GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
47
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
50
51 struct cmos_rtc {
52         struct rtc_device       *rtc;
53         struct device           *dev;
54         int                     irq;
55         struct resource         *iomem;
56         time64_t                alarm_expires;
57
58         void                    (*wake_on)(struct device *);
59         void                    (*wake_off)(struct device *);
60
61         u8                      enabled_wake;
62         u8                      suspend_ctrl;
63
64         /* newer hardware extends the original register set */
65         u8                      day_alrm;
66         u8                      mon_alrm;
67         u8                      century;
68
69         struct rtc_wkalrm       saved_wkalrm;
70 };
71
72 /* both platform and pnp busses use negative numbers for invalid irqs */
73 #define is_valid_irq(n)         ((n) > 0)
74
75 static const char driver_name[] = "rtc_cmos";
76
77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
79  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
80  */
81 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
82
83 static inline int is_intr(u8 rtc_intr)
84 {
85         if (!(rtc_intr & RTC_IRQF))
86                 return 0;
87         return rtc_intr & RTC_IRQMASK;
88 }
89
90 /*----------------------------------------------------------------*/
91
92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94  * used in a broken "legacy replacement" mode.  The breakage includes
95  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96  * other (better) use.
97  *
98  * When that broken mode is in use, platform glue provides a partial
99  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
100  * want to use HPET for anything except those IRQs though...
101  */
102 #ifdef CONFIG_HPET_EMULATE_RTC
103 #include <asm/hpet.h>
104 #else
105
106 static inline int is_hpet_enabled(void)
107 {
108         return 0;
109 }
110
111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112 {
113         return 0;
114 }
115
116 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117 {
118         return 0;
119 }
120
121 static inline int
122 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123 {
124         return 0;
125 }
126
127 static inline int hpet_set_periodic_freq(unsigned long freq)
128 {
129         return 0;
130 }
131
132 static inline int hpet_rtc_dropped_irq(void)
133 {
134         return 0;
135 }
136
137 static inline int hpet_rtc_timer_init(void)
138 {
139         return 0;
140 }
141
142 extern irq_handler_t hpet_rtc_interrupt;
143
144 static inline int hpet_register_irq_handler(irq_handler_t handler)
145 {
146         return 0;
147 }
148
149 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150 {
151         return 0;
152 }
153
154 #endif
155
156 /*----------------------------------------------------------------*/
157
158 #ifdef RTC_PORT
159
160 /* Most newer x86 systems have two register banks, the first used
161  * for RTC and NVRAM and the second only for NVRAM.  Caller must
162  * own rtc_lock ... and we won't worry about access during NMI.
163  */
164 #define can_bank2       true
165
166 static inline unsigned char cmos_read_bank2(unsigned char addr)
167 {
168         outb(addr, RTC_PORT(2));
169         return inb(RTC_PORT(3));
170 }
171
172 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173 {
174         outb(addr, RTC_PORT(2));
175         outb(val, RTC_PORT(3));
176 }
177
178 #else
179
180 #define can_bank2       false
181
182 static inline unsigned char cmos_read_bank2(unsigned char addr)
183 {
184         return 0;
185 }
186
187 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188 {
189 }
190
191 #endif
192
193 /*----------------------------------------------------------------*/
194
195 static int cmos_read_time(struct device *dev, struct rtc_time *t)
196 {
197         /*
198          * If pm_trace abused the RTC for storage, set the timespec to 0,
199          * which tells the caller that this RTC value is unusable.
200          */
201         if (!pm_trace_rtc_valid())
202                 return -EIO;
203
204         /* REVISIT:  if the clock has a "century" register, use
205          * that instead of the heuristic in mc146818_get_time().
206          * That'll make Y3K compatility (year > 2070) easy!
207          */
208         mc146818_get_time(t);
209         return 0;
210 }
211
212 static int cmos_set_time(struct device *dev, struct rtc_time *t)
213 {
214         /* REVISIT:  set the "century" register if available
215          *
216          * NOTE: this ignores the issue whereby updating the seconds
217          * takes effect exactly 500ms after we write the register.
218          * (Also queueing and other delays before we get this far.)
219          */
220         return mc146818_set_time(t);
221 }
222
223 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
224 {
225         struct cmos_rtc *cmos = dev_get_drvdata(dev);
226         unsigned char   rtc_control;
227
228         if (!is_valid_irq(cmos->irq))
229                 return -EIO;
230
231         /* Basic alarms only support hour, minute, and seconds fields.
232          * Some also support day and month, for alarms up to a year in
233          * the future.
