         }
1693
1694         rdev->open_count++;
1695         if (get_type == EXCLUSIVE_GET) {
1696                 rdev->exclusive = 1;
1697
1698                 ret = _regulator_is_enabled(rdev);
1699                 if (ret > 0)
1700                         rdev->use_count = 1;
1701                 else
1702                         rdev->use_count = 0;
1703         }
1704
1705         return regulator;
1706 }
1707
1708 /**
1709  * regulator_get - lookup and obtain a reference to a regulator.
1710  * @dev: device for regulator "consumer"
1711  * @id: Supply name or regulator ID.
1712  *
1713  * Returns a struct regulator corresponding to the regulator producer,
1714  * or IS_ERR() condition containing errno.
1715  *
1716  * Use of supply names configured via regulator_set_device_supply() is
1717  * strongly encouraged.  It is recommended that the supply name used
1718  * should match the name used for the supply and/or the relevant
1719  * device pins in the datasheet.
1720  */
1721 struct regulator *regulator_get(struct device *dev, const char *id)
1722 {
1723         return _regulator_get(dev, id, NORMAL_GET);
1724 }
1725 EXPORT_SYMBOL_GPL(regulator_get);
1726
1727 /**
1728  * regulator_get_exclusive - obtain exclusive access to a regulator.
1729  * @dev: device for regulator "consumer"
1730  * @id: Supply name or regulator ID.
1731  *
1732  * Returns a struct regulator corresponding to the regulator producer,
1733  * or IS_ERR() condition containing errno.  Other consumers will be
1734  * unable to obtain this regulator while this reference is held and the
1735  * use count for the regulator will be initialised to reflect the current
1736  * state of the regulator.
1737  *
1738  * This is intended for use by consumers which cannot tolerate shared
1739  * use of the regulator such as those which need to force the
1740  * regulator off for correct operation of the hardware they are
1741  * controlling.
1742  *
1743  * Use of supply names configured via regulator_set_device_supply() is
1744  * strongly encouraged.  It is recommended that the supply name used
1745  * should match the name used for the supply and/or the relevant
1746  * device pins in the datasheet.
1747  */
1748 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1749 {
1750         return _regulator_get(dev, id, EXCLUSIVE_GET);
1751 }
1752 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1753
1754 /**
1755  * regulator_get_optional - obtain optional access to a regulator.
1756  * @dev: device for regulator "consumer"
1757  * @id: Supply name or regulator ID.
1758  *
1759  * Returns a struct regulator corresponding to the regulator producer,
1760  * or IS_ERR() condition containing errno.
1761  *
1762  * This is intended for use by consumers for devices which can have
1763  * some supplies unconnected in normal use, such as some MMC devices.
1764  * It can allow the regulator core to provide stub supplies for other
1765  * supplies requested using normal regulator_get() calls without
1766  * disrupting the operation of drivers that can handle absent
1767  * supplies.
1768  *
1769  * Use of supply names configured via regulator_set_device_supply() is
1770  * strongly encouraged.  It is recommended that the supply name used
1771  * should match the name used for the supply and/or the relevant
1772  * device pins in the datasheet.
1773  */
1774 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1775 {
1776         return _regulator_get(dev, id, OPTIONAL_GET);
1777 }
1778 EXPORT_SYMBOL_GPL(regulator_get_optional);
1779
1780 /* regulator_list_mutex lock held by regulator_put() */
1781 static void _regulator_put(struct regulator *regulator)
1782 {
1783         struct regulator_dev *rdev;
1784
1785         if (IS_ERR_OR_NULL(regulator))
1786                 return;
1787
1788         lockdep_assert_held_once(&regulator_list_mutex);
1789
1790         rdev = regulator->rdev;
1791
1792         debugfs_remove_recursive(regulator->debugfs);
1793
1794         /* remove any sysfs entries */
1795         if (regulator->dev)
1796                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1797         mutex_lock(&rdev->mutex);
1798         list_del(&regulator->list);
1799
1800         rdev->open_count--;
1801         rdev->exclusive = 0;
1802         put_device(&rdev->dev);
1803         mutex_unlock(&rdev->mutex);
1804
1805         kfree_const(regulator->supply_name);
1806         kfree(regulator);
1807
1808         module_put(rdev->owner);
1809 }
1810
1811 /**
1812  * regulator_put - "free" the regulator source
1813  * @regulator: regulator source
1814  *
1815  * Note: drivers must ensure that all regulator_enable calls made on this
1816  * regulator source are balanced by regulator_disable calls prior to calling
1817  * this function.
1818  */
1819 void regulator_put(struct regulator *regulator)
1820 {
1821         mutex_lock(&regulator_list_mutex);
1822         _regulator_put(regulator);
1823         mutex_unlock(&regulator_list_mutex);
1824 }
1825 EXPORT_SYMBOL_GPL(regulator_put);
1826
1827 /**
1828  * regulator_register_supply_alias - Provide device alias for supply lookup
1829  *
1830  * @dev: device that will be given as the regulator "consumer"
1831  * @id: Supply name or regulator ID
1832  * @alias_dev: device that should be used to lookup the supply
1833  * @alias_id: Supply name or regulator ID that should be used to lookup the
1834  * supply
1835  *
1836  * All lookups for id on dev will instead be conducted for alias_id on
1837  * alias_dev.
1838  */
1839 int regulator_register_supply_alias(struct device *dev, const char *id,
1840                                     struct device *alias_dev,
1841                                     const char *alias_id)
1842 {
1843         struct regulator_supply_alias *map;
1844
1845         map = regulator_find_supply_alias(dev, id);
1846         if (map)
1847                 return -EEXIST;
1848
1849         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1850         if (!map)
1851                 return -ENOMEM;
1852
1853         map->src_dev = dev;
1854         map->src_supply = id;
1855         map->alias_dev = alias_dev;
1856         map->alias_supply = alias_id;
1857
1858         list_add(&map->list, &regulator_supply_alias_list);
1859
1860         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1861                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1862
1863         return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1866
1867 /**
1868  * regulator_unregister_supply_alias - Remove device alias
1869  *
1870  * @dev: device that will be given as the regulator "consumer"
1871  * @id: Supply name or regulator ID
1872  *
1873  * Remove a lookup alias if one exists for id on dev.
1874  */
1875 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1876 {
1877         struct regulator_supply_alias *map;
1878
1879         map = regulator_find_supply_alias(dev, id);
1880         if (map) {
1881                 list_del(&map->list);
1882                 kfree(map);
1883         }
1884 }
1885 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1886
1887 /**
1888  * regulator_bulk_register_supply_alias - register multiple aliases
1889  *
1890  * @dev: device that will be given as the regulator "consumer"
1891  * @id: List of supply names or regulator IDs
1892  * @alias_dev: device that should be used to lookup the supply
1893  * @alias_id: List of supply names or regulator IDs that should be used to
1894  * lookup the supply
1895  * @num_id: Number of aliases to register
1896  *
1897  * @return 0 on success, an errno on failure.
1898  *
1899  * This helper function allows drivers to register several supply
1900  * aliases in one operation.  If any of the aliases cannot be
1901  * registered any aliases that were registered will be removed
1902  * before returning to the caller.
1903  */
1904 int regulator_bulk_register_supply_alias(struct device *dev,
1905                                          const char *const *id,
1906                                          struct device *alias_dev,
1907                                          const char *const *alias_id,
1908                                          int num_id)
1909 {
1910         int i;
1911         int ret;
1912
1913         for (i = 0; i < num_id; ++i) {
1914                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1915                                                       alias_id[i]);
1916                 if (ret < 0)
1917                         goto err;
1918         }
1919
1920         return 0;
1921
1922 err:
1923         dev_err(dev,
1924                 "Failed to create supply alias %s,%s -> %s,%s\n",
1925                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1926
1927         while (--i >= 0)
1928                 regulator_unregister_supply_alias(dev, id[i]);
1929
1930         return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1933
1934 /**
1935  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1936  *
1937  * @dev: device that will be given as the regulator "consumer"
1938  * @id: List of supply names or regulator IDs
1939  * @num_id: Number of aliases to unregister
1940  *
1941  * This helper function allows drivers to unregister several supply
1942  * aliases in one operation.
1943  */
1944 void regulator_bulk_unregister_supply_alias(struct device *dev,
1945                                             const char *const *id,
1946                                             int num_id)
1947 {
1948         int i;
1949
1950         for (i = 0; i < num_id; ++i)
1951                 regulator_unregister_supply_alias(dev, id[i]);
1952 }
1953 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1954
1955
1956 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1957 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1958                                 const struct regulator_config *config)
1959 {
1960         struct regulator_enable_gpio *pin;
1961         struct gpio_desc *gpiod;
1962         int ret;
1963
1964         gpiod = gpio_to_desc(config->ena_gpio);
1965
1966         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1967                 if (pin->gpiod == gpiod) {
1968                         rdev_dbg(rdev, "GPIO %d is already used\n",
1969                                 config->ena_gpio);
1970                         goto update_ena_gpio_to_rdev;
1971                 }
1972         }
1973
1974         ret = gpio_request_one(config->ena_gpio,
1975                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1976                                 rdev_get_name(rdev));
1977         if (ret)
1978                 return ret;
1979
1980         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1981         if (pin == NULL) {
1982                 gpio_free(config->ena_gpio);
1983                 return -ENOMEM;
1984         }
1985
1986         pin->gpiod = gpiod;
1987         pin->ena_gpio_invert = config->ena_gpio_invert;
1988         list_add(&pin->list, &regulator_ena_gpio_list);
1989
1990 update_ena_gpio_to_rdev:
1991         pin->request_count++;
1992         rdev->ena_pin = pin;
1993         return 0;
1994 }
1995
1996 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1997 {
1998         struct regulator_enable_gpio *pin, *n;
1999
2000         if (!rdev->ena_pin)
2001                 return;
2002
2003         /* Free the GPIO only in case of no use */
2004         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2005                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2006                         if (pin->request_count <= 1) {
2007                                 pin->request_count = 0;
2008                                 gpiod_put(pin->gpiod);
2009                                 list_del(&pin->list);
2010                                 kfree(pin);
2011                                 rdev->ena_pin = NULL;
2012                                 return;
2013                         } else {
2014                                 pin->request_count--;
2015                         }
2016                 }
2017         }
2018 }
2019
2020 /**
2021  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2022  * @rdev: regulator_dev structure
2023  * @enable: enable GPIO at initial use?
2024  *
2025  * GPIO is enabled in case of initial use. (enable_count is 0)
2026  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2027  */
2028 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2029 {
2030         struct regulator_enable_gpio *pin = rdev->ena_pin;
2031
2032         if (!pin)
2033                 return -EINVAL;
2034
2035         if (enable) {
2036                 /* Enable GPIO at initial use */
2037                 if (pin->enable_count == 0)
2038                         gpiod_set_value_cansleep(pin->gpiod,
2039                                                  !pin->ena_gpio_invert);
2040
2041                 pin->enable_count++;
2042         } else {
2043                 if (pin->enable_count > 1) {
2044                         pin->enable_count--;
2045                         return 0;
2046                 }
2047
2048                 /* Disable GPIO if not used */
2049                 if (pin->enable_count <= 1) {
2050                         gpiod_set_value_cansleep(pin->gpiod,
2051                                                  pin->ena_gpio_invert);
2052                         pin->enable_count = 0;
2053                 }
2054         }
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * _regulator_enable_delay - a delay helper function
2061  * @delay: time to delay in microseconds
2062  *
2063  * Delay for the requested amount of time as per the guidelines in:
2064  *
2065  *     Documentation/timers/timers-howto.txt
2066  *
2067  * The assumption here is that regulators will never be enabled in
2068  * atomic context and therefore sleeping functions can be used.