234          */
235
236         spin_lock_irq(&rtc_lock);
237         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
238         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
239         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
240
241         if (cmos->day_alrm) {
242                 /* ignore upper bits on readback per ACPI spec */
243                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
244                 if (!t->time.tm_mday)
245                         t->time.tm_mday = -1;
246
247                 if (cmos->mon_alrm) {
248                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
249                         if (!t->time.tm_mon)
250                                 t->time.tm_mon = -1;
251                 }
252         }
253
254         rtc_control = CMOS_READ(RTC_CONTROL);
255         spin_unlock_irq(&rtc_lock);
256
257         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
258                 if (((unsigned)t->time.tm_sec) < 0x60)
259                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
260                 else
261                         t->time.tm_sec = -1;
262                 if (((unsigned)t->time.tm_min) < 0x60)
263                         t->time.tm_min = bcd2bin(t->time.tm_min);
264                 else
265                         t->time.tm_min = -1;
266                 if (((unsigned)t->time.tm_hour) < 0x24)
267                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
268                 else
269                         t->time.tm_hour = -1;
270
271                 if (cmos->day_alrm) {
272                         if (((unsigned)t->time.tm_mday) <= 0x31)
273                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
274                         else
275                                 t->time.tm_mday = -1;
276
277                         if (cmos->mon_alrm) {
278                                 if (((unsigned)t->time.tm_mon) <= 0x12)
279                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
280                                 else
281                                         t->time.tm_mon = -1;
282                         }
283                 }
284         }
285
286         t->enabled = !!(rtc_control & RTC_AIE);
287         t->pending = 0;
288
289         return 0;
290 }
291
292 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
293 {
294         unsigned char   rtc_intr;
295
296         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
297          * allegedly some older rtcs need that to handle irqs properly
298          */
299         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
300
301         if (is_hpet_enabled())
302                 return;
303
304         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
305         if (is_intr(rtc_intr))
306                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
307 }
308
309 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
310 {
311         unsigned char   rtc_control;
312
313         /* flush any pending IRQ status, notably for update irqs,
314          * before we enable new IRQs
315          */
316         rtc_control = CMOS_READ(RTC_CONTROL);
317         cmos_checkintr(cmos, rtc_control);
318
319         rtc_control |= mask;
320         CMOS_WRITE(rtc_control, RTC_CONTROL);
321         hpet_set_rtc_irq_bit(mask);
322
323         cmos_checkintr(cmos, rtc_control);
324 }
325
326 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
327 {
328         unsigned char   rtc_control;
329
330         rtc_control = CMOS_READ(RTC_CONTROL);
331         rtc_control &= ~mask;
332         CMOS_WRITE(rtc_control, RTC_CONTROL);
333         hpet_mask_rtc_irq_bit(mask);
334
335         cmos_checkintr(cmos, rtc_control);
336 }
337
338 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
339 {
340         struct cmos_rtc *cmos = dev_get_drvdata(dev);
341         struct rtc_time now;
342
343         cmos_read_time(dev, &now);
344
345         if (!cmos->day_alrm) {
346                 time64_t t_max_date;
347                 time64_t t_alrm;
348
349                 t_max_date = rtc_tm_to_time64(&now);
350                 t_max_date += 24 * 60 * 60 - 1;
351                 t_alrm = rtc_tm_to_time64(&t->time);
352                 if (t_alrm > t_max_date) {
353                         dev_err(dev,
354                                 "Alarms can be up to one day in the future\n");
355                         return -EINVAL;
356                 }
357         } else if (!cmos->mon_alrm) {
358                 struct rtc_time max_date = now;
359                 time64_t t_max_date;
360                 time64_t t_alrm;
361                 int max_mday;
362
363                 if (max_date.tm_mon == 11) {
364                         max_date.tm_mon = 0;
365                         max_date.tm_year += 1;
366                 } else {
367                         max_date.tm_mon += 1;
368                 }
369                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
370                 if (max_date.tm_mday > max_mday)
371                         max_date.tm_mday = max_mday;
372
373                 t_max_date = rtc_tm_to_time64(&max_date);
374                 t_max_date -= 1;
375                 t_alrm = rtc_tm_to_time64(&t->time);
376                 if (t_alrm > t_max_date) {
377                         dev_err(dev,
378                                 "Alarms can be up to one month in the future\n");
379                         return -EINVAL;
380                 }
381         } else {
382                 struct rtc_time max_date = now;
383                 time64_t t_max_date;
384                 time64_t t_alrm;
385                 int max_mday;
386
387                 max_date.tm_year += 1;
388                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
389                 if (max_date.tm_mday > max_mday)
390                         max_date.tm_mday = max_mday;
391
392                 t_max_date = rtc_tm_to_time64(&max_date);
393                 t_max_date -= 1;
394                 t_alrm = rtc_tm_to_time64(&t->time);
395                 if (t_alrm > t_max_date) {
396                         dev_err(dev,
397                                 "Alarms can be up to one year in the future\n");
398                         return -EINVAL;
399                 }
400         }
401
402         return 0;
403 }
404
405 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
406 {
407         struct cmos_rtc *cmos = dev_get_drvdata(dev);
408         unsigned char mon, mday, hrs, min, sec, rtc_control;
409         int ret;
410
411         if (!is_valid_irq(cmos->irq))
412                 return -EIO;
413
414         ret = cmos_validate_alarm(dev, t);
415         if (ret < 0)
416                 return ret;
417
418         mon = t->time.tm_mon + 1;
419         mday = t->time.tm_mday;
420         hrs = t->time.tm_hour;
421         min = t->time.tm_min;
422         sec = t->time.tm_sec;
423
424         spin_lock_irq(&rtc_lock);
425         rtc_control = CMOS_READ(RTC_CONTROL);
426         spin_unlock_irq(&rtc_lock);
427
428         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
429                 /* Writing 0xff means "don't care" or "match all".  */
430                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
431                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
432                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
433                 min = (min < 60) ? bin2bcd(min) : 0xff;
434                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
435         }
436
437         spin_lock_irq(&rtc_lock);
438
439         /* next rtc irq must not be from previous alarm setting */
440         cmos_irq_disable(cmos, RTC_AIE);
441
442         /* update alarm */
443         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
444         CMOS_WRITE(min, RTC_MINUTES_ALARM);
445         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
446
447         /* the system may support an "enhanced" alarm */
448         if (cmos->day_alrm) {
449                 CMOS_WRITE(mday, cmos->day_alrm);
450                 if (cmos->mon_alrm)
451                         CMOS_WRITE(mon, cmos->mon_alrm);
452         }
453
454         /* FIXME the HPET alarm glue currently ignores day_alrm
455          * and mon_alrm ...