2069  */
2070 static void _regulator_enable_delay(unsigned int delay)
2071 {
2072         unsigned int ms = delay / 1000;
2073         unsigned int us = delay % 1000;
2074
2075         if (ms > 0) {
2076                 /*
2077                  * For small enough values, handle super-millisecond
2078                  * delays in the usleep_range() call below.
2079                  */
2080                 if (ms < 20)
2081                         us += ms * 1000;
2082                 else
2083                         msleep(ms);
2084         }
2085
2086         /*
2087          * Give the scheduler some room to coalesce with any other
2088          * wakeup sources. For delays shorter than 10 us, don't even
2089          * bother setting up high-resolution timers and just busy-
2090          * loop.
2091          */
2092         if (us >= 10)
2093                 usleep_range(us, us + 100);
2094         else
2095                 udelay(us);
2096 }
2097
2098 static int _regulator_do_enable(struct regulator_dev *rdev)
2099 {
2100         int ret, delay;
2101
2102         /* Query before enabling in case configuration dependent.  */
2103         ret = _regulator_get_enable_time(rdev);
2104         if (ret >= 0) {
2105                 delay = ret;
2106         } else {
2107                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2108                 delay = 0;
2109         }
2110
2111         trace_regulator_enable(rdev_get_name(rdev));
2112
2113         if (rdev->desc->off_on_delay) {
2114                 /* if needed, keep a distance of off_on_delay from last time
2115                  * this regulator was disabled.
2116                  */
2117                 unsigned long start_jiffy = jiffies;
2118                 unsigned long intended, max_delay, remaining;
2119
2120                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2121                 intended = rdev->last_off_jiffy + max_delay;
2122
2123                 if (time_before(start_jiffy, intended)) {
2124                         /* calc remaining jiffies to deal with one-time
2125                          * timer wrapping.
2126                          * in case of multiple timer wrapping, either it can be
2127                          * detected by out-of-range remaining, or it cannot be
2128                          * detected and we gets a panelty of
2129                          * _regulator_enable_delay().
2130                          */
2131                         remaining = intended - start_jiffy;
2132                         if (remaining <= max_delay)
2133                                 _regulator_enable_delay(
2134                                                 jiffies_to_usecs(remaining));
2135                 }
2136         }
2137
2138         if (rdev->ena_pin) {
2139                 if (!rdev->ena_gpio_state) {
2140                         ret = regulator_ena_gpio_ctrl(rdev, true);
2141                         if (ret < 0)
2142                                 return ret;
2143                         rdev->ena_gpio_state = 1;
2144                 }
2145         } else if (rdev->desc->ops->enable) {
2146                 ret = rdev->desc->ops->enable(rdev);
2147                 if (ret < 0)
2148                         return ret;
2149         } else {
2150                 return -EINVAL;
2151         }
2152
2153         /* Allow the regulator to ramp; it would be useful to extend
2154          * this for bulk operations so that the regulators can ramp
2155          * together.  */
2156         trace_regulator_enable_delay(rdev_get_name(rdev));
2157
2158         _regulator_enable_delay(delay);
2159
2160         trace_regulator_enable_complete(rdev_get_name(rdev));
2161
2162         return 0;
2163 }
2164
2165 /* locks held by regulator_enable() */
2166 static int _regulator_enable(struct regulator_dev *rdev)
2167 {
2168         int ret;
2169
2170         lockdep_assert_held_once(&rdev->mutex);
2171
2172         /* check voltage and requested load before enabling */
2173         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2174                 drms_uA_update(rdev);
2175
2176         if (rdev->use_count == 0) {
2177                 /* The regulator may on if it's not switchable or left on */
2178                 ret = _regulator_is_enabled(rdev);
2179                 if (ret == -EINVAL || ret == 0) {
2180                         if (!regulator_ops_is_valid(rdev,
2181                                         REGULATOR_CHANGE_STATUS))
2182                                 return -EPERM;
2183
2184                         ret = _regulator_do_enable(rdev);
2185                         if (ret < 0)
2186                                 return ret;
2187
2188                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2189                                              NULL);
2190                 } else if (ret < 0) {
2191                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2192                         return ret;
2193                 }
2194                 /* Fallthrough on positive return values - already enabled */
2195         }
2196
2197         rdev->use_count++;
2198
2199         return 0;
2200 }
2201
2202 /**
2203  * regulator_enable - enable regulator output
2204  * @regulator: regulator source
2205  *
2206  * Request that the regulator be enabled with the regulator output at
2207  * the predefined voltage or current value.  Calls to regulator_enable()
2208  * must be balanced with calls to regulator_disable().
2209  *
2210  * NOTE: the output value can be set by other drivers, boot loader or may be
2211  * hardwired in the regulator.
2212  */
2213 int regulator_enable(struct regulator *regulator)
2214 {
2215         struct regulator_dev *rdev = regulator->rdev;
2216         int ret = 0;
2217
2218         if (regulator->always_on)
2219                 return 0;
2220
2221         if (rdev->supply) {
2222                 ret = regulator_enable(rdev->supply);
2223                 if (ret != 0)
2224                         return ret;
2225         }
2226
2227         mutex_lock(&rdev->mutex);
2228         ret = _regulator_enable(rdev);
2229         mutex_unlock(&rdev->mutex);
2230
2231         if (ret != 0 && rdev->supply)
2232                 regulator_disable(rdev->supply);
2233
2234         return ret;
2235 }
2236 EXPORT_SYMBOL_GPL(regulator_enable);
2237
2238 static int _regulator_do_disable(struct regulator_dev *rdev)
2239 {
2240         int ret;
2241
2242         trace_regulator_disable(rdev_get_name(rdev));
2243
2244         if (rdev->ena_pin) {
2245                 if (rdev->ena_gpio_state) {
2246                         ret = regulator_ena_gpio_ctrl(rdev, false);
2247                         if (ret < 0)
2248                                 return ret;
2249                         rdev->ena_gpio_state = 0;
2250                 }
2251
2252         } else if (rdev->desc->ops->disable) {
2253                 ret = rdev->desc->ops->disable(rdev);
2254                 if (ret != 0)
2255                         return ret;
2256         }
2257
2258         /* cares about last_off_jiffy only if off_on_delay is required by
2259          * device.
2260          */
2261         if (rdev->desc->off_on_delay)
2262                 rdev->last_off_jiffy = jiffies;
2263
2264         trace_regulator_disable_complete(rdev_get_name(rdev));
2265
2266         return 0;
2267 }
2268
2269 /* locks held by regulator_disable() */
2270 static int _regulator_disable(struct regulator_dev *rdev)
2271 {
2272         int ret = 0;
2273
2274         lockdep_assert_held_once(&rdev->mutex);
2275
2276         if (WARN(rdev->use_count <= 0,
2277                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2278                 return -EIO;
2279
2280         /* are we the last user and permitted to disable ? */
2281         if (rdev->use_count == 1 &&
2282             (rdev->constraints && !rdev->constraints->always_on)) {
2283
2284                 /* we are last user */
2285                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2286                         ret = _notifier_call_chain(rdev,
2287                                                    REGULATOR_EVENT_PRE_DISABLE,
2288                                                    NULL);
2289                         if (ret & NOTIFY_STOP_MASK)
2290                                 return -EINVAL;
2291
2292                         ret = _regulator_do_disable(rdev);
2293                         if (ret < 0) {
2294                                 rdev_err(rdev, "failed to disable\n");
2295                                 _notifier_call_chain(rdev,
2296                                                 REGULATOR_EVENT_ABORT_DISABLE,
2297                                                 NULL);
2298                                 return ret;
2299                         }
2300                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2301                                         NULL);
2302                 }
2303
2304                 rdev->use_count = 0;
2305         } else if (rdev->use_count > 1) {
2306                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2307                         drms_uA_update(rdev);
2308
2309                 rdev->use_count--;
2310         }
2311
2312         return ret;
2313 }
2314
2315 /**
2316  * regulator_disable - disable regulator output
2317  * @regulator: regulator source
2318  *
2319  * Disable the regulator output voltage or current.  Calls to
2320  * regulator_enable() must be balanced with calls to
2321  * regulator_disable().
2322  *
2323  * NOTE: this will only disable the regulator output if no other consumer
2324  * devices have it enabled, the regulator device supports disabling and
2325  * machine constraints permit this operation.
2326  */
2327 int regulator_disable(struct regulator *regulator)
2328 {
2329         struct regulator_dev *rdev = regulator->rdev;
2330         int ret = 0;
2331
2332         if (regulator->always_on)
2333                 return 0;
2334
2335         mutex_lock(&rdev->mutex);
2336         ret = _regulator_disable(rdev);
2337         mutex_unlock(&rdev->mutex);
2338
2339         if (ret == 0 && rdev->supply)
2340                 regulator_disable(rdev->supply);
2341
2342         return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(regulator_disable);
2345
2346 /* locks held by regulator_force_disable() */
2347 static int _regulator_force_disable(struct regulator_dev *rdev)
2348 {
2349         int ret = 0;
2350
2351         lockdep_assert_held_once(&rdev->mutex);
2352
2353         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2354                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2355         if (ret & NOTIFY_STOP_MASK)
2356                 return -EINVAL;
2357
2358         ret = _regulator_do_disable(rdev);
2359         if (ret < 0) {
2360                 rdev_err(rdev, "failed to force disable\n");
2361                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2362                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2363                 return ret;
2364         }
2365
2366         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2367                         REGULATOR_EVENT_DISABLE, NULL);
2368
2369         return 0;
2370 }
2371
2372 /**
2373  * regulator_force_disable - force disable regulator output
2374  * @regulator: regulator source
2375  *
2376  * Forcibly disable the regulator output voltage or current.
2377  * NOTE: this *will* disable the regulator output even if other consumer
2378  * devices have it enabled. This should be used for situations when device
2379  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2380  */
2381 int regulator_force_disable(struct regulator *regulator)
2382 {
2383         struct regulator_dev *rdev = regulator->rdev;
2384         int ret;
2385
2386         mutex_lock(&rdev->mutex);
2387         regulator->uA_load = 0;
2388         ret = _regulator_force_disable(regulator->rdev);
2389         mutex_unlock(&rdev->mutex);
2390
2391         if (rdev->supply)
2392                 while (rdev->open_count--)
2393                         regulator_disable(rdev->supply);
2394
2395         return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(regulator_force_disable);
2398
2399 static void regulator_disable_work(struct work_struct *work)
2400 {
2401         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2402                                                   disable_work.work);
2403         int count, i, ret;
2404
2405         mutex_lock(&rdev->mutex);
2406
2407         BUG_ON(!rdev->deferred_disables);
2408
2409         count = rdev->deferred_disables;
2410         rdev->deferred_disables = 0;
2411
2412         /*
2413          * Workqueue functions queue the new work instance while the previous
2414          * work instance is being processed. Cancel the queued work instance
2415          * as the work instance under processing does the job of the queued
2416          * work instance.
2417          */
2418         cancel_delayed_work(&rdev->disable_work);
2419
2420         for (i = 0; i < count; i++) {
2421                 ret = _regulator_disable(rdev);
2422                 if (ret != 0)
2423                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2424         }
2425
2426         mutex_unlock(&rdev->mutex);
2427
2428         if (rdev->supply) {
2429                 for (i = 0; i < count; i++) {
2430                         ret = regulator_disable(rdev->supply);
2431                         if (ret != 0) {
2432                                 rdev_err(rdev,
2433                                          "Supply disable failed: %d\n", ret);
2434                         }
2435                 }
2436         }
2437 }
2438
2439 /**
2440  * regulator_disable_deferred - disable regulator output with delay
2441  * @regulator: regulator source
2442  * @ms: miliseconds until the regulator is disabled
2443  *
2444  * Execute regulator_disable() on the regulator after a delay.  This
2445  * is intended for use with devices that require some time to quiesce.
2446  *
2447  * NOTE: this will only disable the regulator output if no other consumer
2448  * devices have it enabled, the regulator device supports disabling and
2449  * machine constraints permit this operation.
2450  */
2451 int regulator_disable_deferred(struct regulator *regulator, int ms)
2452 {
2453         struct regulator_dev *rdev = regulator->rdev;
2454
2455         if (regulator->always_on)
2456                 return 0;
2457
2458         if (!ms)
2459                 return regulator_disable(regulator);
2460
2461         mutex_lock(&rdev->mutex);
2462         rdev->deferred_disables++;
2463         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2464                          msecs_to_jiffies(ms));
2465         mutex_unlock(&rdev->mutex);
2466
2467         return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2470
2471 static int _regulator_is_enabled(struct regulator_dev *rdev)
2472 {
2473         /* A GPIO control always takes precedence */
2474         if (rdev->ena_pin)
2475                 return rdev->ena_gpio_state;
2476
2477         /* If we don't know then assume that the regulator is always on */
2478         if (!rdev->desc->ops->is_enabled)
2479                 return 1;
2480
2481         return rdev->desc->ops->is_enabled(rdev);
2482 }
2483
2484 static int _regulator_list_voltage(struct regulator *regulator,
2485                                     unsigned selector, int lock)
2486 {
2487         struct regulator_dev *rdev = regulator->rdev;
2488         const struct regulator_ops *ops = rdev->desc->ops;
2489         int ret;
2490
2491         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2492                 return rdev->desc->fixed_uV;
2493
2494         if (ops->list_voltage) {
2495                 if (selector >= rdev->desc->n_voltages)
2496                         return -EINVAL;
2497                 if (lock)
2498                         mutex_lock(&rdev->mutex);
2499                 ret = ops->list_voltage(rdev, selector);
2500                 if (lock)
2501                         mutex_unlock(&rdev->mutex);
2502         } else if (rdev->is_switch && rdev->supply) {
2503                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2504         } else {
2505                 return -EINVAL;
2506         }
2507
2508         if (ret > 0) {
2509                 if (ret < rdev->constraints->min_uV)
2510                         ret = 0;
2511                 else if (ret > rdev->constraints->max_uV)
2512                         ret = 0;
2513         }
2514
2515         return ret;
2516 }
2517
2518 /**
2519  * regulator_is_enabled - is the regulator output enabled
2520  * @regulator: regulator source
2521  *
2522  * Returns positive if the regulator driver backing the source/client
2523  * has requested that the device be enabled, zero if it hasn't, else a
2524  * negative errno code.
2525  *
2526  * Note that the device backing this regulator handle can have multiple
2527  * users, so it might be enabled even if regulator_enable() was never
2528  * called for this particular source.
2529  */
2530 int regulator_is_enabled(struct regulator *regulator)
2531 {
2532         int ret;
2533
2534         if (regulator->always_on)
2535                 return 1;
2536
2537         mutex_lock(&regulator->rdev->mutex);
2538         ret = _regulator_is_enabled(regulator->rdev);
2539         mutex_unlock(&regulator->rdev->mutex);
2540
2541         return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2544
2545 /**
2546  * regulator_count_voltages - count regulator_list_voltage() selectors
2547  * @regulator: regulator source
2548  *
2549  * Returns number of selectors, or negative errno.  Selectors are
2550  * numbered starting at zero, and typically correspond to bitfields
2551  * in hardware registers.
2552  */
2553 int regulator_count_voltages(struct regulator *regulator)
2554 {
2555         struct regulator_dev    *rdev = regulator->rdev;
2556
2557         if (rdev->desc->n_voltages)
2558                 return rdev->desc->n_voltages;
2559
2560         if (!rdev->is_switch || !rdev->supply)
2561                 return -EINVAL;
2562
2563         return regulator_count_voltages(rdev->supply);
2564 }
2565 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2566
2567 /**
2568  * regulator_list_voltage - enumerate supported voltages
2569  * @regulator: regulator source
2570  * @selector: identify voltage to list
2571  * Context: can sleep
2572  *
2573  * Returns a voltage that can be passed to @regulator_set_voltage(),
2574  * zero if this selector code can't be used on this system, or a
2575  * negative errno.
2576  */
2577 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2578 {
2579         return _regulator_list_voltage(regulator, selector, 1);
2580 }
2581 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2582
2583 /**
2584  * regulator_get_regmap - get the regulator's register map
2585  * @regulator: regulator source
2586  *
2587  * Returns the register map for the given regulator, or an ERR_PTR value
2588  * if the regulator doesn't use regmap.
2589  */
2590 struct regmap *regulator_get_regmap(struct regulator *regulator)
2591 {
2592         struct regmap *map = regulator->rdev->regmap;
2593
2594         return map ? map : ERR_PTR(-EOPNOTSUPP);
2595 }
2596
2597 /**
2598  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2599  * @regulator: regulator source
2600  * @vsel_reg: voltage selector register, output parameter
2601  * @vsel_mask: mask for voltage selector bitfield, output parameter
2602  *
2603  * Returns the hardware register offset and bitmask used for setting the
2604  * regulator voltage. This might be useful when configuring voltage-scaling
2605  * hardware or firmware that can make I2C requests behind the kernel's back,
2606  * for example.
2607  *
2608  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2609  * and 0 is returned, otherwise a negative errno is returned.
2610  */
2611 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2612                                          unsigned *vsel_reg,
2613                                          unsigned *vsel_mask)
2614 {
2615         struct regulator_dev *rdev = regulator->rdev;
2616         const struct regulator_ops *ops = rdev->desc->ops;
2617
2618         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2619                 return -EOPNOTSUPP;
2620
2621          *vsel_reg = rdev->desc->vsel_reg;
2622          *vsel_mask = rdev->desc->vsel_mask;
2623
2624          return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2627
2628 /**
2629  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2630  * @regulator: regulator source
2631  * @selector: identify voltage to list
2632  *
2633  * Converts the selector to a hardware-specific voltage selector that can be
2634  * directly written to the regulator registers. The address of the voltage
2635  * register can be determined by calling @regulator_get_hardware_vsel_register.
2636  *
2637  * On error a negative errno is returned.
2638  */
2639 int regulator_list_hardware_vsel(struct regulator *regulator,
2640                                  unsigned selector)
2641 {
2642         struct regulator_dev *rdev = regulator->rdev;
2643         const struct regulator_ops *ops = rdev->desc->ops;
2644
2645         if (selector >= rdev->desc->n_voltages)
2646                 return -EINVAL;
2647         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2648                 return -EOPNOTSUPP;
2649
2650         return selector;
2651 }
2652 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2653
2654 /**
2655  * regulator_get_linear_step - return the voltage step size between VSEL values
2656  * @regulator: regulator source
2657  *
2658  * Returns the voltage step size between VSEL values for linear
2659  * regulators, or return 0 if the regulator isn't a linear regulator.
2660  */
2661 unsigned int regulator_get_linear_step(struct regulator *regulator)
2662 {
2663         struct regulator_dev *rdev = regulator->rdev;
2664
2665         return rdev->desc->uV_step;
2666 }
2667 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2668
2669 /**
2670  * regulator_is_supported_voltage - check if a voltage range can be supported
2671  *
2672  * @regulator: Regulator to check.
2673  * @min_uV: Minimum required voltage in uV.
2674  * @max_uV: Maximum required voltage in uV.
2675  *
2676  * Returns a boolean or a negative error code.
2677  */
2678 int regulator_is_supported_voltage(struct regulator *regulator,
2679                                    int min_uV, int max_uV)
2680 {
2681         struct regulator_dev *rdev = regulator->rdev;
2682         int i, voltages, ret;
2683
2684         /* If we can't change voltage check the current voltage */
2685         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2686                 ret = regulator_get_voltage(regulator);
2687                 if (ret >= 0)
2688                         return min_uV <= ret && ret <= max_uV;
2689                 else
2690                         return ret;
2691         }
2692
2693         /* Any voltage within constrains range is fine? */
2694         if (rdev->desc->continuous_voltage_range)
2695                 return min_uV >= rdev->constraints->min_uV &&
2696                                 max_uV <= rdev->constraints->max_uV;
2697
2698         ret = regulator_count_voltages(regulator);
2699         if (ret < 0)
2700                 return ret;
2701         voltages = ret;
2702
2703         for (i = 0; i < voltages; i++) {
2704                 ret = regulator_list_voltage(regulator, i);
2705
2706                 if (ret >= min_uV && ret <= max_uV)
2707                         return 1;
2708         }
2709
2710         return 0;
2711 }
2712 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2713
2714 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2715                                  int max_uV)
2716 {
2717         const struct regulator_desc *desc = rdev->desc;
2718
2719         if (desc->ops->map_voltage)
2720                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2721
2722         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2723                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2724
2725         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2726                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2727
2728         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2729 }
2730
2731 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2732                                        int min_uV, int max_uV,
2733                                        unsigned *selector)
2734 {
2735         struct pre_voltage_change_data data;
2736         int ret;
2737
2738         data.old_uV = _regulator_get_voltage(rdev);
2739         data.min_uV = min_uV;
2740         data.max_uV = max_uV;
2741         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2742                                    &data);
2743         if (ret & NOTIFY_STOP_MASK)
2744                 return -EINVAL;
2745
2746         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2747         if (ret >= 0)
2748                 return ret;
2749
2750         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2751                              (void *)data.old_uV);
2752
2753         return ret;
2754 }
2755
2756 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2757                                            int uV, unsigned selector)
2758 {
2759         struct pre_voltage_change_data data;
2760         int ret;
2761
2762         data.old_uV = _regulator_get_voltage(rdev);
2763         data.min_uV = uV;
2764         data.max_uV = uV;
2765         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2766                                    &data);
2767         if (ret & NOTIFY_STOP_MASK)
2768                 return -EINVAL;
2769
2770         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2771         if (ret >= 0)
2772                 return ret;
2773
2774         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2775                              (void *)data.old_uV);
2776
2777         return ret;
2778 }
2779
2780 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2781                                        int old_uV, int new_uV)
2782 {
2783         unsigned int ramp_delay = 0;
2784
2785         if (rdev->constraints->ramp_delay)
2786                 ramp_delay = rdev->constraints->ramp_delay;
2787         else if (rdev->desc->ramp_delay)
2788                 ramp_delay = rdev->desc->ramp_delay;
2789         else if (rdev->constraints->settling_time)
2790                 return rdev->constraints->settling_time;
2791         else if (rdev->constraints->settling_time_up &&
2792                  (new_uV > old_uV))
2793                 return rdev->constraints->settling_time_up;
2794         else if (rdev->constraints->settling_time_down &&
2795                  (new_uV < old_uV))
2796                 return rdev->constraints->settling_time_down;
2797
2798         if (ramp_delay == 0) {
2799                 rdev_dbg(rdev, "ramp_delay not set\n");
2800                 return 0;
2801         }
2802
2803         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2804 }
2805
2806 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2807                                      int min_uV, int max_uV)
2808 {
2809         int ret;
2810         int delay = 0;
2811         int best_val = 0;
2812         unsigned int selector;
2813         int old_selector = -1;
2814         const struct regulator_ops *ops = rdev->desc->ops;
2815         int old_uV = _regulator_get_voltage(rdev);
2816
2817         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2818
2819         min_uV += rdev->constraints->uV_offset;
2820         max_uV += rdev->constraints->uV_offset;
2821
2822         /*
2823          * If we can't obtain the old selector there is not enough
2824          * info to call set_voltage_time_sel().