456          */
457         hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
458
459         if (t->enabled)
460                 cmos_irq_enable(cmos, RTC_AIE);
461
462         spin_unlock_irq(&rtc_lock);
463
464         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
465
466         return 0;
467 }
468
469 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
470 {
471         struct cmos_rtc *cmos = dev_get_drvdata(dev);
472         unsigned long   flags;
473
474         if (!is_valid_irq(cmos->irq))
475                 return -EINVAL;
476
477         spin_lock_irqsave(&rtc_lock, flags);
478
479         if (enabled)
480                 cmos_irq_enable(cmos, RTC_AIE);
481         else
482                 cmos_irq_disable(cmos, RTC_AIE);
483
484         spin_unlock_irqrestore(&rtc_lock, flags);
485         return 0;
486 }
487
488 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
489
490 static int cmos_procfs(struct device *dev, struct seq_file *seq)
491 {
492         struct cmos_rtc *cmos = dev_get_drvdata(dev);
493         unsigned char   rtc_control, valid;
494
495         spin_lock_irq(&rtc_lock);
496         rtc_control = CMOS_READ(RTC_CONTROL);
497         valid = CMOS_READ(RTC_VALID);
498         spin_unlock_irq(&rtc_lock);
499
500         /* NOTE:  at least ICH6 reports battery status using a different
501          * (non-RTC) bit; and SQWE is ignored on many current systems.
502          */
503         seq_printf(seq,
504                    "periodic_IRQ\t: %s\n"
505                    "update_IRQ\t: %s\n"
506                    "HPET_emulated\t: %s\n"
507                    // "square_wave\t: %s\n"
508                    "BCD\t\t: %s\n"
509                    "DST_enable\t: %s\n"
510                    "periodic_freq\t: %d\n"
511                    "batt_status\t: %s\n",
512                    (rtc_control & RTC_PIE) ? "yes" : "no",
513                    (rtc_control & RTC_UIE) ? "yes" : "no",
514                    is_hpet_enabled() ? "yes" : "no",
515                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
516                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
517                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
518                    cmos->rtc->irq_freq,
519                    (valid & RTC_VRT) ? "okay" : "dead");
520
521         return 0;
522 }
523
524 #else
525 #define cmos_procfs     NULL
526 #endif
527
528 static const struct rtc_class_ops cmos_rtc_ops = {
529         .read_time              = cmos_read_time,
530         .set_time               = cmos_set_time,
531         .read_alarm             = cmos_read_alarm,
532         .set_alarm              = cmos_set_alarm,
533         .proc                   = cmos_procfs,
534         .alarm_irq_enable       = cmos_alarm_irq_enable,
535 };
536
537 /*----------------------------------------------------------------*/
538
539 /*
540  * All these chips have at least 64 bytes of address space, shared by
541  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
542  * by boot firmware.  Modern chips have 128 or 256 bytes.
543  */
544
545 #define NVRAM_OFFSET    (RTC_REG_D + 1)
546
547 static ssize_t
548 cmos_nvram_read(struct file *filp, struct kobject *kobj,
549                 struct bin_attribute *attr,
550                 char *buf, loff_t off, size_t count)
551 {
552         int     retval;
553
554         off += NVRAM_OFFSET;
555         spin_lock_irq(&rtc_lock);
556         for (retval = 0; count; count--, off++, retval++) {
557                 if (off < 128)
558                         *buf++ = CMOS_READ(off);
559                 else if (can_bank2)
560                         *buf++ = cmos_read_bank2(off);
561                 else
562                         break;
563         }
564         spin_unlock_irq(&rtc_lock);
565
566         return retval;
567 }
568
569 static ssize_t
570 cmos_nvram_write(struct file *filp, struct kobject *kobj,
571                 struct bin_attribute *attr,
572                 char *buf, loff_t off, size_t count)
573 {
574         struct cmos_rtc *cmos;
575         int             retval;
576
577         cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
578
579         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
580          * checksum on part of the NVRAM data.  That's currently ignored
581          * here.  If userspace is smart enough to know what fields of
582          * NVRAM to update, updating checksums is also part of its job.