2825          */
2826         if (_regulator_is_enabled(rdev) &&
2827             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2828                 old_selector = ops->get_voltage_sel(rdev);
2829                 if (old_selector < 0)
2830                         return old_selector;
2831         }
2832
2833         if (ops->set_voltage) {
2834                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2835                                                   &selector);
2836
2837                 if (ret >= 0) {
2838                         if (ops->list_voltage)
2839                                 best_val = ops->list_voltage(rdev,
2840                                                              selector);
2841                         else
2842                                 best_val = _regulator_get_voltage(rdev);
2843                 }
2844
2845         } else if (ops->set_voltage_sel) {
2846                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2847                 if (ret >= 0) {
2848                         best_val = ops->list_voltage(rdev, ret);
2849                         if (min_uV <= best_val && max_uV >= best_val) {
2850                                 selector = ret;
2851                                 if (old_selector == selector)
2852                                         ret = 0;
2853                                 else
2854                                         ret = _regulator_call_set_voltage_sel(
2855                                                 rdev, best_val, selector);
2856                         } else {
2857                                 ret = -EINVAL;
2858                         }
2859                 }
2860         } else {
2861                 ret = -EINVAL;
2862         }
2863
2864         if (ret)
2865                 goto out;
2866
2867         if (ops->set_voltage_time_sel) {
2868                 /*
2869                  * Call set_voltage_time_sel if successfully obtained
2870                  * old_selector
2871                  */
2872                 if (old_selector >= 0 && old_selector != selector)
2873                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2874                                                           selector);
2875         } else {
2876                 if (old_uV != best_val) {
2877                         if (ops->set_voltage_time)
2878                                 delay = ops->set_voltage_time(rdev, old_uV,
2879                                                               best_val);
2880                         else
2881                                 delay = _regulator_set_voltage_time(rdev,
2882                                                                     old_uV,
2883                                                                     best_val);
2884                 }
2885         }
2886
2887         if (delay < 0) {
2888                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2889                 delay = 0;
2890         }
2891
2892         /* Insert any necessary delays */
2893         if (delay >= 1000) {
2894                 mdelay(delay / 1000);
2895                 udelay(delay % 1000);
2896         } else if (delay) {
2897                 udelay(delay);
2898         }
2899
2900         if (best_val >= 0) {
2901                 unsigned long data = best_val;
2902
2903                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2904                                      (void *)data);
2905         }
2906
2907 out:
2908         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2909
2910         return ret;
2911 }
2912
2913 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2914                                           int min_uV, int max_uV)
2915 {
2916         struct regulator_dev *rdev = regulator->rdev;
2917         int ret = 0;
2918         int old_min_uV, old_max_uV;
2919         int current_uV;
2920         int best_supply_uV = 0;
2921         int supply_change_uV = 0;
2922
2923         /* If we're setting the same range as last time the change
2924          * should be a noop (some cpufreq implementations use the same
2925          * voltage for multiple frequencies, for example).
2926          */
2927         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2928                 goto out;
2929
2930         /* If we're trying to set a range that overlaps the current voltage,
2931          * return successfully even though the regulator does not support
2932          * changing the voltage.
2933          */
2934         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2935                 current_uV = _regulator_get_voltage(rdev);
2936                 if (min_uV <= current_uV && current_uV <= max_uV) {
2937                         regulator->min_uV = min_uV;
2938                         regulator->max_uV = max_uV;
2939                         goto out;
2940                 }
2941         }
2942
2943         /* sanity check */
2944         if (!rdev->desc->ops->set_voltage &&
2945             !rdev->desc->ops->set_voltage_sel) {
2946                 ret = -EINVAL;
2947                 goto out;
2948         }
2949
2950         /* constraints check */
2951         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2952         if (ret < 0)
2953                 goto out;
2954
2955         /* restore original values in case of error */
2956         old_min_uV = regulator->min_uV;
2957         old_max_uV = regulator->max_uV;
2958         regulator->min_uV = min_uV;
2959         regulator->max_uV = max_uV;
2960
2961         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2962         if (ret < 0)
2963                 goto out2;
2964
2965         if (rdev->supply &&
2966             regulator_ops_is_valid(rdev->supply->rdev,
2967                                    REGULATOR_CHANGE_VOLTAGE) &&
2968             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2969                                            rdev->desc->ops->get_voltage_sel))) {
2970                 int current_supply_uV;
2971                 int selector;
2972
2973                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2974                 if (selector < 0) {
2975                         ret = selector;
2976                         goto out2;
2977                 }
2978
2979                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2980                 if (best_supply_uV < 0) {
2981                         ret = best_supply_uV;
2982                         goto out2;
2983                 }
2984
2985                 best_supply_uV += rdev->desc->min_dropout_uV;
2986
2987                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2988                 if (current_supply_uV < 0) {
2989                         ret = current_supply_uV;
2990                         goto out2;
2991                 }
2992
2993                 supply_change_uV = best_supply_uV - current_supply_uV;
2994         }
2995
2996         if (supply_change_uV > 0) {
2997                 ret = regulator_set_voltage_unlocked(rdev->supply,
2998                                 best_supply_uV, INT_MAX);
2999                 if (ret) {
3000                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3001                                         ret);
3002                         goto out2;
3003                 }
3004         }
3005
3006         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3007         if (ret < 0)
3008                 goto out2;
3009
3010         if (supply_change_uV < 0) {
3011                 ret = regulator_set_voltage_unlocked(rdev->supply,
3012                                 best_supply_uV, INT_MAX);
3013                 if (ret)
3014                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3015                                         ret);
3016                 /* No need to fail here */
3017                 ret = 0;
3018         }
3019
3020 out:
3021         return ret;
3022 out2:
3023         regulator->min_uV = old_min_uV;
3024         regulator->max_uV = old_max_uV;
3025
3026         return ret;
3027 }
3028
3029 /**
3030  * regulator_set_voltage - set regulator output voltage
3031  * @regulator: regulator source
3032  * @min_uV: Minimum required voltage in uV
3033  * @max_uV: Maximum acceptable voltage in uV
3034  *
3035  * Sets a voltage regulator to the desired output voltage. This can be set
3036  * during any regulator state. IOW, regulator can be disabled or enabled.
3037  *
3038  * If the regulator is enabled then the voltage will change to the new value
3039  * immediately otherwise if the regulator is disabled the regulator will
3040  * output at the new voltage when enabled.
3041  *
3042  * NOTE: If the regulator is shared between several devices then the lowest
3043  * request voltage that meets the system constraints will be used.
3044  * Regulator system constraints must be set for this regulator before
3045  * calling this function otherwise this call will fail.
3046  */
3047 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3048 {
3049         int ret = 0;
3050
3051         regulator_lock_supply(regulator->rdev);
3052
3053         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3054
3055         regulator_unlock_supply(regulator->rdev);
3056
3057         return ret;
3058 }
3059 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3060
3061 /**
3062  * regulator_set_voltage_time - get raise/fall time
3063  * @regulator: regulator source
3064  * @old_uV: starting voltage in microvolts
3065  * @new_uV: target voltage in microvolts
3066  *
3067  * Provided with the starting and ending voltage, this function attempts to
3068  * calculate the time in microseconds required to rise or fall to this new
3069  * voltage.
3070  */
3071 int regulator_set_voltage_time(struct regulator *regulator,
3072                                int old_uV, int new_uV)
3073 {
3074         struct regulator_dev *rdev = regulator->rdev;
3075         const struct regulator_ops *ops = rdev->desc->ops;
3076         int old_sel = -1;
3077         int new_sel = -1;
3078         int voltage;
3079         int i;
3080
3081         if (ops->set_voltage_time)
3082                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3083         else if (!ops->set_voltage_time_sel)
3084                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3085
3086         /* Currently requires operations to do this */
3087         if (!ops->list_voltage || !rdev->desc->n_voltages)
3088                 return -EINVAL;
3089
3090         for (i = 0; i < rdev->desc->n_voltages; i++) {
3091                 /* We only look for exact voltage matches here */
3092                 voltage = regulator_list_voltage(regulator, i);
3093                 if (voltage < 0)
3094                         return -EINVAL;
3095                 if (voltage == 0)
3096                         continue;
3097                 if (voltage == old_uV)
3098                         old_sel = i;
3099                 if (voltage == new_uV)
3100                         new_sel = i;
3101         }
3102
3103         if (old_sel < 0 || new_sel < 0)
3104                 return -EINVAL;
3105
3106         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3107 }
3108 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3109
3110 /**
3111  * regulator_set_voltage_time_sel - get raise/fall time
3112  * @rdev: regulator source device
3113  * @old_selector: selector for starting voltage
3114  * @new_selector: selector for target voltage
3115  *
3116  * Provided with the starting and target voltage selectors, this function
3117  * returns time in microseconds required to rise or fall to this new voltage
3118  *
3119  * Drivers providing ramp_delay in regulation_constraints can use this as their
3120  * set_voltage_time_sel() operation.
3121  */
3122 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3123                                    unsigned int old_selector,
3124                                    unsigned int new_selector)
3125 {
3126         int old_volt, new_volt;
3127
3128         /* sanity check */
3129         if (!rdev->desc->ops->list_voltage)
3130                 return -EINVAL;
3131
3132         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3133         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3134
3135         if (rdev->desc->ops->set_voltage_time)
3136                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3137                                                          new_volt);
3138         else
3139                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3140 }
3141 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3142
3143 /**
3144  * regulator_sync_voltage - re-apply last regulator output voltage
3145  * @regulator: regulator source
3146  *
3147  * Re-apply the last configured voltage.  This is intended to be used
3148  * where some external control source the consumer is cooperating with
3149  * has caused the configured voltage to change.
3150  */
3151 int regulator_sync_voltage(struct regulator *regulator)
3152 {
3153         struct regulator_dev *rdev = regulator->rdev;
3154         int ret, min_uV, max_uV;
3155
3156         mutex_lock(&rdev->mutex);
3157
3158         if (!rdev->desc->ops->set_voltage &&
3159             !rdev->desc->ops->set_voltage_sel) {
3160                 ret = -EINVAL;
3161                 goto out;
3162         }
3163
3164         /* This is only going to work if we've had a voltage configured. */
3165         if (!regulator->min_uV && !regulator->max_uV) {
3166                 ret = -EINVAL;
3167                 goto out;
3168         }
3169
3170         min_uV = regulator->min_uV;
3171         max_uV = regulator->max_uV;
3172
3173         /* This should be a paranoia check... */
3174         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3175         if (ret < 0)
3176                 goto out;
3177
3178         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3179         if (ret < 0)
3180                 goto out;
3181
3182         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3183
3184 out:
3185         mutex_unlock(&rdev->mutex);
3186         return ret;
3187 }
3188 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3189
3190 static int _regulator_get_voltage(struct regulator_dev *rdev)
3191 {
3192         int sel, ret;
3193         bool bypassed;
3194
3195         if (rdev->desc->ops->get_bypass) {
3196                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3197                 if (ret < 0)
3198                         return ret;
3199                 if (bypassed) {
3200                         /* if bypassed the regulator must have a supply */
3201                         if (!rdev->supply) {
3202                                 rdev_err(rdev,
3203                                          "bypassed regulator has no supply!\n");
3204                                 return -EPROBE_DEFER;
3205                         }
3206
3207                         return _regulator_get_voltage(rdev->supply->rdev);
3208                 }
3209         }
3210
3211         if (rdev->desc->ops->get_voltage_sel) {
3212                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3213                 if (sel < 0)
3214                         return sel;
3215                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3216         } else if (rdev->desc->ops->get_voltage) {
3217                 ret = rdev->desc->ops->get_voltage(rdev);
3218         } else if (rdev->desc->ops->list_voltage) {
3219                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3220         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3221                 ret = rdev->desc->fixed_uV;
3222         } else if (rdev->supply) {
3223                 ret = _regulator_get_voltage(rdev->supply->rdev);
3224         } else if (rdev->supply_name) {
3225                 return -EPROBE_DEFER;
3226         } else {
3227                 return -EINVAL;
3228         }
3229
3230         if (ret < 0)
3231                 return ret;
3232         return ret - rdev->constraints->uV_offset;
3233 }
3234
3235 /**
3236  * regulator_get_voltage - get regulator output voltage
3237  * @regulator: regulator source
3238  *
3239  * This returns the current regulator voltage in uV.
3240  *
3241  * NOTE: If the regulator is disabled it will return the voltage value. This
3242  * function should not be used to determine regulator state.
3243  */
3244 int regulator_get_voltage(struct regulator *regulator)
3245 {
3246         int ret;
3247
3248         regulator_lock_supply(regulator->rdev);
3249
3250         ret = _regulator_get_voltage(regulator->rdev);
3251
3252         regulator_unlock_supply(regulator->rdev);
3253
3254         return ret;
3255 }
3256 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3257
3258 /**
3259  * regulator_set_current_limit - set regulator output current limit
3260  * @regulator: regulator source
3261  * @min_uA: Minimum supported current in uA
3262  * @max_uA: Maximum supported current in uA
3263  *
3264  * Sets current sink to the desired output current. This can be set during
3265  * any regulator state. IOW, regulator can be disabled or enabled.
3266  *
3267  * If the regulator is enabled then the current will change to the new value
3268  * immediately otherwise if the regulator is disabled the regulator will
3269  * output at the new current when enabled.
3270  *
3271  * NOTE: Regulator system constraints must be set for this regulator before
3272  * calling this function otherwise this call will fail.
3273  */
3274 int regulator_set_current_limit(struct regulator *regulator,
3275                                int min_uA, int max_uA)
3276 {
3277         struct regulator_dev *rdev = regulator->rdev;
3278         int ret;
3279
3280         mutex_lock(&rdev->mutex);
3281
3282         /* sanity check */
3283         if (!rdev->desc->ops->set_current_limit) {
3284                 ret = -EINVAL;
3285                 goto out;
3286         }
3287
3288         /* constraints check */
3289         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3290         if (ret < 0)
3291                 goto out;
3292
3293         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3294 out:
3295         mutex_unlock(&rdev->mutex);
3296         return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3299
3300 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3301 {
3302         int ret;
3303
3304         mutex_lock(&rdev->mutex);
3305
3306         /* sanity check */
3307         if (!rdev->desc->ops->get_current_limit) {
3308                 ret = -EINVAL;
3309                 goto out;
3310         }
3311
3312         ret = rdev->desc->ops->get_current_limit(rdev);
3313 out:
3314         mutex_unlock(&rdev->mutex);
3315         return ret;
3316 }
3317
3318 /**
3319  * regulator_get_current_limit - get regulator output current
3320  * @regulator: regulator source
3321  *
3322  * This returns the current supplied by the specified current sink in uA.
3323  *
3324  * NOTE: If the regulator is disabled it will return the current value. This
3325  * function should not be used to determine regulator state.
3326  */
3327 int regulator_get_current_limit(struct regulator *regulator)
3328 {
3329         return _regulator_get_current_limit(regulator->rdev);
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3332
3333 /**
3334  * regulator_set_mode - set regulator operating mode
3335  * @regulator: regulator source
3336  * @mode: operating mode - one of the REGULATOR_MODE constants
3337  *
3338  * Set regulator operating mode to increase regulator efficiency or improve
3339  * regulation performance.
3340  *
3341  * NOTE: Regulator system constraints must be set for this regulator before
3342  * calling this function otherwise this call will fail.
3343  */
3344 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3345 {
3346         struct regulator_dev *rdev = regulator->rdev;
3347         int ret;
3348         int regulator_curr_mode;
3349
3350         mutex_lock(&rdev->mutex);
3351
3352         /* sanity check */
3353         if (!rdev->desc->ops->set_mode) {
3354                 ret = -EINVAL;
3355                 goto out;
3356         }
3357
3358         /* return if the same mode is requested */
3359         if (rdev->desc->ops->get_mode) {
3360                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3361                 if (regulator_curr_mode == mode) {
3362                         ret = 0;
3363                         goto out;
3364                 }
3365         }
3366
3367         /* constraints check */
3368         ret = regulator_mode_constrain(rdev, &mode);
3369         if (ret < 0)
3370                 goto out;
3371
3372         ret = rdev->desc->ops->set_mode(rdev, mode);
3373 out:
3374         mutex_unlock(&rdev->mutex);
3375         return ret;
3376 }
3377 EXPORT_SYMBOL_GPL(regulator_set_mode);
3378
3379 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3380 {
3381         int ret;
3382
3383         mutex_lock(&rdev->mutex);
3384
3385         /* sanity check */
3386         if (!rdev->desc->ops->get_mode) {
3387                 ret = -EINVAL;
3388                 goto out;
3389         }
3390
3391         ret = rdev->desc->ops->get_mode(rdev);
3392 out:
3393         mutex_unlock(&rdev->mutex);
3394         return ret;
3395 }
3396
3397 /**
3398  * regulator_get_mode - get regulator operating mode
3399  * @regulator: regulator source
3400  *
3401  * Get the current regulator operating mode.
3402  */
3403 unsigned int regulator_get_mode(struct regulator *regulator)
3404 {
3405         return _regulator_get_mode(regulator->rdev);
3406 }
3407 EXPORT_SYMBOL_GPL(regulator_get_mode);
3408
3409 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3410                                         unsigned int *flags)
3411 {
3412         int ret;
3413
3414         mutex_lock(&rdev->mutex);
3415
3416         /* sanity check */
3417         if (!rdev->desc->ops->get_error_flags) {
3418                 ret = -EINVAL;
3419                 goto out;
3420         }
3421
3422         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3423 out:
3424         mutex_unlock(&rdev->mutex);
3425         return ret;
3426 }
3427
3428 /**
3429  * regulator_get_error_flags - get regulator error information
3430  * @regulator: regulator source
3431  * @flags: pointer to store error flags
3432  *
3433  * Get the current regulator error information.
3434  */
3435 int regulator_get_error_flags(struct regulator *regulator,
3436                                 unsigned int *flags)
3437 {
3438         return _regulator_get_error_flags(regulator->rdev, flags);
3439 }
3440 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3441
3442 /**
3443  * regulator_set_load - set regulator load
3444  * @regulator: regulator source
3445  * @uA_load: load current
3446  *
3447  * Notifies the regulator core of a new device load. This is then used by
3448  * DRMS (if enabled by constraints) to set the most efficient regulator
3449  * operating mode for the new regulator loading.
3450  *
3451  * Consumer devices notify their supply regulator of the maximum power
3452  * they will require (can be taken from device datasheet in the power
3453  * consumption tables) when they change operational status and hence power
3454  * state. Examples of operational state changes that can affect power
3455  * consumption are :-
3456  *
3457  *    o Device is opened / closed.
3458  *    o Device I/O is about to begin or has just finished.
3459  *    o Device is idling in between work.
3460  *
3461  * This information is also exported via sysfs to userspace.
3462  *
3463  * DRMS will sum the total requested load on the regulator and change
3464  * to the most efficient operating mode if platform constraints allow.
3465  *
3466  * On error a negative errno is returned.
3467  */
3468 int regulator_set_load(struct regulator *regulator, int uA_load)
3469 {
3470         struct regulator_dev *rdev = regulator->rdev;
3471         int ret;
3472
3473         mutex_lock(&rdev->mutex);
3474         regulator->uA_load = uA_load;
3475         ret = drms_uA_update(rdev);
3476         mutex_unlock(&rdev->mutex);
3477
3478         return ret;
3479 }
3480 EXPORT_SYMBOL_GPL(regulator_set_load);
3481
3482 /**
3483  * regulator_allow_bypass - allow the regulator to go into bypass mode
3484  *
3485  * @regulator: Regulator to configure
3486  * @enable: enable or disable bypass mode
3487  *
3488  * Allow the regulator to go into bypass mode if all other consumers
3489  * for the regulator also enable bypass mode and the machine
3490  * constraints allow this.  Bypass mode means that the regulator is
3491  * simply passing the input directly to the output with no regulation.
3492  */
3493 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3494 {
3495         struct regulator_dev *rdev = regulator->rdev;
3496         int ret = 0;
3497
3498         if (!rdev->desc->ops->set_bypass)
3499                 return 0;
3500
3501         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3502                 return 0;
3503
3504         mutex_lock(&rdev->mutex);
3505
3506         if (enable && !regulator->bypass) {
3507                 rdev->bypass_count++;
3508
3509                 if (rdev->bypass_count == rdev->open_count) {
3510                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3511                         if (ret != 0)
3512                                 rdev->bypass_count--;
3513                 }
3514
3515         } else if (!enable && regulator->bypass) {
3516                 rdev->bypass_count--;
3517
3518                 if (rdev->bypass_count != rdev->open_count) {
3519                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3520                         if (ret != 0)
3521                                 rdev->bypass_count++;
3522                 }
3523         }
3524
3525         if (ret == 0)
3526                 regulator->bypass = enable;
3527
3528         mutex_unlock(&rdev->mutex);
3529
3530         return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3533
3534 /**
3535  * regulator_register_notifier - register regulator event notifier
3536  * @regulator: regulator source
3537  * @nb: notifier block
3538  *
3539  * Register notifier block to receive regulator events.
3540  */
3541 int regulator_register_notifier(struct regulator *regulator,
3542                               struct notifier_block *nb)
3543 {
3544         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3545                                                 nb);
3546 }
3547 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3548
3549 /**
3550  * regulator_unregister_notifier - unregister regulator event notifier
3551  * @regulator: regulator source
3552  * @nb: notifier block
3553  *
3554  * Unregister regulator event notifier block.
3555  */
3556 int regulator_unregister_notifier(struct regulator *regulator,
3557                                 struct notifier_block *nb)
3558 {
3559         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3560                                                   nb);
3561 }
3562 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3563
3564 /* notify regulator consumers and downstream regulator consumers.
3565  * Note mutex must be held by caller.