583          */
584         off += NVRAM_OFFSET;
585         spin_lock_irq(&rtc_lock);
586         for (retval = 0; count; count--, off++, retval++) {
587                 /* don't trash RTC registers */
588                 if (off == cmos->day_alrm
589                                 || off == cmos->mon_alrm
590                                 || off == cmos->century)
591                         buf++;
592                 else if (off < 128)
593                         CMOS_WRITE(*buf++, off);
594                 else if (can_bank2)
595                         cmos_write_bank2(*buf++, off);
596                 else
597                         break;
598         }
599         spin_unlock_irq(&rtc_lock);
600
601         return retval;
602 }
603
604 static struct bin_attribute nvram = {
605         .attr = {
606                 .name   = "nvram",
607                 .mode   = S_IRUGO | S_IWUSR,
608         },
609
610         .read   = cmos_nvram_read,
611         .write  = cmos_nvram_write,
612         /* size gets set up later */
613 };
614
615 /*----------------------------------------------------------------*/
616
617 static struct cmos_rtc  cmos_rtc;
618
619 static irqreturn_t cmos_interrupt(int irq, void *p)
620 {
621         u8              irqstat;
622         u8              rtc_control;
623
624         spin_lock(&rtc_lock);
625
626         /* When the HPET interrupt handler calls us, the interrupt
627          * status is passed as arg1 instead of the irq number.  But
628          * always clear irq status, even when HPET is in the way.
629          *
630          * Note that HPET and RTC are almost certainly out of phase,
631          * giving different IRQ status ...
632          */
633         irqstat = CMOS_READ(RTC_INTR_FLAGS);
634         rtc_control = CMOS_READ(RTC_CONTROL);
635         if (is_hpet_enabled())
636                 irqstat = (unsigned long)irq & 0xF0;
637
638         /* If we were suspended, RTC_CONTROL may not be accurate since the
639          * bios may have cleared it.
640          */
641         if (!cmos_rtc.suspend_ctrl)
642                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
643         else
644                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
645
646         /* All Linux RTC alarms should be treated as if they were oneshot.
647          * Similar code may be needed in system wakeup paths, in case the
648          * alarm woke the system.
649          */
650         if (irqstat & RTC_AIE) {
651                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
652                 rtc_control &= ~RTC_AIE;
653                 CMOS_WRITE(rtc_control, RTC_CONTROL);
654                 hpet_mask_rtc_irq_bit(RTC_AIE);
655                 CMOS_READ(RTC_INTR_FLAGS);
656         }
657         spin_unlock(&rtc_lock);
658
659         if (is_intr(irqstat)) {
660                 rtc_update_irq(p, 1, irqstat);
661                 return IRQ_HANDLED;
662         } else
663                 return IRQ_NONE;
664 }
665
666 #ifdef  CONFIG_PNP
667 #define INITSECTION
668
669 #else
670 #define INITSECTION     __init
671 #endif
672
673 static int INITSECTION
674 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
675 {
676         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
677         int                             retval = 0;
678         unsigned char                   rtc_control;
679         unsigned                        address_space;
680         u32                             flags = 0;
681
682         /* there can be only one ... */
683         if (cmos_rtc.dev)
684                 return -EBUSY;
685
686         if (!ports)
687                 return -ENODEV;
688
689         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
690          *
691          * REVISIT non-x86 systems may instead use memory space resources
692          * (needing ioremap etc), not i/o space resources like this ...
693          */
694         if (RTC_IOMAPPED)
695                 ports = request_region(ports->start, resource_size(ports),
696                                        driver_name);
697         else
698                 ports = request_mem_region(ports->start, resource_size(ports),
699                                            driver_name);
700         if (!ports) {
701                 dev_dbg(dev, "i/o registers already in use\n");
702                 return -EBUSY;
703         }
704
705         cmos_rtc.irq = rtc_irq;
706         cmos_rtc.iomem = ports;
707
708         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
709          * driver did, but don't reject unknown configs.   Old hardware
710          * won't address 128 bytes.  Newer chips have multiple banks,
711          * though they may not be listed in one I/O resource.
712          */
713 #if     defined(CONFIG_ATARI)
714         address_space = 64;
715 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
716                         || defined(__sparc__) || defined(__mips__) \
717                         || defined(__powerpc__) || defined(CONFIG_MN10300)
718         address_space = 128;
719 #else
720 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
721         address_space = 128;
722 #endif
723         if (can_bank2 && ports->end > (ports->start + 1))
724                 address_space = 256;
725
726         /* For ACPI systems extension info comes from the FADT.  On others,
727          * board specific setup provides it as appropriate.  Systems where
728          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
729          * some almost-clones) can provide hooks to make that behave.
730          *
731          * Note that ACPI doesn't preclude putting these registers into
732          * "extended" areas of the chip, including some that we won't yet
733          * expect CMOS_READ and friends to handle.
734          */
735         if (info) {
736                 if (info->flags)
737                         flags = info->flags;
738                 if (info->address_space)
739                         address_space = info->address_space;
740
741                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
742                         cmos_rtc.day_alrm = info->rtc_day_alarm;
743                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
744                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
745                 if (info->rtc_century && info->rtc_century < 128)
746                         cmos_rtc.century = info->rtc_century;
747
748                 if (info->wake_on && info->wake_off) {
749                         cmos_rtc.wake_on = info->wake_on;
750                         cmos_rtc.wake_off = info->wake_off;
751                 }
752         }
753
754         cmos_rtc.dev = dev;
755         dev_set_drvdata(dev, &cmos_rtc);
756
757         cmos_rtc.rtc = rtc_device_register(driver_name, dev,
758                                 &cmos_rtc_ops, THIS_MODULE);
759         if (IS_ERR(cmos_rtc.rtc)) {
760                 retval = PTR_ERR(cmos_rtc.rtc);
761                 goto cleanup0;
762         }
763
764         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
765
766         spin_lock_irq(&rtc_lock);
767
768         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
769                 /* force periodic irq to CMOS reset default of 1024Hz;
770                  *
771                  * REVISIT it's been reported that at least one x86_64 ALI
772                  * mobo doesn't use 32KHz here ... for portability we might
773                  * need to do something about other clock frequencies.