3566  */
3567 static int _notifier_call_chain(struct regulator_dev *rdev,
3568                                   unsigned long event, void *data)
3569 {
3570         /* call rdev chain first */
3571         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3572 }
3573
3574 /**
3575  * regulator_bulk_get - get multiple regulator consumers
3576  *
3577  * @dev:           Device to supply
3578  * @num_consumers: Number of consumers to register
3579  * @consumers:     Configuration of consumers; clients are stored here.
3580  *
3581  * @return 0 on success, an errno on failure.
3582  *
3583  * This helper function allows drivers to get several regulator
3584  * consumers in one operation.  If any of the regulators cannot be
3585  * acquired then any regulators that were allocated will be freed
3586  * before returning to the caller.
3587  */
3588 int regulator_bulk_get(struct device *dev, int num_consumers,
3589                        struct regulator_bulk_data *consumers)
3590 {
3591         int i;
3592         int ret;
3593
3594         for (i = 0; i < num_consumers; i++)
3595                 consumers[i].consumer = NULL;
3596
3597         for (i = 0; i < num_consumers; i++) {
3598                 consumers[i].consumer = regulator_get(dev,
3599                                                       consumers[i].supply);
3600                 if (IS_ERR(consumers[i].consumer)) {
3601                         ret = PTR_ERR(consumers[i].consumer);
3602                         dev_err(dev, "Failed to get supply '%s': %d\n",
3603                                 consumers[i].supply, ret);
3604                         consumers[i].consumer = NULL;
3605                         goto err;
3606                 }
3607         }
3608
3609         return 0;
3610
3611 err:
3612         while (--i >= 0)
3613                 regulator_put(consumers[i].consumer);
3614
3615         return ret;
3616 }
3617 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3618
3619 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3620 {
3621         struct regulator_bulk_data *bulk = data;
3622
3623         bulk->ret = regulator_enable(bulk->consumer);
3624 }
3625
3626 /**
3627  * regulator_bulk_enable - enable multiple regulator consumers
3628  *
3629  * @num_consumers: Number of consumers
3630  * @consumers:     Consumer data; clients are stored here.
3631  * @return         0 on success, an errno on failure
3632  *
3633  * This convenience API allows consumers to enable multiple regulator
3634  * clients in a single API call.  If any consumers cannot be enabled
3635  * then any others that were enabled will be disabled again prior to
3636  * return.
3637  */
3638 int regulator_bulk_enable(int num_consumers,
3639                           struct regulator_bulk_data *consumers)
3640 {
3641         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3642         int i;
3643         int ret = 0;
3644
3645         for (i = 0; i < num_consumers; i++) {
3646                 if (consumers[i].consumer->always_on)
3647                         consumers[i].ret = 0;
3648                 else
3649                         async_schedule_domain(regulator_bulk_enable_async,
3650                                               &consumers[i], &async_domain);
3651         }
3652
3653         async_synchronize_full_domain(&async_domain);
3654
3655         /* If any consumer failed we need to unwind any that succeeded */
3656         for (i = 0; i < num_consumers; i++) {
3657                 if (consumers[i].ret != 0) {
3658                         ret = consumers[i].ret;
3659                         goto err;
3660                 }
3661         }
3662
3663         return 0;
3664
3665 err:
3666         for (i = 0; i < num_consumers; i++) {
3667                 if (consumers[i].ret < 0)
3668                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3669                                consumers[i].ret);
3670                 else
3671                         regulator_disable(consumers[i].consumer);
3672         }
3673
3674         return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3677
3678 /**
3679  * regulator_bulk_disable - disable multiple regulator consumers
3680  *
3681  * @num_consumers: Number of consumers
3682  * @consumers:     Consumer data; clients are stored here.
3683  * @return         0 on success, an errno on failure
3684  *
3685  * This convenience API allows consumers to disable multiple regulator
3686  * clients in a single API call.  If any consumers cannot be disabled
3687  * then any others that were disabled will be enabled again prior to
3688  * return.
3689  */
3690 int regulator_bulk_disable(int num_consumers,
3691                            struct regulator_bulk_data *consumers)
3692 {
3693         int i;
3694         int ret, r;
3695
3696         for (i = num_consumers - 1; i >= 0; --i) {
3697                 ret = regulator_disable(consumers[i].consumer);
3698                 if (ret != 0)
3699                         goto err;
3700         }
3701
3702         return 0;
3703
3704 err:
3705         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3706         for (++i; i < num_consumers; ++i) {
3707                 r = regulator_enable(consumers[i].consumer);
3708                 if (r != 0)
3709                         pr_err("Failed to re-enable %s: %d\n",
3710                                consumers[i].supply, r);
3711         }
3712
3713         return ret;
3714 }
3715 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3716
3717 /**
3718  * regulator_bulk_force_disable - force disable multiple regulator consumers
3719  *
3720  * @num_consumers: Number of consumers
3721  * @consumers:     Consumer data; clients are stored here.
3722  * @return         0 on success, an errno on failure
3723  *
3724  * This convenience API allows consumers to forcibly disable multiple regulator
3725  * clients in a single API call.
3726  * NOTE: This should be used for situations when device damage will
3727  * likely occur if the regulators are not disabled (e.g. over temp).
3728  * Although regulator_force_disable function call for some consumers can
3729  * return error numbers, the function is called for all consumers.
3730  */
3731 int regulator_bulk_force_disable(int num_consumers,
3732                            struct regulator_bulk_data *consumers)
3733 {
3734         int i;
3735         int ret = 0;
3736
3737         for (i = 0; i < num_consumers; i++) {
3738                 consumers[i].ret =
3739                             regulator_force_disable(consumers[i].consumer);
3740
3741                 /* Store first error for reporting */
3742                 if (consumers[i].ret && !ret)
3743                         ret = consumers[i].ret;
3744         }
3745
3746         return ret;
3747 }
3748 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3749
3750 /**
3751  * regulator_bulk_free - free multiple regulator consumers
3752  *
3753  * @num_consumers: Number of consumers
3754  * @consumers:     Consumer data; clients are stored here.
3755  *
3756  * This convenience API allows consumers to free multiple regulator
3757  * clients in a single API call.
3758  */
3759 void regulator_bulk_free(int num_consumers,
3760                          struct regulator_bulk_data *consumers)
3761 {
3762         int i;
3763
3764         for (i = 0; i < num_consumers; i++) {
3765                 regulator_put(consumers[i].consumer);
3766                 consumers[i].consumer = NULL;
3767         }
3768 }
3769 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3770
3771 /**
3772  * regulator_notifier_call_chain - call regulator event notifier
3773  * @rdev: regulator source
3774  * @event: notifier block
3775  * @data: callback-specific data.
3776  *
3777  * Called by regulator drivers to notify clients a regulator event has
3778  * occurred. We also notify regulator clients downstream.
3779  * Note lock must be held by caller.
3780  */
3781 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3782                                   unsigned long event, void *data)
3783 {
3784         lockdep_assert_held_once(&rdev->mutex);
3785
3786         _notifier_call_chain(rdev, event, data);
3787         return NOTIFY_DONE;
3788
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3791
3792 /**
3793  * regulator_mode_to_status - convert a regulator mode into a status
3794  *
3795  * @mode: Mode to convert
3796  *
3797  * Convert a regulator mode into a status.
3798  */
3799 int regulator_mode_to_status(unsigned int mode)
3800 {
3801         switch (mode) {
3802         case REGULATOR_MODE_FAST:
3803                 return REGULATOR_STATUS_FAST;
3804         case REGULATOR_MODE_NORMAL:
3805                 return REGULATOR_STATUS_NORMAL;
3806         case REGULATOR_MODE_IDLE:
3807                 return REGULATOR_STATUS_IDLE;
3808         case REGULATOR_MODE_STANDBY:
3809                 return REGULATOR_STATUS_STANDBY;
3810         default:
3811                 return REGULATOR_STATUS_UNDEFINED;
3812         }
3813 }
3814 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3815
3816 static struct attribute *regulator_dev_attrs[] = {
3817         &dev_attr_name.attr,
3818         &dev_attr_num_users.attr,
3819         &dev_attr_type.attr,
3820         &dev_attr_microvolts.attr,
3821         &dev_attr_microamps.attr,
3822         &dev_attr_opmode.attr,
3823         &dev_attr_state.attr,
3824         &dev_attr_status.attr,
3825         &dev_attr_bypass.attr,
3826         &dev_attr_requested_microamps.attr,
3827         &dev_attr_min_microvolts.attr,
3828         &dev_attr_max_microvolts.attr,
3829         &dev_attr_min_microamps.attr,
3830         &dev_attr_max_microamps.attr,
3831         &dev_attr_suspend_standby_state.attr,
3832         &dev_attr_suspend_mem_state.attr,
3833         &dev_attr_suspend_disk_state.attr,
3834         &dev_attr_suspend_standby_microvolts.attr,
3835         &dev_attr_suspend_mem_microvolts.attr,
3836         &dev_attr_suspend_disk_microvolts.attr,
3837         &dev_attr_suspend_standby_mode.attr,
3838         &dev_attr_suspend_mem_mode.attr,
3839         &dev_attr_suspend_disk_mode.attr,
3840         NULL
3841 };
3842
3843 /*
3844  * To avoid cluttering sysfs (and memory) with useless state, only
3845  * create attributes that can be meaningfully displayed.