774                  */
775                 cmos_rtc.rtc->irq_freq = 1024;
776                 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
777                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
778         }
779
780         /* disable irqs */
781         if (is_valid_irq(rtc_irq))
782                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
783
784         rtc_control = CMOS_READ(RTC_CONTROL);
785
786         spin_unlock_irq(&rtc_lock);
787
788         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
789                 dev_warn(dev, "only 24-hr supported\n");
790                 retval = -ENXIO;
791                 goto cleanup1;
792         }
793
794         hpet_rtc_timer_init();
795
796         if (is_valid_irq(rtc_irq)) {
797                 irq_handler_t rtc_cmos_int_handler;
798
799                 if (is_hpet_enabled()) {
800                         rtc_cmos_int_handler = hpet_rtc_interrupt;
801                         retval = hpet_register_irq_handler(cmos_interrupt);
802                         if (retval) {
803                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
804                                 dev_warn(dev, "hpet_register_irq_handler "
805                                                 " failed in rtc_init().");
806                                 goto cleanup1;
807                         }
808                 } else
809                         rtc_cmos_int_handler = cmos_interrupt;
810
811                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
812                                 0, dev_name(&cmos_rtc.rtc->dev),
813                                 cmos_rtc.rtc);
814                 if (retval < 0) {
815                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
816                         goto cleanup1;
817                 }
818         }
819
820         /* export at least the first block of NVRAM */
821         nvram.size = address_space - NVRAM_OFFSET;
822         retval = sysfs_create_bin_file(&dev->kobj, &nvram);
823         if (retval < 0) {
824                 dev_dbg(dev, "can't create nvram file? %d\n", retval);
825                 goto cleanup2;
826         }
827
828         dev_info(dev, "%s%s, %zd bytes nvram%s\n",
829                 !is_valid_irq(rtc_irq) ? "no alarms" :
830                         cmos_rtc.mon_alrm ? "alarms up to one year" :
831                         cmos_rtc.day_alrm ? "alarms up to one month" :
832                         "alarms up to one day",
833                 cmos_rtc.century ? ", y3k" : "",
834                 nvram.size,
835                 is_hpet_enabled() ? ", hpet irqs" : "");
836
837         return 0;
838
839 cleanup2:
840         if (is_valid_irq(rtc_irq))
841                 free_irq(rtc_irq, cmos_rtc.rtc);
842 cleanup1:
843         cmos_rtc.dev = NULL;
844         rtc_device_unregister(cmos_rtc.rtc);
845 cleanup0:
846         if (RTC_IOMAPPED)
847                 release_region(ports->start, resource_size(ports));
848         else
849                 release_mem_region(ports->start, resource_size(ports));
850         return retval;
851 }
852
853 static void cmos_do_shutdown(int rtc_irq)
854 {
855         spin_lock_irq(&rtc_lock);
856         if (is_valid_irq(rtc_irq))
857                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
858         spin_unlock_irq(&rtc_lock);
859 }
860
861 static void cmos_do_remove(struct device *dev)
862 {
863         struct cmos_rtc *cmos = dev_get_drvdata(dev);
864         struct resource *ports;
865
866         cmos_do_shutdown(cmos->irq);
867
868         sysfs_remove_bin_file(&dev->kobj, &nvram);
869
870         if (is_valid_irq(cmos->irq)) {
871                 free_irq(cmos->irq, cmos->rtc);
872                 hpet_unregister_irq_handler(cmos_interrupt);
873         }
874
875         rtc_device_unregister(cmos->rtc);
876         cmos->rtc = NULL;
877
878         ports = cmos->iomem;
879         if (RTC_IOMAPPED)
880                 release_region(ports->start, resource_size(ports));
881         else
882                 release_mem_region(ports->start, resource_size(ports));
883         cmos->iomem = NULL;
884
885         cmos->dev = NULL;
886 }
887
888 static int cmos_aie_poweroff(struct device *dev)
889 {
890         struct cmos_rtc *cmos = dev_get_drvdata(dev);
891         struct rtc_time now;
892         time64_t t_now;
893         int retval = 0;
894         unsigned char rtc_control;
895
896         if (!cmos->alarm_expires)
897                 return -EINVAL;
898
899         spin_lock_irq(&rtc_lock);
900         rtc_control = CMOS_READ(RTC_CONTROL);
901         spin_unlock_irq(&rtc_lock);
902
903         /* We only care about the situation where AIE is disabled. */
904         if (rtc_control & RTC_AIE)
905                 return -EBUSY;
906
907         cmos_read_time(dev, &now);
908         t_now = rtc_tm_to_time64(&now);
909
910         /*
911          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
912          * automatically right after shutdown on some buggy boxes.
913          * This automatic rebooting issue won't happen when the alarm
914          * time is larger than now+1 seconds.
915          *
916          * If the alarm time is equal to now+1 seconds, the issue can be
917          * prevented by cancelling the alarm.
918          */
919         if (cmos->alarm_expires == t_now + 1) {
920                 struct rtc_wkalrm alarm;
921
922                 /* Cancel the AIE timer by configuring the past time. */
923                 rtc_time64_to_tm(t_now - 1, &alarm.time);
924                 alarm.enabled = 0;
925                 retval = cmos_set_alarm(dev, &alarm);
926         } else if (cmos->alarm_expires > t_now + 1) {
927                 retval = -EBUSY;
928         }
929
930         return retval;
931 }
932
933 static int cmos_suspend(struct device *dev)
934 {
935         struct cmos_rtc *cmos = dev_get_drvdata(dev);
936         unsigned char   tmp;
937
938         /* only the alarm might be a wakeup event source */
939         spin_lock_irq(&rtc_lock);
940         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
941         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
942                 unsigned char   mask;
943
944                 if (device_may_wakeup(dev))
945                         mask = RTC_IRQMASK & ~RTC_AIE;
946                 else
947                         mask = RTC_IRQMASK;
948                 tmp &= ~mask;
949                 CMOS_WRITE(tmp, RTC_CONTROL);
950                 hpet_mask_rtc_irq_bit(mask);
951
952                 cmos_checkintr(cmos, tmp);
953         }
954         spin_unlock_irq(&rtc_lock);
955
956         if (tmp & RTC_AIE) {
957                 cmos->enabled_wake = 1;
958                 if (cmos->wake_on)
959                         cmos->wake_on(dev);
960                 else
961                         enable_irq_wake(cmos->irq);
962         }
963
964         cmos_read_alarm(dev, &cmos->saved_wkalrm);
965
966         dev_dbg(dev, "suspend%s, ctrl %02x\n",
967                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
968                         tmp);
969
970         return 0;
971 }
972
973 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
974  * after a detour through G3 "mechanical off", although the ACPI spec
975  * says wakeup should only work from G1/S4 "hibernate".  To most users,
976  * distinctions between S4 and S5 are pointless.  So when the hardware
977  * allows, don't draw that distinction.
978  */
979 static inline int cmos_poweroff(struct device *dev)
980 {
981         if (!IS_ENABLED(CONFIG_PM))
982                 return -ENOSYS;
983
984         return cmos_suspend(dev);
985 }
986
987 static void cmos_check_wkalrm(struct device *dev)
988 {
989         struct cmos_rtc *cmos = dev_get_drvdata(dev);
990         struct rtc_wkalrm current_alarm;
991         time64_t t_current_expires;
992         time64_t t_saved_expires;
993
994         cmos_read_alarm(dev, &current_alarm);
995         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
996         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
997         if (t_current_expires != t_saved_expires ||
998             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
999                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1000         }
1001 }
1002
1003 static void cmos_check_acpi_rtc_status(struct device *dev,
1004                                        unsigned char *rtc_control);
1005
1006 static int __maybe_unused cmos_resume(struct device *dev)
1007 {
1008         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1009         unsigned char tmp;
1010
1011         if (cmos->enabled_wake) {
1012                 if (cmos->wake_off)
1013                         cmos->wake_off(dev);
1014                 else
1015                         disable_irq_wake(cmos->irq);
1016                 cmos->enabled_wake = 0;
1017         }
1018
1019         /* The BIOS might have changed the alarm, restore it */
1020         cmos_check_wkalrm(dev);
1021
1022         spin_lock_irq(&rtc_lock);
1023         tmp = cmos->suspend_ctrl;
1024         cmos->suspend_ctrl = 0;
1025         /* re-enable any irqs previously active */
1026         if (tmp & RTC_IRQMASK) {
1027                 unsigned char   mask;
1028
1029                 if (device_may_wakeup(dev))
1030                         hpet_rtc_timer_init();
1031
1032                 do {
1033                         CMOS_WRITE(tmp, RTC_CONTROL);
1034                         hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1035
1036                         mask = CMOS_READ(RTC_INTR_FLAGS);
1037                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1038                         if (!is_hpet_enabled() || !is_intr(mask))
1039                                 break;
1040
1041                         /* force one-shot behavior if HPET blocked
1042                          * the wake alarm's irq
1043                          */
1044                         rtc_update_irq(cmos->rtc, 1, mask);
1045                         tmp &= ~RTC_AIE;
1046                         hpet_mask_rtc_irq_bit(RTC_AIE);
1047                 } while (mask & RTC_AIE);
1048
1049                 if (tmp & RTC_AIE)
1050                         cmos_check_acpi_rtc_status(dev, &tmp);
1051         }
1052         spin_unlock_irq(&rtc_lock);
1053
1054         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1055
1056         return 0;
1057 }
1058
1059 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1060
1061 /*----------------------------------------------------------------*/
1062
1063 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1064  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1065  * probably list them in similar PNPBIOS tables; so PNP is more common.
1066  *
1067  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1068  * predate even PNPBIOS should set up platform_bus devices.