3846  */
3847 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3848                                          struct attribute *attr, int idx)
3849 {
3850         struct device *dev = kobj_to_dev(kobj);
3851         struct regulator_dev *rdev = dev_to_rdev(dev);
3852         const struct regulator_ops *ops = rdev->desc->ops;
3853         umode_t mode = attr->mode;
3854
3855         /* these three are always present */
3856         if (attr == &dev_attr_name.attr ||
3857             attr == &dev_attr_num_users.attr ||
3858             attr == &dev_attr_type.attr)
3859                 return mode;
3860
3861         /* some attributes need specific methods to be displayed */
3862         if (attr == &dev_attr_microvolts.attr) {
3863                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3864                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3865                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3866                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3867                         return mode;
3868                 return 0;
3869         }
3870
3871         if (attr == &dev_attr_microamps.attr)
3872                 return ops->get_current_limit ? mode : 0;
3873
3874         if (attr == &dev_attr_opmode.attr)
3875                 return ops->get_mode ? mode : 0;
3876
3877         if (attr == &dev_attr_state.attr)
3878                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3879
3880         if (attr == &dev_attr_status.attr)
3881                 return ops->get_status ? mode : 0;
3882
3883         if (attr == &dev_attr_bypass.attr)
3884                 return ops->get_bypass ? mode : 0;
3885
3886         /* some attributes are type-specific */
3887         if (attr == &dev_attr_requested_microamps.attr)
3888                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3889
3890         /* constraints need specific supporting methods */
3891         if (attr == &dev_attr_min_microvolts.attr ||
3892             attr == &dev_attr_max_microvolts.attr)
3893                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3894
3895         if (attr == &dev_attr_min_microamps.attr ||
3896             attr == &dev_attr_max_microamps.attr)
3897                 return ops->set_current_limit ? mode : 0;
3898
3899         if (attr == &dev_attr_suspend_standby_state.attr ||
3900             attr == &dev_attr_suspend_mem_state.attr ||
3901             attr == &dev_attr_suspend_disk_state.attr)
3902                 return mode;
3903
3904         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3905             attr == &dev_attr_suspend_mem_microvolts.attr ||
3906             attr == &dev_attr_suspend_disk_microvolts.attr)
3907                 return ops->set_suspend_voltage ? mode : 0;
3908
3909         if (attr == &dev_attr_suspend_standby_mode.attr ||
3910             attr == &dev_attr_suspend_mem_mode.attr ||
3911             attr == &dev_attr_suspend_disk_mode.attr)
3912                 return ops->set_suspend_mode ? mode : 0;
3913
3914         return mode;
3915 }
3916
3917 static const struct attribute_group regulator_dev_group = {
3918         .attrs = regulator_dev_attrs,
3919         .is_visible = regulator_attr_is_visible,
3920 };
3921
3922 static const struct attribute_group *regulator_dev_groups[] = {
3923         &regulator_dev_group,
3924         NULL
3925 };
3926
3927 static void regulator_dev_release(struct device *dev)
3928 {
3929         struct regulator_dev *rdev = dev_get_drvdata(dev);
3930
3931         kfree(rdev->constraints);
3932         of_node_put(rdev->dev.of_node);
3933         kfree(rdev);
3934 }
3935
3936 static struct class regulator_class = {
3937         .name = "regulator",
3938         .dev_release = regulator_dev_release,
3939         .dev_groups = regulator_dev_groups,
3940 };
3941
3942 static void rdev_init_debugfs(struct regulator_dev *rdev)
3943 {
3944         struct device *parent = rdev->dev.parent;
3945         const char *rname = rdev_get_name(rdev);
3946         char name[NAME_MAX];
3947
3948         /* Avoid duplicate debugfs directory names */
3949         if (parent && rname == rdev->desc->name) {
3950                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3951                          rname);
3952                 rname = name;
3953         }
3954
3955         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3956         if (!rdev->debugfs) {
3957                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3958                 return;
3959         }
3960
3961         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3962                            &rdev->use_count);
3963         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3964                            &rdev->open_count);
3965         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3966                            &rdev->bypass_count);
3967 }
3968
3969 static int regulator_register_resolve_supply(struct device *dev, void *data)
3970 {
3971         struct regulator_dev *rdev = dev_to_rdev(dev);
3972
3973         if (regulator_resolve_supply(rdev))
3974                 rdev_dbg(rdev, "unable to resolve supply\n");
3975
3976         return 0;
3977 }
3978
3979 /**
3980  * regulator_register - register regulator
3981  * @regulator_desc: regulator to register
3982  * @cfg: runtime configuration for regulator
3983  *
3984  * Called by regulator drivers to register a regulator.
3985  * Returns a valid pointer to struct regulator_dev on success
3986  * or an ERR_PTR() on error.
3987  */
3988 struct regulator_dev *
3989 regulator_register(const struct regulator_desc *regulator_desc,
3990                    const struct regulator_config *cfg)
3991 {
3992         const struct regulator_init_data *init_data;
3993         struct regulator_config *config = NULL;
3994         static atomic_t regulator_no = ATOMIC_INIT(-1);
3995         struct regulator_dev *rdev;
3996         struct device *dev;
3997         int ret, i;
3998
3999         if (regulator_desc == NULL || cfg == NULL)
4000                 return ERR_PTR(-EINVAL);
4001
4002         dev = cfg->dev;
4003         WARN_ON(!dev);
4004
4005         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4006                 return ERR_PTR(-EINVAL);
4007
4008         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4009             regulator_desc->type != REGULATOR_CURRENT)
4010                 return ERR_PTR(-EINVAL);
4011
4012         /* Only one of each should be implemented */
4013         WARN_ON(regulator_desc->ops->get_voltage &&
4014                 regulator_desc->ops->get_voltage_sel);
4015         WARN_ON(regulator_desc->ops->set_voltage &&
4016                 regulator_desc->ops->set_voltage_sel);
4017
4018         /* If we're using selectors we must implement list_voltage. */
4019         if (regulator_desc->ops->get_voltage_sel &&
4020             !regulator_desc->ops->list_voltage) {
4021                 return ERR_PTR(-EINVAL);
4022         }
4023         if (regulator_desc->ops->set_voltage_sel &&
4024             !regulator_desc->ops->list_voltage) {
4025                 return ERR_PTR(-EINVAL);
4026         }
4027
4028         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4029         if (rdev == NULL)
4030                 return ERR_PTR(-ENOMEM);
4031
4032         /*
4033          * Duplicate the config so the driver could override it after
4034          * parsing init data.
4035          */
4036         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4037         if (config == NULL) {
4038                 kfree(rdev);
4039                 return ERR_PTR(-ENOMEM);
4040         }
4041
4042         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4043                                                &rdev->dev.of_node);
4044         if (!init_data) {
4045                 init_data = config->init_data;
4046                 rdev->dev.of_node = of_node_get(config->of_node);
4047         }
4048
4049         mutex_init(&rdev->mutex);
4050         rdev->reg_data = config->driver_data;
4051         rdev->owner = regulator_desc->owner;
4052         rdev->desc = regulator_desc;
4053         if (config->regmap)
4054                 rdev->regmap = config->regmap;
4055         else if (dev_get_regmap(dev, NULL))
4056                 rdev->regmap = dev_get_regmap(dev, NULL);
4057         else if (dev->parent)
4058                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4059         INIT_LIST_HEAD(&rdev->consumer_list);
4060         INIT_LIST_HEAD(&rdev->list);
4061         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4062         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4063
4064         /* preform any regulator specific init */
4065         if (init_data && init_data->regulator_init) {
4066                 ret = init_data->regulator_init(rdev->reg_data);
4067                 if (ret < 0)
4068                         goto clean;
4069         }
4070
4071         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4072             gpio_is_valid(config->ena_gpio)) {
4073                 mutex_lock(&regulator_list_mutex);
4074                 ret = regulator_ena_gpio_request(rdev, config);
4075                 mutex_unlock(&regulator_list_mutex);
4076                 if (ret != 0) {
4077                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4078                                  config->ena_gpio, ret);
4079                         goto clean;
4080                 }
4081         }
4082
4083         /* register with sysfs */
4084         rdev->dev.class = &regulator_class;
4085         rdev->dev.parent = dev;
4086         dev_set_name(&rdev->dev, "regulator.%lu",
4087                     (unsigned long) atomic_inc_return(&regulator_no));
4088
4089         /* set regulator constraints */
4090         if (init_data)
4091                 rdev->constraints = kmemdup(&init_data->constraints,
4092                                             sizeof(*rdev->constraints),
4093                                             GFP_KERNEL);
4094         else
4095                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
4096                                             GFP_KERNEL);
4097         if (!rdev->constraints) {
4098                 ret = -ENOMEM;
4099                 goto wash;
4100         }
4101
4102         if (init_data && init_data->supply_regulator)
4103                 rdev->supply_name = init_data->supply_regulator;
4104         else if (regulator_desc->supply_name)
4105                 rdev->supply_name = regulator_desc->supply_name;
4106
4107         ret = set_machine_constraints(rdev);
4108         if (ret == -EPROBE_DEFER) {
4109                 /* Regulator might be in bypass mode and so needs its supply
4110                  * to set the constraints */
4111                 /* FIXME: this currently triggers a chicken-and-egg problem
4112                  * when creating -SUPPLY symlink in sysfs to a regulator
4113                  * that is just being created */
4114                 ret = regulator_resolve_supply(rdev);
4115                 if (!ret)
4116                         ret = set_machine_constraints(rdev);
4117                 else
4118                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
4119                                  ERR_PTR(ret));
4120         }
4121         if (ret < 0)
4122                 goto wash;
4123
4124         /* add consumers devices */
4125         if (init_data) {
4126                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4127                         ret = set_consumer_device_supply(rdev,
4128                                 init_data->consumer_supplies[i].dev_name,
4129                                 init_data->consumer_supplies[i].supply);
4130                         if (ret < 0) {
4131                                 dev_err(dev, "Failed to set supply %s\n",
4132                                         init_data->consumer_supplies[i].supply);
4133                                 goto unset_supplies;
4134                         }
4135                 }
4136         }
4137
4138         if (!rdev->desc->ops->get_voltage &&
4139             !rdev->desc->ops->list_voltage &&
4140             !rdev->desc->fixed_uV)
4141                 rdev->is_switch = true;
4142
4143         dev_set_drvdata(&rdev->dev, rdev);
4144         ret = device_register(&rdev->dev);
4145         if (ret != 0) {
4146                 put_device(&rdev->dev);
4147                 goto unset_supplies;
4148         }
4149
4150         rdev_init_debugfs(rdev);
4151
4152         /* try to resolve regulators supply since a new one was registered */
4153         class_for_each_device(&regulator_class, NULL, NULL,
4154                               regulator_register_resolve_supply);
4155         kfree(config);
4156         return rdev;
4157
4158 unset_supplies:
4159         mutex_lock(&regulator_list_mutex);
4160         unset_regulator_supplies(rdev);
4161         mutex_unlock(&regulator_list_mutex);
4162 wash:
4163         kfree(rdev->constraints);
4164         mutex_lock(&regulator_list_mutex);
4165         regulator_ena_gpio_free(rdev);
4166         mutex_unlock(&regulator_list_mutex);
4167 clean:
4168         kfree(rdev);
4169         kfree(config);
4170         return ERR_PTR(ret);
4171 }
4172 EXPORT_SYMBOL_GPL(regulator_register);
4173
4174 /**
4175  * regulator_unregister - unregister regulator
4176  * @rdev: regulator to unregister
4177  *
4178  * Called by regulator drivers to unregister a regulator.
4179  */
4180 void regulator_unregister(struct regulator_dev *rdev)
4181 {
4182         if (rdev == NULL)
4183                 return;
4184
4185         if (rdev->supply) {
4186                 while (rdev->use_count--)
4187                         regulator_disable(rdev->supply);
4188                 regulator_put(rdev->supply);
4189         }
4190         mutex_lock(&regulator_list_mutex);
4191         debugfs_remove_recursive(rdev->debugfs);
4192         flush_work(&rdev->disable_work.work);
4193         WARN_ON(rdev->open_count);
4194         unset_regulator_supplies(rdev);
4195         list_del(&rdev->list);
4196         regulator_ena_gpio_free(rdev);
4197         mutex_unlock(&regulator_list_mutex);
4198         device_unregister(&rdev->dev);
4199 }
4200 EXPORT_SYMBOL_GPL(regulator_unregister);
4201
4202 static int _regulator_suspend_prepare(struct device *dev, void *data)
4203 {
4204         struct regulator_dev *rdev = dev_to_rdev(dev);
4205         const suspend_state_t *state = data;
4206         int ret;
4207
4208         mutex_lock(&rdev->mutex);
4209         ret = suspend_prepare(rdev, *state);
4210         mutex_unlock(&rdev->mutex);
4211
4212         return ret;
4213 }
4214
4215 /**
4216  * regulator_suspend_prepare - prepare regulators for system wide suspend
4217  * @state: system suspend state
4218  *
4219  * Configure each regulator with it's suspend operating parameters for state.
4220  * This will usually be called by machine suspend code prior to supending.