1069  */
1070
1071 #ifdef  CONFIG_ACPI
1072
1073 #include <linux/acpi.h>
1074
1075 static u32 rtc_handler(void *context)
1076 {
1077         struct device *dev = context;
1078         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1079         unsigned char rtc_control = 0;
1080         unsigned char rtc_intr;
1081         unsigned long flags;
1082
1083         spin_lock_irqsave(&rtc_lock, flags);
1084         if (cmos_rtc.suspend_ctrl)
1085                 rtc_control = CMOS_READ(RTC_CONTROL);
1086         if (rtc_control & RTC_AIE) {
1087                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1088                 CMOS_WRITE(rtc_control, RTC_CONTROL);
1089                 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1090                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1091         }
1092         spin_unlock_irqrestore(&rtc_lock, flags);
1093
1094         pm_wakeup_hard_event(dev);
1095         acpi_clear_event(ACPI_EVENT_RTC);
1096         acpi_disable_event(ACPI_EVENT_RTC, 0);
1097         return ACPI_INTERRUPT_HANDLED;
1098 }
1099
1100 static inline void rtc_wake_setup(struct device *dev)
1101 {
1102         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1103         /*
1104          * After the RTC handler is installed, the Fixed_RTC event should
1105          * be disabled. Only when the RTC alarm is set will it be enabled.
1106          */
1107         acpi_clear_event(ACPI_EVENT_RTC);
1108         acpi_disable_event(ACPI_EVENT_RTC, 0);
1109 }
1110
1111 static void rtc_wake_on(struct device *dev)
1112 {
1113         acpi_clear_event(ACPI_EVENT_RTC);
1114         acpi_enable_event(ACPI_EVENT_RTC, 0);
1115 }
1116
1117 static void rtc_wake_off(struct device *dev)
1118 {
1119         acpi_disable_event(ACPI_EVENT_RTC, 0);
1120 }
1121
1122 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1123  * its device node and pass extra config data.  This helps its driver use
1124  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1125  * that this board's RTC is wakeup-capable (per ACPI spec).
1126  */
1127 static struct cmos_rtc_board_info acpi_rtc_info;
1128
1129 static void cmos_wake_setup(struct device *dev)
1130 {
1131         if (acpi_disabled)
1132                 return;
1133
1134         rtc_wake_setup(dev);
1135         acpi_rtc_info.wake_on = rtc_wake_on;
1136         acpi_rtc_info.wake_off = rtc_wake_off;
1137
1138         /* workaround bug in some ACPI tables */
1139         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1140                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1141                         acpi_gbl_FADT.month_alarm);
1142                 acpi_gbl_FADT.month_alarm = 0;
1143         }
1144
1145         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1146         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1147         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1148
1149         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1150         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1151                 dev_info(dev, "RTC can wake from S4\n");
1152
1153         dev->platform_data = &acpi_rtc_info;
1154
1155         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1156         device_init_wakeup(dev, 1);
1157 }
1158
1159 static void cmos_check_acpi_rtc_status(struct device *dev,
1160                                        unsigned char *rtc_control)
1161 {
1162         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1163         acpi_event_status rtc_status;
1164         acpi_status status;
1165
1166         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1167                 return;
1168
1169         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1170         if (ACPI_FAILURE(status)) {
1171                 dev_err(dev, "Could not get RTC status\n");
1172         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1173                 unsigned char mask;
1174                 *rtc_control &= ~RTC_AIE;
1175                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1176                 mask = CMOS_READ(RTC_INTR_FLAGS);
1177                 rtc_update_irq(cmos->rtc, 1, mask);
1178         }
1179 }
1180
1181 #else
1182
1183 static void cmos_wake_setup(struct device *dev)
1184 {
1185 }
1186
1187 static void cmos_check_acpi_rtc_status(struct device *dev,
1188                                        unsigned char *rtc_control)
1189 {
1190 }
1191
1192 #endif
1193
1194 #ifdef  CONFIG_PNP
1195
1196 #include <linux/pnp.h>
1197
1198 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1199 {
1200         cmos_wake_setup(&pnp->dev);
1201
1202         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1203                 unsigned int irq = 0;
1204 #ifdef CONFIG_X86
1205                 /* Some machines contain a PNP entry for the RTC, but
1206                  * don't define the IRQ. It should always be safe to
1207                  * hardcode it on systems with a legacy PIC.
1208                  */
1209                 if (nr_legacy_irqs())
1210                         irq = 8;
1211 #endif
1212                 return cmos_do_probe(&pnp->dev,
1213                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1214         } else {
1215                 return cmos_do_probe(&pnp->dev,
1216                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1217                                 pnp_irq(pnp, 0));
1218         }
1219 }
1220
1221 static void cmos_pnp_remove(struct pnp_dev *pnp)
1222 {
1223         cmos_do_remove(&pnp->dev);
1224 }
1225
1226 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1227 {
1228         struct device *dev = &pnp->dev;
1229         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1230
1231         if (system_state == SYSTEM_POWER_OFF) {
1232                 int retval = cmos_poweroff(dev);
1233
1234                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1235                         return;
1236         }
1237
1238         cmos_do_shutdown(cmos->irq);
1239 }
1240
1241 static const struct pnp_device_id rtc_ids[] = {
1242         { .id = "PNP0b00", },
1243         { .id = "PNP0b01", },
1244         { .id = "PNP0b02", },
1245         { },
1246 };
1247 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1248
1249 static struct pnp_driver cmos_pnp_driver = {
1250         .name           = (char *) driver_name,
1251         .id_table       = rtc_ids,
1252         .probe          = cmos_pnp_probe,
1253         .remove         = cmos_pnp_remove,
1254         .shutdown       = cmos_pnp_shutdown,
1255
1256         /* flag ensures resume() gets called, and stops syslog spam */
1257         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1258         .driver         = {
1259                         .pm = &cmos_pm_ops,
1260         },
1261 };
1262
1263 #endif  /* CONFIG_PNP */
1264
1265 #ifdef CONFIG_OF
1266 static const struct of_device_id of_cmos_match[] = {
1267         {
1268                 .compatible = "motorola,mc146818",
1269         },
1270         { },
1271 };
1272 MODULE_DEVICE_TABLE(of, of_cmos_match);
1273
1274 static __init void cmos_of_init(struct platform_device *pdev)
1275 {
1276         struct device_node *node = pdev->dev.of_node;
1277         struct rtc_time time;
1278         int ret;
1279         const __be32 *val;
1280
1281         if (!node)
1282                 return;
1283
1284         val = of_get_property(node, "ctrl-reg", NULL);
1285         if (val)
1286                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1287
1288         val = of_get_property(node, "freq-reg", NULL);
1289         if (val)
1290                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1291
1292         cmos_read_time(&pdev->dev, &time);
1293         ret = rtc_valid_tm(&time);
1294         if (ret) {
1295                 struct rtc_time def_time = {
1296                         .tm_year = 1,
1297                         .tm_mday = 1,
1298                 };
1299                 cmos_set_time(&pdev->dev, &def_time);
1300         }
1301 }
1302 #else
1303 static inline void cmos_of_init(struct platform_device *pdev) {}
1304 #endif
1305 /*----------------------------------------------------------------*/
1306
1307 /* Platform setup should have set up an RTC device, when PNP is
1308  * unavailable ... this could happen even on (older) PCs.
1309  */
1310
1311 static int __init cmos_platform_probe(struct platform_device *pdev)
1312 {
1313         struct resource *resource;
1314         int irq;
1315
1316         cmos_of_init(pdev);
1317         cmos_wake_setup(&pdev->dev);
1318
1319         if (RTC_IOMAPPED)
1320                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1321         else
1322                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323         irq = platform_get_irq(pdev, 0);
1324         if (irq < 0)
1325                 irq = -1;
1326
1327         return cmos_do_probe(&pdev->dev, resource, irq);
1328 }
1329
1330 static int cmos_platform_remove(struct platform_device *pdev)
1331 {
1332         cmos_do_remove(&pdev->dev);
1333         return 0;
1334 }
1335
1336 static void cmos_platform_shutdown(struct platform_device *pdev)
1337 {
1338         struct device *dev = &pdev->dev;
1339         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1340
1341         if (system_state == SYSTEM_POWER_OFF) {
1342                 int retval = cmos_poweroff(dev);
1343
1344                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1345                         return;
1346         }
1347
1348         cmos_do_shutdown(cmos->irq);
1349 }
1350
1351 /* work with hotplug and coldplug */
1352 MODULE_ALIAS("platform:rtc_cmos");
1353
1354 static struct platform_driver cmos_platform_driver = {
1355         .remove         = cmos_platform_remove,
1356         .shutdown       = cmos_platform_shutdown,
1357         .driver = {
1358                 .name           = driver_name,
1359                 .pm             = &cmos_pm_ops,
1360                 .of_match_table = of_match_ptr(of_cmos_match),
1361         }
1362 };
1363
1364 #ifdef CONFIG_PNP
1365 static bool pnp_driver_registered;
1366 #endif
1367 static bool platform_driver_registered;
1368
1369 static int __init cmos_init(void)
1370 {
1371         int retval = 0;
1372
1373 #ifdef  CONFIG_PNP
1374         retval = pnp_register_driver(&cmos_pnp_driver);
1375         if (retval == 0)
1376                 pnp_driver_registered = true;
1377 #endif
1378
1379         if (!cmos_rtc.dev) {
1380                 retval = platform_driver_probe(&cmos_platform_driver,
1381                                                cmos_platform_probe);
1382                 if (retval == 0)
1383                         platform_driver_registered = true;
1384         }
1385
1386         if (retval == 0)
1387                 return 0;
1388
1389 #ifdef  CONFIG_PNP
1390         if (pnp_driver_registered)
1391                 pnp_unregister_driver(&cmos_pnp_driver);
1392 #endif
1393         return retval;
1394 }
1395 module_init(cmos_init);
1396
1397 static void __exit cmos_exit(void)
1398 {
1399 #ifdef  CONFIG_PNP
1400         if (pnp_driver_registered)
1401                 pnp_unregister_driver(&cmos_pnp_driver);
1402 #endif
1403         if (platform_driver_registered)
1404                 platform_driver_unregister(&cmos_platform_driver);
1405 }
1406 module_exit(cmos_exit);
1407
1408
1409 MODULE_AUTHOR("David Brownell");
1410 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1411 MODULE_LICENSE("GPL");