4221  */
4222 int regulator_suspend_prepare(suspend_state_t state)
4223 {
4224         /* ON is handled by regulator active state */
4225         if (state == PM_SUSPEND_ON)
4226                 return -EINVAL;
4227
4228         return class_for_each_device(&regulator_class, NULL, &state,
4229                                      _regulator_suspend_prepare);
4230 }
4231 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4232
4233 static int _regulator_suspend_finish(struct device *dev, void *data)
4234 {
4235         struct regulator_dev *rdev = dev_to_rdev(dev);
4236         int ret;
4237
4238         mutex_lock(&rdev->mutex);
4239         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4240                 if (!_regulator_is_enabled(rdev)) {
4241                         ret = _regulator_do_enable(rdev);
4242                         if (ret)
4243                                 dev_err(dev,
4244                                         "Failed to resume regulator %d\n",
4245                                         ret);
4246                 }
4247         } else {
4248                 if (!have_full_constraints())
4249                         goto unlock;
4250                 if (!_regulator_is_enabled(rdev))
4251                         goto unlock;
4252
4253                 ret = _regulator_do_disable(rdev);
4254                 if (ret)
4255                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4256         }
4257 unlock:
4258         mutex_unlock(&rdev->mutex);
4259
4260         /* Keep processing regulators in spite of any errors */
4261         return 0;
4262 }
4263
4264 /**
4265  * regulator_suspend_finish - resume regulators from system wide suspend
4266  *
4267  * Turn on regulators that might be turned off by regulator_suspend_prepare
4268  * and that should be turned on according to the regulators properties.
4269  */
4270 int regulator_suspend_finish(void)
4271 {
4272         return class_for_each_device(&regulator_class, NULL, NULL,
4273                                      _regulator_suspend_finish);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4276
4277 /**
4278  * regulator_has_full_constraints - the system has fully specified constraints
4279  *
4280  * Calling this function will cause the regulator API to disable all
4281  * regulators which have a zero use count and don't have an always_on
4282  * constraint in a late_initcall.
4283  *
4284  * The intention is that this will become the default behaviour in a
4285  * future kernel release so users are encouraged to use this facility
4286  * now.
4287  */
4288 void regulator_has_full_constraints(void)
4289 {
4290         has_full_constraints = 1;
4291 }
4292 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4293
4294 /**
4295  * rdev_get_drvdata - get rdev regulator driver data
4296  * @rdev: regulator
4297  *
4298  * Get rdev regulator driver private data. This call can be used in the
4299  * regulator driver context.
4300  */
4301 void *rdev_get_drvdata(struct regulator_dev *rdev)
4302 {
4303         return rdev->reg_data;
4304 }
4305 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4306
4307 /**
4308  * regulator_get_drvdata - get regulator driver data
4309  * @regulator: regulator
4310  *
4311  * Get regulator driver private data. This call can be used in the consumer
4312  * driver context when non API regulator specific functions need to be called.
4313  */
4314 void *regulator_get_drvdata(struct regulator *regulator)
4315 {
4316         return regulator->rdev->reg_data;
4317 }
4318 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4319
4320 /**
4321  * regulator_set_drvdata - set regulator driver data
4322  * @regulator: regulator
4323  * @data: data
4324  */
4325 void regulator_set_drvdata(struct regulator *regulator, void *data)
4326 {
4327         regulator->rdev->reg_data = data;
4328 }
4329 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4330
4331 /**
4332  * regulator_get_id - get regulator ID
4333  * @rdev: regulator
4334  */
4335 int rdev_get_id(struct regulator_dev *rdev)
4336 {
4337         return rdev->desc->id;
4338 }
4339 EXPORT_SYMBOL_GPL(rdev_get_id);
4340
4341 struct device *rdev_get_dev(struct regulator_dev *rdev)
4342 {
4343         return &rdev->dev;
4344 }
4345 EXPORT_SYMBOL_GPL(rdev_get_dev);
4346
4347 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4348 {
4349         return reg_init_data->driver_data;
4350 }
4351 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4352
4353 #ifdef CONFIG_DEBUG_FS
4354 static int supply_map_show(struct seq_file *sf, void *data)
4355 {
4356         struct regulator_map *map;
4357
4358         list_for_each_entry(map, &regulator_map_list, list) {
4359                 seq_printf(sf, "%s -> %s.%s\n",
4360                                 rdev_get_name(map->regulator), map->dev_name,
4361                                 map->supply);
4362         }
4363
4364         return 0;
4365 }
4366
4367 static int supply_map_open(struct inode *inode, struct file *file)
4368 {
4369         return single_open(file, supply_map_show, inode->i_private);
4370 }
4371 #endif
4372
4373 static const struct file_operations supply_map_fops = {
4374 #ifdef CONFIG_DEBUG_FS
4375         .open = supply_map_open,
4376         .read = seq_read,
4377         .llseek = seq_lseek,
4378         .release = single_release,
4379 #endif
4380 };
4381
4382 #ifdef CONFIG_DEBUG_FS
4383 struct summary_data {
4384         struct seq_file *s;
4385         struct regulator_dev *parent;
4386         int level;
4387 };
4388
4389 static void regulator_summary_show_subtree(struct seq_file *s,
4390                                            struct regulator_dev *rdev,
4391                                            int level);
4392
4393 static int regulator_summary_show_children(struct device *dev, void *data)
4394 {
4395         struct regulator_dev *rdev = dev_to_rdev(dev);
4396         struct summary_data *summary_data = data;
4397
4398         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4399                 regulator_summary_show_subtree(summary_data->s, rdev,
4400                                                summary_data->level + 1);
4401
4402         return 0;
4403 }
4404
4405 static void regulator_summary_show_subtree(struct seq_file *s,
4406                                            struct regulator_dev *rdev,
4407                                            int level)
4408 {
4409         struct regulation_constraints *c;
4410         struct regulator *consumer;
4411         struct summary_data summary_data;
4412
4413         if (!rdev)
4414                 return;
4415
4416         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4417                    level * 3 + 1, "",
4418                    30 - level * 3, rdev_get_name(rdev),
4419                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4420
4421         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4422         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4423
4424         c = rdev->constraints;
4425         if (c) {
4426                 switch (rdev->desc->type) {
4427                 case REGULATOR_VOLTAGE:
4428                         seq_printf(s, "%5dmV %5dmV ",
4429                                    c->min_uV / 1000, c->max_uV / 1000);
4430                         break;
4431                 case REGULATOR_CURRENT:
4432                         seq_printf(s, "%5dmA %5dmA ",
4433                                    c->min_uA / 1000, c->max_uA / 1000);
4434                         break;
4435                 }
4436         }
4437
4438         seq_puts(s, "\n");
4439
4440         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4441                 if (consumer->dev && consumer->dev->class == &regulator_class)
4442                         continue;
4443
4444                 seq_printf(s, "%*s%-*s ",
4445                            (level + 1) * 3 + 1, "",
4446                            30 - (level + 1) * 3,
4447                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4448
4449                 switch (rdev->desc->type) {
4450                 case REGULATOR_VOLTAGE:
4451                         seq_printf(s, "%37dmV %5dmV",
4452                                    consumer->min_uV / 1000,
4453                                    consumer->max_uV / 1000);
4454                         break;
4455                 case REGULATOR_CURRENT:
4456                         break;
4457                 }
4458
4459                 seq_puts(s, "\n");
4460         }
4461
4462         summary_data.s = s;
4463         summary_data.level = level;
4464         summary_data.parent = rdev;
4465
4466         class_for_each_device(&regulator_class, NULL, &summary_data,
4467                               regulator_summary_show_children);
4468 }
4469
4470 static int regulator_summary_show_roots(struct device *dev, void *data)
4471 {
4472         struct regulator_dev *rdev = dev_to_rdev(dev);
4473         struct seq_file *s = data;
4474
4475         if (!rdev->supply)
4476                 regulator_summary_show_subtree(s, rdev, 0);
4477
4478         return 0;
4479 }
4480
4481 static int regulator_summary_show(struct seq_file *s, void *data)
4482 {
4483         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4484         seq_puts(s, "-------------------------------------------------------------------------------\n");
4485
4486         class_for_each_device(&regulator_class, NULL, s,
4487                               regulator_summary_show_roots);
4488
4489         return 0;
4490 }
4491
4492 static int regulator_summary_open(struct inode *inode, struct file *file)
4493 {
4494         return single_open(file, regulator_summary_show, inode->i_private);
4495 }
4496 #endif
4497
4498 static const struct file_operations regulator_summary_fops = {
4499 #ifdef CONFIG_DEBUG_FS
4500         .open           = regulator_summary_open,
4501         .read           = seq_read,
4502         .llseek         = seq_lseek,
4503         .release        = single_release,
4504 #endif
4505 };
4506
4507 static int __init regulator_init(void)
4508 {
4509         int ret;
4510
4511         ret = class_register(&regulator_class);
4512
4513         debugfs_root = debugfs_create_dir("regulator", NULL);
4514         if (!debugfs_root)
4515                 pr_warn("regulator: Failed to create debugfs directory\n");
4516
4517         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4518                             &supply_map_fops);
4519
4520         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4521                             NULL, &regulator_summary_fops);
4522
4523         regulator_dummy_init();
4524
4525         return ret;
4526 }
4527
4528 /* init early to allow our consumers to complete system booting */
4529 core_initcall(regulator_init);
4530
4531 static int __init regulator_late_cleanup(struct device *dev, void *data)
4532 {
4533         struct regulator_dev *rdev = dev_to_rdev(dev);
4534         const struct regulator_ops *ops = rdev->desc->ops;
4535         struct regulation_constraints *c = rdev->constraints;
4536         int enabled, ret;
4537
4538         if (c && c->always_on)
4539                 return 0;
4540
4541         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4542                 return 0;
4543
4544         mutex_lock(&rdev->mutex);
4545
4546         if (rdev->use_count)
4547                 goto unlock;
4548
4549         /* If we can't read the status assume it's on. */
4550         if (ops->is_enabled)
4551                 enabled = ops->is_enabled(rdev);
4552         else
4553                 enabled = 1;
4554
4555         if (!enabled)
4556                 goto unlock;
4557
4558         if (have_full_constraints()) {
4559                 /* We log since this may kill the system if it goes
4560                  * wrong. */
4561                 rdev_info(rdev, "disabling\n");
4562                 ret = _regulator_do_disable(rdev);
4563                 if (ret != 0)
4564                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4565         } else {
4566                 /* The intention is that in future we will
4567                  * assume that full constraints are provided
4568                  * so warn even if we aren't going to do
4569                  * anything here.
4570                  */
4571                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4572         }
4573
4574 unlock:
4575         mutex_unlock(&rdev->mutex);
4576
4577         return 0;
4578 }
4579
4580 static int __init regulator_init_complete(void)
4581 {
4582         /*
4583          * Since DT doesn't provide an idiomatic mechanism for
4584          * enabling full constraints and since it's much more natural
4585          * with DT to provide them just assume that a DT enabled
4586          * system has full constraints.
4587          */
4588         if (of_have_populated_dt())
4589                 has_full_constraints = true;
4590
4591         /*
4592          * Regulators may had failed to resolve their input supplies
4593          * when were registered, either because the input supply was
4594          * not registered yet or because its parent device was not
4595          * bound yet. So attempt to resolve the input supplies for
4596          * pending regulators before trying to disable unused ones.
4597          */
4598         class_for_each_device(&regulator_class, NULL, NULL,
4599                               regulator_register_resolve_supply);
4600
4601         /* If we have a full configuration then disable any regulators
4602          * we have permission to change the status for and which are
4603          * not in use or always_on.  This is effectively the default
4604          * for DT and ACPI as they have full constraints.
4605          */
4606         class_for_each_device(&regulator_class, NULL, NULL,
4607                               regulator_late_cleanup);
4608
4609         return 0;
4610 }
4611 late_initcall_sync(regulator_init_complete);